
Revealed Preference Analysis of Household
Consumption under Risk

Wei Ma∗ Yanbin Wang†

Abstract

We develop a nonparametric approach to analyzing collective household
consumption behavior under risk when there is one private commodity in
each state of nature. We assume that each household member complies with
expected utility theory and is risk averse, and the intrahousehold decision
process produces Pareto efficient outcomes. We show how to test data for
consistency with this model, recover the individual preferences and the in-
trahousehold decision process, forecast a household’s demand behavior, and
quantify the extent of a household’s departure from collective rationality.
All these questions can be settled by solving a finite number of systems of
linear inequalities.

Keywords: Revealed Preference; Collective rationalizability; Expected utility;
Pareto efficiency; Household aggregate consumption
JEL code: D13; D61; D81; D70

∗Corresponding author: Center for Economic Research, Shandong University, Jinan, 250100,
People’s Republic of China. Email: wei.ma@sdu.edu.cn.

†Center for Economic Research, Shandong University, Jinan, 250100, People’s Republic of
China. Email: wang919606277@163.com.

1



1 Introduction

The standard microeconomic approach to household consumption behavior is
to treat a many-person household as a single decision-maker who maximizes a
well-behaved utility function subject to a household budget constraint. This “uni-
tary”model has been found to be in conflict with mounting empirical evidence.1

In an attempt to resolve the conflict, an alternative approach—the collective one—
emerges. The collective approach explicitly recognizes that each household mem-
ber has his or her own preference and the household decision is the outcome of
an intrahousehold bargaining process. A nonparametric analysis of the general
collective model has been carried out extensively in the literature. In reality, a
household often faces risk and has to make decisions under it. The nonparametric
implications of the collective model under risk have, however, not been analyzed.

In this paper, we consider a setting with a finite number of states and one good
in each state. A household has two members; an extension to household with more
than two members is fairly straightforward. A data set consists of finitely many
price-quantity pairs. It is collectively rationalizable if there is an expected utility
preference for each household member such that each quantity is Pareto efficient
among all those affordable at the corresponding price vector. Given a data set,
we address three sorts of issues concerning it: When is it collectively rationaliz-
able, and if it is not, how to measure the extent of its departure from collective
rationality? How to recover the individual preferences and the intrahousehold de-
cision process underlying it? Can we forecast a household’s behavior at new price
configurations?

In the unitary model of Varian (1982), each of these issues can be settled by
solving a system of linear inequalities. We show that in our collective model
under risk, each of them can be settled by solving a finite number of systems of
linear inequalities. This is in contrast to the general collective model of Browning
and Chiappori (1998), in which the settlement of each of the three issues involves
solving an integer programming (Cherchye et al., 2011).

The paper is organized as follows. Section 2 describes the setup and introduces
the concept of collective rationalizability. Section 3 presents a characterization of
the data set which is collectively rationalizable. In Section 4, we discuss the fore-

1See, for instance, Browning et al. (1994), Fortin and Lacroix (197), Browning and Chiappori
(1998), Chiappori et al. (2002), and Cherchye and Vermeulen (2008).
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cast of a household’s behavior at new price configurations, welfare comparison
at the individual level of two observed consumption bundles, and recovery of the
income sharing rule. Using the result in Section 3, Section 5 provides a charac-
terization of the demand function which is collectively rationalizable. Section 6
gives a measure of the extent of a data set’s departure from collective rationality.
Finally, Section 7 makes a review of the literature. All proofs of the results in the
text are collected in the Appendix.

2 Basic Concepts

We consider a two-member (A and B) household who makes contingent consump-
tion decisions in an uncertain environment. The uncertainty is represented by S
possible states of nature, indexed by s ∈ S, where S = {1, . . . ,S }. There is one
private commodity in each state, which could be thought of as money. House-
hold consumption is denoted by vector x ∈ RS

+ with corresponding price vector
p ∈ RS

++. Each household member has his or her own preference and probabilistic
belief about the occurrence of the states of nature. The observables are aggre-
gate household consumption and individual beliefs, with individual consumption
unobservable.

Denote the set of strictly positive probability measures on S by

∆++ =

π = (π1, . . . ,πS ) ∈ RS
++ :

S∑
s=1

πs = 1

 .
Suppose that household member m holds belief πm ∈ ∆++ about the occurrence
of the states of nature, m = A,B. A data set is a finite number of price-quantity
pairs along with individual beliefs, D = {(pk, xk)K

k=1;πA,πB} with pk ∈ RS
++, xk ∈

RS
+ for each k ∈ K, where K = {1, . . . ,K}. It is interpreted as that the household

aggregately consumes the vector xk of commodities at the price vector pk, k ∈K.
In what follows, we shall use superscripts to refer to observations and subscripts
to components of an observation. For instance, xk

s denotes the sth component of
the kth observation xk.

In the following discussion, we shall compare two settings, namely the unitary
setting and the collective setting, and apply results in the former to study the latter.
The unitary setting is the one where the two household members share the same
preference and the same belief or the household consumption decision is dictated
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by a single member. In this setting, the data set reduces to Du = {(pk, xk)K
k=1;π},

where π is either the common belief of the two household members or the belief of
the dictator. The following concept of rationalization is from Kubler et al. (2014).
Definition 2.1 (Unitary rationalizability). The data set Du is unitarily rationaliz-
able by a strictly concave, strictly increasing, and continuous function u on R+ if
for each k ∈K,

∑S
s=1πsu(xk

s) ≥
∑S

s=1πsu(zs) for all z with pkz ≤ pkxk.

The collective setting is the one where the two household members interact to
generate household level decisions. Following Browning and Chiappori (1998),
we assume their interaction is specified by an intrahousehold bargaining process
and the outcome of the interaction is Pareto efficient. To define rationalizability
in this setting, we introduce the notation of Cherchye et al. (2007). Given a vector
x ∈ RS

+, we denote by x̂ a pair (xA, xB) in RS
+ ×RS

+ such that xA + xB = x, and call
x̂ feasible personalized quantities (FPQ) for x. Note that x̂ uniquely pins down x
and x has infinitely many FPQ’s.
Definition 2.2 (Collective rationalizability). The data set D is collectively ratio-
nalizable by a pair of strictly concave, strictly increasing, and continuous func-
tions (uA,uB) on R+ if for each k ∈ K, there exists an FPQ x̂k = (xAk, xBk) for xk

such that
∑S

s=1π
m
s um(zm

s )>
∑S

s=1π
m
s um(xmk

s ) implies
∑S

s=1π
ℓ
su
ℓ(zℓs)<

∑S
s=1π

ℓ
su
ℓ(xℓks )

(m , ℓ) for any FPQ ẑ of z with pkz ≤ pkxk.

