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Abstract

We develop a continuous time general equilibrium model with intermediaries at the
heart of international financial markets. Global intermediaries bargain with households
and extract rents from providing access to foreign claims. By tilting state prices,
intermediaries’ market power breaks monetary neutrality and makes international risk-
sharing inefficient. Despite having zero net positions, markups charged by intermedi-
aries significantly distort international asset prices, affecting exchange rate dynamics
and their response to shocks. Our model can reproduce patterns consistent with several
well-known exchange rate puzzles, such as deviations from Uncovered and Covered
Interest Parity. All equilibrium quantities are derived in closed form, allowing us to
pin down the underlying economic mechanisms explicitly.

Keywords: Financial Intermediation, Exchange Rates, Uncovered Interest Parity,
Covered Interest Parity Deviations

JEL Classification Numbers: E44, E52, F31, F33, G13, G15, G23



1 Introduction

This paper develops a macroeconomic general equilibrium model in which international
financial markets are subject to intermediation frictions. Intermediaries use their market
power in a tiered market structure to charge markups for providing their clients with access to
foreign financial instruments. These markups lead to demand imbalances and, by tilting state
prices that investors in financial markets face, make international risk-sharing inefficient. We
characterize the resulting endogenous non-linear dynamics of exchange rates in closed form
for any number of shocks and any nature of shock dynamics. A calibration exercise shows
that the model can help explain several well-known exchange rate puzzles.

Intermediaries are central to the functioning of international financial markets. Because of
various frictions such as transaction costs, regulation, and costly information, asset trading
exhibits increasing returns to scale, which makes it sub-optimal for most households to
participate directly in financial markets. Instead, most individuals rely on intermediaries
such as broker-dealers, commercial banks, pension funds, and mutual funds for borrowing
and saving. The same economies of scale give intermediaries market power, allowing them to
charge compensation in the form of markups, as reflected in various intermediation spreads.!

It is, therefore, natural to ask what this market power of intermediaries implies for

In OTC markets, an identical asset is typically traded at different prices at a given point in time,
depending on the identity of the trading counterparties. Trading in such markets is subject to frictions,
whereby a handful of global intermediaries exert significant market power. For example, Hau et al. (2017)
provide evidence for significant rent extraction in the FX derivatives markets. According to Hau et al.
(2017), “A corporate client at the 75th percentile of average transaction costs pays a roughly 12 times larger
spread than a corporate client at the 25th percentile.” Wallen (2020) finds that markups are responsible for
a significant component of spreads in FX markets, whereas Aldasoro et al. (2020) show a significant impact
of market power and markups in dollar funding markets for foreign banks.



aggregate risk-sharing—a question this paper studies in the international context. Although
much of the existing research has focused on intermediary balance sheet constraints, in
our model, we purposely abstract from these important frictions and take the view of
intermediaries as match-makers with significant bargaining power. In particular, our model
captures the recent move away from a “principal-based model” of market-making (where
dealers hold a non-trivial amount of open risk positions on their balance sheet) to an “agency
model,” in which they seek to economize on usage of their balance sheet by immediately
offsetting trade with one client against opposing trading interest by another client (see, e.g.,
Adrian et al., 2017b; Fender and Lewrick, 2015).

To study the effect of intermediation markups on the macro economy and exchange rates,
we introduce an imperfectly competitive intermediation sector into a classical, two-country,
international cash-in-advance model similar to Lucas (1982). Each country is populated by
a continuum of households that have direct access to trading domestic nominal risk-free
bonds and a domestic Lucas tree (the claim on domestic output). However, the trading
of all other securities happens over-the-counter (OTC) in the dealer-to-customer (D2C)
market through global intermediary firms that are, in turn, owned by households. Upon
contact, intermediaries take into account households’ optimal demand for foreign financial
asset exposures and use their bargaining power to extract rents and charge markups for
catering to households’ demand.? At the same time, global intermediation firms have access

to a frictionless, centralized dealer-to-dealer (D2D) market to which they can turn to hedge

2Costinot et al. (2014) also emphasize the optimal markups (implemented via capital controls) on state-
contingent transfers.



exposures or obtain funding. Pricing in the D2D market, in turn, defines the international
pricing kernel at which dealers discount their cash flows.

We derive a closed-form solution to the bargaining problem in the D2C market and then
embed this solution into the general equilibrium. Remarkably, despite the inherent complex-
ity of the model with frictions, multiple shocks, and international financial markets, we can
characterize equilibrium dynamics in closed form by leveraging the power of continuous-time
methods. Based on our solution, we then explicitly show how the presence of intermediation
markups affects equilibrium allocations and exchange rate behavior.

We show (both theoretically and numerically) that our model can help explain several
well-known puzzles about the behavior of exchange rates. To this end, we study an economy
with two symmetric countries in which interest rates are constant in the frictionless economy.
As a result, absent intermediation frictions, the model cannot generate any joint dynamics
between exchange rates and interest rates. By contrast, we show how intermediation markups
help account for several known puzzles in exchange rate behavior, including the joint behavior
of deviations from Covered and Uncovered Interest Parity. Consistent with the data, the
model generates a large, positive coefficient in the Fama regression. This happens because, in
equilibrium, price-discriminating intermediaries optimally influence the domestic households’
demand for foreign risky and riskless assets, creating a negative association between the
interest rate differential and the foreign exchange risk premium. Contrary to other existing
models with financial frictions, our model achieves a significant R? in the Fama (1984)

regression through a mechanism that is purely driven by trade and consumption risk sharing.



The model also generates a sizable Sharpe ratio for the carry trade, suggesting that the
market power of intermediaries could drive a non-trivial fraction of this Sharpe ratio. The
high R? in the Fama (1984) regression is possible because our model — in contrast to
the frictionless benchmark — generates quantitatively realistic fluctuations in the interest
rate differential. While such fluctuations could also be achieved through flexible preference
specifications that produce enough volatility in the elasticity of intertemporal substitution,
our model generates this volatility in a setting with logarithmic preferences. We also derive a
closed-form expression for equilibrium CIP deviations and show how they are directly affected
by the price pressure originating from households’ desire to share fundamental shocks. The
mechanism is stronger in the presence of a larger trade imbalance, highlighting how real
demand forces lead to CIP deviations in our model. Our model can match the levels of UIP
and CIP deviations quantitatively and generates realistic joint time-series dynamics of CIP
and exchange rates, consistent with the recent findings of Avdjiev et al. (2019). In summary,
this calibration exercise suggests that intermediation markups might be a quantitatively
important channel behind some of the observed fluctuations in interest rates and exchange

rates.

Roadmap. The remainder of the paper is structured as follows. Section 2 provides an
overview of the relevant literature. Section 3 describes the model. Section 4 provides the
equilibrium characterization. Section 5 investigates the link between intermediation frictions

and various exchange rate anomalies. Section 6 concludes the paper.



2 Literature Review

The literature on general equilibrium models of exchange rates is vast. Most papers as-
sume either complete markets® or an exogenously specified incompleteness in the form of
portfolio constraints* or limits to market participation®. In contrast, in our model, market
incompleteness and limits to international risk sharing are endogenous and determined by
equilibrium intermediation markups.

Whereas much of the existing literature on intermediation frictions focuses on balance
sheet constraints of intermediaries (see, e.g., Maggiori (2017) and Gabaix and Maggiori
(2015), Ttskhoki and Mukhin (2017, 2019), Fang and Liu (2021)),° our focus in this paper
is different. To single out the effects of markups and market power, we assume that
intermediaries are global risk-neutral firms that act as matchmakers to intermediate clients
with different trading interests, maximizing firm value through rent extraction. Although
dealer balance sheet constraints are among the key determinants of exchange rate dynamics
(see, e.g., Du et al. (2019a)), recent empirical evidence (see, e.g., Aldasoro et al. (2020),
Hau et al. (2017), and Wallen (2020)) suggests that markups are responsible for a significant

component of spreads in FX derivatives markets. Our novel, tractable framework allows for

3See, e.g., Lucas (1982); Cole and Obstfeld (1991); Dumas (1992); Backus et al. (1992); Backus and
Smith (1993), Obstfeld and Rogoff (1995); Pavlova and Rigobon (2007); Verdelhan (2010); Colacito and
Croce (2011).

4See, e.g., Chari et al. (2002); Corsetti et al. (2008); Pavlova and Rigobon (2008), unspanned risk factors
(Pavlova and Rigobon (2010, 2012), Farhi and Gabaix (2016), Brunnermeier and Sannikov (2017)).

5 Alvarez et al. (2002, 2009), Bacchetta and Van Wincoop (2010) and Hassan (2013).

6Several papers (see, e.g., Jeanne and Rose (2002), Evans and Lyons (2002), Hau and Rey (2006), Bruno
and Shin (2015), Camanho et al. (2017)) study the impact of frictions on exchange rates without modeling
fundamentals such as exports and imports of multiple goods. Instead, they focus on how intermediaries’
behavior and incentive structure shape market outcomes in FX.



arbitrary state-contingent contracts and can be easily adjusted to incorporate balance sheet
constraints. We leave this possible extension for future research.

Most existing papers on intermediation frictions in international markets (see, e.g., Gabaix
and Maggiori (2015) and Itskhoki and Mukhin (2017, 2019)) assume that households can
only trade nominal domestic bonds, leading to an extreme form of market segmentation. In
contrast, in our model, households could potentially share risks efficiently with each other,
but intermediaries’ market power affects state prices, and customers end up under- or over-
insuring certain risks. Our paper’s novel, tractable, continuous-time framework allows us to
characterize these inefficiently insured risks and their equilibrium impact in closed form for
any shock dynamics.

Another set of papers assumes ezogenous shocks to Euler equations (Itskhoki and Mukhin
(2017, 2019)) or an exogenous convenience yield (Jiang et al. (2018, 2019)). Our key the-
oretical innovation is a micro-foundation of convenience yields arising from macroeconomic
demand forces. In our model, households’ demand pressure in D2C markets creates a
convenience yield (over-pricing relative to the D2D market) for securities with risk profiles
that customers find attractive. Understanding the origins and micro-foundations of such
convenience yields and linking them to risk (safety) characteristics of assets is crucial for
deriving policy implications and predicting which securities will enjoy a convenience yield in
the future.

Our model is also related to the prominent model of Alvarez et al. (2009) (see also Alvarez

et al. (2002)), who were the first to study the impact of endogenous market segmentation on



exchange rates. Alvarez et al. (2009) develop a general equilibrium monetary model with a
continuum of households that differ in their fixed cost of participation in financial markets.
This heterogeneity produces time variation in financial market participation, which in turn
leads to a time variation in risk premia, even if the money supply follows a random walk.
Despite exhibiting complex dynamics, the model of Alvarez et al. (2009) admits a closed-form
solution, which the authors use to explain several stylized facts about Uncovered Interest
Parity (UIP) deviations. Two key differences exist between our model and that of Alvarez
et al. (2009). First, the cost of participation in our model is endogenous, determined by
the household demand pressure. Second, the cost (the intermediation markup) is security-
specific: Only securities with attractive risk profiles command a convenience yield.

Finally, our paper is also related to the recent literature on the breakdown of Covered
Interest Parity (CIP). See, for example, Borio et al. (2016), Aldasoro et al. (2020), Rime et
al. (2022), Avdjiev et al. (2019), and Du et al. (2019a). Several papers derive CIP deviations
using models with different forms of limits to arbitrage. See, for example, Amador et al.
(2020), Ivashina et al. (2015), Liao (2020), Hebert (2017), Andersen et al. (2017), Du et al.
(2019b), Greenwood et al. (2019), Gourinchas et al. (2020), and Fang and Liu (2021). To
the best of our knowledge, our model is the first macroeconomic general equilibrium model
that generates a breakdown of CIP endogenously through segmentation effects in imperfect
international financial markets without appealing to binding balance sheet constraints of
intermediaries. Most importantly, CIP deviations in our model originate from trade in real

goods that creates real imbalances and price pressure in the D2C markets. Securities offering



insurance against desired states of the world enjoy an endogenous convenience yield that is

reflected in observed CIP violations.

3 The Model

3.1 Agents, Preferences, and Consumption

We consider a continuous time pure-exchange economy monetary economy with intra-temporal
cash-in-advance constraints. As in Lucas (1982), we assume that nominal interest rates in
all countries are non-negative. There are two countries in the world economy: Home (H)
and Foreign (F). Each country is endowed with a Lucas tree producing a strictly positive
amount of country-specific perishable good, Xy ; and X, respectively, for ¢ > 0. Before the
financial markets open, trees are owned by the respective country’s households.

Each country is populated by a continuum of identical households whose preferences are

represented by a time-additive log-linear utility over the consumption of both goods,

E {/000 W sui(Cig, Cf)dt | (1)
with

u;(C;, CF) = PBilog(Cy) + (1 —p;)1og(CY), i e {H, F}.

Here, By, Br are the weights on the Home goods in the utility of each country’s households,



accounting for the potential home bias in consumption. As is common in the literature, we
use * to denote goods and quantities of the foreign country. The time-preference “demand
shocks” Wy, Vg, (henceforth, time discount factors) are arbitrary positive random vari-
ables, normalized so that ¥;, = 1. Such demand shocks are commonly used in international
economics. See, for example, Stockman and Tesar (1995), Pavlova and Rigobon (2007), and
Itskhoki and Mukhin (2017).” Equilibrium prices are then pinned down by imposing market

clearing for all goods (the economy-wide feasibility constraint):

Cus + Cr; = Xy, (home goods market clearing)

Cys + Cpi = Xpy (foreign goods market clearing)

for ¢ > 0, where C;, C},7 = H, I’ are optimal consumption policies characterized below.

We denote by Fj;, P}, the nominal prices of the two goods in the country i = H, F|
in the units of country ¢ currency. We also denote by &;, ¢t > 0 the foreign currency price
in home currency units; whenever & goes up, the foreign currency appreciates against the
home currency. We assume a cash-in-advance constraint a la Lucas (1982) at the country
level: All country k goods need to be purchased with country k currency, implying that total
nominal expenditures for country k tradable goods’ endowment X}, always equals country

k nominal output, My :

Pk,th,t - Mk,t, k':H, F, tZO (3)

"Some papers (such as Dornbusch et al. (1977), Pavlova and Rigobon (2008), and Pavlova and Rigobon
(2012)) model demand shocks through random changes in f3;, i = H, F. It is straightforward to introduce
such shocks into our model. The results are analogous to those for time-preference shocks.
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In particular, in the absence of nominal rigidities, as in Lucas (1982), prices adjust imme-
diately to monetary shocks so that inflation moves one-to-one with money supply: FPy: =
My +/ Xk Without loss of generality, we use the normalization M,y = 1. It will be conve-

nient for us to work with nominal consumption expenditures

Cip = CitPiy + CL P, 120, (4)

the total domestic currency spending of households on their consumption bundles.

We assume country—i households are endowed with country—i output, so that, by (3),
their nominal endowment is given by M, ;. In addition, they have access to a complete set of
one-period state-contingent claims whose prices are summarized by the state price density
(pricing kernel), M;;;ya;. As a result, the joint dynamics of consumption expenditures, C; ,

and the value of assets (financial wealth), W, ,, satisfy the standard inter-temporal budget

constraint:
Oi’tdt —|— Et [Mi,t,tert Wi,t+dt] = Wi,t —|— Mi,t dt . (5)
~ ~~ d ~~~
Total Consumption Portfolio of state contingent securities beginning of period assets Endowment

All of the above assumptions are completely standard and are used in most of the existing
macroeconomic models. The only aspect that makes our model distinct is that the pricing

kernels, M; 14, are determined through bargaining with intermediaries.

11



3.2 The D2C Bargaining Problem

Intermediaries in our model are represented by global intermediary firms. These firms
can be viewed as agents within their respective countries, randomly assigned the role of
intermediaries (financiers). We assume that financiers have access to a complete, frictionless
dealer-to-dealer (D2D) market. This is the market dealers can use to offload any imbalances
due to their client transactions to achieve a matched book with no directional exposure. As
markets are complete, the prices of all financial securities traded in the inter-dealer market
can be encoded in a single, international nominal pricing D2D kernel M J{I,t quoted in the
units of home currency. We also use M, to denote the D2D kernel denominated in foreign
currency. By no-arbitrage and D2D market completeness, we always have (see, e.g., Backus

and Smith (1993))

1 1
MF,T MH,T S_T

= . 6
M}IW,t MII{,t gt ( )

Unlike intermediary firms, households do not have direct access to the inter-dealer market.
We assume, however, that in each country H, F' an all-to-all market exists where all local
households and all global intermediation firms can trade two securities: a risky asset with
nominal cash flows M, 4 in local currency (henceforth, a Lucas tree) and a one-period
country-specific nominal risk-free bond paying one unit of domestic currency at time ¢ + dt.
Households willing to trade any other financial instrument must contact an intermediation
firm and bargain over-the-counter (OTC) in a D2C market. See Figure 1 in the Appendix

for a graphical depiction of the market structure.
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The objective of an intermediation firm is to maximize the firm value (i.e., the present
discounted value of intermediation markups) under the D2D pricing kernel. We assume that
intermediaries can observe households’ country of origin and, hence, can charge country-
specific markups. For example, intermediaries will charge higher markups to US households
for insurance against a crash in the US stock market and, similarly, for Swiss households
against a Swiss stock market crash.

As competitive intermediaries can freely trade in both the centralized local exchange and
the global D2D market, they will equalize prices across these two markets in equilibrium.
Hence, nominal domestic bonds and trees will trade at D2D prices on the domestic exchange.
It is important to note that the bonds and stocks that are used in the intermediaries’ problem
are “redundant” securities, since households already have access to a complete set of state-
and date-contingent securities from their interactions with the intermediaries. This makes
the pricing of stocks and bonds straightforward: Formally, the D2C nominal pricing kernel
M; ¢4 quoted by the intermediary must satisfy two constraints (fair pricing of domestic
bonds and fair pricing of domestic trees) relating M; ;44 to the D2D nominal pricing kernel
(6) in the local currency:

EiM;tirat) = Et[M{Mert] (fair pricing of bonds) (7)

)

EiM;tiratMiriar) = Et[let,HdtMi,Hdt] (fair pricing of trees) (8)

At the time ¢, a country ¢ customer with nominal wealth W;,; gets matched with an interme-

diary who quotes him a one-period-ahead D2C pricing kernel M, ;44 in the local currency.

13



Given these state prices quoted by the dealer, the customer then decides how to optimally
finance their future wealth W; ;14 through an OTC contract with the intermediary acquired
in the D2C market, with a potentially complex state-contingent payoff.

