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Abstract

This paper evaluates paleoclimate sensitivity over the past 800,000
years using two recently proposed co-movement measures: Long-run
covariability and quantile coherency. The former allows one to cal-
culate long-run correlation as well as long-run regression coefficients.
The latter is based on cross-spectral densities; it characterizes the de-
pendence in quantiles of the joint distribution across frequencies. Both
allow one to focus on long-term components of the data; this addresses
the uncertainty associated with paleoclimatic reconstructions of radia-
tive forcings as well as temperatures. The long-run correlation coeffi-
cient and long-run regression coefficient are found to be 0.87 and 0.76,
respectively. The quantile coherency analysis finds that the depen-
dence is generally stronger for the long-term components of the data,
but also significantly lower in smaller quantiles of the joint distribution
of temperatures and forcing. Thus, the relationship is weaker during
full glacial climates compared to interglacial periods and intermediate
glacial climates.
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1 Introduction

This paper is concerned with an evaluation of paleoclimate sensitivity over

the past 800,000 years. It uses proxy-based reconstructions of changes in

global temperatures, ice sheets and sea level, vegetation, dust, and green-

house gases (Snyder, 2016; Snyder 2019). Snyder (2019) finds the relation-

ship between ∆T and ∆R to be non-linear.1 This paper applies two methods

to further analyse this relationship: first, Baruńık and Kley’s (2019) quan-

tile coherency; a general measure for dependence between cyclical variables.

Second, Mueller and Watson’s (2018) covariability; based on this, a long-

run correlation coefficient and long-run linear regression coefficient can be

calculated.

To provide the general background for this research, climate sensitivity

measures the change in global temperatures in response to changes in radia-

tive forcing. The existing literature identified four key components of climate

sensitivity: (1) climate state, (2) stimuli of global temperature response, (3)

scope of included feedback, (4) time frame of response. A more specific con-

cept used is the so-called equilibrium climate sensitivity (ECS): the equilib-

rium global average surface temperature change in response to a doubling

of the atmospheric concentration of carbon dioxide from preindustrial levels

(IPCC, 2013). The estimation of ECS requires climate model as this allows

controls which feedbacks are “turned on”. Snyder (2019), however, points

out that the Climate system is constantly evolving, is never at equilbrium,

and that multiple feedbacks are active across multiple timescales.

In the context of the study of past climates, the precise definition of

ECS is not applicable. Commonly applied is the notion of “specific cli-

mate sensitivity”: this is the ratio between deviations in global temperature

from the present state and deviations in radiative forcing from the present

state (Rohling et al., 2012)). Snyder (2019) estimates the so-called “paleo-

climate sensitivity parameter” S[GHG,LI,AE,V G] which measures the change

in global mean surface air temperature ∆T is function of change in radia-

1Note that ∆T and ∆R denotes the change in temperatures and forcing compared to
a recent benchmark.
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tive perturbation∆R[GHG,LI,AE,V G] multiplied by S[GHG,LI,AE,V G]. The key

difference of S[GHG,LI,AE,V G] and ECS: S[GHG,LI,AE,V G] is a functional rela-

tionship between two interactive time series, not an equilibrium response to

a specific single forcing. Analyses of paleoclimate reconstructions estimate

relationships between different climate variables without identifying causa-

tion. Multiple changes likely interacted with each other to drive climate

changes over the past million years (Snyder, 2019).

Previous paleoclimate sensitivity research focused on reconstructing sin-

gle points in time, such as the Last Glacial Maximum (Edwards, Crucifix, &

Harrison, 2007); recently, however, the investigation of paleoclimate sensi-

tivity using time series from the paleoclimate record became more common

(Friedrich, Timmermann, Tigchelaar, Timm, & Ganopolski, 2016; Rohling

et al., 2012). In particular, paleoclimate sensitivity is estimated by per-

forming regression analyses on time series of paleoclimate reconstructions of

∆T and ∆R. It is important to note that ∆R is obtained from changes in

ice sheets, atmospheric dust, and vegetation are estimated using paleocli-

mate reconstruction and that these reconstructions are scaled to ∆R using

estimates of change in ∆R at the Last Glacial Maximum.