Comparing the above two definitions, we can see that collective rationalizabil-
ity is a generalization of unitary rationalizability in the sense that a unitarily ratio-
nalizable data set must be collectively rationalizable. In the ensuing section, we
shall characterize the data set which is collectively rationalizable. A characteriza-
tion (or a condition) is said to be ‘revealed-preference’if it references observable
data only; otherwise it is said to be ‘non-revealed-preference.’Our objective is to
find a revealed-preference characterization of collective rationalizability.

3 Characterization

In this section, we first study the characterization of unitary rationalizability. This
is carried out by Kubler et al. (2014) when the observed consumption levels are
all distinct. We extend their result by allowing for identical consumption levels
at different price vectors. This will considerably simplify our analysis of col-
lective rationalizability, which forms the second part of this section. Based on
a non-revealed-preference characterization of collective rationalizability and the
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extension of Kubler et al.’s result, we finally arrive at a revealed-preference one.

3.1 Unitary Rationalizability

Consider the data set Du = {(pk, xk)K
k=1;π}. Let ρk

s = pk
s/πs for k ∈ K and s ∈ S.

Define

L(i, j) = max
(s,s′):xi

s>x j
s′

ρi
s

ρ
j
s′
, i, j ∈K, (3.1)

where we set L(i, j) = 0 if xi
s ≤ x j

s′ for all s, s′.
Definition 3.1 (Kubler et al. 2014). The data set Du satisfies the strong axiom of
revealed expected utility (SAREU) if for any t > 1 and all i1, i2, . . . , it ∈K, we have

L(i1, i2) ·L(i2, i3) · · · · ·L(it−1, it) ·L(it, i1) < 1. (3.2)

Lemma 3.1. The following three conditions are equivalent:

(i) The data set Du is unitarily rationalizable.
(ii) There exist λk ∈ R++, k ∈K, such that for all i, j ∈K and s, s′S

xi
s > x j

s′ ⇒ λ
iρi

s < λ
jρ

j
s′ . (3.3)

(iii) The data set Du satisfies SAREU.

Theorem 1 of Kubler et al. (2014) establishes the validity of the lemma in the
case where xi

s , x j
s′ for all s, s′ ∈ S and i, j= 1, . . . ,K. We show the latter restriction

can be dispensed with. The key point is that since the rationalizing function u is
not required to be differentiable, it can have more than one supergradient at a
point. In the proof of Lemma 3.1 we construct a rationalizing function u whose
superdifferential is the set of numbers between λiρi

s and λ jρ
j
s′ when xi

s = x j
s′ .

2

Echenique et al. (2023) provide a characterization of unitary rationalizability by a
concave (rather than strictly concave) function. This characterization is based on
Theorem 1 of Echenique and Saito (2015) whose proof is more involved than that
of Theorem 1 of Kubler et al. (2014).

2For the definitions of supergradient and superdifferential, one is referred to Aliprantis and
Border (2006, Section 7.4, p. 264).
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3.2 Collective Rationalizability

We proceed to characterize collective rationalizability. As an immediate conse-
quence of Lemma 3.1, we have the following result.
Lemma 3.2. The data set D is collectively rationalizable if and only if there ex-
ists an FPQ x̂k = (xAk, xBk) for xk, k ∈ K, such that both {(pk, xAk)K

k=1;πA} and
{(pk, xBk)K

k=1;πB} satisfy SAREU.

One way for checking whether there exists x̂k such that {(pk, xmk)K
k=1;πm} satis-

fies SAREU is to verify the solvability of the system of inequalities corresponding
to (3.2). This is not easy to implement, however, because the inequalities are non-
linear in x̂k. On the other hand, referring to the definition of L(i, j), we note that
whether {(pk, xmk)K

k=1;πm} satisfies SAREU depends not upon the absolute magni-
tudes of xmk

s , s ∈ S and k ∈K, but upon their relative magnitudes. Since the data
set D is finite, the relative magnitudes of xmk

s have only a finite number of possi-
bilities, which provides another way for verifying the if-condition in Lemma 3.2.

Specifically, let I = {(s,k) : s ∈ S,k ∈K}. Given a weak order < on I , let ≻
and ∼ denote its asymmetric and symmetric parts, respectively. We generalize the
operator L by defining it relative to < as

L(i, j;<) = max
(s,s′):(s,i)≻(s′, j)

ρi
s

ρ
j
s′
, i, j ∈K, (3.4)

where we set L(i, j) = 0 if (s′, j) < (s, i) for all s, s′.
Definition 3.2. The data set Du satisfies SAREU relative to < if for any t > 1 and
all i1, i2, . . . , it ∈K, we have

L(i1, i2;<) ·L(i2, i3;<) · · · · ·L(it−1, it;<) ·L(it, i1;<) < 1. (3.5)

By analogy with Cherchye et al. (2007), we assign each household member m
a weak order <m on I , m= A,B. By Lemma 3.2, the collective rationalizability of
D implies the existence of an FPQ x̂k = (xAk, xBk) such that both {(pk, xAk)K

k=1;πA}
and {(pk, xBk)K

k=1;πB} satisfy SAREU. Define

(s, i) <m (s′, j)⇔ xmi
s ≥ xm j

s′ ,m = A,B.

Then the data set {(pk, xk)K
k=1;πm} satisfies SAREU relative to <m, m = A,B. Con-

sequently, a necessary condition for D to be collectively rationalizable is that
the data set {(pk, xk)K

k=1;πm} satisfies SAREU relative to some weak order on I ,
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m = A,B. Since it references observable data only, this condition is of a revealed-
preference nature. As is easy to see, however, it cannot be sufficient without any
restrictions imposed on the weak orders involved.

To seek such restrictions, assume given a pair of weak orders (<A,<B) on I .
It is said to be consistent with D if the following system of linear inequalities has
a solution in z = (zkm

s )s∈S;k∈K;m=A,B ∈ R2S K:
zmi

s − zm j
s′ > 0 if (s, i) ≻m (s′, j)

zmi
s − zm j

s′ = 0 if (s, i) ∼m (s′, j)
zAk

s + zBk
s = xk

s,

zmk
s ≥ 0.