Standard optimality conditions (see Lemma 1 below) imply that intermediaries are facing
a downward-sloping demand curve from customers, state by state: Wi iya(Mitirar) =
W”W (Mt 44ar)"'. Since intermediaries have access to complete D2D markets,
their objective is to maximize the present value of cash flows in the D2C market under
the D2D pricing kernel. Those cash flows are given by Fi[M;;1atWitrar] (the price paid
by customers to intermediaries) at time ¢t and by —Wj; ;.4 (the contractual payments of

intermediaries to customers) at time ¢ + dt. Thus, their present value under the D2D pricing

kernel is given by the total intermediary rents,

T, = Et[Mi,t,t—l-dtvvi,t—‘rdt(Mi,t,t—i—dt)] - Et[Mz{t,Hdtm,tert(Mz',t,t+dt)]7 9)

that is, the difference between the values of the claim W, ;4 under the D2C and the D2D
pricing kernels. The intermediary’s goal is thus to maximize (9) under the no-arbitrage
constraints (7)-(8).%

In order to derive households’ downward sloping demand curves W; ;44 (M; ¢ 41a:) in (9),

8Importantly, since customers have iso-elastic preferences, their demand for Arrow securities is propor-
tional to their wealth. Hence, intermediary quotes do not depend on customer wealth. Furthermore, the
contract with each intermediary lasts for one period, and random matching implies that getting matched
with the same customer again has zero probability. Hence, intermediaries maximize the markup from a given
trade.

14



we note that they face the standard problem of maximizing (1) under (5). The solution to

this problem is given in the following lemma.

Lemma 1 Let C;; be the total nominal expenditure of country i households at time t (see
(4)). Given the quoted D2C pricing kernel M;; with M; o = 1, the optimal nominal expendi-

tures satisfy

whereas the optimal wealth process is given by

Mz ,8 — =~ .
/ Cz ,S dS = MiytlDiﬂgCZ”o y 1€ {H, F} s

where

Di,t = b [/ \Di,sds} ) (10)
t

and the optimal consumption bundle (C;,, C},) is given by

Cz’,t = ﬁiéi,t/Pi,t> Ci*,t = (1—@) zt/PZ*t, > 0. (11)
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4 Solving the Model in Continuous Time

To proceed further, we need to specify the dynamics of the fundamentals. As we now show,
the continuous time setting allows us to solve the optimal contract in the D2C market and

characterize equilibrium dynamics in closed form. Everywhere in the sequel, we use

N
e = > 6 (12)
k=1

to denote the squared Euclidean norm of a vector § € RV.
We assume that the fundamentals of the economy, (¥4, Vi, Mpys, Mp;), are driven
by a N-dimensional standard Brownian motion B;. The time preference shocks follow

dv,,

)

= —0dt + (HQIft)'dBt,

while nominal output in the two countries follows

dM;,

o = wdt+0dB,. i€ {H.F},
it

with some shock exposure vectors 6;, Hg’t € R¥. In particular, the volatility of the nominal

output is given by

dM;y

Vart [ M
it

] = l16:]l*dt,
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where ||6;|* is defined in (12). We purposely assume that the time discount rates, W,
have the same drift, ensuring that, on average, households in the two countries are equally
patient. This assumption is necessary to ensure that a well-defined ergodic distribution of the
model, in which both agents survive, exists. For simplicity, we assume that all parameters
of the diffusion processes above are constant, except for the time preference shocks 9%. The
randomness of Qf”t will play an important role in our calibration exercise. However, all our
closed-form solutions hold for arbitrary stochastic dynamics of all coefficients. Since ¥, are
geometric Brownian motions, formula (10) simplifies and we have D;; = ¥,;,/6.

The continuous time assumption makes the optimal contracting problem in the D2C
market particularly tractable. Indeed, standard arguments imply that all stochastic discount

factors in the diffusion setting admit a representation

dMi,t sz{t
. Mit = ’r’iﬂgdt‘i‘ (Th',t)/dBt, — Ml{t

5

= Til,tdt + (Uz’{t)ldBt ) (13)

where r;; and ri{ , are the risk-free rates in the two market segments, and 7, 7],{ , € RY are
the vectors of equilibrium risk premia for each of the N sources of risk in our economy (the
N-dimensional Brownian motions). Thus, there is a duality between the D2C bargaining
problem and the problem of determining risk premia depending on the current state of the
economy, where the fair pricing of bonds (condition (7)) implies that the interest rate r;;
offered in the D2C market has to coincide with that in the D2D market, and the same is true

for the risk premia of the trees (condition (8)). Formally, conditions (7)-(8) can be rewritten

17



dM,; dM]
Bl ] = Bl e e = (1)
and
dMi; dM; dM, dM;
Et[ ! M’t] = t[ I7t M’t]- (15)
Mi,t Mz’,t Mi,t Mz}t
Similarly, the objective (9) can be rewritten as
[dMi,t dWi,t} [sz{t dWi,t} 5 [dMi,t} [dMi[,t} (16)
max —| = -
e \ LM Wiy ‘L, wiy "L, ‘L,

under the constraints (14)-(15). Applying Ito’s lemma to W;; = 6~'W, ,M;;!, we obtain the

2,t )

following expression for household wealth dynamics

dWiy d¥i, dM;, dMiyy2  dViy dM;,

= - +(577) : (17)
Wit Wit M; My Wi My
—— —— —_——— — —
time discount  interest + premium convezxity co—movement

9This can be seen easily as the A — 0 approximation to the following discrete-time optimization problem

I I
M on — M Wipn — Wz;t] > [Mi,t+A =M Wiiin — Wit
_E )

E|
! M; 4 Wit Mi{t Wit

Alternatively, note that for the log-utility agents, the markups maximization problem is essentially minimiz-
ing E} MZ{t,H_A\I/Z-Vt’tJrA/Miyt’HA}, apply Ito’s lemma to the process MZ{t\IJZ-,t/MZ-,t, then note that

I I I I
My aAWien M Vip Mi,t‘I’i,t(Mi,t,tJrA‘I’i,t,tJrA 1)
M; 1o n M; M; 4

M; i in

This gives the instantaneous risk premium maximization problem again.
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The first term is the change in wealth due to shocks to time discount factors: Households’
optimal consumption and investment choices allocate less wealth to states with lower W, ;.
The second term is the contractual payment of the customer to the intermediary. The third
term is a convexity adjustment because M~! is convex in the state prices. Finally, the
fourth term reflects the co-movement of state prices with time discounting. In the diffusion
limit, however, the last two terms in (17) are negligible, and we can rewrite the extracted

intermediary rents, Z;;, in (16) as

() - (- 20) 2

= (777,‘1,15 - ni,t)/<9;1,jt + i) dt .

The intuition behind (18) is as follows. The intermediary has the incentive to charge the
largest possible premium for exposure to shocks that the customer values the most. We refer
to the difference 77{7 + — Mix as the risk premium markup: It reflects the additional price of
risk that the intermediary charges to country-i customers for exposure to the B; shocks (see
(13)). The formula (18) for the intermediary rents, Z;;, implies the risk premium markup
must be maximally aligned with the customers’ wealth shock exposures, (9;17} + i+, given by
the sum of two parts: time-discount shocks th and the risk premium 7; ;. At the same time,
the same argument as above implies that the no-arbitrage constraint (15) for pricing the tree

can be rewritten as

dM;, dM},\ dM,,
- Bl |5 - S = (k) st 1
0= b (Mz-,t Ml | M, s~ ) 1)
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The no-arbitrage condition (19) is very intuitive: It implies that the intermediary is con-
strained to choose the risk premium markup to be orthogonal to the risk premium vector of
the domestic tree with cash flow M, ;.

We now introduce a modification of the base intermediation model that allows for a
continuous transition between the models with and without intermediation frictions. To this
end, we assume that the intermediaries are households that get randomly assigned to the
job of financiers. These “special” households can offer the “regular” households that they
get matched to the same SDF as their own without incurring any adjustment cost. However,
if they deviate from this, they incur an adjustment cost [|7;; — n/,[|>. We can think of this
adjustment cost as a metaphor for having to run a balance sheet mismatch potentially or
simply having to create new assets/liabilities for the households that they get matched with.
Assume that the intermediaries penalize this adjustment cost at a rate of 0.5I". Then, the

optimization problem (18)-(19) faced by the intermediaries takes the form

r
max (15, = 150) (05 + mia) — 5 (0 = mi0)”
e (20)

s.t. (Uil,t_m,t)/@i = 0.
That is, intermediaries maximize rents, Z;;, net of adjustment costs. Writing down the

Lagrangian

r
(771'1,75 - m,t)'(G% + Th',t) - 5(77{,75 - ni,t)Q - )\i,t(ni{t - Th',t)/‘gi

and optimizing it with respect to 7,,, we arrive at the following result.
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Proposition 1 The optimal, markup-maximizing vector of risk premia 1;, chosen by the
intermediary for country-i customers is given by

2 1,

1 W/
R S (i + 63)'%:
T]’L,t - 2+Fnl,t+2+r|:2(nl,

L= 9;1; —+ )\iytei)}, with >\i,t = ||91H2

(21)

Proposition 1 shows explicitly how the strength of the intermediation frictions depends on
the adjustment cost parameter I'. When T is large, the financier faces a high adjustment
cost and, as a consequence, decides to equalize the quoted SDF to that in the D2D market:
Nit = 772-]7 ;- This corresponds to the equilibrium in a model without intermediation frictions.
By contrast, when I' = 0, the financier faces no adjustment cost, and the intermediary selects
the pricing kernel that maximizes rents.

Effectively, 7]7{ . represents the shadow costs of holding risk for intermediaries. Intermedi-

aries pass this cost through to households, and (21) implies that the pass-through coefficient

is given by
a’fht 1+7T
: — 22
o}, 24T (22)
~——

pass—through

The pass-through (22) is monotone increasing in I', and achieves its minimum of 0.5 in the
zero-adjustment-cost case. That is, absent adjustment costs, intermediaries optimally pass

on half of the shadow costs to customers. To understand why the pass-through is exactly
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0.5, we note that the intermediary is maximizing the following tradeoff

—(nf,t)’(—(ef,’t + ni,t)) + Ué,t(—(ef,’t + ni,t)) .

The first component of this objective is the shadow cost intermediation (the true D2D market
value of the OTC contract signed in the D2C market). The second term is the gain: The
price of risk, n;,, that households pay for their optimal D2C contract, times the downward
sloping demand, —(th + ;1) At the optimum, marginal cost equals marginal gain, and the
downward-sloping demand implies that 771-{ . ~ 21, ;. The specific passthrough coefficient of 0.5
originates from the assumed logarithmic utility for the households. When the risk aversion
is different from one, the passthrough coefficient is different from 0.5, but is always below
one.

The formula (21) also shows how intermediaries maximize rent extraction by charging
the highest prices for the states that the customer deems most valuable. This is achieved by
aligning —n,; with the diffusion vector Qg’t of time discount shocks. Finally, the constraint
(19) always binds, limiting the intermediaries’ ability to extract rents from risk premia that
are aligned with the diffusion vector 0; of M, ;. The Lagrange multiplier for this constraint,
Ait, is defined by how the vector 772-{ . +0;I7’t is aligned with 6;. If both the D2D risk premia, 77{7 "
and customer preference shocks, 9;17'“ are aligned with 6;, charging markups for exposure to
M, becomes highly attractive; as a result, the constraint (19) binds, pushing up the value

Of )\Lt'
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4.1 Market Clearing, Consumption, and Exchange Rates

By the cash-in-advance constraint (3), we can equivalently formulate the economy-wide
feasibility constraints (2) as the equality between total nominal consumption expenditures
and the total nominal output. Namely, multiplying (2) by the respective prices and using

(3), we get

Py .Crys + PH,tC;jt = Py Xuy
—_——

My

(23)
PpiChy + PriCry = PpiXpy
—
Mp
Using the identity (11) for the optimal consumption bundles, we can rewrite (23) as
BuCh + (1 — Br)Cri& = My, (home money market clearing)
—_———
home spending on home goods foreign spending on home goods
(1 — Bu)Cr&t + BrCry = My, (foreign money market clearing)

home spendingrn foreign goods foreign spending on foreign goods

(24)

We now introduce two key state variables that will serve as the endogenous Markov state

driving the equilibrium dynamics. We let m;; = '6;\40 i’: ,t = H,F denote the nominal

consumption share for the domestic goods, and arrive at the following result.

Lemma 2 (Equilibrium Relationship Between Consumption Shares and Exchange Rates)

Let Q;, = %F—}f be the value of one unit of home goods in terms of foreign goods, adjusted
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for money supply. Then,

- ( Br Qt)< Br _1—51{)_17

1-6r 1 —fBr Bu
— -1
TPt = (1 fHﬁH N Qit)(l fHﬁH - 5FBF> 7

and the adjusted exchange rate satisfies

1—Bu  Pr
o e (522, 29

Lemma 2 shows how fluctuations of the adjusted exchange rate inside the (25) interval lead
to a redistribution of wealth between the two countries. When O, appreciates, F'-households
become richer, 7, increases and 7 decreases. As a result, exchange rate dynamics induce

wealth transfers between the two countries.!”

4.2 Equilibrium Without Intermediaries

To solve for the equilibrium, we need to characterize the dynamics of risk premia and interest
rates. We start our analysis by deriving these dynamics for the frictionless model without

intermediation markups. We use 6_; to denote the risk premia for the respective other

10 As we show below, all equilibrium quantities can be characterized explicitly in terms of the consumption
share for the domestic goods 7; + and, hence, in terms of Q; : Exchange rates determine the wealth distribution
and, as a result, the dynamics of risk premia. In turn, these risk premia determine exchange rates directly
by the no-arbitrage forces that equalize state prices across two countries; see (6). A similar mechanism is
also at play in general equilibrium models with recursive preferences (see, e.g., Colacito and Croce (2011))
and habit formation (see, e.g., Stathopoulos (2017)). In all these models, FX changes are linked to the ratio
of SDFs, which in turn is associated with time-varying pseudo-Pareto weights. The time variation of these
weights is closely linked to the dynamics of the wealth distribution.

24



country: 0_py = Op, O_p = Oy. We also use X¢ to denote a quantity X in the case of

Complete (Frictionless) markets.

Proposition 2 (Frictionless Equilibrium) Without intermediation markups, the risk pre-

mia are given by

Ny = 0i—0, +(1—m)(0;—0%,), (26)
N—— ~~ d
domestic risk risk sharing

while the equilibrium interest rates are given by

o=+ 6+ Onf,. (27)

)

Absent intermediation frictions, money is neutral, and hence, adjustments in exchange
rates fully undo any effect of the money supply. No sharing of risks arising from monetary
policy shocks is possible (and neither is it necessary since money is neutral). Nominal risk
premia in the country i only depend on domestic shocks plus the amount of trade (captured
by the share of foreign goods, 1 — m;;, times the risk sharing needs, as captured by the

difference 6, — 0¥, , between time discount shock exposures.

4.3 Equilibrium with Intermediaries

Having understood the dynamics of the frictionless model, we can now proceed with deriving
the closed-form solution for the model with intermediaries. Intermediation frictions break

money neutrality and make both the adjusted exchange rates, Q,, and the risk premia depend
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on monetary shocks in both countries. This significantly alters equilibrium dynamics, both

quantitatively and qualitatively. In order to characterize these dynamics, we will need some

BiCit
Mt

preliminary results. Recall that m;; = , 1= H, F . The following quantity will play an

important role in our analysis:

1
™ = 0.5+ 5((1 — ) + (1= 7Try)) -

Under autarky, when g = Br = 1, we have @Cy,t = M,,, and hence 7y = 7p = 1,
so that m; = 0.5. Otherwise, 7; captures the average expenditures on non-domestic goods.

Everywhere in the sequel, we will make the standard assumption of consumption home bias.

Assumption 1 (Consumption Home Bias) We have Sy > % and Br > %
Under this assumption, it is possible to show that the following is true.
Lemma 3 We have 7y + mpe > 1, ie., m € (%, 1).

We are now ready to characterize equilibrium dynamics in the presence of intermediation

markups. To this end, we introduce some notation. We define
(0:)* = [6:i]> = d(log M;)./dt

to be the volatility of the centrally-traded tree in the country ¢ and

Or)'0
p = O og My, Tog M)t

OHOF
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to be the correlation between the trees across countries. Let also

14+T2—2m,

YT S Tom -1

Proposition 3 (Equilibrium Risk Premia with Intermediation) In equilibrium, risk

premia are given by

147, (1+r 1
o+t = T\ 24T

— (0 —ei)(— I+ E S S 1) )

1+a)2-2m)  (2m—1)(1+ )

1 1 a
— oY — g¥. P - —— t
b _M<W¢(1+%2+F )+1+%

— [/\—z‘,te—i - /\i,tgi} (W_ivt

921,’ : Nii0;)

1 1 (1 ) 1 oy
— (1 —7_ )
1+ 2+T1 Y14 T 1+ oy
In the case when I' = 0, this expression simplifies to

1-— e

772{15 = (2 — )\i,t)@i — e;l:t + (9;17; — QEIM + ()\i,t — 1)(% — ()\—i,t — 1)9_1) s

~ A (28)
domestic risk X v
risk sharing
where the dynamics of the Lagrange multipliers are given by
1 0. + 1*7T—¢,tp % g .
_ v v = . - _ v 2—miy Moy 77"
Aig = 1+ ?(91,15 - H—i,t) Zit with Zip = 2=m_i¢ _ 1-m_it o (29)
' I-mie  2-miy P
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4.4 Economic Intuition

As we explain above, the adjustment costs parameter I' controls the strength of intermedi-
ation frictions in our model. Here, we focus our discussion on the case of zero adjustment
costs, corresponding to I' = 0. The formula (28) shows explicitly how intermediation frictions
affect risk sharing between the two countries through the two key quantities: the Lagrange

multiplier, \;;, and the degree of international trade, m;. By Proposition 1, we have

it = 0'5(771'1,1% — Hfft + Xi6;)

1— Uy
= 0 =07 + 05—L(0F, — 0%, + Ny — 1) — (A_iy — 1)0) .
~— Uy’ _
domestic risk NV

risk sharing

Compared to the frictionless equilibrium of Proposition 2, we see that intermediation frictions
introduce time variations in international risk sharing, whereby (1 — Wi,t)(ﬁg’t = Q?ii) gets
multiplied by %’. Since, by Lemma 3, m; € (0.5,1), intermediation serves as a barrier to
the efficient allocation of risks. And given that m; captures the average expenditures on
non-domestic goods, this risk-sharing depends inversely on the degree of international trade,
7. When there is more international trade (e.g., when the demand for domestic goods
parameters, f3;, are smaller), households’ desire to buy foreign goods pushes m; up. However,
in equilibrium, this translates into a corresponding desire for risk sharing via asset trading
with intermediaries (households sell domestic securities to buy foreign goods). Intermediaries

exploit this demand from households by charging higher markups. As a result, the amount
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of risk-sharing that households can actually achieve drops. In the extreme case when m; ~ 1,
households only achieve half of the risk sharing compared to the frictionless model.

The shadow cost of the constraint (15), A;;, reflects the incentives of domestic households
to adjust their exposure vis-a-vis domestic monetary shocks. When A, ; is large, the domestic
risk component of 772{ . 1s dampened, while the risk sharing component increases. This is the
mechanism behind monetary non-neutrality in our model: Intermediaries extract rents by
exploiting households’ desire to share monetary shocks. Thus, as in Itskhoki and Mukhin
(2019), monetary non-neutrality arises due to intermediation frictions. However, while in
[tskhoki and Mukhin (2019), this happens because intermediaries end up holding large
amounts of nominal assets on their balance sheets, in our model, this happens because
intermediaries strategically affect the exposure of households to monetary shocks. It is
important to note that such monetary non-neutrality only arises when there are some real
motives to trade. In our model, these real motives originate from differences in time discount
shocks. When fot — GE’M # 0, customers have incentives to share these shocks. This, in
turn, triggers demand for risk sharing in the D2C market, whose sign and magnitude are

determined by the alignment between the real motives for risk sharing, 6, — 6Y,,, and

—1,t)

monetary shocks, as one can see from the explicit formula (29) for A; ;.