Worth mentioning are also analyses of paleoclimate data using tradi-

tional econometric methods: Kaufmann and Juselius (2010) analyse the role

of orbital, seasonal, and spatial variations within glacial cycles; the same au-

thors also test hypotheses about the physical mechanisms that may drive

glacial cycles (Kaufmann & Juselius, 2013). Davidson, Stephenson, and

Turasie (2016) are among the first to use methods such as Granger causality

to analyse paleoclimate data. Kaufmann and Pretis (2018) propose a sta-

tistical climate model of 800,000 years of data, and Miller (2019) is testing

cointegration relationships among irregular and non-contemporaneous series

- a common issue in the context of paleoclimate data. Adrian et al. (2022),

finally, are concerned with the analysis of 800,000 years of climate risk.2

Having explained the background of this paper, the focus is now directed

to the data which is displayed in Figure 1. The solid lines represent the me-

dian estimates for global temperatures and radiative forcing, the shaded

2For a more general discussion, see Castle and Hendry (2020).
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areas are the 95% confidence interval. They reflect the uncertainty associ-

ated with the reconstructions.

Figure 1: Reconstructions of ∆R(W/m2) and ∆T (◦C)

It is evident that both series exhibit a very strong cyclical pattern. The

relationship generally appears to be strong; on many occasions turning

points of the series occur at the same time. At the same time, there are

also frequent deviations of the series from each other. Note that the data

frequency is 1k years and that time is denoted as k years before present

(BP).

This data is from Snyder (2016) as well as Snyder (2019). The former
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provides a spatially weighted proxy reconstruction of global temperature

over the past 2 million years estimated from a multiproxy database of over

20,000 sea surface temperature point reconstructions. The contribution of

the latter lies in a quantification of sources of uncertainty in estimating ∆R.

The statistical methods Snyder (2019) applies are not biased by the variable

(heteroscedastic) uncertainty in the reconstructions. That paper applies a

Monte Carlo-style probabilistic framework. The main empirical results of

Snyder (2019) can be summarised as follows: a strong comovement of ∆R

and ∆T over last 800,000 years is found; the correlation is 0.81 (credible in-

terval 0.6 to 0.9). Worth highlighting is that there is a lower correlation and

lower responsiveness at colder temperatures: Paleoclimate sensitivity pa-

rameter estimate: 0.84◦C/W/m2 (interglacial periods, intermediate glacial

climates) and 0.53◦C/W/m2 (full glacial climates). Finally, Snyder (2019)

provides evidence of time-varying correlation, but no time variation in sen-

sitivity parameter estimate. These findings are based on a rolling window

analysis.

As mentioned above, this paper uses two recently proposed co-movement

measures to analyse this data. Baruńık and Kley’s (2019) quantile coherency

allows one to capture complex dynamics of macroeconomic or financial time

series. The motivation to put forward this method comes from the observa-

tion that extreme negative events in one asset can cause irrational outcomes

in other assets. In addition, markets may be more strongly connected in

extreme periods than in tranquil ones The long-term fluctuations in quan-

tiles of joint distribution may differ from those in the short-term due to

differing risk perceptions of agents over distinct investment horizons. The

motivation for Mueller and Watson (2018) is related to the so-called Great

Ratios: Economic theories often have stark predictions about the covariabil-

ity of variables over long-horizons, which is often a proportional movement.

According to the permanent income hypothesis, consumption and income

are strongly related, long-run PPP predicts that nominal exchange rates

and relative nominal prices move together in the long run. Note that the

confidence bands for the long-run correlation coefficient and the long-run

regression coefficient are valid for I(0), I(1), near unit roots, and fractionally
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integrated models.

The key findings are the following: long-run correlation coefficient and

long-run regression coefficient are found to be 0.87 and 0,76, respectively.

The quantile coherency analysis shows that the dependence is generally

stronger for the long-term components of the data. However, the depen-

dance is found to be significantly lower in smaller quantiles of the joint

distribution of temperatures and forcing also for the long-term components.

In other words, the relationship is considerably weaker during full glacial

climates compared to interglacial periods and intermediate glacial climates.

In short, the relationship between radiative forcing and temperatures over

the past 800,000 years is highly complex.

The remainder of the paper is organised as follows: Section 2 presents

empirical methods used in this paper, followed by a presentation of the

results in Section 3. Section 4 offers some concluding remarks.

2 Empirical approaches

2.1 Long-run covariability

The first method this paper employs is the measure of long-run covariabil-

ity proposed by Mueller and Watson (2018).3 The main idea of this ap-

proach can be summarised as follows: centre stage takes a so-called low-

pass transformation of a univariate time series xt, t = 1, . . . , T . The purpose

of this transformation is the isolation of the variation in the series which

exceeds a certain period. The length of this period is controlled by a pa-

rameter q. Cosine functions are used to capture these periodic functions:

Ψj(s) =
√
2cos(jsπ) denotes these functions with period 2/j.4

The outcome of this transformation is also referred to as low-frequency

projection of x, denoted by x̂. In order to analyse the long-run covariability

of two variables (x, y), the relationship of the respective long-run projec-

3This paper only outlines this method. The original paper contains all methodlogical
details.