(3.6)

Technically, the solvability of (3.6) can be determined by the Fourier-Motzkin
elimination method (Stoer and Witzgall, 1970, Section 1.2). This method is also
able to find all solutions of a system of linear inequalities, which will be useful
in the recovery analysis of the next section. From the construction of (3.6), we
immediately have the following result.
Lemma 3.3. (<A,<B) is consistent with D if and only if there exists an FPQ
(xAk, xBk) for each xk, k ∈K, such that (s, i) <m (s′, j)⇔ xmi

s ≥ xm j
s′ for all s, s′ ∈ S,

all i, j ∈K, and m = A,B.

Combining Lemmas 3.2 and 3.3, we arrive at another characterization of col-
lective rationalizability. To avoid cumbersome notation let Dm = {(pk, xk)K

k=1;πm},
m = A,B. We say D satisfies the collective axiom of revealed expected utility
(CAREU) if there is a pair of weak orders (<A,<B) on I consistent with D
and such that Dm satisfies SAREU relative to <m for m = A,B. To indicate the
weak orders explicitly, we sometimes also say D satisfies CAREU with respect to
(<A,<B).
Theorem 3.1. The data setD is collectively rationalizable if and only if it satisfies
CAREU.

Theorem 3.1 indicates that checking collective rationalizability can be carried
out by solving a finite number of systems of linear inequalities, one for each pair of
weak orders on I . The key fact is that given any consistent pair of weak orders
on I , if (xAk, xBk)K

k=1 and (yAk, yBk)K
k=1 are both solutions to the corresponding

system (3.6), then {(pk, xmk);πm} is unitarily rationalizable if and only if so is
{(pk, ymk);πm} for m = A,B.
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To illustrate the usefulness of Theorem 3.1, let us consider two examples.
Example 3.1 gives a data set which is not collectively rationalizable and Ex-
ample 3.2 provides a data set which is collectively rationalizable but not uni-
tarily rationalizable. In all the examples of this and the ensuing sections, we
take S = 2, πA = [1/2,1/2], πB = [1/3,2/3], π = πA, Du = {(pk, xk)K

k=1;π}, and
D = {(pk, xk)K

k=1;πA,πB}, where the values of (pk, xk), k = 1, . . . ,K, will be speci-
fied in the examples.
Example 3.1. Take K = 1 and let

p1 =

[
5
4

]
, x1 =

[
3
1

]
.

Then ρA1
1 = 10,ρA1

2 = 8 and ρB1
1 = 15,ρB1

2 = 6. Since x1
1 > x1

2, it follows that
(1,1) ≻A (2,1) or (1,1) ≻B (2,1) for any pair of weak orders (<A,<B) on I that
is consistent with D. Therefore, if D is collectively rationalizable, we must have
ρA1

1 < ρ
A1
2 or ρB1

1 < ρ
B1
2 , a contradiction. This means the data set D is not collec-

tively rationalizable.
Remark. Example 3.1 indicates that in the collective household consumption
model of this paper, it is sufficient to have two states and one observation for re-
jecting the collective rationalizability of observed household behavior. This is in
contrast to the general collective household consumption model of Browning and
Chiappori (1998), in which at least three goods and three observations are needed
for rejecting the collective rationalizability of observed household behavior (see
Cherchye et al., 2007, Proposition 3).
Example 3.2. Take K = 2 and let

p1 =

[
5
4

]
, x1 =

[
1
3

]
; p2 =

[
4
5

]
, x2 =

[
2
2

]
.

For the data set Du, we have L(1,2) = L(2,1) = 1, and therefore Du is not unitarily
rationalizable. On the other hand, take

(1,2) ∼A (2,2) ≻A (2,1) ≻A (1,1),

(2,1) ≻B (1,1) ≻B (1,2) ∼B (2,2).

This pair of weak orders is consistent with D because

xA1 =

[
0.5
1.5

]
, xB1 =

[
0.5
1.5

]
, xA2 =

[
1.6
1.6

]
, xB2 =

[
0.4
0.4

]
constitute FPQ’s for x1 and x2 such that (s, i) <m (s′, j)⇔ xmi

s ≥ xm j
s′ for i, j = 1,2,
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s = 1,2, and m = A,B. Moreover, direct calculation shows

L(1,1;<A) =
4
5
,L(1,1;<B) =

2
5

L(2,2;<m) = 0,m = A,B,

L(1,2;<A) = L(2,1;<B) = 0.

It follows that D satisfies CAREU, and therefore is collectively rationalizable.

We make some remarks about Theorem 3.1.

(i) In the case of certainty, Cherchye et al. (2007) present a necessary condition
for collective rationalizability. This condition is of a revealed-preference
nature, but is not sufficient in general. Cherchye et al. (2011) provide a non-
revealed-preference characterization of collective rationalizability in terms
of an integer programming. The solution of this programming entails a large
amount of computational burden. In contrast, the verification of CAREU
can be implemented by solving a finite number of linear programming prob-
lems. It should be pointed out, however, that Cherchye et al. (2007, 2011)
work in a framework with both private and public commodities, while it is
unclear how to generalize Theorem 3.1 to this more general setup.

(ii) In the unitary setting and when the household members’ common belief is
fixed but unobservable, Echenique and Saito (2015) characterize the data
sets that are unitarily rationalizable by subjective expected utility prefer-
ences and by state-dependent utility functions. Following the argument of
this section, their characterization can be readily extended to the current col-
lective setting. The extension, in particular, yields a characterization of col-
lective rationalizability by additively separable utility functions, although
such a characterization is not available for general preferences (Cherchye
et al., 2007).

(iii) The household members’ beliefs are assumed to be fixed in this paper.
Kubler et al. (2014) characterize unitary rationalizability for the data sets
in which the household’s beliefs are allowed to vary. With the aid of this
characterization, Theorem 3.1 can be extended to this more general setup.

(iv) Information on “assignable quantities”for the goods can be easily incorpo-
rated. This information describe how much a household member consumes
of a good, and is increasingly available in budget surveys (see, e.g., Brown-
ing and Bonke, 2006). Note that zmk

s in (3.6) represents the consumption by
individual m of good s in observation k. The information on “assignable
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quantities”takes the form of a lower bound on zmk
s , i.e.

zmk
s ≥ xmk

s , (3.7)

wherein xmk
s ∈R+ is observable. Such information can be taken into account

by replacing the last inequality in (3.6) with (3.7).

4 Recovery Analysis

Suppose that we have observed the data set D = {(pk, xk)K
k=1;πA,πB} which is col-

lectively rationalizable, and that the government intends to make a tax reform,
after which the prices of the commodities will be given by p0. Can we forecast
the household’s demand behavior under this new price configuration? Does the
reform improve the welfare of the household? What is the effect of the tax re-
form on the income allocation between the household members? This section is
devoted to a study of these questions.