4.5 Equilibrium Dynamics of Interest Rates and Exchange Rates

We now discuss the equilibrium exchange rate dynamics. As above, we focus our analysis

on the case I' = 0. By no-arbitrage (equation (6)), exchange rates are pinned down as the
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quotient of intermediaries’ pricing kernels. The dynamics of these kernels follow (13), and

an application of the Ito formula leads to

N J/

1
dlog& = < (T}{,t - 7’1]?,0 + 5(“771{””2 - Hmfv,tHQ ))dt + (nf{,t - nﬁ,t)'dBt, (30)
————

UIpP D .
Currency risk premium

where the risk premium differentials are given by

1—7Tt

N — Mgy = O — Op — (03¢ — Ofs + Ay — DO — (Apy — 1)6F) .

T

When the cross-market (between D2D and D2C segments) arbitrage constraints in (20) bind,
so that the Lagrange multiplier \;; — 1 # 0, intermediation frictions create exposure of risk
premia to monetary shocks, #;. When the Lagrange multipliers are low, households have
no incentives to share monetary shocks. As a result, these shocks do not affect exchange
rates. In equilibrium, the degree of monetary pass-through is determined by the degree of
international trade. This stochastic pass-through of monetary shocks to exchange rates is a
unique implication of our model.

As we show in the Appendix (see the proof of Proposition 2), equilibrium interest rates
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are given by

Tit = ? + i = HTh'I,t”2 - (77@'1,15)/<7Ti,t9§,1t+(1_Wi,t)‘ggi,t)

c
Tt

+ Wi,tIi,t + (1 _7Ti,t>I—i,E (31>
globa?rrents

+ ) (milnly = m) + (1 =m0 (0o = 1i0))

J/

~
risk premium markup alignment

The formula (31) shows explicitly how equilibrium interest rates deviate from their fric-
tionless counterpart (27). The first term in (31) coincides with (27), with the complete
market risk premia nft replaced by their D2D counterpart nit. The second component,
mitLiv + (1 —m)ZI ;s > 0, is a weighted average of intermediation rents (18) extracted by
intermediaries in the D2C market. In particular, this component is always positive. That
is, intermediaries’ rent extraction pushes global interest rates up.

The intuition behind this important result can be understood in a simple setting with a

constant discount rate §. In this case,

—ot -1
C@t = ¢ Mi,t C@',O

and, hence,
Et [d log Ci,t] = —odt + T'iytdt + O.5Vart [d IOg Miﬂg]
——— . . . S~~~ ~ ~\~ o
consumption growth time discounting interest rates risk
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Intermediation frictions limit the households’ ability to efficiently allocate wealth inter-
temporally, lowering the consumption growth rate. In equilibrium, global resource con-
straints (market clearing equations (24)) imply that log C;; has to grow at the same rate
as the global output, and the interest rate needs to adjust upwards to ensure goods market
clearing. This novel, surprising equilibrium channel is distantly related to the deposit channel
introduced in Drechsler et al. (2017). Namely, in Drechsler et al. (2017), intermediaries
(banks) affect interest rates through their market power in the risk-free (deposit) market.
In our model, the market power in the deposit market is completely shut down by the no-
arbitrage constraint (14). Yet, interest rates are impacted indirectly by the intermediary
market power in the risky asset markets, thereby boosting intermediation rents. The fact
that, by (31), interest rates positively co-move with intermediation rents is consistent with
the empirical evidence (see, e.g., Borio et al. (2017)) on the positive relationship between
bank profitability and interest rates. However, the mechanism suggested by our model is
new, with the causality going in the opposite direction.

The last term in (31) depends on the alignment of risk premia, 772{ ¢» with risk premium
markups, 7;; —n/, and n_;; —n’, ,. By (20), intermediaries optimally align 7/, —n;; with 7;,,
while 7;; at the optimum is aligned with n/,. As a result, the last term in (31) also tends to
be positive, pushing interest rates even higher.

To illustrate the capability of our model to explain real data, in our theoretical derivations

below, we often make the following simplifying assumption.

Assumption 2 (Independent Shocks) Output shocks are orthogonal to the demand shocks.

32



That 1s, 6’;0&; = HQQEJM = 0,7 = H,F. Furthermore, the demand shocks are orthogonal across

countries, i.e., (0,)0%,, = 0.

In the sequel, we focus our discussion on the zero-adjustment cost case (I' = 0). Then,

under Assumption 2, short-term rates follow

rie = gi+0— 6]
—————

c
i

L—mp (L —7_ip) + (Mg — m_ip) (2 — 2)
27Tt 27Tt

N

(32)

||01\I,It - 95’i,t||2 )

TV
intermediation frictions

where 7 is the short rate in the frictionless model (27). By direct calculation, the correction
to the short-term rate (the second line in (32)) is always positive, consistent with our

discussion of the formula (31).

C

Since r{ is constant, intermediation frictions generate volatility in the short rates (32)
through fluctuations in international trade, as captured by m; and m;,, as well as demand
shocks, as captured by 9;17;. In both the data and realistic calibrations, m; is persistent and
slow-moving. As a result, generating realistic interest rate volatility requires an additional
source of fluctuations in th. We model this source as time-varying, persistent, and mean-

reverting volatility of demand shocks (see, e.g., Dahlquist et al. (2023) for a similar specifi-

cation).

Assumption 3 (Volatility of the demand Shocks) We have

16517 = (6%)* + (0))*, i=H,F,
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)4 v

for some c¥ > 0, where 0} = exp(4dz?) — 1, with x; being a standard Jacobi process

Ty € [—1, 1]7

dr, = —k"xpdt +0°+\/1 — 22dBy .

B? is a Brownian motion that is independent of other shocks.'!

Under Assumption 3, equilibrium dynamics are driven by two state variables: The
exogenous state x; and the endogenous state Q; driving the international trade (see, Lemma
2). The two components of expected exchange rate fluctuations, the interest rate differential
(the UIP component in (30)) and the risk premium term in (30), always move in the opposite
directions, driven by households substituting between risky and risk-free assets. The precise
nature of this equilibrium behavior is highly nonlinear, as is illustrated by Figure 2. The
next section shows that when shocks are sufficiently volatile, the risk premium component
dominates the interest rate differential, leading to quantitatively realistic exchange rate

dynamics.

4.6 The CIP Deviations

In our model, households willing to borrow in foreign currency need to do so through the
intermediaries in the D2C market. We use 7f;, to denote the rate that intermediaries
charge to country-H households for borrowing in the country F' currencys; rﬁt is defined

similarly. Naturally, market segmentation, together with intermediary market power, implies

HGee, Appendix C for more details.
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a difference between the direct rate, rp;, in the D2D market, and the D2C rate. It is known
that institutional short-term funding markets are highly segmented, with often a very large
dispersion in the rates available to different market participants. See Rime et al. (2022) for
a detailed analysis of these markets. The friction in the retail segment of funding (credit)
markets is even larger, with banks often exercising very large market power over their retail
customers. For example, Hungarian households willing to borrow in US dollars could do so
through a local branch of an international bank, which would necessarily include a (large)
markup into the quoted rate.

Another possibility for an H household willing to borrow in the F' currency is to do so
synthetically. Given the current rate rpy, and the forward rate f;;1qa (quoted in the D2C
market with a markup), the household can borrow z units of the H-currency and at the same
time sign a forward contract to exchange x(1+ 7y ,dt) units of the H-currency at time t + dt
into @ (1 + rpy.dt) fr ¢ 144 units of the F-currency. This is equivalent to borrowing z/&; units
of the F-currency at the synthetic rate ri;, such that z(1+rf; ,dt) = x(14ra.dt) friivae/Er-
Due to the absence of arbitrage in the D2C market for H-households, rfI’t has to coincide
with the rate quoted D2C as part of the pricing kernel My ;444 This identity is commonly
known as the covered interest parity; however, due to segmentation between D2C and D2D
markets, the synthetic rate is generally different from the direct rate rz,. The differences

between the observed direct rates and the synthetic rates,

F
O]PHJ = T’Fﬂg — rH,t7
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are called CIP deviations. Similarly, we can define these deviations for country F'-households

as

H
CIPp; = ruy — TEy -

As we show below, in our model, households always find it optimal to borrow in foreign
currency. As a result, the quoted D2C rates 7, ti contain a positive markup that we can
interpret as borrowing CIP-deviations documented in Rime et al. (2022). Note also that, in
the existing empirical studies (see, e.g., Du et al. (2019a), Rime et al. (2022)), CIP deviations
are always defined against the USD (i.e., CIPy; =rgs — T?&,t in our notation). Investigating
the joint behavior of CIPp;, CIPy; is an interesting direction for future research.

Recent work has pointed to the balance sheet constraints of intermediaries as the key
mechanism responsible for CIP deviations. See, for example, Du et al. (2019a) and Du
et al. (2023). Our model shows how sizable CIP deviations (e.g., up to hundreds of basis
points; see Figure 2b in the Appendix) can arise in a general equilibrium macroeconomic
model purely due to real demand forces coupled with intermediaries’ market power with risk-
neutral intermediaries holding zero net positions. The mechanism underlying CIP deviations
in our model is as follows: Demand for real goods generates demand for foreign assets by
households that intermediaries cater to. Intermediary market power endogenously creates
market segmentation, and as a result, the demand for foreign assets pushes up their prices in
the D2C market, leading to a widening of CIP deviations. Our continuous-time equilibrium

allows us to derive a simple, closed-form expression for these deviations.
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Proposition 4 (CIP deviations) The short rate for borrowing in the country (—i) cur-

rency quoted D2C to the country v household, rl-_j, 15 given by

F I I\ I
THey = TFi + (nH,t - nF,t) (N — 77H,t)
direct country—F rate ma;?qup
H _ I I v/ I
Trpt = THt + (nF,t - nH,t) (nEe — 77F,t> .
v . ~~ J/
direct country—H rate markup

Under Assumption 2, we have

(1 —me)(m —1)

C[Pi,t = 2(7Tt)2

16, — 0% 1> < 0, i=H,F. (33)
H-households when seeking to borrow in country-F' currency face the direct rate 7, that
prevails in the F' currency for domestic residents plus “a spread / markup”, given by
—CIPy; = rj, — rpe. By Lemma 3, my < 1, while m; < 1 for all i. Thus, CIP;; is
always negative.

This is surprising. It means that, in a symmetric setting with two ex-ante identical
countries, demand pressure in the D2C market always makes borrowing in foreign currency
more expensive. The size of the CIP deviations is proportional to the size of the potential
real gains from risk sharing, as captured by the difference 6y, — 0}, (see (26)). When the
shock exposures 9}5715, Gg,t are sufficiently different, households have strong motives to share
the corresponding risks. One way to achieve this risk sharing is by borrowing in foreign

currency and gaining exposure to foreign exchange rate fluctuations. This natural demand
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pressure in our setup with endogenous segmentation creates a wedge, C'I P, ;, between the two
interest rates. By Assumption 3 (and assuming that corr(dlog ¥, dlog ¥_;,) is constant,
as in our calibration), the real motives to trade, ||0, — 07, [|> = const - (exp(4x7) — 1) are
monotone increasing in the common demand shock x; and, hence, their size is controlled by
the volatility of these shocks, (0%)? : Large demand shock volatility implies large hedging
demand pressures in the D2C market and, as a result, large intermediation markups for access
to foreign risk-free assets. This mechanism is amplified in the presence of trade imbalance.
In particular, if country H economy is closed (so that country i households only consume
domestic goods), 1 — mg; ~ 0 and CIPy; ~ 0: When households only consume domestic
goods, then, in equilibrium, they end up not borrowing in the foreign currency, and there is

no sense for intermediaries to charge markups for such borrowing.

5 Calibration

In this section, we perform a calibration exercise illustrating the ability of our model to
quantitatively match several important empirically observed patterns in exchange rate dy-
namics.

We consider the following specifications for the dynamics of the output and demand
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shocks:

(O oM 0 oM 0 0 0
(OF) 0o oM pMaM /1 - (pM)2eM 0 0

6Ly saY 0 0 0 V1= (s9)20Y 0

(34)

Table 1 reports the calibrated coefficients in (34) (See Appendix C for details). o,’ is defined
in Assumption 3. Shock specification (34) ensures symmetry: Countries H and F' are ex-ante
identical and only differ through ex-post realizations of shocks. Such symmetry significantly
limits the ability of the model to produce realistic dynamics of risk premia. In Appendix D,
we investigate an extension of (34) (see (46)), allowing for asymmetric exposures of countries
to shocks, and show how such an asymmetry allows us to achieve much better quantitative
match for empirically observed risk premia.

We use our analytical solution from Proposition 3 with I' = 0 to perform the simulations.
As follows from Proposition 3, important quantities affecting the equilibrium dynamics are
the cross-moments, 6;0}, and (0},)'0Y;,. Here, 6,6}, define the instantaneous covariances
between output shocks, M, ;, and demand shocks, ¥, ,. Clearly, the sign and the magnitude
of these covariances are key determinants of households” hedging behavior, defining whether

the supply of the goods is abundant in the states that they value the most. By contrast,

(6%,)'0%,, is less important and only affects equilibrium through the size of risk sharing,
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167, — 6%, ,|I>. A positive (respectively, negative) covariance, (6}%,)'0%;, reduces (amplifies)
the gains from risk sharing, acting as a scale parameter akin the volatility shock z;. Apart
from this scale effect, it has no impact on the signs and the nature of equilibrium moments.

Under Assumption 2, all these cross-moments are identically zero, implying that the
frictionless interest rates are constant (see (27) and (32)), and making it impossible for
the frictionless model to generate any joint dynamics for interest rates and exchange rates.

Below, we investigate the sensitivity of our results to the size and the sign of ¢;0}, and

(63,67,

Tables 2-7 report the key moments for equilibrium quantities in the two models, with
and without intermediation frictions. Each column in those tables corresponds to a different
value for the parameter s¥ defining the correlation between output and demand shocks. The
three pairs of tables correspond to p¥ in (34) taking values —0.3,+0.3, and 0.

We refer to the model without frictions as “Frictionless.” The results for this model are
reported in Tables 2, 4, and 6. The results for the model with frictions are reported in
Tables 3, 5, and 7, respectively. Finally, Tables 16 and 17 report the results in the presence
of country asymmetry. See Appendix D for details.

As usual, in these Tables, we use lowercase letters to denote log-quantities.

5.1 Standard International Marco Moments

First, we discuss several standard equilibrium moments. The autocorrelation of exchange

rates is close to zero in both models, which is consistent with the data. The volatility of
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Table 1: Parameter Choices for the Simulated Moments

Variable Definitions Symbols Values Targeted Moments
Preferences {Bi}icu Fr 0.9 Trade-to-GDP ratio 0.2
Time discount ) 0.03 —

Drift of M,, " 0.03 —

Size of Supply shocks oM 0.014 std(dgy) = 2%
Supply shocks correlation oM 0.7 corr(dgy, dgr) = 0.35
Correlated demand shocks o) exp(4z?) — 1 —

Demand shocks correlation p¥ 0.3 std(de) = 10%
Idiosyncratic demand shocks o’ 0.095 corr(dcy, dep) = 0.3
Output-demand correlation sv -0.4 corr(dey, dep) = 0.3
Mean-reversion of x; K® 0.36/12 acl(rg —rp) = 0.95
Volatility parameter of x; oad 0.09/2 std(rg —rr) = 0.6%

exchange rates, consumption, and output are comparable across the two models and achieve
a reasonable match with their empirical counterparts.

Next, the Backus and Smith (1993) puzzle (the negative correlation between log exchange
rates and the log consumption growth differentials) is also explained by both models. The
reason is that consumption growth in each country is affected by two components, one
related to the shocks to nominal output, 6;; the other related to the demand (time discount)

shocks, ). While output shocks push exchange rates and consumption growth differentials
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in the same direction, demand shocks push them in opposite directions. If the latter effect
is sufficiently strong, it dominates the former, leading to the empirically observed negative
correlation.

The above results are not sensitive to the value of the s¥ parameter, controlling the
output-demand correlation in (34) and indexing the columns in all Tables 2-7. By contrast,
s¥ plays a key role in determining the cross-country correlations of consumption growth,
corry(d log C_’HJ,dlog C_’F7t). All Tables 2-7 show that this cross-country correlation flips its
sign together with the sign of s¥. The underlying mechanism can be understood from
formula C_'i,t = \Ilei’_th’i’O, implying that

CildCiy = *dt + (6}, 4+ my )dB,.
~—

—~—~

demand shocks  Tisk premium

In the frictionless model, (26) implies that consumption exposure to shocks is given by
0; + (1—mi.) (0, —0Y;,). As a result, under the orthogonality assumptions that ;0¥ , = 0

(which follows directly from (34)), we have

corry(dlog C; ¢, dlogC ;) = 00,

3 -1

— (1 =7 )00), — (1 — )0 0%, (35)

— (L= mie) (L =m0 — 02,17

The first term in (35) is the cross-country output correlation, which is positive in the data

and is set to be 35% in our calibration to monthly data. Absent international trade, m;; =
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m_i+ = 1, and consumption coincides with output. However, when international trade is
sufficiently large and 9;9% =0_ i@;f’t is sufficiently positive, the sign of the correlation flips in
both models.

We now discuss the cross-country correlations between interest rates, corr(ry,rr), and
their changes, corr(dry, drg). In the frictionless model (Tables 2, 4, and 6), these correlations
are both negative, close to —1. This stands in stark contrast with the empirically observed
positive correlations, as well as the outcomes of the frictional model (Tables 3, 5, and 7),

which also generate realistic positive correlations. The underlying economic mechanism can

be seen directly from (27), which can be rewritten as

rSo= i+ 0+ (6] - 86y (36)

By Lemma 2, 7wy, (7r;) is monotone increasing (decreasing) in Q; and, hence, (27) implies
that Q, always pushes rgt and T}prt in opposite directions. A similar mechanism is at play
in the frictional model.

In the setting of (34), 6} is independent of x;, so that only Q; drives the frictionless
interest rates. By contrast, x; shocks have a major impact on the interest rates in the
frictional model, moving the two interest rates in the same direction and producing a positive
correlation. The reason is that, in the frictional model, interest rates are driven mainly by
intermediation frictions, as can be seen from (31). The demand for risky assets in the D2C

markets is driven by the amount of risks that need to be shared. Large x; produces a large

demand, and this demand pushes up intermediation rents and, through (31), also leads to
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an increase in both interest rates. As a result, interest rates and their changes are positively
correlated across countries in the frictional model.