4Ψ(s) = [Ψ1(s),Ψ2(s), . . . ,Ψq(s)]
′ denotes a vector of these functions with periods 2

through 2/q, and ΨT denote the T × q matrix with tth row given by Ψ((t − 1/2)T )′, so
the jth column of Ψ has period 2T/j.

7



tions (x̂, ŷ) is evaluated. ΩT denotes the average covariance matrix of those

long-run projections in a sample of T . This (2x2) matrix summarises their

variability and covariability. From that, the long-run correlation and long-

run linear regression coefficient can be derived as follows:

ρT = Ωxy,T /
√
Ωxx,TΩyy,T ,

βT = Ωxy,T /Ωxx,T , (1)

σy|x,T = Ωyy,T − (Ωxy,T )
2/Ωxx,T ,

where (Ωxx,T ,Ωxy,T ,Ωyy,T ) are elements of ΩT .

2.2 Quantile coherency

The second method this paper applies is Baruńık and Kley’s (2019) quantile

coherency. As mentioned above, the method allows one to quantify the de-

pendence between time series. A well-documented challenge in this regard

is that, on the one hand, that strongly correlated variables are truly inde-

pendent: Spurious correlation (Granger & Newbold, 1974). On the other

hand, uncorrelated variables may possess dependence in different parts of

joint distribution and/or at different frequencies. Neither linear correla-

tion nor traditional cross-spectral methods can detect that type of complex

relationship. Quantile coherency is based on cross-spectral densities: the

method characterizes the dependence in quantiles of the joint distribution

across frequencies. To be precise, dependence is quantified in terms of the

probabilities to exceed quantiles.

Quantile coherency is a normalized version of the quantile cross-spectral

density, analogous to traditional coherency in spectral analysis. The quantile

cross-spectral density between two time series Xt and Yt at quantiles τ1 and

τ2, and at frequency ω, is given by:

fX,Y (τ1, τ2, ω) =
∞∑

h=−∞
γX,Y (τ1, τ2, h)e

−iωh
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where γX,Y (τ1, τ2, h) is the quantile cross-covariance at lag h, and ω is

the frequency.

Quantile coherency can be is defined as:

qCX,Y (τ1, τ2, ω) =
fX,Y (τ1, τ2, ω)√

fX,X(τ1, τ1, ω)fY,Y (τ2, τ2, ω)

Here, fX,X(τ1, τ1, ω) and fY,Y (τ2, τ2, ω) represent the quantile auto-spectral

densities for Xt and Yt, respectively.

The quantile coherency qCX,Y (τ1, τ2, ω) provides information on the strength

of dependence between the time series Xt and Yt at quantiles τ1 and τ2,

across different frequencies ω. This methodology extends classical coherency

analysis by incorporating dependencies at different parts of the distribution,

making it useful for analyzing relationships in both normal and extreme

market conditions.

A MORE FORMAL DISCUSSION OF THE METHOD TO BE IN-

CLUDED HERE

3 Results

This section summarises the main results. Table 1 displays the long-run

covariability estimates including the confidence bands.5 Note that the value

for q has been chosen to be 16 initially.6

As the data is at 1k year frequency and there are 800 observations,

this implies that the long-run projections used here represent periods longer

than 2T
q = 2 ∗ 800/16 = 100k years. This falls into the range of periods

Mueller and Watson (2018) use in their analysis of macroeconomic variables.

Figure 2a shows these long-run projections. It is evident that the short-run

fluctuations of both global temperatures and radiative forcing have been

largely smoothed out. Figure 2b illustrates the effect of choosing different

5These results have been obtained from the application of the so-called A,B,c,d-Model;
see Mueller and Watson (2018) for details. This paper uses the original replication code.

6The setting of this parameter reflects, according to Mueller and Watson (2018) what
the researcher believes the long-run is. The interested reader is referred to the detailed
discussion in the original paper.
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Table 1: Long-run covariablity estimates and confidence intervals

q=16
ρ β σy|x

Estimate 0.87 0.74 0.65
67% CI 0.75, 0.92 0.63, 0.84 0.55, 0.79
90% CI 0.64, 0.95 0.55, 0.92 0.49, 0.93

67% Bayes CS 0.78, 0.92 0.63, 0.84 0.55, 0.79
90% Bayes CS 0.64, 0.95 0.55, 0.92 0.49, 0.93

q=20
ρ β σy|x

Estimate 0.87 0.76 0.69
67% CI 0.80, 0.92 0.67, 0.85 0.59, 0.82
90% CI 0.75, 0.95 0.60, 0.92 0.53, 0.95

67% Bayes CS 0.85, 0.92 0.67, 0.85 0.59, 0.82
90% Bayes CS 0.75, 0.95 0.60, 0.92 0.53, 0.95

setting for the parameter q: the larger q, which corresponds to using shorter

periods, the larger the extent of short-run fluctuations that remains in the

data.