4.1 Extrapolation

Any consumption bundle that is consistent with the structural decision model un-
derlying the data set D is a possible chosen bundle of the household at p0. For-
mally, let K̄ = {0}∪K and

S (p0) =
{
x0 ∈ RS

+ : (pk, xk),k ∈ K̄, satisfies CAREU
}
.

Then any bundle in S (p0) is a plausible demand of the household at p0. Next we
discuss the computation of S (p0).

For any x0 ∈ RS
+, let D̂(x0) = {(pk, xk)K

k=0;πA,πB} and Î = {(s,k) : s ∈ S,k ∈ K̄}.
Given a pair of weak orders (<A,<B) on Î , x0 is a match with (<A,<B) if the
latter is consistent with D̂(x0). Let M(<A,<B) be the set of matches with (<A,<B

). Referring to (3.6), the set M(<A,<B) can be obtained by solving a system of
linear inequalities. Let Ψ0 be the set of pairs of weak orders (<A,<B) on Î for
which M(<A,<B) , ∅ and Ψ∗0 the set of pairs of weak orders (<A,<B) ∈ Ψ0 such
that D̂m(x0) satisfies SAREU relative to <m, where x0 ∈M(<A,<B) and D̂m(x0) =
{(pk, xk)K

k=0;πm}, m = A,B. Then we have

S (p0) =
∪

(<A,<B)∈Ψ∗0

M(<A,<B).
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Example 4.1. Given

p1 =

[
10
4

]
, x1 =

[
5
6

]
, p0 =

[
4

10

]
,

let us compute S (p0). First, direct calculation shows

ρA1 =

[
20
8

]
,ρB1 =

[
30
6

]
,ρA0 =

[
8

20

]
,ρB0 =

[
12
15

]
.

So for any (<A,<B) ∈ Ψ∗, we must have (2,1) <m (1,1) and (1,0) <m (2,0) for
m = A,B. To pin down <m, there are several possibilities to consider. For instance,
suppose (2,0) ≻m (2,1), m = A,B. Then we have L(0,1;<m) = 5/2 and L(1,0;<m

) = 0, so that D̂m(x0) satisfies SAREU relative to <m. It is straightforward to show
thatM(<A,<B) = {x0 ∈ R2

+ : x0
1 ≥ x0

2 > 6}. After considering all other possibilities,
we will obtain S (p0) = {x0 ∈ R2

+ : x0
1 ≥ x0

2}.

4.2 Comparison of Consumption Bundles

Suppose that the consumption bundle of the household demanded after the tax re-
form is given by x0 ∈ S (p0). Then the set of data becomes D̂ = D̂(x0). Sometimes
it is important to assess the impact of the reform on individual, as opposed to
household, welfare (see, e.g., Duflo, 2003; Cherchye et al., 2011; Lise and Seitz,
2011). Given this, it is interesting to ask whether the reform is Pareto-improving
for the household compared with the consumption bundle before the reform, say
(p1, x1)?

To answer this question, let us first make a review of the unitary case. In this
case, the concept of Pareto-improvement reduces to that of preference. Consider
the data set D̂u = {(pk, xk)K

k=0;π}which is unitarily rationalizable. It is well justified
to conclude that the reform is a desirable one if x0 is revealed preferred to x1

(Varian, 1982).The concept of revealed preference refers to the quantities xk. In
the collective setup, however, individual consumption quantities are unobservable.
For this reason, we take into account the set F of all possible FPQ’s that are
consistent with a collective rationalization of D̂. Specifically, let Ψ1 be the set of
pairs of weak orders on Î with respect to which D̂ satisfies CAREU. For any (<A

,<B) ∈Ψ1, let F(<A,<B) be the set of solutions to the corresponding system (3.6).
Then define F = ∪(<A,<B)∈Ψ1

F(<A,<B).

Given any (x̂k) = (xAk, xBk)K
k=0, we say x0 is revealed preferred to x1 by indi-
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vidual m with respect to (x̂k), written x0 <m x1(x̂k), if xm0 is revealed preferred
to xm1 for the data set (pk, xmk)K

k=0. And we say x0 is revealed preferred to x1 by
individual m, written x0 <m x1, if x0 <m x1(x̂k) for every (x̂k) ∈ F. Then the reform
is Pareto-improving if x0 <m x1 for m = A,B.
Example 4.2. Let

p1 =

[
5
4

]
, x1 =

[
5
5

]
; p0 =

[
2

1.9

]
, x0 =

[
6
12

]
.

It is straightforward to verify that Du = {(pk, xk)1
k=0;π} is unitarily rationalizable,

so x0 ∈ S (p0). In the unitary setting, where the household is taken as a single
decision-maker, as x0 ≫ x1, we have x0 revealed preferred to x1. This means the
tax reform improves the welfare of the household as a whole. But, in the collective
setting, we are obliged to see whether it improves the welfare of each household
member. The answer is, not necessarily. To see this, take

xA1 =

[
5
5

]
, xB1 =

[
0
0

]
; xA0 =

[
3
4

]
, xB0 =

[
3
8

]
.

Then x̂k = (xAk, xBk)1
k=0 ∈ F. Since x1 <A x0(x̂k), the tax reform cannot be Pareto-

improving. On the other hand, suppose we have information on assignable quan-
tities: xm0

2 = 5.5, m = A,B. Let F′ be the set of points in F which are consistent
with this information. Then we must have xm0

1 ≥ xm1
1 for any (x̂0, x̂1) ∈ F′ and for

m = A,B. To see this, assume by way of contradiction that xA0
1 < xA1

1 for some
(x̂0, x̂1) ∈ F′. Suppose (x̂0, x̂1) ∈ F(<A,<B). Then we have

L(0,1;<A) ·L(1,0;<A) =
1
2
· 5
2
> 1,

a contradiction. Since xm0
2 > xm1

2 for any (x̂0, x̂1) ∈ F′ and for m = A,B, it follows
that the reform is Pareto-improving.

We conclude this subsection with two remarks in relation to Varian (1982)
and Cherchye et al. (2011). Varian (1982) considers the unitary setting and stud-
ies, among other things, the preference relations of two consumption bundles x0

and x′ which have not been previously observed. This question (i.e. compar-
ing two consumption bundles without specifying their associated price vectors)
is not interesting in the collective setting, because in the latter case either bundle
could be chosen by the household. To see this, note that the household will, in
principle, choose a bundle which has a Pareto efficient FPQ. Suppose that D is
collectively rationalizable by (uA,uB). Let ∂um(x) denote the superdifferential of
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um at x, m = A,B. Take the price vectors p0 and p′ such that ρA0 ∈ ∂uA(x0) and
ρB′ ∈ ∂uB(x′). Then x̂0 = (x0,0) is an FPQ for x0 which is Pareto efficient among
all FPQ ẑ for z with p0z ≤ p0x0. Similarly, x̂′ = (0, x′) is an FPQ for x′ which is
Pareto efficient among all FPQ ẑ for z with p′z ≤ p′x′. But neither of x̂0 and x̂′

Pareto dominates the other, and therefore either of x0 and x′ could be a chosen
bundle for the household.