We complete this section with a discussion of equity returns and their correlations.
Consistent with the classic equity premium puzzle, our equity risk premia (ERP) and equity
Sharpe Ratios (equity SR) are too low in all of the Tables, consistent with the classic equity
premium puzzle: There is not enough variation in the SDF to generate sizable risk premia
with logarithmic preferences. Realistic equity risk premia and realistic Sharpe ratios can
be achieved in our model through the introduction of more complex ingredients such as,
e.g., long-run risk and recursive preferences (as in Colacito and Croce (2011)) or habit
formation (as in Dahlquist et al. (2023)). However, in Appendix D, we show that we can also
achieve quantitatively realistic equity risk premia and Sharpe Ratios in our model. Namely,
when preference shocks are large enough and are strongly correlated with stock cash flows,
households require large premia for holding stocks. Note also that while the cross-country
stock return correlations reported in Appendix D are still too low, this happens because our
stocks (Lucas trees) are short-term assets. The return correlation for long-term consumption

claims is significantly higher.

5.2 The UIP and the currency risk premium

We now discuss the joint behavior of exchange rates and interest rates. Absent risk premia,
expected exchange rate changes should move one-to-one with the interest rate differential,

as captured by the formula (30), with the UIP predicting a coefficient of zero in the Fama
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(1984) regression

(TH,t - TF,t>dt —log&iar +1ogé = a+ ﬁFama (TH,t - TF,t>dt + Ettdt - (37)

On the left-hand side, we have the monthly excess return of investing in the home short-term
bond markets while borrowing in the foreign short-term bond markets. Contrary to what UIP
predicts, the empirically observed regression coefficient 372 known as the Fama-beta, is not
just different from zero. It is typically above 1, capturing the fact that the country with high
short-term rates tends to see its exchange rate appreciate in the short run. This is commonly
known as the UIP puzzle. Another closely related puzzle concerns the historically elevated
Sharpe ratio of the carry trade strategy, taking positions in the currencies proportional to
the interest rate differential and exploiting the negative coefficient in the Fama regression.

We define the Carry Trade returns as

Carryeyar = sign(rps — rr¢) ((TH¢ — rpy)dt —log Ea + log 5,5) . (38)

We first note that, by (36), interest rates in the frictionless model are constant whenever
0’0 = 0 (that is, when s¥ = 0 in (34)). In the symmetric setting of our calibration, we thus
get r§ = r& and, hence, regression (37) cannot be estimated and carry trade returns (38) are
identically zero. As Tables 2, 4, and 6 show, a nonzero #'6¥ does help somewhat. However,

BFama

there is a caveat: The size and the sign of the Carry SR and in the frictionless model are

highly sensitive to the size and the sign of #’0). This stands in stark contrast to the behavior
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of the frictional model, where this sensitivity is small. The underlying economic mechanism
is based on Lemma 2, which shows how the international trade (the 7, variables) depends
on the key endogenous state variable, Q;. In the Appendix (Figures 2-5), we illustrate the
dependence of the key quantities (interest rate differential, the currency risk premium, CIP
deviations, and the currency return) on Q;. As we can see, in the frictional model, the
currency risk premium and the interest rate differential depend in the same manner on Qy,
monotone increasing in the bulk of the 9, distribution. The reason is that these quantities are
dominated by the same intermediation friction, which responds monotonically to the demand
for international goods, as captured by Q;. By contrast, in the frictionless model, a large and
positive #'6¥ leads to a complete breakdown of the carry trade so that the CRP SR becomes
negative. As Figure 5 shows, the interest rate differential is negatively related to Q; when
06 > 0. This can also be seen directly from (36): r{, —r%,, = const + (m_i; —m;)0'0)
and, by Lemma 2, gy — mp, is monotone increasing in Q.

For our base calibration, corresponding to p¥ = 0.3 and s¥ = —0.4, both frictionless
(Table 4) and frictional (Table 5) produce a positive Carry Trade SR and a positive coefficient
in the Fama regression. However, the Sharpe ratio in the frictional model is two times
higher, while the coefficient in the Fama regression is almost 50 times lower than that in the
frictionless model. The reason is that, without frictions, interest rates do not move enough,
and their extremely low volatility in the frictionless model leads to an implausible Fama /3
above 800.

The extant literature has pointed to the balance sheet constraints of intermediaries as an
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important factor behind the Carry Trade Risk premia. See, e.g., Brunnermeier et al. (2008);
Gabaix and Maggiori (2015). Our results imply that the market power of intermediaries
could drive a non-trivial fraction of the CRP Sharpe ratio (about 5-10%). The fact that the
Carry Trade can be so profitable in a model with risk-neutral, unconstrained intermediaries
with zero net positions is surprising and suggests that market frictions originating from
intermediaries’ price discrimination can be responsible for a quantitatively significant fraction
of empirically observed anomalies in the foreign exchange markets.

Carry Trade returns (38) can be broken down into two components,

Carrypear = |rae —rreldt  + sign(ray — reg)(—log Epar +10g &) . (39)
interest ;arte spread FX‘;isk

Empirical evidence implies that both components contribute positively to the Carry Risk
premium. As one can see from Figure 2, this is perfectly consistent with our model because
the expected exchange rate returns relate negatively to the interest rate differential. However,

in the data, about 35% of the premium originates from the interest rate spread:

mean(|rps — Trt|)

carry ratio = ~ 0.35.

mean(Carry)

As we can see from Tables 2, 4, 6, the frictionless model is unable to match the empirically
observed contributions because interest rates are not volatile enough: Interest rate volatility

and carry ratio are respectively 50 and 100 times lower than their empirically observed
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counterparts. By contrast, our model does generate a realistic exchange rate volatility,
which ends up dominating the carry premium (39).

In our base calibration, mean interest rates are identical across countries, with the interest
rate differential mean reverting towards zero. By contrast, real-world countries feature highly
asymmetric interest rate behavior. E.g., rates in Australia are always higher than interest
rates in Japan. In Appendix D, we show how, by introducing asymmetric shock exposures,
we can achieve systematic differences in interest rates (with one country always having higher
interest rates). This more realistic calibration allows us to generate a carry ratio that closely
agrees with its empirical counterpart (see Tables 16 and 17).

The problem with the low volatility of interest rates is particularly severe for the fric-
tionless model. As we can clearly see from Figures 2-5, this model is incapable of generating
realistic fluctuations in the interest rate differential (even in the extreme scenarios of very
large or very small Q;, rg; — rp; stays around five basis points). Furthermore, in the
frictionless model, Carry breaks down in the tails of Q, because the link between interest
rate differential and exchange rates flips its sign. By contrast, these figures clearly show that,
in the frictional model, we have (1) Carry works even in the tails (interest rate differential and
exchange rates are always positively related) and (2) quantitatively realistic rate fluctuations
occur when the volatility shock, |x;|, is sufficiently large. Thus, to quantitatively match
the joint behavior of interest rates and exchange rates, we need a stochastic process for
|z;| that takes large values with a high probability. This can be achieved by changing

the persistence and volatility coefficients, k¥ and ¢*, in Assumption 3. We consider four
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alternative specifications for the choice of (k*,0”) in Tables 8-11 in the Appendix. When x®
is low, and o” is high, |z;| stays large for prolonged periods of time, allowing the model to
achieve realistic interest rate volatility about one tenth of the observed Carry Sharpe Ratio
and match the Fama . However, this quantitative success comes at the cost of boosting the
consumption volatility to 3% and reducing consumption correlation to nearly 0%. Finally,
we note that the asymmetric calibration in Appendix D achieves a significantly higher Carry
Sharpe Ratio by allowing for systematic differences in interest rates across countries. See
Tables 16 and 17.

The ability of our model to better match the observed empirical moments relies on the
joint dynamics of x; and Q; shocks. The former generates demand for risk sharing. The
latter generates non-trivial trade dynamics due to the home bias in consumption (3; > 0.5).
Table 12 reports the results of the calibration when one of these channels (demand shocks
or home bias) is shut down. By Lemma 2, absent home bias, Q; = 1 in this case and

//\\j’; : Intermediation frictions are thus irrelevant to the exchange

exchange rate equals & =
rate dynamics. A similar phenomenon takes place when we shut down the demand shocks.
Indeed, as long as 6}, = 6F,, there are no real motives for risk sharing between the two
countries’ households, and Proposition 3 shows that intermediation frictions have no impact
on equilibrium behavior. Finally, we note that the volatility of (9;1; in our model is generated
by fluctuations in z;. Shutting down z; by setting it to zero essentially eliminates volatility
in interest rates and makes them negatively correlated, like in the frictionless model because,

as we explain above, Q; always moves the two rates in opposite directions, and we need large
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x¢ fluctuations to overcome this. The absence of x; also significantly reduces the Carry Risk

premium and leads to an explosion of the Fama beta.

5.3 The CIP deviations

We complete this section with a discussion of the behavior of CIP deviations. The average
CIP deviation of —0.11% reported in Table 5 is broadly consistent with the empirically
observed CIP deviations of around —0.21% on average (documented, e.g., in Avdjiev et al.
(2019)).'2 Figure 2 also shows that when |z;] is large, our model can produce very large CIP
deviations, comparable to those observed during the financial crisis. In a calibration where
x; is volatile (Table 10), average CIP deviations can take even larger values.

Our model can also shed some light on the joint dynamics of the CIP deviations and
exchange rates. A surprising empirical regularity documented by Avdjiev et al. (2019) is that
changes in C'I Py are negatively correlated with contemporaneous changes in the exchange

rate (defined as the Dollar Index): In the regression

CIPgivar — CIPy, = a+ B (log&var — 108 &) + €rvar (40)

the estimated 3" coefficient is negative and large, around —2.7, while the R? is also quite
high, around 2%. Avdjiev et al. (2019) argue that changes in the Dollar index capture global
financial conditions and are related to intermediary balance sheets; hence, the tight link with

the CIP deviations in (40). Table 5 shows that our model is able to replicate these empirical

12We follow Avdjiev et al. (2019) and define the empirical counterpart of CIPy; as the average CIP
deviation of non-US countries against the foreign country F = US.
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findings. The underlying mechanism is different and can be understood through the lens
of Proposition 4. The latter shows explicitly how the join dynamics of CIP deviations and
exchange rates emerge through the risk premia responsible for UIP deviations, whereby
the same risk premium component in (30) that drives UIP deviations also drives the CIP
deviations, leading to the negative correlation documented in Avdjiev et al. (2019). As
such, rather than being two distinct phenomena, UIP and CIP deviations emerge as two
sides of the same coin in our framework. Altogether, Table 5 suggests that intermediary
market power might be responsible for a sizable part of the empirically observed UIP and
CIP deviations and their complex joint dynamics.

It is also important to note that the empirically observed large CIP deviations only
appeared after the great financial crisis. As Du et al. (2019a); Rime et al. (2022) show,
this phenomenon is related to tighter capital requirements and balance sheet constraints.
However, this tightening has also been associated with a significant drop in the competitive-
ness of FX markets documented, for example, in Moore et al. (2016). The tighter banking
regulations increased intermediation’s fixed costs, leading to the exit of many players. The
associated increase in the market power of remaining FX market makers might be responsible
for higher markups and, as a result, larger CIP deviations. See, e.g., Wallen (2020); Hau et

al. (2017) for empirical evidence.
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Table 2: Frictionless Model. This table presents simulated moments for a frictionless
model with negatively correlated demand shocks (p¥ = —0.3). The first two columns display
estimates of the data moments and their associated standard errors, where applicable. The
subsequent five columns present the simulated moments for the frictionless model across
various values of s.

Data  S.E.  -0.7  -04 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00  -0.00
std(de)(%) 9.41 (0.01) 13.19 13.38 13.17 1227  10.96
std(dg)(%) 142 (0.10) 198  1.98 1.98 1.98 1.98
std(de) /std(dgx) 6.62 — 664 676 6.66 6.21 5.54
std(deg ) (%) 1.49  (0.10) 245 264 2.83 3.09 3.23
std(dcr) (%) 1.60 (0.11) 244 265 2.86 3.12 3.27
std(de) /std(dey) 6.32 — 520 421 3.38 3.01 2.96
corr(déy, dgp) 0.79 (0.04) 059 065 0.73 0.77 0.80
corr(dgyr, dgr) 0.57 (0.06) 035 035 0.35 0.35 0.35
corr(déy, deg) 0.61 (0.06) 018  0.04 -0.07 -0.19  -0.29

corr(dey — dcp, de) -0.00  (0.10) -0.71  -0.68 -0.68 -0.74 -0.84

std(ry — ) (%) 0.69 (0.04) 001 000 000 000 0.0l
std(ry — rp)/std(de)  0.07 — 000 000 000 000 0.0
std(rg ) (%) 112 (0.07)  0.00 0.00 0.0 000  0.00

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7
corr(ry,rp) 0.81 (0.03) -0.96 -0.96 —  -096  -0.96
corr(dry, drp) 0.59 (0.06) -0.86 -0.85 —  -0.85 -0.86
acl(rg —rp) 0.96 (0.09) 0.99 0.99 — 0.99 0.99
acl(rg) 0.98  (0.09) 0.99 0.99 — 0.99 0.99
Fama-f 2.18  (1.25) 459.99 817.62 —  -680.95 -362.99
carry SR(%) 37.23 (1841) 1.00 126 —  -1.06  -0.71
carry i-diff (%) 121 (0.39) 002 001  — 001 002
carry (%) 346  (9.28) 012 015 —  -0.09  -0.06
carry ratio (%) 3497 (1841)  0.09 006 —  -0.06  -0.09
std(carry) (%) 9.28 (0.60) 13.19 1337  — 1228  10.96
std(carry i-diff) (%) 039 (0.03)  0.00 000 — 000  0.00
mean(CIP)(%) 021 (0.30)  0.00 000 000 000 0.0
CIP-3 264 (0.68) - — —
t CIP -3.87 — — — — — —
R® CIP(%) 2.00 - — —
ERP (%) 348 (12.74) 049 036 019 001  -0.13
equity SRy(%) 2726 (18.41) 616 447 231 010  -1.58
ERP (%) 201 (15.85) 047 034 017 -0.00  -0.14

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7

equity SRp(%) 12.66 (18.41) 593 423 214  -0.02 -1.72

corr(ERPy, ERPp) 0.85  (0.03) 0.35 0.35 0.35 0.35 0.35
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Table 3: Frictional Model. This table presents simulated moments for a frictional model
with negatively correlated demand shocks (p¥ = —0.3). The first two columns display
estimates of the data moments and their associated standard errors, where applicable. The
subsequent five columns present the simulated moments for the frictional model across

various values of s¥.

Data SE. -07 -04 0 0.4 0.7

acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de)(%) 9.41 (0.01) 11.31 11.33 10.97 10.11 9.03
std(dg)(%) 142 (0.10) 1.98 198 198 1.98 1.98
std(de) /std(dgm) 6.62 — 569 571 554 511 4.56
std(dey ) (%) 1.49  (0.10) 218 237 257 279 2093
std(dcr) (%) 1.60 (0.11) 216 236 256 279 294
std(de) /std(dey) 6.32 — 490 399 325 288 273
corr(déy, dgg) 0.79 (0.04) 069 072 078 082 0.85
corr(dgyr, dgr) 0.57 (0.06) 035 035 035 035 0.35
corr(déy, deg) 0.61 (0.06) 022 0.06 -0.05 -0.14 -0.22

corr(déy — dcg, de) -0.00  (0.10) -0.64 -0.63 -0.65 -0.71 -0.81

std(ry — r)(%) 0.69 (0.04) 0.9 0.14 016 014 0.08
std(ry — rp)/std(de)  0.07 — 001 001 001 001 001
std(rg ) (%) 1.12  (0.07) 0.3 0.05 006 0.05 0.03

Continued on next page
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Data SE. -07 -04 0 0.4 0.7
corr(ry,rp) 0.81 (0.03) 056 0.74 0.82 0.83 0.85
corr(dry, drp) 0.59 (0.06) 0.56 0.61 0.60 0.64 0.70
acl(rg —rp) 096 (0.09) 096 095 095 095 0.95
acl(ry) 0.98 (0.09) 096 095 095 095 0.96
Fama-f3 218 (1.25) 17.13 819 575 6.13 9.03
carry SR(%) 37.23 (18.41) 1.85 249 255 224 1.69
carry i-diff (%) 121 (0.39)  0.08 0.09 008 007 0.04
carry (%) 3.46  (9.28) 0.20 0.23 0.19 0.17 0.13
carry ratio (%) 34.97 (18.41) 0.61 0.66 046 047 0.23
std(carry) (%) 028 (0.60) 11.32 11.33 10.97 10.11  9.02
std(carry i-diff) (%) 039 (0.03) 0.02 004 005 004 0.02
mean(CIP ;) (%) 021 (0.30) -0.16 -0.17 -0.17 -0.15 -0.13
CIP-3 264 (0.68) -021 -0.37 -051 -0.45 -0.27
t CIP -3.87 — -3.06 -236 -2.24 -221 -2.50
R? CIP(%) 2.00 — 537 473 579 559 494
ERPg (%) 3.48 (12.74) 049 036 0.19 0.01 -0.12
equity SRy (%) 27.26 (18.41) 6.18 448 234 0.13 -1.52
ERP (%) 201 (15.85) 047 034 017 -0.00 -0.14

Continued on next page
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Data S.E. -07 -04 0 0.4 0.7

equity SRp(%) 12.66 (18.41) 592 423 217 -0.00 -1.74

corr(ERPy, ERPp) 0.85 (0.03) 035 035 035 035 0.35
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Table 4: Frictionless Model. This table presents simulated moments for a frictionless
model with positively correlated demand shocks (p¥ = 0.3). The first two columns display
estimates of the data moments and their associated standard errors, where applicable. The
subsequent five columns present the simulated moments for the frictionless model across
various values of s.