The long-run correlation coefficient is estimated to be 0.87; the long-run

regression coefficient 0.74. The confidence bands for both do not include 0.

This implies that there is a significant long-run relationship between global

temperatures and radiative forcings. As illustrated above, the two series un-

der consideration exhibit a strong cyclical pattern, but both reconstructions

are associated with considerable uncertainty. Smoothing out the short-term

fluctuation is one way to deal with this issue. For this reason, it is useful

to consider additional values for q. While q = 16 captures periods longer

than 100,000 years, for q = 20, those are longer than 2 ∗ 800/20 ≈ 80, 000

years. The long-run correlation coefficient is estimated to be 0.87 in this

case as well; also the estimate of the long-run regression coefficient is not

strongly affected. Note that Mueller and Watson (2018) analyse a number

of macroeconomic relationships using this method. To name just two, they

find the long-run correlation coefficient of GDP growth and consumption
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Figure 2: Long-run projections of global temperatures and radiative forcing

800 700 600 500 400 300 200 100 0
-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

forcing

temp

(a) q = 16
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(b) q = 20

growth to be 0.91 and that of short- and long-term interest rates to be 0.96.

Thus, the long-run correlations found in this paper fall roughly into the

range typically found in macroeconomic applications of this method.

Figure 3 shows the results from the application of Baruńık and Kley’s

(2019) quantile coherency. As this method focusses on dependence in quan-

tiles of the joint distribution of the data, it is important to highlight that the

lower quantiles capture those periods in which both series take small values.

This generally includes the colder periods or the (deep) glacial conditions.

Warmer periods such as intermediate glacial conditions and interglacial pe-

riods would be captured by the upper quantiles of the joint distribution.

The left panel of the figure shows the coherency at the 50% quantile (me-

dian), the 5% quantile as well as the 95% quantile of the joint distribution

of temperatures and forcing. The following general pattern emerges: the

dependence is found to be considerably stronger for the long-term compo-

nents of the series than for the short-term ones. In addition, and more

importantly, cycles at the lower quantiles appear to be much weaker depen-

dent than those at the upper quantiles. In other words, in colder periods,
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Figure 3: Barunik and Kley’s (2019) quantile coherency

the relationship between the series is much weaker. This finding is generally

consistent with Snyder (2019), but it is remarkable that also the dependence

of the long-term components is weaker.

Snyder (2019) further evaluates the correlation of global temperatures

and radiative forcing as well as the paleoclimate sensitivity parameter using

a rolling window approach. The remarkable finding is that there is some

evidence of time-variation in the correlation, but not in the sensitivity pa-

rameter. To look into this issue, this paper splits the sample into an early

and a late subsample. Figure 4 shows the quantile coherency estimates for

these two subsamples. It is evident that there is a stark difference: in the

early sample, there is a considerable difference in the dependence across

quantiles - the pattern is more pronounced than in the full sample: the de-

pendence is the strongest for the upper quantiles and the weakest for the

lower quantiles. In this case, there is a difference also between the depen-

dence at the upper quantiles and the median. As for the late subsample,

the differences in dependence across quantiles is found to be much smaller:

now also at lower quantiles a strong dependence is found for the long-term
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Figure 4: Barunik and Kley’s (2019) quantile coherency - early subsample
(upper panel), late subsample (lower panel)

components of the data.

4 Concluding remarks

The analysis of paleoclimate sensitivity is concerned with the relationship

between global temperatures and radiative forcing. Both variables are based

on reconstructions. There is uncertainty associated with these reconstruc-

tions. The methods used in this paper, long-run covariablity as well quan-

tile coherency, allow one to analyse the co-movement of time series across

frequencies and periods, respectively. Thus, some of this uncertainty has

been smoothed out. In addition, the existing literature on paleoclimate
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sensitivity, in particular Snyder (2019), finds that there is a non-linear re-

lationship between global temperatures and radiative forcing. Baruńık and

Kley’s (2019) quantile coherency in particular allow one to analyse complex

dependence structures between time series.

The key findings are the following: the long-run correlation coefficient

and long-run regression coefficient are found to be 0.87 and 0,76, respec-

tively. The quantile coherency analysis shows that the dependence is gen-

erally stronger for the long-term components of the data. However, the de-

pendance is found to be significantly lower in smaller quantiles of the joint

distribution of temperatures and forcing also for the long-term components.

In other words, the relationship is considerably weaker during full glacial

climates compared to interglacial periods and intermediate glacial climates.

In short, the relationship between radiative forcing and temperatures over

the past 800,000 years is highly complex.
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