The second remark is concerned with Cherchye et al. (2011), who compare
two observed consumption bundles by inquiring whether the hypothesis that house-
hold member m prefers x0 to x1 should be rejected. If there exists an (x̂k) ∈ F such
that x0 <m x1(x̂k), the hypothesis should not be rejected. But failing to reject a hy-
pothesis is different from accepting it as true. This subsection provides a condition
under which the hypothesis is justified to be accepted as true.

4.3 Recovery of the Income Sharing Rule

We now turn to the last question: the recovery, or set identification, of the in-
come sharing rule. This rule describes how a household’s total income is shared
across its members. It can be taken as a measure of the wealth or poverty of the
individual members. Identifying the rule is, therefore, of particular importance if
one cares about the economic well-being of some special members of a house-
hold, such as the elderly (Cherchye et al., 2012) or the children (Dunbar et al.,
2013). Consider the data set D = {(pk, xk)K

k=1;πA,πB}. At each observation k and
for an FPQ (xAk, xBk) of xk, the income share received by individual m is pkxmk,
m = A,B. Then the whole set of possible income sharing rules that are consistent
with a collective rationalization of D is given by

W̄ =
{
(wA,wB) ∈ R2 : wA = pkxAk,wB = pkxBk,k ∈K, (xAk, xBk) ∈ F

}
, (4.1)

where F =∪(<A,<B)∈ΨF(<A,<B) andΨ is the set of pairs of weak orders on I with
respect to which D satisfies CAREU.

The above identification technique differs from that of Cherchye et al. (2015)
in several respects. These authors assume the whole household demand function
is known, and study the identification of bounds on the sharing rule for general
collective consumption models under certainty with both private and public goods
marketed. They exploit the weak axiom of revealed preference (WARP) and for-
mulate the problem as a nonlinear programming. The bounds they identify on the
sharing rule can be made tighter by strengthening WARP to the strong axiom of
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revealed preference (SARP), but doing so will make the nonlinear programming
much more difficult to solve, if not completely intractable. In contrast, this paper
assumes given a finite number of observations on the household demand function,
and studies a collective consumption model under uncertainty with private goods
only. The method for identifying the sharing rule described above exploits SARP
and boils down to the solution of a number of linear programs. With knowledge of
the data setD only, the bounds obtained on the sharing rule is the tightest possible.

5 Collective Rationalizability of Demand Functions

The previous sections examine the collective rationalizability of finitely many ob-
servations on an aggregate demand functions. Now if we are given the whole func-
tion, a natural question is to characterize this function as a Pareto-efficient out-
come of some intrahousehold decision process (Browning and Chiappori, 1998;
Chiappori and Ekeland, 2006). In this section, we examine to what extent one can
exploit the results of the preceding sections to bear on that characterization. In the
unitary setting, the same question is raised and studied by Mas-Colell (1978) in the
context of competitive markets under certainty and extended to various other con-
texts, for instance, by Forges and Minelli (2009) and Kübler and Polemarchakis
(2017).

Specifically, let h : P→ RS
++ be a function which is continuous and homoge-

neous of degree zero on a compact subset P of RS
++. It is interpreted as a house-

hold’s aggregate demand function. Because of the homogeneity of h, it is without
loss of generality to normalize the prices by restricting its domain to ∆++, and
henceforth we shall assume P ⊂ ∆++. The function h satisfies CAREU if so does
the data set {(p,h(p) : p ∈ P} for any finite subset P ⊂ P. An FPQ for h is a pair
of functions (hA,hB) from ∆++ to RS

++ such that h = hA + hB. We say h is collec-
tively rationalizable by a pair of functions (uA,uB) on R+ if there exists an FPQ
(hA,hB) for h such that for every p ∈ P, ∑S

s=1π
m
s um(zm

s ) >
∑S

s=1π
m
s um(hm

s (p)) im-
plies

∑S
s=1π

ℓ
su
ℓ(zℓs) <

∑S
s=1π

ℓ
su
ℓ(hℓs(p)) (m , ℓ) for any FPQ ẑ of z with pz ≤ ph(p),

where hs(p) denotes the sth component of h(p).
Proposition 5.1. If h satisfies CAREU, then it is collectively rationalizable.

We now make a discussion of this proposition and its proof. Let PK be an
increasing sequence of finite sets of observed prices with ∪KP

K dense in P. Since
h satisfies CAREU, the data set DK = {(p,h(p) : p ∈ PK} is collectively ratio-
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nalizable by a pair of strictly concave, strictly increasing, and continuous func-
tions, say, (uAK ,uBK). These functions can be taken in such a way that the se-
quence {umK}∞K=1 is equicontinuous, and hence has an accumulation point, say um,
m = A,B. We show that h is collectively rationalizable by (uA,uB).

At this moment we cannot determine what restrictions should be imposed on h
such that it uniquely identifies the underlying pair of rationalizing expected utility
preferences. This problem is referred to as the identifiability problem in the lit-
erature. It has been studied in the collective setting under certainty by Chiappori
and Ekeland (2009) and in the unitary setting under uncertainty by Kübler and
Polemarchakis (2017). We reserve for future study this problem in the collective
setting under uncertainty.

6 Approximate Collective Rationalizability

The data set in Example 3.1 is not collectively rationalizable. In reality, it is very
unlikely that a household’s behavior is exactly collectively rationalizable, and, for
most purposes, “nearly collectively rationalizable”is just as good as “collectively
rationalizable”(Varian, 1990). In this section, we develop a way for quantifying
the term “nearly collectively rationalizable”, i.e. a measure of deviations from
collective rationalizability. In the unitary setting, various such measures have been
constructed. In particular, Echenique et al. (2023) propose a measure of how far
a data set is from being unitarily rationalizable by an expected utility preference.
In the following we extend their measure to the collective setting.