Data  S.E.  -0.7  -04 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00  -0.00
std(de)(%) 9.41 (0.01) 11.81 11.40 10.80  10.00 9.20
std(dg)(%) 142 (0.10) 198  1.98 1.98 1.98 1.98
std(de) /std(dgx) 6.62 —  B97T 577 546 5.05 4.66
std(deg ) (%) 1.49  (0.10) 219 228 248 2.78 3.02
std(dcr) (%) 1.60 (0.11) 217 230 249 2.80 3.02
std(de) /std(dey) 6.32 — 529 418 321 2.81 2.80
corr(déy, dgp) 0.79 (0.04) 066 074 0.81 0.84 0.85
corr(dgyr, dgr) 0.57 (0.06) 035 035 0.35 0.35 0.35
corr(déy, deg) 0.61 (0.06) 031 012 -0.04 -0.17  -0.28

corr(dey — dcp, de) -0.00  (0.10) -0.67 -0.62 -0.63 -0.72 -0.85

std(ry — ) (%) 0.69 (0.04) 001 000 000 000 0.0l
std(ry — rp)/std(de)  0.07 — 000 000 000 000 0.0
std(rg ) (%) 112 (0.07)  0.00 0.00 0.0 000  0.00

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7
corr(ry,rp) 0.81  (0.03) -0.97 -0.97 — =097  -0097
corr(dry, drp) 0.59 (0.06) -0.89 -0.89 —  -0.90 -0.89
acl(rg —rp) 0.96 (0.09) 0.99 0.99 — 0.99 0.99
acl(rg) 0.98  (0.09) 0.99 0.99 — 0.99 0.99
Fama-f 2.18 (1.25) 473.60 872.88 — -687.48 -360.27
carry SR(%) 37.23 (1841)  0.60 083  —  -0.55  -0.44
carry i-diff (%) 121 (0.39) 001 001  — 001 001
carry (%) 346 (9.28) 008 009 — 004 -0.04
carry ratio (%) 3497 (1841) 008 005 —  -004  -0.08
std(carry) (%) 0.28 (0.60) 11.81 1140  —  10.00  9.20
std(carry i-diff) (%) 039 (0.03)  0.00 000 — 000  0.00
mean(CIP)(%) 021 (0.30)  0.00 000 000 000 0.0
CIP-3 264 (0.68) - — —
t CIP -3.87 — — — — — —
R® CIP(%) 2.00 - — —
ERPy (%) 3.48 (12.74) 0.50 0.36  0.19 0.01 -0.13
equity SRy(%) 2726 (18.41)  6.28 456 231 007  -1.65
ERP (%) 201 (15.85) 048 034 017 -001  -0.14

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7

equity SRp(%) 12.66 (18.41) 599 429 214  -0.08  -1.82

corr(ERPy, ERPp) 0.85  (0.03) 0.35 0.35 0.35 0.35 0.35
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Table 5: Frictional Model. This table presents simulated moments for a frictional model
with positively correlated demand shocks (p¥ = 0.3). The first two columns display estimates
of the data moments and their associated standard errors, where applicable. The subsequent
five columns present the simulated moments for the frictional model across various values of

s¥.

Data SE. -07 -04 0 0.4 0.7

acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de)(%) 9.41 (0.01) 1023 9.75 9.07 829 7.58
std(dg)(%) 142 (0.10) 1.98 198 198 1.98 1.98
std(de) /std(dgm) 6.62 — 518 494 459 420 3.83
std(deg) (%) 1.49  (0.10) 2.02 213 233 258 2.78
std(dcr) (%) 1.60  (0.11) 2.02 214 233 258 2.77
std(de) /std(dey) 6.32 — 491 392 308 265 252
corr(déy, dgp) 0.79 (0.04) 0.76 081 085 0.8% 0.89
corr(dgyr, dgr) 0.57 (0.06) 035 035 035 035 0.35
corr(déy, deg) 0.61 (0.06) 0.38 0.17 0.01 -0.12 -0.21

corr(déy — dcp, de) -0.00  (0.10) -0.53 -0.52 -0.57 -0.67 -0.81

std(ry — r)(%) 0.69 (0.04) 0.04 006 007 006 0.04
std(ry — rp)/std(de)  0.07 — 000 001 001 0.01 0.00
std(rg ) (%) 112 (0.07) 0.02 0.3 003 003 0.02

Continued on next page
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Data SE. -07 -04 0 0.4 0.7

corr(ry,rp) 0.81 (0.03) 047 0.74 0.85 0.8 0.88
corr(dry, drp) 0.59 (0.06) 0.53 0.67 0.67 0.71 0.76
acl(rg —rp) 096 (0.09) 097 096 095 095 0.95
acl(rg) 098 (0.09) 097 096 095 096 0.96
Fama-(3 218 (1.25) 37.30 17.53 11.21 10.68 15.99
carry SR(%) 37.23 (18.41) 1.14 148 143 1.60 1.04
carry i-diff (%) 121 (0.39) 0.05 0.04 003 003 002
carry (%) 3.46  (9.28) 0.12 0.13 0.11 0.11 0.07
carry ratio (%) 3497 (18.41) 037 030 016 024  0.08
std(carry) (%) 9.28  (0.60) 1023 9.75 9.06 830 7.57

std(carry i-diff) (%)  0.39  (0.03) 0.0l 0.02 002 002 0.0l

mean(CIP ) (%) -0.21  (0.30) -0.13 -0.11 -0.11 -0.10 -0.09
CIP-8 2.64 (0.68) -0.13 -023 -0.34 -0.31 -0.18
t CIP -3.87 — =341 -2.27 -2.02 -202 -2.64
R? CIP(%) 2.00 — 555 340 413 417 455
ERP (%) 3.48 (12.74) 050 036 0.19 0.01 -0.13
equity SRy (%) 27.26 (18.41) 6.25 4.56 234 0.08 -1.62
ERPx(%) 2.01 (15.85) 048 0.34 0.17 -0.00 -0.14

Continued on next page
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Data SE. -07 -04 0 0.4 0.7

equity SRp(%) 12.66 (18.41) 598 432 215 -0.05 -1.78

corr(ERPy, ERPp) 0.85 (0.03) 035 035 035 035 0.35
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Table 6: Frictionless Model. This table presents simulated moments for a frictionless
model with uncorrelated demand shocks (p? = 0.0). The first two columns display estimates
of the data moments and their associated standard errors, where applicable. The subsequent
five columns present the simulated moments for the frictionless model across various values

of sY.

Data  S.E.  -0.7  -04 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00  -0.00
std(de)(%) 9.41 (0.01) 12,58 1254 1216  11.31  10.17
std(dg)(%) 142 (0.10) 198  1.98 1.98 1.98 1.98
std(de) /std(dgx) 6.62 — 634 633 6.15 5.70 5.15
std(deg ) (%) 1.49  (0.10) 232 246 2.66 2.94 3.12
std(dcr) (%) 1.60  (0.11) 231 248 268 2.96 3.14
std(de) /std(dey) 6.32 — 525 421 330 2.93 2.89
corr(déy, dgp) 0.79 (0.04) 062 069 0.76 0.80 0.82
corr(dgyr, dgr) 0.57 (0.06) 035 035 0.35 0.35 0.35
corr(déy, deg) 0.61 (0.06) 023 0.07 -0.06 -0.18  -0.29

corr(dey — dcp, de) -0.00  (0.10) -0.70  -0.66 -0.66 -0.74 -0.85

std(ry — ) (%) 0.69 (0.04) 001 000 000 000 0.0l
std(ry — rp)/std(de)  0.07 — 000 000 000 000 0.0
std(rg ) (%) 112 (0.07)  0.00 0.00 0.0 000  0.00

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7
corr(ry,rp) 0.81  (0.03) -0.97 -0.97 — =097  -0097
corr(dry, drp) 0.59 (0.06) -0.87 -0.87 — 087  -0.88
acl(rg —rp) 0.96 (0.09) 0.99 0.99 — 0.99 0.99
acl(rg) 0.98  (0.09) 0.99 0.99 — 0.99 0.99
Fama-f 2.18  (1.25) 465.89 840.95 — -681.39 -360.51
carry SR(%) 37.23 (18.41) 0.66 1.11 —  -0.63 -0.46
carry i-diff (%) 121 (0.39) 002 001  — 001 002
carry (%) 346  (9.28) 008 012  — 005 -0.04
carry ratio (%) 34.97 (1841) 008 005 —  -0.05  -0.08
std(carry) (%) 028 (0.60) 1258 1254  — 1131  10.17
std(carry i-diff) (%) 039 (0.03)  0.00 000 — 000  0.00
mean(CIP ) (%) 021 (0.30)  0.00 0.00 000 000  0.00
CIP-8 264 (0.68) - — —
t CIP -3.87 — — — — — —
R? CIP(%) 2.00 - - —
ERP; (%) 348 (12.74) 049 036 019 001  -0.13
equity SRy(%) 2726 (1841) 622 453 231 009  -1.61
ERP (%) 201 (15.85) 048 034 017 -0.00  -0.14

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7

equity SRp(%) 12.66 (18.41) 596 425 214  -0.04  -1.77

corr(ERPy, ERPp) 0.85  (0.03) 0.35 0.35 0.35 0.35 0.35
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Table 7: Frictional Model. This table presents simulated moments for a frictional model
with uncorrelated demand shocks (p¥ = 0.0). The first two columns display estimates of the
data moments and their associated standard errors, where applicable. The subsequent five
columns present the simulated moments for the frictional model across various values of s¥.

Data SE. -07 -04 0 0.4 0.7

acl(de) 0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de) (%) 941 (0.01) 10.85 10.66 10.18 9.36 8.38
std(dgz ) (%) 142 (0.10) 198 198 198 1.98 198
std(de)/std(dgy) 6.62 — 547 538 515 472 424
std(dex ) (%) 149 (0.10) 210 224 245 269 2.85
std(der) (%) 1.60  (0.11) 209 225 245 269 2.86
std(de) /std(dy) 6.32 491 397 319 279 265
corr(déy, dgp) 0.79  (0.04) 072 0.76 0.81 084 087
corr(dgy, dgr) 0.57 (0.06) 035 035 035 035 0.35
corr(dey, der) 0.61 (0.06) 028 0.10 -0.03 -0.13 -0.22

corr(dey — dép,de)  -0.00  (0.10) -0.60 -0.59 -0.62 -0.70 -0.81

std(rg — re)(%) 0.60  (0.04) 0.6 010 0.11 0.09 0.06
std(rg —rp)/std(de)  0.07 — 0.01 0.01 001 0.01 0.01
std(rg) (%) 112 (0.07) 0.03 004 005 004 002
corr(rg, rr) 0.81 (0.03) 053 0.74 083 0.85 0.87

Continued on next page
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Data SE. -07 -04 0 0.4 0.7
corr(dry, drp) 0.59 (0.06) 0.55 0.63 0.62 0.66 0.73
acl(ry —rp) 096 (0.09) 096 095 095 095 0.9
acl(rg) 0.98 (0.09) 096 095 095 0.95 0.96
Fama-f3 218 (1.25) 2424 11.39 7.78 7.92 11.53
carry SR(%) 37.23 (18.41) 144 211 189 1.86 1.33
carry i-diff (%) 121 (0.39) 0.6 0.06 006 005 0.03
carry (%) 3.46  (9.28) 0.15 020 0.14 014 0.11
carry ratio (%) 34.97 (1841) 0.48 049 029 034 0.14
std(carry) (%) 9.28 (0.60) 10.85 10.66 10.18 9.35 8.38
std(carry i-diff) (%) 039  (0.03) 0.02 0.03 003 003 0.02
mean(CIP (%) 021 (0.30) -0.14 -0.14 -0.14 -0.13 -0.11
CIP-p -2.64 (0.68) -0.18 -0.31 -0.43 -0.39 -0.23
t CIP -3.87 — 319 -232 -2.15 -2.14 -2.56
R? CIP(%) 2.00 — 535 411 5.04 492 473
ERP (%) 348 (12.74) 049 036 019 001 -0.12
equity SRy (%) 27.26 (18.41) 6.23 454 234 0.12 -1.58
ERP (%) 201 (15.85) 048 034 0.7 -0.00 -0.14
equity SRy (%) 12.66 (18.41) 596 427 215 -0.02 -1.76

Continued on next page
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Data S.E. -07 -04 0 0.4 0.7

corr(ERPy, ERPr) 085  (0.03) 035 035 035 035 035

6 Conclusions

We introduce an imperfectly competitive intermediation sector into a standard, international
monetary model a la Lucas (1982). We show that one simple friction, whereby intermediaries
exploit their market power and charge endogenous markups for providing households with
access to foreign securities, can generate rich behavior of risk premiums, exchange rates,
and CIP deviations. We solve the model in continuous time, which allows us to analyze all
quantities and economic mechanisms through explicit, closed-form expressions.

We show how intermediation markups help account for several known puzzles in exchange
rate behavior, including the joint dynamics of deviations from CIP and UIP. In particular,
our calibration exercise suggests that both the size and the dynamics of the empirically ob-
served CIP deviations can be partially explained by real demand pressures, with risk-neutral
intermediaries holding zero net positions. While intermediary balance sheet constraints
are undoubtedly among the key driving forces behind the joint behavior of exchange rates
and interest rates, investigating the role of these constraints in the presence of imperfect
competition in the intermediation sector is an important direction for future research.

Our model is flexible and can be easily modified to account for more complex real-

world features. In particular, incorporating sticky prices and realistic monetary policy
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and inflation dynamics is crucial for understanding the impact of intermediation frictions
on macroeconomic dynamics. In a production economy with financially constrained firms,
intermediation frictions would also play the additional role of directly affecting the real side

of the economy. We leave these important questions for future research.
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A D2C Bargaining

The following assumption formalizes the D2C bargaining protocol.

Assumption 4 At the time t, each customer is matched with an intermediary and re-
quests price quotes for all one-period-ahead state-contingent claims. In continuous time,
we denote this period by t + dt. The intermediary quotes a country-specific D2C pricing
kernel M;y1var, © = H, F in the local currency of country i and has full bargaining power
in choosing M, ivqi: If the customer rejects the offer, they can only trade country i tree
and country i one-period risk-free bonds in the country i centralized exchange with another
country i households and (a continuum of ) intermediaries. The quotes are binding: After
receiing the quote, the customer chooses an optimal bundle of state-contingent claims. The

intermediary sells this bundle to the customer at the quoted price. See Figure 1.

Intermediaries in our model are essentially match-makers. Modeling intermediaries this
way captures the significant shifts in dealers’ market-making business models in the af-
termath of the GFC (CGFS (2014, 2016)). The “principal” model, where dealer banks
use balance sheet capacity to accommodate client trading demands, has given way to a
model where they primarily match clients wishing to trade in opposite directions (see, e.g.,
Adrian et al. (2017a)). In particular, trading foreign stocks can also be done only through
intermediaries. This assumption allows us to capture the fact that trading and owning foreign
stocks often involves significant intermediation. Similarly, short-selling a stock (both local
and foreign) always involves intermediation. The short seller must go to an intermediary, who
must locate a stock owner to borrow the stock. See, e.g., Duffie et al. (2005). In this context,
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Dealer-to-Dealer Market

| Global Global |
3 intermediaries intermediaries |
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Figure 1: Graphical description of market structure in our model. RFQ denotes the request-
for-quote protocol commonly used in D2C segments of OTC markets.

it is essential to note that market segmentation in our model is not fully endogenous: the
critical assumption that drives our results is that households have direct access to domestic
assets but not to foreign ones.

The assumption of monopolistic competition in the D2C segment is made for tractability
reasons and can be relaxed; for example, our results can easily be adjusted to allow for a
different bargaining protocol with a bargaining power below one, such as the Nash protocol
that is commonly used in the literature on OTC markets. See, Duffie et al. (2005), Duffie et
al. (2007), Lagos and Rocheteau (2009), and Atkeson et al. (2015). The post-crisis regulatory
environment (based on the Dodd-Frank Act) is designed to move bilateral relationship

trading to electronic platforms. For example, the trading of standardized interest rate swaps
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has largely moved to swap execution facilities (SEFs). Yet an all-to-all market, such as in
equities markets, remains a distant reality. Most D2C transactions are executed via an RFQ
protocol, equivalent to an electronic form of OTC trading. The original two-tier market
structure thus shows remarkable persistence, with a D2D segment at the market’s core, as
in our model. The same is true for fixed-income and FX markets. See Collin-Dufresne
et al. (2016), Bech et al. (2016), and Moore et al. (2016). However, some papers (see, e.g.,
Petersen and Rajan (1995)) argue that monopolistic competition in the intermediation sector
is a closer approximation to reality due to switching and related costs. See, also, Sharpe
(1997), Kim et al. (2003), Bolton et al. (2016), Brunnermeier and Koby (2016), Duffie and

Krishnamurthy (2016), and Acharya and Plantin (2016).

B Proofs for Continuous Time

Proof of Proposition 1. Please refer to the discussions in the main text. Q.E.D.

Proof of Lemmas 2 and 3. From the market clearing conditions of the money markets

we have
1-p
1 = mps + FQtWF,m
Br
1— By 1
1 = —THt+ TFt,
3, O Hit Fit
whereas

82



Solve for mg; and 7p; we get

- < Br _Qt)< Br 1_5H)17

1—BF 1—Br  Bm
_ 1
TRt = <1fHBH_Qit><1fH5H_ 15F6F> '

Here, we can see that when Sy > %, and fp > %, the second term in the brackets are positive,

ie.,

Br 1 - By
1—8r  Bau >0
B 1-PF
1 — Bu Br =0

Hence, as we know that in equilibrium 7g; and 7p; are positive, we can deduce that

1—
Qt e ( BH’ ﬁF )
fu " 1—PBp
Therefore,
1—
1 = 7+ Br Ompy < T+ Tpe,
Br

and

5 < m = 1+§(1—7TH¢—7TF¢) < 1.

Q.E.D.
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Proof of Proposition 2. We apply Ito’s lemma to the money market clearing conditions:

BuCryi+ (1= Br)Cri&s = Mpy,

(41)
(1 - 5H)CH,t/5t + ﬁFCF,t = MF,t .
Recall also that
dM; dM]
— M ;t = 1dt + (n;4)'dBy, ——Ml’t = Tz{tdt + (m{t)’dBt7
Differentiating (41), we get
BudCrs+ (1 — Br)d(Cri&) = dMpy = My (ppdt + 05dB;) )
42

(1= Bu)d(Crys/E) + BrdCry = dMpy = Mpy(ppdt +05dBy)

where

_ -
Cip = Ve My Cip,

and

AV,

it

= —&dt + (0},)'dB,
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so that, by the Ito formula,

dCiy = dWiy M Cig — Wiy M; 2dM;y Cip + 0.5(2W; M, 2d{M; ) — 2M; 2d{W;,, My))
= Cia(=0dt + (07,)dBy + (rigdt + (n;0)'dBy) + |miel*dt + 0} ,07,dt),
I
whereas, by the international no-arbitrage constraint, i.e., g—é = %, so that
H,t

&, sz{“,t dMl{I,t sz{“,t dMJ{I,t + (dMII:I,t)Z
‘9t B Ml{“,t - MI]{,t N MI{“,t MI]{,t MIIJ,t

= (rgg—rrg)dt + (ﬁf{,t - 7711V,t>/dBt - (ﬁf{,t)'nﬁ,tdt + H??fq,tﬂzdt-
Therefore,
d(éF,tgt) == dC’F,tgt + C'F’tdgt + d<C’F,t75t>
— 0F7t5t<—5dt+(«9§,t)'d3t+(rF,th(nF,t)’dBt) + |neelPdt + 0%, dt

+ (TH,t - TF,t)dt + (771{1,15 - nl{?,t)/dBt - (nﬁ,t)’nﬁ,tdt + ||771111,tH2dt

+ (G}g,t + 77F,t)/(7h{{,t - né,t)dt>
= Cpi&, ( — 0+ 7+ el — n;?,tefq;,t + (Tme—TFRt) — (ﬂf{,t)/m{*,t
+ ||77}ILI,tH2 + (efq;,t + WF,t)/(nz{{,t - 771[%)) dt

!
b Cnt (w;t) b )+ G - n;,g) 45,
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and, similarly,

d(Cy./&) = <dCH,t5t1 — CyE72dE + 0.5(2CH,t5t3d<5t>—25t2d<CH,t,5t>)>

= (CH,t/é:t)(—adH(eff,,t)’dBtJr(rH,tdtJr(nH,t)’dBt) + nmelPdt + nfy 05 dt

Cpy4dCi

_(TH,t - TF,t>dt - (771{{,1‘, - 771[V,t>/dBt + (U%{,t)/mlﬁtdt - ||77}-1,t”2d€

[\

-~

—&7tag,

+ ||77£r,t - 771[%”26# - (m@,t - né,t)'(9f1,t + nH,t)dt>

~ ~~

d(&) d(&:,Crrt)

= (Cuy/&) ( — 6+ 1 + Inmel® + 77}171:9}1/171& —(rms —TFe) + (771{171:)/77@
- HWII{,tHz + ”77}{,15 - 771{7‘,75"2 - (771{1,1& - mlw,t)’(@g,t + WH,t)> dt

+ (Cru/&) (O + mie = (nfyy = nk)) dBe.
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Substituting these expressions into (42), we get

BuCry(—0dt + (0,) dBy + (rugdt + () dBy) + |nmel®dt + nfy 05 4dt)
+ (1= Br)Cre& < — 64+ Inmell? + n}?,tel\gt + (P —TEe) — (W}J,t)/nﬁt
+ H??fq,tH2 + (eg,t + 77F,t)/(77§{,t - 7711V,t>> dt

/
+ (1= Br)Cri& ((Qg,t) + (nre) + (i, — 775,0) dB;
= My (uydt + 0,,dB,)
(1= Bu)(Crue/&) ( — 6+ g+ | + n;{,tgl\g,t — (rae —TEg) (U{{,t)/ﬁfw,t
- ||7]1{{,t||2 + ||77§{,t - 7]{7,1}H2 - (nfq,t - 77{7,16),<01\g,t + 77H,t)> dt

_ !/
+ (1= i) (Cra/&) (0, + ne = (Wi — k) ) dBy
+ BrCri(—0dt + (05,) dBy + (rpadt + (1) dBy) + |npel®dt + nfp,0p,dt)

= Mp(updt + 0,dB,).

