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Abstract

Mutual fund asset managers’ incentives contracts are dynamic: initially, there is a
drive to outperform the index. However, as performance improves, the focus shifts from
outperforming to maintaining performance. In equilibrium, expressed in closed form,
the active share exhibits a U-shape, and the tracking error an inverted U-shape with
the active share at its minimum and tracking error at its maximum when performance
equals the benchmark. Equilibrium response to frictions introduces two predictability
channels due to changes in incentives and performance uncertainty. These two channels
lead to momentum in outperformance and reversal in underperformance, both in the
time-series and cross-section.

1 Introduction

Institutional investors hold a significant proportion of publicly traded stocks and account for

an even larger share of daily trading volume. Consequently, their actions play a crucial role

in determining stock prices, and understanding the incentives behind these actions is essen-

tial for comprehending price dynamics. In March 2005, the U.S. Securities and Exchange

Commission (SEC) implemented a rule requiring mutual funds to disclose the compensation
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structure of their portfolio managers in the Statement of Additional Information. These

disclosures indicate that nearly all mutual fund managers’ contracts include a performance-

based bonus tied to the funds’ performance relative to their benchmark index.

This paper develops a dynamic equilibrium model with benchmarking incentives that

incorporates a critical element the literature has for the most part overlooked: the incentives

to outperform the benchmark (risk-on) are powerful when asset managers underperform in

a bid to get the bonus. However, as performance exceeds the benchmark, the incentives

to outperform the benchmark become less relevant, and instead, asset managers’ incentives

shift to maintaining their performance (risk-off) to avoid losing the bonus.

Our first main finding demonstrates that in equilibrium active share exhibits a U-shaped

relationship with respect to fund performance, while tracking error shows an inverted U-

shaped relationship. As a mutual fund’s performance deviates from the benchmark per-

formance, either towards outperformance or underperformance, its active share tends to

increase and its tracking error tends to diminish.

Cremers and Petajisto (2009) argue that tracking error serves as a proxy for a factor bet

strategy, whereas active share represents a stock selection strategy. The factor bet strategy

involves rotating across systemic factors such as sectors and industries. Conversely, the stock

selection strategy focuses on choosing individual stocks across all investment classes, rather

than systemic factors. Their analysis indicates that the factor bet strategy results in a higher

tracking error and lower active share compared to the stock selection strategy. Our theory

claims that the variations in active share and tracking error among different funds may be

attributed to their performance levels rather than to inherent differences in their investment

strategies.

This finding also rationalizes conflicting empirical findings. Hu, Kale, Pagani, and Sub-

ramanian (2011) argue a U-shaped relationship between performance in the first 6 months of

the year and the fund manager’s risk choices in the second half of the year. In contrast, Lee,

Trzcinka, and Venkatesan (2019) claim that their findings contrast sharply with the previous

findings of Hu et al. (2011) since they document an inverted U-shaped relationship between

the performance in the first 6 month and a risk shifting measure in the second half of the

year. Our theoretical findings suggest that these two predictions are completely consistent

with each other since the risk choice measure of Hu et al. (2011) aligns with the active share,

whereas the risk-shift measure of Lee et al. (2019) correlates with the tracking error.
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Our second contribution highlights asset management frictions as a potential reason for

the observed momentum and reversal in asset markets, both in the time-series and cross-

section. We demonstrate that momentum and reversal naturally arise in equilibrium within a

complete information environment, where perfectly rational asset managers are incentivized

to outperform the benchmark when they are trailing the benchmark, but shift towards

maintaining performance when they are outperforming it.

We identify time-series momentum when asset managers outperform the benchmark and

time-series reversal when they underperform the benchmark. Time-series momentum is the

tendency for expected returns (and future returns) to increase when current returns are

rising. Conversely, time-seires reversal is the tendency for expected returns (and future

returns) to decrease when current returns are falling.

Furthermore, we show that the predictability patterns obsereved in the time-series of

each asset separately also exist in the long-short portfolio. Since the work of Jegadeesh and

Titman (1993), the analysis of cross-sectional predictability in asset returns has involved

constructing long-short portfolios by purchasing assets with high returns and selling those

with low returns. According to this framework, momentum is identified when the long-short

portfolio yields a positive return, whereas reversal is identified when the portfolio yields a

negative return. Based on our theory, we expect momentum in the long-short portfolio when

asset managers outperform their benchmark index and reversal when they underperform it.

Given their time-varying incentives, asset managers’ payoffs are convex when they un-

derperform the benchmark but become concave as their returns exceed the benchmark. This

results in an S-shaped objective, where the inflexion (or reference) point is the benchmark.

Despite this added complexity, we characterize equilibrium prices in closed form.