Within the expected utility framework, several reasons account for the fail-
ure of a data set to be rationalizable (either unitarily or collectively), as, for in-
stance, miss-perceived prices, random taste, and incorrect beliefs. These three
reasons are equivalent in terms of their ability to reconcile a data set with ex-
pected utility theory (Echenique et al., 2023, Theorem 1). So, without loss of
generality, we focus on miss-perceived prices. Recall that Du = {(pk, xk)K

k=1;π}
and D = {(pk, xk)K

k=1;πA,πB}. The following notion of perturbed unitary rational-
izability is from Definition 4 of Echenique et al. (2023).
Definition 6.1. (i) Given e ∈ R+, the data set Du is e-perturbed unitarily rational-
izable if there exists a set of price vectors p̃k, k ∈ K, such that {(p̃k, xk)K

k=1;π} is
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unitarily rationalizable and

1
1+ e

≤
p̃k

s/ p̃
k
s′

pk
s/pk

s′
≤ 1+ e,∀s, s′ and ∀k. (6.1)

(ii) The data set D is e-perturbed collectively rationalizable if there exists a set of
price vectors p̃k, k ∈ K, which satisfies (6.1) and such that {(p̃k, xk)K

k=1;πA,πB} is
collectively rationalizable.

We are interested in the minimum e, written e∗, which makes D e-perturbed
collectively rationalizable. It can be taken as a measure of how far the data set
D is from being collectively rationalizable. When e∗ = 0, D is collectively ra-
tionalizable. To compute e∗, note that by the remark after Theorem 3.1, given
(<A,<B) ∈Ψ, for any two (xAk, xBk)K

k=1, (y
Ak, yBk)K

k=1 ∈ F(<A,<B), {(pk, xmk);πm} is
e-perturbed unitarily rationalizable if and only if so is {(pk, ymk);πm} for m = A,B.
Therefore, it makes sense to define a function em

∗ :Ψ→R+ such that em
∗ (<A,<B) is

the minimum e which makes {(pk, xmk);πm} e-perturbed unitarily rationalizable.
Proposition 6.1. e∗ = min

(<A,<B)∈Ψ
max

m∈{A,B}
em
∗ (<A,<B).

An an illustration, let us compute the e∗ for the data set in Example 3.1.
Example 6.1 (Example 3.1-continued). Recall the data set in Example 3.1. Since
I has only two elements, we use ≻m to indicate (1,1) ≻m (2,1), ≺m to indicate
(1,1) ≺m (2,1), and ∼m to indicate (1,1) ∼m (2,1), m = A,B. It is straightforward
to verify that

Ψ = {(≻A,≻B), (≻A,∼B), (≻A,≺B), (∼A,≻B), (≺A,≻B)}.
Take (≻A,≻B) for instance. For any (xA, xB) ∈ F(≻A,≻B) and any p̃ = (p̃1, p̃2) ∈
R2
++, it can be verified that ( p̃, xA) is unitarily rationalizable if and only if p̃1 <

p̃2. Referring to (6.1), we get eA
∗ (≻A,≻B) = 1/4. Similarly, ( p̃, xB) is unitarily

rationalizable if and only if p̃1 < p̃2/2, so that eB
∗ (≻A,≻B) = 3/2. Repeating the

above procedure for all other pairs of weak orders in Ψ, we find e∗ = eA
∗ (≻A,∼B) =

1/4.

7 Literature Review

This paper is related to two strands of literature. The first is about the collec-
tive consumption model. Based on earlier works of Manser and Brown (1980)
and McElroy and Horney (1981), Chiappori (1988, 1992) makes the first formal

16



investigation of a collective consumption model under the sole assumption that
household decisions result in Pareto efficient outcomes. Chiappori’s model is then
studied both parametrically and non-parametrically. The parametric approach im-
poses some (nonverifiable) functional structure on the household decision process.
Using this approach, Browning and Chiappori (1998) and Chiappori and Ekeland
(2006) provide, and empirically test, a set of necessary and sufficient restrictions
that fully characterize a general collective consumption model; Chiappori and
Ekeland (2009) discuss the recovery of the underlying structural model (i.e. indi-
vidual preferences and the intrahousehold decision process) from the household’s
aggregate behavior.

The nonparametric approach to the collective model is similar to that to the
unitary model (see, for instance, Afriat, 1967; Varian, 1982). It does not impose
any functional structure on the household decision process. Adopting this ap-
proach, Cherchye et al. (2007, 2010, 2011) study the characterization and empiri-
cal test of the collective consumption model of Browning and Chiappori (1998).

The second relevant strand of literature is concerned with the nonparametric
test of expected utility maximization in the unitary setting. In the setting which
allows for the consumption of multiple goods in each state, Varian (1983) and
Green and Srivastava (1986) characterize the data sets which are consistent with
objective expected utility theory in terms of the solvability of a system of Afriat
inequalities. Confining to the setting with one good in each state, Kubler et al.
(2014) give a revealed preference characterization. In the same setting but with
probabilities unobservable, Echenique and Saito (2015) provide a revealed pref-
erence characterization of the data sets which are consistent with subjective ex-
pected utility theory. Chambers et al. (2016) make an attempt to extend Kubler
et al. (2014) to the setting with multiple goods in each state. While the tests in
all papers cited above hold valid only for risk-averse expected utility preference,
Polisson et al. (2020) develop a nonparametric test of expected utility maximiza-
tion without the risk aversion requirement.
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Appendix A Proofs

A.1 Proof of Lemma 3.1

We prove the lemma by showing (i)⇔(ii) and (ii)⇔(iii). The equivalence (i)⇔(ii)
can be proved in almost the same way as Lemma 2 of Kubler and Schmedders
(2010) and Lemma 7 of Echenique and Saito (2015). For the sake of complete-
ness, we present the details here. For (i)⇒(ii), suppose Du is unitarily rationaliz-
able by u. Let ∂u(x) denote the superdifferential of u at x. By Theorem 28.3 of
Rockafellar (1970), there are numbers λk ∈ R+, k ∈ K, such that λkρk

s ∈ ∂u(xk
s) if

xk
s > 0 and λkρk

s ≥ w for some w ∈ ∂u(xk
s) if xk

s = 0. The strict monotonicity of u
implies λk > 0, k ∈K. And the strict concavity of u implies w1 > w2 if w1 ∈ ∂u(z1),
w2 ∈ ∂u(z2), and z1 < z2. From this, statement (ii) follows immediately.

For (ii)⇒(i), suppose that {xk
s : s = 1, . . . ,S ,k ∈K} = {x1, . . . , xL} with x1 < x2 <

· · · < xL. For each n = 1, . . . ,L, let I(n) = {(s,k) : xk
s = xn} and let

θ0n = min
(s,k)∈I(n)

λkρk
s, θ

1
n = max

(s,k)∈I(n)
λkρk

s.