Recall now the definition of m;; = [iv[é “,1=H,F and Q; = %ﬁft Equating the diffusion

coefficients, we get

0; = mia(0), +mie) + (L =) (0%, +n-ie +nl, — 0",
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while for the drift terms, we get

TH ( —0+rHs+ ||77H,tH2 + 773{,7&@%,1&)
+ (1 - 7TH,t) ( —0+rHs+ H77F,tH2 + n%,th,t - (W%{,t)/m{it
+ ||77}ILI,t||2 + (ezq;,t + TIF,t)/(nz{{,t - 771[%)) = HH

(1 —7mry) < —0+7rp+ ||77H,tH2 + an,tellI;T,t + (nf{,t)'nfw,t

- ||7]}i,t||2 + ||77{—I,t - W{?,t 2 - (Uﬁ,t - né,t)’(913,t + TIH,t))

+ TRy ( — 0+ Ty + ||77F,t||2 + U%,t%,t) = HF

Now note that without intermediation friction, n;; = 77{, ., we can then solve for the risk

premia directly from the above linear system of equations
Mt = nf,t = 6,67 + (1 - Wi,t)(egt - Q?i,t) :

Then, the short rates are obtained in a similar fashion by matching the coefficients for dt
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terms, so that we get

g = Tip =0t = Tt (i +0i) — (1= 73) (i) (n-ip +02;,)
- (1- Wi,t)<77il,t - nii,t)/(n—i,t + Q?i,t + m{t)
= 0+ pi = Mgty (i + 05) — (1= mi) (—ie — 0y +000) (i + 023
— (L= mi) iy — nli ) i
= 0+ i — ﬂ'l’,tnz{,t(ni,t + 9%) — (L= mi) (it — nii,t)%??fi,t + Gi,t)
- (1- Wi,t)(nil,t - 77£z',t + N—ig + Hfz-,t)'nf,t
= 0 + i A ma(=ni i =) (e +05) — (=) (i =1l ,) (n-ie +0%,,)
- (1- Wi,t)<77il,t - 77£z‘,t + N—it + Hﬂ,t)'m[,t
=0 4+ p +mLip + (1—m)I iy
- Wi,t(m{t)/(ni,t + 9?})
- (1- Wi,t)(m{t - 77£i,t + N—it T H?i,t)'m[,t
=0+ pu + misLiy + (L—mi)Z iy
= () (maemsa + %) + (U= ma)nly = o+ s+ 0%,)
=0+ pu + iy + (L—m)Z iy
- (nz'l,t),<7ri,t(7]i],t + (i = me)) +05) + (L= mi) 0y — sy +1mi + 93,0)
=0+ w + mLiy + (1—m)Z iy
- Hml,tHz - (Uf,t)'(mﬁfft + (1 - 7Ti,z‘/)ei',t)

= ) (miemsa = k) + (1= mi) (-0 = 0".))
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When n;; = 771'1,“ N—it = nii’t, we get the required formula. Q.E.D.

Proof of Proposition 3 and of Related Results in Section 4.3. The steps are similar

to the proof for Proposition 2 except for n;; # ni{ .. By Proposition 1,

r 2 1 (m{t + 921,2)'9@'

I I T »

it 24T it + 24T [2<7]z,t it + )t )] w? )t ||‘9i,tH2 ( )
whereas

0; = 7Ti,t<931t +mie) + (1= 7rii)(egjzgt + i+ 771'[71: - nii,t) . (44)
Recall that

1 1

Ty = 05 -+ 5((1 — 7Ti,t) + (1 — W—i,t)) = 5(3 — 7Ti,t — 7'('_1'715) .
Taking the difference of the (44), we get

0, —0_; = Wi,t(eft +mie) + (1 — Wi,t)(eit + Nt + 771‘1,1: - nim)

- W—i,t(ggli,t +n-ie) — (1 — W—i,t)(egt + Miy + 77£i,t - 77@‘I,t)
implying that

1
771'I,t - T}im = o — 1 (9@' - 97@' - <7Ti,t + T4t — 1)(921; - HE’M + MNit — Ui,t)) > (45)
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Taking the difference of (43), we get

14T 1
Tt it = 2+ 1T (m{t N niivt) + 24T [(egji,t - fot + Nit0; — A,i,te,i)}
1+T 1
T 24T 2m —1 <9i -2 27&)(9% N QE,M + Nig — n—i,t))
1
+ 2+ T [(egjl,t - e;l,jt + )\i,tei - Afiyt(gfi)] .
Let
“ T S Tan, -1
Then,

1 1+7 1
( i <9i =0 — (2= 2m)(0, — 9%,&)

Nit — N—it = 14+ H02=2m | 94 T o7, — 1

24T 2m—1

1
+ ‘2 + F [(Q?z,t - Q;Ift + /\i,tgz' - /\—i,te—z‘)])

B 1 L+ 1 [,
R ES I N N7 R S

24T 2m—1

1+T2—-2m 1 v v
v  _ g
<2+F 27Tt_1 2+F)[ —i,t Z,t]

1
Fogr i M“”)

1 1
T 11 <2 “om, M <0i - 91’)

1 v v
+ (oy + m)[e—i,t — 03]

1
For b “t”])
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Then, by (45), we have

1
nh—nl, = <9¢ — 0 — (2= 2m)(07, — 0%, + iy — Wi,t))

27Tt—1

1 1 1+ 1
— _fh . —(2—-9 v pv .
27Tt_ 1 (61 9 7 ( 7Tt) (92775 9—1,t+ 1+at <2+F 27Tt— 1 <62 6 l)

1 )4 \J
+ (Oét + 2 4 F)[ef’i,t - e’i,t]

+ 24—% [)\i,tei - )\—i,te—i)] ) >>

1 1 1
_ ( (6 = 6-0) = (2= 2m) (8}, — 0%, ) (1 - 1

(0w + (24+1)7)

27Tt—1 1+Oét Qg

— (2-2m) - jat 2+LF [Nl — )\i,tei)}>

- 27Tt1— 1 <1 —:at (6 =60 = (2~ 27Tt)(egt - 93,0;1—1{ 1 —:oz)
— (2-2m) - jat 2—1—% [Nl — Az’ﬁ%’)})

- 27rt1— 11 —&ozt (6:=6-3) =5 itat (0i = 0%

_ HLF% [Nisfi — A_i0-0)] .
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By (44), we have

0; = Wi,t(ef,lt +mie) + (1= Wi,t)(egli,t R/ ?71-1,,: - 7751',1:)
= g + Tl + (1 —m)0%,

+ i (i — N-it)

+ (1 - Wi,t)(nz‘l,t - 7751-,0

= N-it + Wi,tegt + (1 - 7Ti,t>0?z’,t

1 1
+7T,t<1+at(2_27rt04t< )

1
+ (o + 2+ F)[egli,t - 9%]

1
+ 2+—F P\z‘,tei - /\i,tei]>>

= Nz + Wi,tef,’t +(1— Wi,t)ei',t

T; 1Ot (1 —ms)

+ (0= 0-) ((1 Ta)@—2m)  Cm-L0+ O“)>

1 1 o}
0% o ot )+ (1= )
+ [ 7@,15 l,t] (7]— 7t1 +Oét (O{t—i_ 2+F) + ( W’t)l_’_olt

1 1 (1 ) 1 O
1+, 2+T !

+ P\z‘,t@i - /\—i,te—i] (W“
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Therefore, from

r 2 1, o
= el e [0l — 0%+ M)
77,15 2_|_1—\77Z,t+2_|_1—\ [2(777,,15 Z,t+ it )]
we get
24T 1
I v
,r]Z,t 1+F(T]7t+ 2+F( it )t ))

In the limit as I' — oo, we get
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and

0; = n_ix + m,teft +(1— Wi,t)gi-,t

10 (1 — )
+(&_aﬂ<ﬂ+am2—%w+Y%W‘Ua+a0)

1 O
pY. _ ¥ e 11—
+ [—z,t z,t] (W’t1+atat + ( W’t)1+at>

= N-it + m,tﬁft + (1 - Wi,t)ggli,t

ay
+ (0, — 0,
v gy M
+ [e—i,t el,t] 1 + ay

= Noig + mialy + (1 —m)0Y,
+ (6 —0-)

+ [GE,M - 92,Pt](2 — 2m)
so that

N-ix = 0 — 7Ti7t91"1,lt - (1= Wi,t)egli,t - [lei,t - 93}] (i + iy — 1)
= 0_; — m,ﬁfft —(1— Wi,t)gi-,t

= 0—1’ — (1 — 7T—i,t>8§,t — Tr—i,teﬁi,t?
consistent with Proposition 2. In the case when I' = 0, we get

1-— Tt Tt (e 1— Tt
% ot o — 1" a,+ 1 oM om — 1
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and

Ny = 0; — m,tﬁfft —(1- Wi,t)QE,t

i1 (1 —miy)
— (0: —6-) ((1 + o) (2 — 2m,) " (2m — 1)(1 + O“)>

1 1 o
- [Q%i,t - 93@] (Wz‘,t (a + m) + (1 —mp) ! )

1+O[t 1+Oft

1 1 1 o
= Niglhi = A0 i) | Tip—— 5 — (L= mig) ——
i ! }<W’t1+at2+r ( W’t)1+1“1+at>

= Qz — Wi,tegt — (1 — ﬂ-iﬂf)egli,t

. 1— 7
— (0, —0_) <7rl’t + —< m’t>>
27Tt Tt

27Tt Tt
2m — 1 1—
- [)\z i — A tg—l} (71’1'7,5 - - (1 - t) Trt)
27Tt Tt
= 0 — QE,M
-7
(- )
27Tt
1 1—m
— [egji,t — Hfft] ( — Tt + ﬂ-i’t2_ﬂ't + (1 — ﬂ-i’t)ﬂ-—tt>
27Tt -1 1-— Tt
— (il — Aigf i —(1—-m
[ Jt it } (W it o, ( Tit) 7Tt )
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and

0'5n£i,t = M-t + 05(0?,“5 - /\—i,te—i)

= 60_;—0.50%,, — 0.5A_;,0_;

T—m iy
0, —0_;)———
+( ) o,
1 1—m
— (0%, - 0] ( — Mg+ Tias— + (1= m,t)—t>
’ ’ 27Tt Tt
2m — 1 1—
- [/\i,tei - )\—i,tg—i} (Wi,t o - (1 - 7Ti,t) Wt) .
27Tt Tt
By direct calculation,
]_ 1 — Tt —1 + T_it
- it 1 —m =
Tt + )t 27Tt + ( T, ,t) Py 27Tt
and
2m — 1 1-— 1—m_;
Tt Ll — (]. — 7Ti,t> T = =it .
27Tt Tt 27Tt

Substituting, we arrive at the expression from Proposition 3, which represents equilibrium

risk premia as

1-— Tt

I v
Nit = (2= i)l — ei,t +
N - 7
domestic risk

(08, = 0%+ oy — 1) — (A_gy — 1)0_,) .

Uy’

TV
risk sharing
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where the dynamics of the Lagrange multipliers are given by

Imin 0 g
Xir = 1+i(9“1“ —0%,,) 2 with Z; = It i he
it = o2 Vit —it) =it W Sip = 5 g

— 2
g 1—71'1",5 2_7Ti,t p

Then recall that

(777;1,15 + 9;1})/92.

Nt =
! 1611

Substitute the expressions of nz{t + Hg’t into the conditions that determine the Lagrange

multipliers, we obtain

A n2(1 _ 1 - T ¢
>‘Z,t||91|| (1 27Tt )

1-— 7Ti,t
= |6l +

(08, = 0%,,)0; — A_i,(0_.)0; — (6, — 6,)'6,) .

We can then determine \;; as claimed. Note that when assumption 2 holds, we have that
Aig = A= 1.

Finally, for the case of a general I', we have

N—it = 0_; — 93775

s (1 —miy)
_ (01 - 9_z) < -1+ (1 n Ozt)(Z — 271'75) + (271'15 _ 1)(1 + at))

1 1 o
- [Q?z’,t - Hgt] ( — Tt + it (o + )+ (=) i >

1+ oy 2+T 1+ ay
1 1 1 oy
— (il — Aigfi] | ™ T U0-m
A ! }<W’t1+at2+r ( 7T’”l+Fl+cq>
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so that

, 24T 1

Mg = ——= ¢+ 51T

T (67, — Nith:))

implies

1
2_+_—F777i,t = N+ —<e?i,t — /\—i,te—i)

24+ T
1+T 1
-y _—
2470 *th+2+r

_ (9i _ 972,) < 1 ( T 0 n (1 — ’ﬂ'i’t) )

= 0_;—( Aif_;)

IT+a)(2-2m) (2m—1)(14 )

ay

1 1 1 (a7
— il = A0 i| | T 5= — (L= mig)
i ot ]<W’t1+at2+F ( W’t)1+1“1+oét>

1 1 Qi
— [Q?i,t_egt](_ﬂii—i_ﬂi,tl_'_ (Oét+2+r) + (1_7Ti,t) )

Similarly, by matching the drift terms, we obtain that

rig = 1y =0+ — mip(mie) (Mg + 033) — (L= mie) (0=ie) (n—iz + 0%;,)

— (I =m) (=05 (i + 0%+ i) .

Given assumption 2 and assuming that I' = 0, we can direct compute the D2C and D2D

risk premia

1— Tt
SeY — 9.
27Tt ( 2,0 —z,t)a

1-— ﬂ-i,t

Nt = 0 —9%4‘

771'1,15 = 0; — ef,lt + (9§Ift - 93’,1&) :

T
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To compute the short rates, we shall first compute

1-— T ¢

27Tt

2
(M) (i + Q;I,It) = —(93&'(93} - ‘92‘,1;) ) ||0;I,Jt - ei‘,t” :

) 01
o TP+

Then we compute

(i, —nts)'ni,

7Tt—1+1—77i,t7Tt—1

= (‘gi - ‘971')/91' - (fot)'(eft - GE,M) ||‘9;I,jt - egli,tHQ .

Tt Tt Tt
Lastly we compute
(i = ni0) (n-se + 0%;,)
1— T4 T — 1
= (0 + ——=(0%, — 05) (0, — 6%, )———+ 6: —0)

27Tt Tt

m—11—m_; /
= - 2L . ”9;1; - e?i,tHZ +(0-)' (6 = 0-).

Tt 27Tt

Now substitute all these expressions into the short rates we get

rie = pito—l0:]°+ (e —m—i) 1052 -

1—m)(1 —m_; m—11—m;
Lo mU i) s g, 124 ™ ‘
(27Tt> ' ’ T Tt

The short rate differential has the following simplified representation,

1-— Tt 27Tt —1
Tt 27Tt

||HI\I-},t - 9;t||2 )
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which is negatively related to the annualized expected change of exchange rate state-by-state

1—7Tt

Tt

B [dlog&] fat = (ray —wr0) (F0) 0%, — 0L

Meanwhile, the short rate differential in the frictionless model is zero and hence does not
co-move with exchange rates. Q.E.D.

Proof of Proposition 4. Let F. (t+dt

be the t + dt forward exchange rate available to an
F-household at time ¢. L.e., upon paying one unit of currency F' at time t 4 dt, the contract

delivers F? Pt U+ it of currency H. By no-arbitrage, the forward exchange rate satisfies

E, [MF,t,tert( t “ /5t+dt - 1)} = 0.

Hence, we obtain'?

.Fg;rdt) = EMpyiral/Er [MF,t,t+dt/5t+dt]-

The classic CIP condition states that the payoff of investing one unit of currency F' in
the domestic risk-free asset, i.e., 1/ P}tj dt), shall earn the same amount as exchanging to
currency H and then investing in the foreign risk-free asset while simultaneously purchasing

the forward contract, i.e., 1 x &/ P Hdt / (Hdt

. However, in our model, due to the interme-
diation friction, the two quantities are not equal. Instead, only for the forward exchange rate

available in the D2D market Fp tHdt the CIP holds. Hence, an econometrician who observes

13Please note that the superscript (¢ + dt) denotes the maturity date of the risk-free asset.
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the forward exchange rate available to the customer F' and the risk-free rate available to local
customers would conclude that there exists a CIP deviation (see, for example, Avdjiev et al.

(2019)). Furthermore, such a deviation is usually measured as (annualized)
ClPp; = (—log P}Edt) + log Pg:dt) +log & — log Fg:rdt))/dt .
A risk-free asset that promises to pay one unit of currency H would be worth

P 5{“““ = FE; [MF,t,t—i-dt/ 5t+dt] ,

in the D2C market, in terms of currency F' for an F-household. So its time-t price in terms of

H,(t+dt)
P Fit

currency H would be &; in contrast to the domestic bond price available to customer

H, P gidt) = E; [MH,t,t+dt] = E; [MII{,M—&-dt]'

Thus, the CIP deviation can be represented as the differential cost of borrowing currency

CIPp, = (—logPy;™ +log(P, ™" x &) /dt
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(t+dt)

We now compute the price Pg : explicitly,

H,(t+dt) _ —rp+dt—0.5|np, || 2dt—(nF,) dBt
tPFt = Et (&

X 67(7'§-17t774115',t)dt70~5(||771{1¢H27||77115'7t”2)dt7(77{{7t77h[v‘,t)/d3t:|
2 I 2 I 2
¢~ THtdt=0.5[1nF¢[*dt=0.5(lImg o I*~lIng, I*)dt o E, |:€_(7]F,t+77%.17t_77{w,t)/dBti|

e_TH,tdt_ (ﬁ,{{,t _né‘,t)/(n{r’t _77F,t)dt

Hence, the short-rate that an F' household has to pay in order to borrow currency H is

H, d
rl = —log(E P TN Jdt = vy + (ke — b)) (0he — 1ry) -

The formula for H-households is analogous. Q.E.D.