The S-shaped objective function and its pricing implications are novel in asset manage-

ment. It was originally designed to explain financial decisions of households that appeared

at odds with the predictions of standard utility models. Friedman and Savage (1948) demon-

strate that for an agent to both purchase insurance and a lottery ticket, the agent’s utility

must shift from concave at certain wealth levels to convex at others. Levy (1969) demon-

strates that an objective function that only depends on the first three moments of the wealth’s

distribution leads to an inverted S-shape objective, concave below a reference and convex

above it. Kahneman and Tversky (1979) show that an S-shape objective arises when risk-

aversion is different towards losses and gains — so that the reference point is current wealth.
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The key distinction between these models and ours is that in our model the benchmark,

and not the value of the assets under management, is the reference point. This difference

significantly enhances the tractability of the equilibrium characterization.

Initial Wealth

Risk Seeking

Lottery ticket buyers

Risk Aversion

Insurance buyers

Convexity when

underperforming the

benchmark

Concavity when

outperforming the

benchmark

Benchmark

Figure 1. The figure on the left shows that an agent prefers a fair gamble (such as purchasing
a lottery ticket) when their utility is convex with respect to absolute wealth. Conversely,
when their utility is concave with respect to wealth, the agent prefers to pay a premium
to avoid a fair gamble. The figure on the right demonstrates a similar intuition for asset
managers. They are incentivized to gamble when their wealth is below the benchmark and
they are underperforming. In contrast, they are incentivized to purchase insurance and
maintain their wealth when it is above the benchmark.

Generally, pricing predictability is surprising because conventional wisdom suggests that

if market participants expect prices to rise, they will quickly buy the asset to capture the

return, causing an immediate price increase that neutralizes the expected return. Similarly,

if they expect prices to fall, they will sell the asset immediately to avoid losses, causing

an immediate price drop that neutralizes the expected decline in return. Consequently, the

main explanations for momentum and reversal involve either an asymmetric information

environment leading to partial price adjustments or irrational investor behavior. In these

scenarios, momentum and reversal occur as participants gradually adjust their positions

based on their observations of the market.

The return predictability analyzed in this paper is fully rational and stems directly from

the no-arbitrage conditions, where all available information is fully reflected in prices at any

given time. Predictability persists in this environment because it is not optimal for asset

managers to trade on it. In this setting, asset managers respond immediately to information,
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but their reactions depend on their current performance relative to the benchmark. These

reactions shape return predictability patterns through equilibrium, resulting in patterns that

emerge endogenously.

Underperformance
Benchmark

Performance

Positive Benchmark News Positive Benchmark News

More uncertain

Stronger
More certain

Outperformance

Stronger Incentives to Outperform

      performance
Incentives to Outperform

          performance

Figure 2. This figure illustrates the asymmetric reaction to news during periods of under-
performance and outperformance. The left side of the figure represents scenarios where asset
managers underperform, while the right side cases of outperformance. In both cases, positive
benchmark news negatively impacts the performance of asset managers. For those outper-
forming, it reduces their outperformance, while for those underperforming, it exacerbates
their underperformance. Lower performance leads to stronger incentives to outperform the
benchmark. In contrast, the uncertainty of performance increases for outperforming asset
managers but decreases for those underperforming.

There are two equilibrium predictable channels of asset mangers’ performance. The first

channel involves incentives : the current performance predicts the incentives to outperform

the benchmark relative to maintaining performance. When performance is below the bench-

mark, the incentives to outperofrm the benchmark are stronger relative to the incentives to

maintain performance, whereas when performance is above the benchmark, the incentives

to maintain perfromance are stronger. The second equilibrium channel is the uncertainty of

performance: When performance diverges from the benchmark, performance is more ceratin.

Conversly, when performance converges to the benchmark, it becomes less certain whether

the asset manager will perform. These two predictable channels lead to an asymmetric price

reaction to news during periods of underperformance and outperformance.

The incentives channel leads to reversal in returns for any level of performance. In

contrast, the uncertainty of performance channel leads to momentum when asset managers

outperform the benchmark. Consequently, when asset managers underperform, the two

predictability channels result in an eventual reversal in returns, whereas when asset managers

outperform the benchmark, the overall effect leads to eventual momentum in asset returns.
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The drive to outperform the benchmark prompt asset managers to maintain a benchmark

hedging position to avoid lagging behind. This hedging generates demand for the benchmark,

independent of risk and return considerations. Consequently, this reaction to incentives

boosts the benchmark asset price while lowering the prices of assets outside the benchmark.