If x1 > 0, set x0 = 0, θ00 = θ
1
0 = 1+ θ11. Define a function g : R+→ R++ such that

g(x) =

θ0n +
θ0n−θ1n+1
xn−xn+1

(x− xn), if x ∈ [xn, xn+1),n = 0, . . . ,L−1
θ0L
π/2−arctan x
π/2−arctan xL

, ifx ≥ xL,

where π is the circumference ratio and arctan indicates the inverse tangent func-
tion. Otherwise if x1 = 0, define g such that

g(x) =

θ0n +
θ0n−θ1n+1
xn−xn+1

(x− xn), if x ∈ [xn, xn+1),n = 1, . . . ,L−1
θ0L
π/2−arctan x
π/2−arctan xL

, ifx ≥ xL,

It is easily seen that g is strictly decreasing, strictly positive, and piecewise con-
tinuous, so that it is integrable. Define a function u : R+→ R+ such that

u(x) =
∫ x

0
g(t)dt,

so that u is strictly concave, strictly increasing, and continuous. By the construc-
tion of u, we have λkρk

s ∈ ∂u(xk
s) for all s and k, and hence the data set Du is

unitarily rationalizable by u.

We now turn to the proof of the equivalence (ii)⇔(iii). The implication (ii)⇒(iii)
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can be proved in the same way as in the argument of Theorem 1 of Kubler et al.
(2014). Therefore, it remains to show (iii)⇒(ii). Given that SAREU holds and
that there are a finite number of observations, there must exist an ϵ > 0 such that
for any t > 1 and any sequence i1, . . . , it ∈ {1, . . . ,K}, we have

L(i1, i2) ·L(i2, i3) · · · · ·L(it−1, it) ·L(it, i1) <
1

(1+ ϵ)t . (A.1)

Define K1 = {k ∈K : xk
s = xL,∀s ∈ S}. When K1 = ∅, the argument is the same as

in the proof of Theorem 1 of Kubler et al. (2014) and so is omitted here. Let us
focus on the case where K1 , ∅. Set λk = 1 for all k ∈K1. For any j <K1, define

λ j =max
k

max
(i1,i2,...,ik−1, j)∈Ik

L(i1, i2) · · · · ·L(ik−1, j)(1+ ϵ)k, (A.2)

where Ik = {(i1, . . . , ik) : i1 ∈K1, im ∈K,m = 2, . . . ,k}. By (A.1), λ j is well-defined.
And as j < K1, we have L(i, j) > 0 for any i ∈ K1, hence λ j > 0. Now take any
(s, i) and (s′, j) with xi

s > x j
s′ . This means j < K1. If i ∈ K1, then λi = 1 and

λ j > L(i, j) (by (A.2)), and hence λiρi
s < λ

jρ
j
s′ . If i < K1, there exists a sequence

(i1, i2, . . . , ik−1) ∈ Ik for some k such that λi = L(i1, i2) · · · · ·L(ik−1, i)(1+ ϵ)k. Again
by (A.2), we have

λ j > L(i1, i2) · · · · ·L(ik−1, i)(1+ ϵ)k ·L(i, j) = λiL(i, j),

and hence λiρi
s < λ

jρ
j
s′ .

A.2 Proof of Lemma 3.2

Let us start with the necessity part of Lemma 3.2. Suppose that the data set D is
collectively rationalizable. Then there exist two strictly concave, strictly increas-
ing, and continuous functions um on R+, m = A,B, an FPQ x̂k = (xAk, xBk), and
µk ∈ R+, k ∈K, such that x̂k is the solution to the following program

max
(zA,zB)

S∑
s=1

πA
s uA(zA

s )+µk

S∑
s=1

πB
s uB(zB

s ),

s.t. pk(zA+ zB) ≤ pkxk.

It follows that xmk must solve the problem

max
zm

S∑
s=1

πm
s um(zm

s ) s.t. pkzm ≤ pkxmk,m = A,B.
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This implies the data set {(pk, xmk)K
k=1;πm} is unitarily rationalizable, and hence,

by Lemma 3.2, satisfies SAREU.

For the sufficiency part, suppose that there exists an FPQ x̂k = (xAk, xBk) for
xk, k ∈ K, such that both {(pk, xAk)K

k=1;πA} and {(pk, xBk)K
k=1;πB} satisfy SAREU.

By Lemma 3.2, the data set Dm = {(pk, xmk)K
k=1;πm} is unitarily rationalizable for

m= A,B. That is, there exists a strictly concave, strictly increasing, and continuous
function um on R+ such that

∑S
s=1π

m
s um(xmk

s ) >
∑S

s=1π
m
s um(zs) for every z ∈ RS

+

with pk · z ≤ pk · xmk and z , xmk. We claim that the data set D is collectively
rationalizable by the pair of functions (uA,uB). To see this, it suffices to show x̂k is
Pareto efficient in the budget set {z ∈ RS

+ : pkz ≤ pkxk}, k ∈K. Suppose otherwise;
then for some k ∈K, there exist a z ∈ RS

+ with pkz ≤ pkxk and an FPQ ẑ = (zA,zB)
for z such that

∑S
s=1π

m
s um(zm

s ) ≥ ∑S
s=1π

m
s um(xmk

s ) for m = A,B, with at least one
inequality being strictly. This implies pkzm ≥ pkxmk for m = A,B, with at least one
inequality being strictly. Therefore, pkz > pkxk, a contradiction. This completes
the proof of the sufficiency part.

A.3 Proof of Theorem 3.1

Let us begin with the necessity part. Suppose that the data set D is collectively
rationalizable. By Lemma 3.2, there exists an FPQ (x̂k)= (xAk, xBk) for each xk, k ∈
K, such that both {(pk, xAk)K

k=1;πA} and {(pk, xBk)K
k=1;πB} satisfy SAREU. Define

the weak order <m on I such that for all s, s′ ∈ S and all i, j ∈K
(s, i) <m (s′, j)⇔ xmi

s ≥ xm j
s′ ,m = A,B.

Hence Dm satisfies SAREU relative to <m for m = A,B. It is easily seen the vector
(xAk, xBk)K

k=1 is a solution to the system (3.6) corresponding to (<A,<B). This
means (<A,<B) is consistent with D and therefore D satisfies CAREU.

We now turn to the sufficiency part. Suppose that D satisfies CAREU. Then
there is a pair (<A,<B) of weak orders on I consistent with D and Dm satisfies
SAREU relative to <m for m = A,B. Then, by Lemma 3.3, there exists an FPQ
(xAk, xBk) for each xk such that (s, i)<m (s′, j)⇔ xmi

s ≥ xm j
s′ for m= A,B and i, j ∈K.