Internet Appendix (For Online Publication)

C Details of the Calibration

We consider the following specifications for the dynamics of the output and demand shocks:

_(HH)/- - oM 0 oM 0 0 0 -
(Op) 0o oM pMaM /1 - (pM)2eM 0 0
0% E sYa¥ 0 gy oERP 1— (sY)20)} 0
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Here, the parameter 6™ captures the volatility of the output shock, while p™ captures
the correlation between the output shock across countries, with the covariance given by
0,0 = (M)2pM. Note that under the current parametric assumption, when p™ = 1,
the output correlation between the two countries will be capped at 0.5. We can adjust
the volatilities in the third and fourth columns to achieve even larger cross-country output
correlation. Similarly, ¥ captures the idiosyncratic demand shock, and we set ¥ = 0.095.
Finally, sV captures the correlation between the idiosyncratic output shock and the demand
shock, with the covariance given by 0.0 = sY5¥5M.

Given these assumptions, the volatility of the output shocks can be computed as y/2(7M)2,
and the correlation of the two output shocks is (6)2p™ /2(5M)? = %M We calibrate the
parameters 6™ to match the volatility of nominal GDP (2%) and the correlation between
the nominal GDPs of the two countries (0.35), as reported in Table 2 of Itskhoki and Mukhin
(2017).

Finally, acl(-) denotes the auto-correlation coefficient with one lag; std(-) denotes the
annualized volatility; corr(-,-) denotes the correlation between the variables of interest; d de-
notes the first-order difference. Lower-case variables are the logarithms of the corresponding
upper-case variables. We simulate 10,000 sample paths starting with Qg = 1 and zy = 0,

representing the symmetric steady state. For each sample path, we simulate 80 years of

monthly observations, discarding the first 40 years to mitigate stability concerns.
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C.1 Data sources

We consider the U.S. as the home country and Euro Area (19 countries) as the foreign country
in our calibration exercise. We collect the data on nominal gross domestic output (GDP) and
nominal consumption in domestic currency units from IMF International Financial Statistics.
The data for Euro Area (19 countries) is from 1995Q1 to 2023Q4, quarterly frequency and
seasonally adjusted. As U.S. has longer periods of observations (dating back to 1950s), we
have also considered Germany and France together as a proxy for Euro Area dating back to
1980s. The results are similar and hence not reported.

Meanwhile the bilateral quarter-end nominal exchange rates on EUR/USD are down-
loaded from BIS website. Please note that per our definition of exchange rates, we would
measure Euro in the unit of US dollar.

Lastly, we collect the domestic stock price index and short rates (3 months) from OECD
Financial Markets Indicators. Again we have less observations for the Euro Area, starting
only from 1994Q1 until 2023Q4.

We excluded the four observations in 2020 in our calibrations for the international macro
moments, due to the extreme movements in nominal consumption and GDP caused by the

outbreak of Covid-19. The effects are summarized in Figure 6.
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C.2 The stochastic process for z; in Assumption 3. Sensitivity to
k* and o”.

As explained in assumption 3, we consider a mean-reverting process x; for the state that

determines the volatility of demand shocks

o, = exp(4a}) —1.

We choose k¥ = % and 0% = % to ensure that max|z;| < % for most sample paths,
corresponding to approximately 75% instantaneous volatility in the demand shocks. These
parameter choices also allow us to generate persistence in the country-specific short-term
rates and the cross-country interest rate differential.

We consider four combinations of the mean-reversion x* € {0.02,0.04} and volatility

0® € {0.03,0.06} parameters for the demand shock process ;.
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Table 8: Frictional, z; with o = 0.03 and k* = 0.04, with a positive covariance for demand
shocks: p¥ = 0.3.

Data S.E. -0.7 -0.4 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de)(%) 941 (0.01) 866 653 423 3.75 4.95
std(dgz ) (%) 142 (0.10) 198 1.98 198 198 1.98
std(de) /std(dgy) 6.62 439 331 215 190 251
std(der ) (%) 149 (0.10)  1.82 188 205 232 255
std(dep) (%) 1.60  (0.11) 183  1.88 205 232 255
std(de) /std(dey) 6.32 — 481 351 205 1.60 1098
corr(déy, dgrr) 0.79  (0.04) 088 094 098 096 0.94
corr(dgm, dgr) 0.57  (0.06) 0.35 0.35 035 035 0.35
corr(dcy, deg) 0.61  (0.06) 0.73 0.57 0.27 -0.01 -0.17

corr(dey — dep,de)  -0.00  (0.10)  0.03 033 0.5 -0.56 -0.83

std(rg —re) (%) 0.69 (0.04) 001  0.00 000 0.00 0.00
std(ryy —rp)/std(de)  0.07 — 000 0.00 000 0.00 0.00
std(rg)(%) .12 (0.07) 000  0.00  0.00 0.00 0.00
corr(ry, Tr) 0.81 (0.03) -0.44 0.58 096 091 0091
corr(dry, drp) 0.59 (0.06) 015 0.70 090 0.89 0.87

Continued on next page
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Data  SE. -07  -04 0 04 07
acl(ry — rp) 0.96 (0.09) 098 097 095 096 0.96
acl(ry) 098 (0.09) 098 097 096 096 097
Fama-3 2.18 (1.25) 190.60 22321 113.36 24.99 76.28
carry SR(%) 3723 (1841) 013 015 001 022 025
carry i-diff (%) 121 (0.39) 002 001 000 0.00 0.00
carry (%) 346 (9.28) 001 0.0l 000 001 001
carry ratio (%) 3497 (1841) 010  0.05 000 0.06 0.02
std(carry) (%) 928 (0.60) 866 653 422 374 495
std(carry i-diff) (%) 0.39  (0.03)  0.00  0.00  0.00 0.00 0.00
mean(CIP ) (%) 021 (0.30) -0.07 -0.04 -0.02 -0.02 -0.04
CIP-3 264 (0.68) -0.05 -0.04 -0.05 -0.06 -0.05
t CIP -3.87 — 682 -255 -115 -1.50 -4.22
R? CIP(%) 2.00 — 13.03 225 084 134 7.29
ERP (%) 348 (1274) 051 037 019 -0.00 -0.14
equity SR (%) 27.26 (18.41) 636  4.63 232 -0.00 -1.72
ERP (%) 201 (15.85) 049 035 017 -0.02 -0.15
equity SRy (%) 12.66 (1841)  6.15 444 214 -021 -1.93
corr(ERPy, ERPz) 085 (0.03) 035 035 035 035 0.35
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Table 9: Frictional, z; with o = 0.03 and k* = 0.02, with a positive covariance for demand
shocks: p¥ = 0.3.

Data  S.E. -07 -04 0 04 07
acl(de) 0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de) (%) 941 (0.01) 903 742 585 524 565
std(dgzr) (%) 142 (0.10) 198 1.98 198 198 198
std(de) /std(dgu) 6.62 — 458 376 296 2.66 2.86
std(deg ) (%) 149  (0.10) 1.88 194 211 238 2.62
std(der) (%) 1.60 (0.11) 1.88 194 211 238 2.62
std(de) /std(dey) 6.32 — 487 365 252 204 214
corr(déy, dgy) 0.79 (0.04) 084 091 095 095 093
corr(dgy, dgr) 057 (0.06) 035 035 035 035 035
corr(déy, dep) 0.61 (0.06) 064 045 019 -0.05 -0.19

corr(decy — dcg, de) -0.00  (0.10)  -0.19 -0.05 -0.21 -0.59 -0.82

std(rg —rr)(%) 0.69  (0.04) 0.01 0.01 001 0.01 0.01
std(rg — re)/std(de)  0.07 000 000 000 000 0.00
std(r) (%) 112 (0.07) 001 001 001 001 0.00
corr(ry, ) 0.81 (0.03) -0.02 0.62 092 089 0.89
corr(dry, drg) 0.59  (0.06) 0.25 066 080 082 0.82
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Data S.E. -0.7  -04 0 0.4 0.7

acl(ry — rp) 096 (0.09) 098 097 096 096 0.96
acl(ry) 098 (0.09) 098 097 097 097 097
Fama-3 218 (1.25) 122.11 97.93 43.40 18.88 42.69
carry SR(%) 3723 (1841) 041 055 050 043 0.41
carry i-diff (%) 1.21  (0.39)  0.03 0.01 001 001 0.00
carry (%) 346 (9.28)  0.04 004 002 002 0.03
carry ratio (%) 3497 (1841) 015 0.0 001 0.08 0.02
std(carry) (%) 928 (0.60) 9.03 742 583 524 5.65

std(carry i-diff) (%) 039  (0.03)  0.00 0.00 000 0.00 0.00

mean(CIP )(%) 021 (0.30) -0.09 -0.05 -0.04 -0.04 -0.05
CIP-53 264 (0.68) -0.06 -0.07 -0.11 -0.11 -0.07
t CIP -3.87 — 585 277 -1.69 -1.93 -4.13
R? CIP(%) 2.00 — 1154 305 199 241 743
ERP (%) 348 (1274) 051 037 019 0.00 -0.14
equity SRy (%) 2726 (18.41) 633 461 234 004 -1.70
ERP (%) 201 (1585) 049 035 017 -0.01 -0.15
equity SRy (%) 12.66 (1841)  6.10 439 215 -0.15 -1.88

corr(ERPy, ERPp) 0.85  (0.03) 035 035 035 035 0.35
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Table 10: Frictional, z; with ¢* = 0.06 and x* = 0.02, with a positive covariance for

demand shocks: p¥ = 0.3.

Data SE. 07 -04 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de) (%) 041  (0.01) 13.38 13.63 13.39 1276 11.83
std(dgr) (%) 142 (0.10) 1.98 1.98 198 198 198
std(de) /std(dgx) 6.62 677 690 678 644 5.98
std(dén ) (%) 149 (0.10) 267 288 307 326 3.34
std(dep) (%) 160 (0.11) 277 313 343 354 351
std(de) /std(dcx) 6.32 459 378 317 291 2.88
corr(decy, dgy) 0.79 (0.04) 059 066 0.72 0.76 0.79
corr(dgu, dgr) 0.57  (0.06) 035 035 035 035 035
corr(déy, der) 0.61  (0.06) 0.08 0.0l -0.05 -0.12 -0.21
corr(dey — dép,de)  -0.00  (0.10) -0.66 -0.61 -0.61 -0.68 -0.79
std(ri — ) (%) 0.69 (0.04) 032 048 054 047 0.30
std(ry — rp)/std(de)  0.07 002 003 004 004 003
std(r) (%) 112 (0.07) 009 012 014 012  0.09
corr(ry,r) 0.81 (0.03) 0.63 0.74 077 0.78 0.80
corr(dry, drg) 0.59 (0.06) 0.55 0.55 0.55 0.57 0.60
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Data  SE. -07 -04 0 04 07
acl(ry — 1) 096 (0.09) 095 094 094 094 0.94
acl(ry) 098 (0.09) 095 094 094 094 0.95
Fama-3 218 (1.25) 4.11 254 228 232 296
carry SR(%) 3723 (18.41) 361 378 398 3.80 3.62
carry i-diff (%) 121 (0.39) 020 025 025 022 015
carry (%) 346 (928) 035 031 028 030 0.28
carry ratio (%) 3497 (18.41) 208 278 140 240 1.23
std(carry) (%) 928  (0.60) 13.38 13.62 13.38 12.76 11.82
std(carry i-diff) (%) 0.39  (0.03) 0.09 013 015 013 0.08
mean(CIP (%) 021 (0.30) -0.27 -0.30 -0.29 -0.28 -0.23
CIP-3 264  (0.68) -043 -0.65 -0.79 -0.73 -0.51
t CIP -3.87 — 274 237 231 -2.28 -2.43
R? CIP(%) 2.00 — 669 779 856 865 7.29
ERP (%) 348 (1274) 047 035 019 0.03 -0.10
equity SRy (%) 2726 (18.41) 596 444 245 035 -1.27
ERP (%) 201 (1585) 046 033 018 0.02 -0.11
equity SRx(%) 12.66 (18.41) 572 418 222 023 -1.38
corr(ERPy, ERPz) 085  (0.03) 035 035 035 035 0.35
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Table 11: Frictional, z; with ¢* = 0.06 and x* = 0.04, with a positive covariance for

demand shocks: p¥ = 0.3.

Data SE.  -07 -04 0 0.4 0.7
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de)(%) 9.41 (0.01) 11.77 11.94 11.60 10.80 9.64
std(dgm) (%) 142 (0.10) 1.98 198 198 1.98 1.98
std(de) /std(dgy) 6.62 — 597 6.05 588 545 487
std(dég ) (%) 149  (0.10) 229 250 273 294 3.04
std(deg) (%) 1.60 (0.11) 229 253 276 296 3.05
std(de) /std(dey) 6.32 — 484 398 331 296 281
corr(dey, dgg) 0.79 (0.04) 0.65 068 074 0.79 0.83
corr(dgy, dgr) 0.57 (0.06) 035 035 035 035 0.35
corr(déy, dep) 0.61 (0.06) 0.17 0.03 -0.06 -0.15 -0.23
corr(dey — dép,de)  -0.00  (0.10) -0.67 -0.66 -0.67 -0.72 -0.81
std(rg — rr)(%) 0.69 (0.04) 0.12 020 024 020 0.12
std(ry — rp)/std(de)  0.07 — 001 002 0.02 0.02 0.01
std(ru) (%) 112 (0.07) 005 007 0.08 0.07 0.04
corr(ry, 1) 0.81 (0.03) 0.63 0.77 081 083 0.85
corr(dry, drp) 0.59 (0.06) 0.61 061 060 0.63 0.69
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Data SE. -07 -04 0 0.4 0.7
acl(ry — ) 0.96 (0.09) 095 094 094 094 0.94
acl(ry) 098 (0.09) 095 094 094 094 0095
Fama-f3 218 (1.25) 1096 549 441 477 6.91
carry SR(%) 37.23 (18.41) 2.07 236 237 256 1.94
carry i-diff (%) .21 (0.39) 0.10 0.11 0.11 0.09 0.06
carry (%) 346 (9.28) 021 022 019 020 0.16
carry ratio (%) 34.97 (18.41) 0.82 091 065 0.77 0.32
std(carry) (%) 9.28 (0.60) 11.77 11.93 11.60 10.80 9.63
std(carry i-diff) (%)  0.39  (0.03) 0.03 0.06 007 006 0.03
mean(CIP ;;)(%) 0.21  (0.30) -0.19 -0.20 -0.20 -0.18 -0.15
CIP-p -2.64 (0.68) -0.28 -0.48 -0.63 -0.57 -0.36
t CIP -3.87 — -258 -2.16 -2.10 -2.06 -2.21
R? CIP(%) 2.00 — 468 497 6.02 576 4.65
ERP; (%) 348 (1274) 049 036 019  0.02 -0.12
equity SRy (%) 27.26 (18.41) 6.15 447 235 020 -1.44
ERPr(%) 2.01 (15.85) 0.47 033 0.17 0.00 -0.13
equity SRy(%) 12.66 (18.41) 587 420 218 0.04 -1.66
corr(ERPy, ERPp) 0.85 (0.03) 035 035 035 035 0.35
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Figure 2: This plot shows under the calibration with s¥ = —0.4 for the frictional model, the
variation of short-term rates and currency risk premia as a function of the endogenous state
variable log O, and the exogenous variable z;. For example, the upper left panel exhibits the
short-rate differential as a function of log Q; for various choices of |z;| € {0,3/16,1/4,3/8}.
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Figure 3: This plot shows under the calibration with s¥ = —0.4 for the frictionless

model, the variation of short-term rates and currency risk premia as a function of the
endogenous state variable log Q; and the exogenous variable x;. For example, the upper
left panel exhibits the short-rate differential as a function of log Q, for various choices of

2| € {0,3/16,1/4,3/8}.
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Figure 4: This plot shows under the calibration with s¥ = 0.4 for the frictional model, the
variation of short-term rates and currency risk premia as a function of the endogenous state
variable log O, and the exogenous variable z;. For example, the upper left panel exhibits the
short-rate differential as a function of log Q; for various choices of |z;| € {0,3/16,1/4,3/8}.
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Figure 5: This plot shows under the calibration with s¥ = 0.4 for the frictionless model, the
variation of short-term rates and currency risk premia as a function of the endogenous state
variable log O, and the exogenous variable z;. For example, the upper left panel exhibits the
short-rate differential as a function of log Q; for various choices of |z;| € {0,3/16,1/4,3/8}.
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Figure 6: Covid-19 effects on international macro moments.




Table 12: This table presents simulated moments for models with positively correlated
demand shocks (p¥ = 0.3). The parameter s¥ is set to —0.4 where applicable. The first two
columns display estimates of the data moments and their associated standard errors, where
applicable. The subsequent two columns present the simulated moments for the models
without home bias (B = Sr = 0.5). The last two columns present the simulated moments
for the models without demand shocks (8} = 0% = 0).