It follows that the two sets, {(s, s′) : (s, i) ≻m (s′, j)} and {(s, s′) : xmi
s > xm j

s′ }, must
coincide for all i, j ∈ K. Consequently, the two data sets, {(pk, xAk)K

k=1;πA} and
{(pk, xBk)K

k=1;πB}, both satisfy SAREU, and hence, by Lemma 3.2, D is collec-
tively rationalizable.
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A.4 Proof of Proposition 5.1

Let PK be an increasing sequence of finite sets of observed prices with ∪KP
K

dense in P and let DK = {(p,h(p)) : p ∈ PK}. Since h satisfies CAREU, DK is
collectively rationalizable by a pair of strictly concave, strictly increasing, and
continuous functions (uAK ,uBK). We can normalize umK such that umK(0) = 0 and

min
ϖ∈∂umK(0)

ϖ ≤ 1. (A.3)

Let X =max{hs(p) : s = 1, . . . ,S , p ∈ P}, where hs(p) denotes the sth component of
h(p). It suffices to consider umK on [0,X]. By our normalization of umK , we have

umK(x) ≤ X and umK(x)−umK(y) ≤ |x−y|,∀x, y ∈ [0,X].

This means the sequence {umK} is uniformly bounded and equicontinuous, and
hence, by the Arzela-Ascoli Theorem, has a convergent subsequence, which with-
out loss of generality we assume is the sequence itself. Suppose {umK} → um,
m = A,B. In the following we show h is collectively rationalizable by (uA,uB).

Take any p ∈ P. Since ∪KP
K is dense in P, there exists a sequence {pk} ⊂ ∪KP

K

with pk→ p. Let γ(k) be the smallest integer such that pk ∈ Pγ(k). For notational
convenience let xk = h(pk), umk = umγ(k), and Umk(x) =

∑
sπ

m
s umk(xs), m = A,B.

SinceDγ(k) is collectively rationalizable by (uAk,uBk), there exist (αAk,αBk) ∈R+×
R+ with αAk +αBk = 1 and an FPQ (xAk, xBk) for xk such that (xAk, xBk) solves the
problem  max

(zA,zB)∈RS
+×RS

+

αAkUAk(zA)+αBkUBk(zB)

s.t. pk(zA+ zB) ≤ pkxk.
(A.4)

Since the sequences {xmk} and {αmk} are bounded, they have convergent subse-
quences, which without loss of generality we assume are the sequences them-
selves. Suppose xmk→ xm and αmk→αm. Because h is continuous and xAk+ xBk =

xk, we have xA+ xB = h(p), and therefore (xA, xB) is an FPQ for h(p). To prove h
is collectively rationalizable by (uA,uB), it suffices to show (xA, xB) is a solution
to the problem  max

(zA,zB)∈RS
+×RS

+

αAUA(zA)+αBUB(zB)

s.t. p(zA+ zB) ≤ ph(p),
(A.5)

where Um(x)=
∑

sπ
m
s um(xs), m= A,B. Take q= (αA,αB, p) as parameters in (A.5).
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Let V : R+×R+×RS
+→ R be the value function of Program (A.5) and

(x̂A, x̂B) : R+×R+×RS
+⇒ RS

+ ×RS
+

the “argmax”correspondence, i.e. the correspondence such that each element in
(x̂A(q), x̂B(q)) is a solution to (A.5). It follows from the Berge Maximum Theorem
(Aliprantis and Border, 2006, Theorem 17.31, p. 570) that V is continuous and
(x̂A, x̂B) is upper hemicontinuous.

Let qk = (αAk,αBk, pk) and take (x̄A(qk), x̄B(qk)) ∈ (x̂A(qk), x̂B(qk)), so that (x̄A(qk), x̄B(qk))
has a subsequence which converges to (x̄A(q), x̄B(q)) ∈ (x̂A(q), x̂B(q)) (Hildenbrand,
1974, Theorem 1, p. 24). Since (x̄A(qk), x̄B(qk)) satisfies the constraint of (A.4),
we have

αAkUAk(xAk)+αBkUBk(xBk) ≥ αAkUAk(x̄A(qk))+αBkUBk(x̄A(qk)). (A.6)

Note that

|Umk(xmk)−Um(xm)| ≤ |Umk(xmk)−Umk(xm)|+ |Umk(xm)−Um(xm)|
≤ |xmk − xm|+ |Umk(xm)−Um(xm)|
→ 0 as k→∞.

where the second inequality is a consequence of (A.3). Letting k→∞ in (A.6),
we get αAUA(xA)+αBUB(xB) ≥ αAUA(x̄A(q))+αBUB(x̄A(q)). On the other hand,
as an FPQ for h(p), (xA, xB) satisfies the constraint of (A.5). This proves (xA, xB)
is a solution to (A.5).

A.5 Proof of Proposition 6.1

Note that perturbed collective (resp. unitary) rationalizability just means another
data set with perturbed prices is collectively (resp. unitarily) rationalizable. As an
immediate consequence of Lemma 3.2, we have the following result.
Lemma A.1. The data setD is e-perturbed collectively rationalizable if and only if
there exists an FPQ x̂k = (xAk, xBk) for xk, k ∈K, such that both {(pk, xAk)K

k=1;πA}
and {(pk, xBk)K

k=1;πB} are e-perturbed unitarily rationalizable.

Furthermore, it follows directly from Definition 6.1 that if a data set is e-
perturbed collectively (resp. unitarily) rationalizable, it is also e′-perturbed col-
lectively (resp. unitarily) rationalizable for any e′ > e. For notational convenience,
let e0 = min

(<A,<B)∈Ψ
max

m∈{A,B}
em
∗ (<A,<B) and suppose e0 = max

m∈{A,B}
em
∗ (<∗A,<∗B) for some
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(<∗A,<∗B) ∈Ψ. For any (xAk, xBk)K
k=1 ∈F(<∗A,<∗B), we then have {(pk, xAk)K

k=1;πA}
and {(pk, xBk)K

k=1;πB} are e0-perturbed unitarily rationalizable. Hence D is e0-
perturbed collectively rationalizable and, therefore, e∗ ≤ e0.

On the other hand, for any e < e0, it follows from the definition of e0 that at
least one of the data sets {(pk, xAk)K

k=1;πA} and {(pk, xBk)K
k=1;πB} is not e-perturbed

unitarily rationalizable, and hence by Lemma A.1, D is not e-perturbed collec-
tively rationalizable. This implies e∗ > e and thus e∗ = e0.
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