No Home-bias No Demand

Data S.E. Frictionless Frictional Frictionless Frictional
acl(de) -0.01  (0.09) -0.00 -0.00 -0.00 -0.00
std(de) (%) 9.41  (0.01) 2.26 2.26 2.26 2.26
std(dgm) (%) 142  (0.10) 1.98 1.98 1.98 1.98
std(de) /std(dgg) 6.62 — 1.14 1.14 1.14 1.14
std(dey ) (%) 1.49  (0.10) 6.92 3.80 1.98 1.98
std(der)(%) 1.60  (0.11) 6.77 3.78 1.98 1.98
std(de)/std(dey) 6.32 — 0.32 0.59 1.14 1.14
corr(dey, dgp) 0.79  (0.04) 0.09 0.30 1.00 1.00
corr(dgy, dgr) 0.57  (0.06) 0.35 0.35 0.35 0.35
corr(dcy, dcg) 0.61  (0.06) -0.68 -0.54 0.35 0.35
corr(dey — dcg, de) -0.00  (0.10) -0.17 -0.09 1.00 1.00
std(rg —re)(%) 0.69  (0.04) 0.01 0.00 0.00 0.00
std(rg — rp)/std(de)  0.07 — 0.00 0.00 0.00 0.00
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No Home-bias

No Demand

Data S.E.  Frictionless Frictional Frictionless Frictional
std(rg) (%) .12 (0.07) 0.00 0.20 0.00 0.00
corr(rg, rr) 0.81  (0.03) -1.00 1.00 — —
corr(dry, drp) 0.59  (0.06) -1.00 1.00 — —
acl(rg —rp) 0.96 (0.09) 0.99 0.99 — —
acl(rg) 0.98  (0.09) 0.99 0.96 — —
Fama-f3 2.18  (1.25) 25.76 50.72 — —
carry SR(%) 37.23 (18.41) 0.49 0.42 — —
carry i-diff (%) 1.21  (0.39) 0.02 0.01 — —
carry (%) 3.46  (9.28) 0.01 0.01 — —
carry ratio (%) 34.97 (18.41) 0.70 0.28 — —
std(carry) (%) 9.28  (0.60) 2.26 2.26 — —
std(carry i-diff) (%) 0.39  (0.03) 0.00 0.00 — —
mean(CIP ) (%) -0.21  (0.30) 0.00 -0.02 0.00 0.00
CIP-3 -2.64  (0.68) — -0.01 — —
t CIP -3.87 — — -8.43 — —
R? CIP(%) 2.00 — — 12.62 — —
ERP (%) 3.48 (12.74) 0.29 0.33 0.19 0.19
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No Home-bias

No Demand

Data S.E. Frictionless Frictional Frictionless Frictional
equity SRy (%) 27.26 (18.41) 3.64 4.15 2.31 2.31
ERPr(%) 2.01 (15.85) 0.27 0.31 0.17 0.17
equity SRz (%) 12.66 (18.41) 3.44 3.92 2.14 2.14
corr(ERPy, ERPp) 0.85  (0.03) 0.35 0.35 0.35 0.35
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Table 13: Frictionless Model Without z; Shocks. This table presents simulated
moments for a frictionless model with positively correlated demand shocks (p¥ = 0.3). The
parameter o) is set to 0.012 to ensure the volatility of exchange rates is comparable to that
in Table 5, which includes stochastic x; shocks. The first two columns display estimates of
the data moments and their associated standard errors, where applicable. The subsequent

five columns present the simulated moments for the frictionless model across various values
7
of s¥.

Data  SE. -07  -04 0 0.4 0.7
acl(de) 0.01  (0.09) -0.00 -0.00 -0.00  -0.00  -0.00
std(de) (%) 941 (0.01) 11.83 11.47 10.84 10.03  9.23
std(dgzr) (%) 142 (0.10) 198 1.98 1.98 198  1.98
std(de) /std(dgy) 6.62 — 596 577 545 504 464
std(deg ) (%) 149  (0.10) 207 226 251 271 285
std(der) (%) 1.60 (0.11) 207 229 253 272  2.84
std(de) /std(dey) 6.32 — 556 499 432 373 3.29
corr(déy, dgy) 079 (0.04) 073 075 079 083 087
corr(dgy, dgr) 057 (0.06) 035 035 035 035 035
corr(déy, dep) 061 (0.06) 035 014 -0.06 -0.21  -0.30

corr(degy — dep,de)  -0.00  (0.10) -0.62 -0.65 -0.70  -0.77  -0.83
std(ry — r7)(%) 069 (0.04) 001 000 000 000 001

std(ry — rp)/std(de)  0.07 — 000 000 000 000 0.0
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Data S.E. -0.7 -0.4 0 0.4 0.7
std(ru) (%) 1.12  (0.07)  0.00 0.00 0.00 0.00 0.00
corr(ry, ) 0.81 (0.03) -0.97 -0.97 — 097  -0.98
corr(dry, drg) 0.59 (0.06) -0.91 -0.91 —  -0.91 -0.91
acl(ryg —rp) 0.96  (0.09) 0.99 0.99 — 0.99 0.99
acl(ry) 0.98  (0.09) 0.99 0.99 — 0.99 0.99
Fama-f3 2.18 (1.25) 457.22 745.29 —  -647.05 -349.75
carry SR(%) 37.23 (1841) -001 009 — 012 0.0
carry i-diff (%) 121 (0.39) 001 001 — 001 0.0l
carry (%) 346  (9.28) -0.00 001  — 001  0.00
carry ratio (%) 34.97 (18.41) -0.31 0.03 —  -0.03 0.35
std(carry) (%) 028 (0.60) 11.84 1147  — 1003  9.23
std(carry i-diff) (%) 039  (0.03)  0.00 000  — 000  0.00
mean(CIP ;7)(%) 0.21 (0.30) 000 0.0 0.00 000  0.00
CIP-8 264 (0.68) R — —
t CIP -3.87 — — — — — —
R? CIP(%) 2.00 — — - — —
ERPg (%) 3.48 (12.74) 0.50 0.37 0.19 -0.00 -0.14
equity SRy (%) 27.26 (18.41) 637 462 231 0.0l  -1.75
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Data  SE. -07  -04 0 0.4 0.7
ERP (%) 201 (15685) 049 035 017  -001  -0.15
equity SRp(%) 12.66 (18.41)  6.13 446 214  -0.18  -1.93
corr(ERPy, ERPz) 085  (0.03) 035 035 035 035 035
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Table 14: Frictional Model Without z; Shocks. This table presents simulated moments
for a frictional model with positively correlated demand shocks (p¥ = 0.3). The parameter
o is set to 0.012 to ensure the volatility of exchange rates is comparable to that in Table
5, which includes stochastic z; shocks. The first two columns display estimates of the
data moments and their associated standard errors, where applicable. The subsequent five

columns present the simulated moments for the frictional model across various values of s¥.

Data S.E. -0.7 -0.4 0 0.4 0.7
acl(de) 0.01 (0.09)  -0.00 -0.00 -0.00 -0.00 -0.00
std(de) (%) 941 (0.01) 10.23 977 908 828  T.56
std(dg) (%) 142 (0.10) 198 198 198 198 1.8
std(de) /std(dgg) 6.62 — 5.15 4.92 4.56 4.16 3.80
std(dex) (%) 149 (0.10) 197 213 234 253 2.67
std(der) (%) 1.60 (0.11) 198 214 235 254  2.66
std(de) /std(dey) 6.32 — 510 453 387 329  2.88
corr(déy, dgr) 0.79 (0.04) 081 082 085 088  0.90
corr(dgs, dgr) 057 (0.06) 035 035 035 035 0.35
corr(déy, dep) 0.61 (0.06) 045 023 002 -013 -0.21

corr(dey — dep,de)  -0.00  (0.10) -0.42 -049 -0.58 -0.68 -0.78

std(ry — r)(%) 0.69 (0.04) 002 001l 00l 00l 001
std(ry — rp)/std(de)  0.07 — 0.00 000 0.0 000 0.00
std(rg) (%) 112 (0.07) 001 001 001 000 0.00

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7
corr(ry,rp) 0.81 (0.03) -0.96 -096 -094 -0.91 -0.78
corr(dry, drp) 0.59 (0.06) -0.87 -0.85 -0.82 -0.73 -0.43
acl(rg —rp) 0.96  (0.09) 0.99 0.99 0.99 0.99 0.99
acl(ry) 0.98  (0.09) 0.99 0.99 099  0.99 0.99
Fama-f3 218  (1.25) 152.62 152.90 165.27 202.59 276.14
carry SR(%) 37.23 (1841) 017 050 031 055 027
carry i-diff (%) 121 (0.39)  0.03 003 003 002 001
carry (%) 3.46  (9.28) 0.02 0.05 0.03 0.04 0.02
carry ratio (%) 34.97 (1841) 018 022 016 015  0.09
std(carry) (%) 028 (0.60) 10.23  9.78  9.08 829  7.57
std(carry i-diff) (%) 0.39  (0.03)  0.00  0.00 000  0.00 0.0
mean(CIP ) (%) -0.21  (0.30) -0.12  -0.12 -0.11  -0.10  -0.09
CIP-3 -2.64 (0.68) -0.09 -0.10 -0.10 -0.10  -0.09
t CIP -3.87 — -7484 -66.57 -61.80 -61.08 -64.56
R? CIP(%) 2.00 — 95.22 9348 92.05 91.75 92.74
ERP g (%) 3.48 (12.74) 0.50 0.37 0.19 0.00 -0.14
equity SRy (%) 27.26 (18.41) 633 460 231 0.0l -1.73
ERP (%) 201 (1585 049 035 017 001 -0.15

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7

equity SRp(%) 12.66 (18.41)  6.08 443 214 -0.15 -1.90

corr(ERPy, ERPp) 0.85  (0.03) 0.35 0.35 0.35 0.35 0.35

D Asymmetric Countries

In this section, we investigate an alternative calibration, allowing the two countries to have
asymmetric shock exposures. We consider the following specifications for the dynamics of

the output and demand shocks:

(On) oM 0 oM 0 0 0
(Op) 0 oM pMaM /1 — (pM)2eM 0 0

(9[\1})/ S\Ila.\ll 0 gearry O.ERP /1 — (S\I/)2O-t‘11 0

(46)

Table 15 reports the calibrated coefficients in (46) (See Appendix C for details). ¢! is defined
in Assumption 3.
In comparison to the previous version of our calibration (see (34) and (15)), we have

carry ERP - This adjustment helps us

added two more shocks, with common exposures, o
match the magnitudes and differences in equity risk premiums across countries. Additionally,

this asymmetric calibration allows us to achieve a higher carry Sharpe ratio (5.1% for the
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frictionless and 6.8% for the frictional) and a higher carry ratio (39) (17.1% for the frictionless

and 23.9% for the frictional, see Tables 16 and 17).

Table 15: Parameter Choices for the Simulated Moments

Variable Definitions Symbols Values Targeted Moments
Preferences {Bi}icu.F 0.9 Trade-to-GDP ratio 0.2
Time discount o 0.03 —
Drift of M, © 0.03 —
Size of Supply shocks oM 0.014 std(dgy) = 2%
Supply shocks correlation oM 0.7 corr(dgy,dgr) = 0.35
Correlated demand shocks ol exp(4z?) — 1 —
Demand shocks correlation p¥ 0.3 std(de) = 10%
Idiosyncratic demand shocks o’ 0.095 corr(dey, dep) = 0.3
Output-demand correlation sv -0.4 corr(dey, dep) = 0.3
Mean-reversion of x; R” 0.36/12 acl(rg —rp) = 0.95
Volatility parameter of x; o 0.09/2 std(ryg —rr) = 0.6%
Carry demand shocks oy -0.5 equity SRy = 27.26%
ERP demand shocks o PRP 0.3 equity SRy = 12.66%
We have

rie = 1oy = 0+ i — ||0:]* + 0,6
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Hence, for country H, we have T%t =06+ pu— (™2 + oMo}, while for country F, we have
that 75, = 6 + p — (o™)? + pMoMol + /1 — (pM)20Moy . As long as p™M # 1, we have
r%}t =+ r%t, generating systematic differences in interest rates. Meanwhile, we note that the
volatility of the exchange rates is purely driven by ||0y — O0r| = \/WUM, and the
expected changes in the exchange rates are determined solely by rgy; — rp: (see equation
(30)). We would, therefore, expect to observe a relatively large expected carry trade return
and relatively small volatility due to exchange rate fluctuations. IL.e., a high Carry Sharpe
ratio.

A large common demand shock o) = —0.5 significantly increases the volatility of the
country-specific SDF and elevates the correlation of the SDFs across countries. The high
volatility of the country-specific SDFs, combined with the negative correlation between
demand and supply shocks leads to a high equilibrium equity premium. This premium is
determined by the product of the quantity of risk 6; (volatility of the endowment claim) and
the price of risk §; — 6. The low correlation between cross-country equity risk premiums is
a consequence of the endowment claim being a short-term claim, meaning its price dynamics
are driven solely by the supply shock 6;.

Figure 7 and 8 illustrate that the expected carry Sharpe ratio and the expected carry
ratio can be substantially larger for the frictional model, particularly for tail realizations of

Q; and |z4| (the latter leads to a large risk-sharing demand).
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Figure 7: This plot shows the expected Carry Sharpe ratio as well as the expected carry
risk premium explained by the interest rates differentials defined in (39) conditional on log Q,
and various choices of |z;| € {3/16,1/4,3/8}. We consider a negative correlation between

the supply and demand shocks (s¥ = —0.4) for both the frictionless (first row) and the
frictional model (second row).
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Figure 8: This plot shows the expected Carry Sharpe ratio as well as the expected carry
risk premium explained by the interest rates differentials defined in (39) conditional on log Q,
and various choices of |x;| € {3/16,1/4,3/8}. We consider a positive correlation between the

supply and demand shocks (s¥ = 0.4) for both the frictionless (first row) and the frictional
model (second row).
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Table 16: Frictionless Model With Perfectly Correlated Carry/ERP Shocks. This
table presents simulated moments for a frictionless model with positively correlated demand
shocks (p¥ = 0.3). The parameter o™ is set to —0.5 to ensure a positive carry trade
premium. The parameter o™® is set to 0.3 to match the equity risk premium (ERP).
The first two columns display estimates of the data moments and their associated standard
errors, where applicable. The subsequent five columns present the simulated moments for
the frictionless model across various values of sY.

Data  SE.  -07  -04 0 0.4 0.7
acl(de) 0.01  (0.09) -0.00 -0.00 -0.00  -0.00  -0.00
std(de) (%) 941 (0.01) 1181 1140 10.80  10.00  9.20
std(dgp ) (%) 142  (0.10) 198 198 198 198  1.98
std(de) /std(dgy) 6.62 — 597 577 546 505  4.66
std(deg ) (%) 149 (0.10) 219 228 248 278  3.02
std(deg) (%) 1.60 (0.11) 217 230 249 280  3.02
std(de) /std(dey) 6.32 — 529 418 321 281  2.80
corr(déy, dgy) 079 (0.04) 066 074 081 084 085
corr(dgy, dgr) 057 (0.06) 035 035 035 035 035
corr(déy, dep) 061 (0.06) 031 012 -0.04 -017  -0.28

corr(degy — dep,de)  -0.00  (0.10) -0.67 -0.62 -0.63  -0.72  -0.85
std(ry — r7)(%) 069 (0.04) 001 000 000 000 001

std(ry — rp)/std(de)  0.07 — 000 000 000 000 0.0

Continued on next page
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Data S.E. -0.7 -0.4 0 0.4 0.7
std(ru) (%) 1.12  (0.07)  0.00 0.00 0.00 0.00 0.00
corr(ry, ) 0.81 (0.03) -0.97 -0.97 — 097  -097
corr(dr, dry) 059  (0.06) -0.89 -0.89  —  -0.90  -0.89
acl(ryg —rp) 0.96  (0.09) 0.99 0.99 — 0.99 0.99
acl(ry) 0.98  (0.09) 0.99 0.99 — 0.99 0.99
Fama-f 2.18 (1.25) 473.63 873.12 —  -687.44 -360.28
carry SR(%) 37.23 (1841) 459 500 615 648  5.65
carry i-diff (%) .21 (0.39) 0.51 0.51  0.51 0.51 0.51
carry (%) 346 (9.28) 056 054 051 051 049
carry ratio (%) 3497 (18.41) 1599 17.13 20.04  21.77  21.95
std(carry) (%) 928 (0.60) 11.81 1140 1080  10.00  9.20
std(carry i-diff) (%) 039 (0.03) 000 000 0.00 000 0.0
mean(CIP ) (%) 021 (0.30)  0.00 000 000 000 0.0
CIP-3 264 (0.68) - - -
t CIP -3.87 — — — — — —
R? CIP(%) 2.00 - — —
ERP; (%) 348 (12.74) 331 318 3.00 282 268
equity SRy (%) 97.26 (18.41) 41.54 39.81 37.64 3535  33.64

Continued on next page

134



Data S.E. -0.7 -0.4 0 0.4 0.7

ERP (%) 201 (1585) 124 110 093 076  0.62
equity SR#(%) 12.66 (18.41) 1553 1388 1171 950  7.77

corr(ERPy, ERPr) 0.85  (0.03) 0.35 0.35 0.35 0.35 0.35

135



Table 17: Frictional Model With Perfectly Correlated Carry/ERP Shocks. This
table presents simulated moments for a frictional model with positively correlated demand
shocks (p¥ = 0.3). The parameter o™ is set to —0.5 to ensure a positive carry trade
premium. The parameter o™® is set to 0.3 to match the equity risk premium (ERP).
The first two columns display estimates of the data moments and their associated standard
errors, where applicable. The subsequent five columns present the simulated moments for
the frictional model across various values of s¥.

Data S.E. -07 -04 0 0.4 0.7

acl(de) 0.01  (0.09) -0.00 -0.00 -0.00 -0.00 -0.00
std(de) (%) 941 (0.01) 1019 9.73 9.07 833 7.63
std(dgr) (%) 142 (0.10) 1.98 198 198 1.98 1.98
std(de) /std(dgy) 6.62 — 516 492 459 421 386
std(dex ) (%) 1.49  (0.10) 2.04 214 233 257 2.74
std(der) (%) 1.60 (0.11) 2.01 213 233 260 2.81
std(de) /std(dey) 6.32 — 488 390 3.08 267 255
corr(déy, dgy) 079 (0.04) 074 081 085 088 0.89
corr(dgy, dgr) 057 (0.06) 035 035 035 035 035
corr(déy, dep) 061 (0.06) 038 017 001 -0.12 -0.21

corr(dey — dep,de)  -0.00  (0.10) -0.54 -0.52 -0.57 -0.67 -0.81
std(ry — rp) (%) 0.69 (0.04) 004 006 007 006 0.04

std(ry — rp)/std(de)  0.07 — 000 001 001 0.01 0.00

Continued on next page
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Data  S.E. -0.7 -04 0 04 07
std(ru) (%) 1.12  (0.07) 0.02 003 0.03 0.03 0.02
corr(rg, ) 0.81 (0.03) 048 0.74 085 0.86 0.88
corr(dry, drp) 0.59 (0.06) 0.3 0.67 067 071 0.76
acl(ry — rp) 0.96 (0.09) 097 096 095 095 0.95
acl(ry) 0.98 (0.09) 097 096 095 096 0.96
Fama-3 2.18  (1.25) 36.05 17.19 11.19 11.01 16.57
carry SR(%) 37.23 (18.41) 6.15 6.75 815 817 6.79
carry i-diff (%) 121 (0.39) 052 052 051 051 051
carry (%) 3.46  (9.28) 0.65 0.63 059 054 048
carry ratio (%) 34.97 (18.41) 20.16 23.90 29.42 32.13 29.40
std(carry) (%) 9.28 (0.60) 10.19 9.73 9.06 833 7.63
std(carry i-diff) (%)  0.39  (0.03) 0.01 0.02 002 002 0.01
mean(CIP ) (%) 021 (0.30) -0.12 -0.11 -0.11 -0.10 -0.09
CIP-j 2.64 (0.68) -0.13 -0.23 -0.34 -0.31 -0.18
t CIP -3.87 — =334 224 -202 -2.05 -2.69
R? CIP(%) 2.00 — 538 333 413 424 473
ERP (%) 3.48 (12.74) 331 318 3.00 2.82 268
equity SRz (%) 27.26 (18.41) 41.50 39.82 37.66 35.37 33.66

Continued on next page
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Data SE. -07 -04 0 0.4 0.7

ERP (%) 2.01 (15.85) 124 111 093 0.76 0.62
equity SRp(%) 12.66 (18.41) 1557 1387 11.72 954 7.81

corr(ERPy, ERPr) 0.85 (0.03) 035 035 035 035 0.35
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