An unpredictable shock that worsens performance relative to the benchmark initially raises

the benchmark price and depresses the prices of non-benchmark assets due to the increased

demand for the benchmark. However, this shock subsequently reduces the benchmark’s

expected return and raises the expected returns of other assets, as the market anticipates

stronger future price reactions to shocks when the incentives to outperform the benchmark

are heightened. The incentives channel thus leads to asset price reversals.

Performance uncertainty results in greater sensitivity of assets to news. From an eco-

nomic perspective, the asset managers’ portfolio is not perfectly aligned with the benchmark.

Therefore, when news arrives that aligns the portfolio’s performance more closely with the

benchmark, it increases performance uncertainty. This, through equilibrium, leads to riskier

asset markets.

The equilibrium market prices of risk lead to an increase in expected returns for the

benchmark asset and a decrease in expected returns for the non-benchmark assets in both

outperformance and underperformance regions. However, when performance further deterio-

rates, the pricing effects reverse, leading to a decrease in expected returns for the benchmark

asset and an increase in expected returns for the non-benchmark assets.

When asset managers outperform the benchmark, an unpredictable shock that raises the

benchmark price initially would also increase the expected return of the benchmark because

higher benchmark prices imply that the asset manager’s relative performance shrinks. The

market expects bigger price reactions in the future due to this higher uncertainty of per-

formance, which leads to higher expected returns when asset managers are more likely to

outperform. The same shock decreases the non-index prices and their expected returns. As

a result, the uncertainty of performance channel generates momentum when asset managers

outperform the benchmark.

Conversely, when asset managers underperform the benchmark, an unpredictable shock

that raises the benchmark price initially would decrease the expected return of the benchmark

because higher benchmark prices imply that performance deteriorates further below the

benchmark. The market expects smaller price reactions in the future due to this lower
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uncertainty of performance. The same shock decreases the non-index prices and increases

their expected returns. Therefore, the uncertainty of performance channel generates reversal

when asset managers underperform the benchmark. When performance further deteriorates,

the market prices of risk reverse, increasing the expected returns of the benchmark and

decreasing the expected returns of the non-benchmark assets. As a result, this channel leads

to momentum when performance further declines.

The remainder of the paper is organized as follows. Section 2 summarizes the related

literature; Section 3 sets up the economy with the time-varying incentives to outperform

and maintaining performance ; Section 4 solves for the equilibrium in closed-form; Section 5

discusses the active share and tracking error; Section 6 discusses momentum and reversal in

the time-series; Section 7 discusses momentum and reversal in the cross-section, and Section

8 concludes.

2 Related Literature

This paper fits into the asset pricing literature investigating stock returns predictable pat-

terns, and in particular, the drivers of momentum and reversal in stock returns. Jegadeesh

and Titman (1993) first documented momentum and reversal in the cross section of the

stock market, and Chan, Jegadeesh, and Lakonishok (1996) have thoroughly investigated

the phenomenon. They showed that a portfolio that buys past winners and sells past losers

will generate a significant positive return over a short-term window of one year or less, and

that the strategy’s performance partially reverts for longer horizons.

There are several competing theories, falling into a few broad categories, which explain

momentum. One of the most prevalent explanations of momentum is behavioural. In this

category, Barberis, Shleifer, and Vishny (1998) studies an agent that due to behavioural

biases incorrectly forms beliefs about stock earnings. Daniel, Hirshleifer, and Subrahmanyam

(1998) study investors that overreact to confirming evidence and underreact to refuting

evidence about their prior signal. Hong and Stein (1999) study a two agents model where

agents have different restrictions on the way they process information. Barberis and Shleifer

(2003) study an economy with two investors. One of these investors groups assets into styles

and gradually moves funds from the worst performing style to the best performing style,

while the second investor does not act on the predictable pattern. Lastly, Hillert, Jacobs,
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and Müller (2014) find that news coverage exacerbate momentum because investors’ biases

are stronger.

The most prevalent rational explanation is based on an information economy. In Holden

and Subrahmanyam (2002), the setup induces a sequential information acquisition that feeds

into prices. Allen, Morris, and Shin (2006) assumes that agents, instead of forecasting

prices, forecast future forecasts. Shin (2006) endogenizes firms’ disclosure decision jointly

with prices. Banerjee, Kaniel, and Kremer (2009) investigate a heterogenous beliefs econ-

omy, where agents agree to disagree about their beliefs. Biais, Bossaerts, and Spatt (2010)

investigates an overlapping generation setup with informed and uninformed traders. Cespa

and Vives (2012) compares consensus opinion and prices and show that specific patterns of

information generates momentum and reversal. Albuquerque and Miao (2014) shows that

information about future earnings that is independent from current earning induces momen-

tum and reversal. Ottaviani and Sørensen (2015) investigate a heterogenous beliefs economy

where traders exhibit wealth constraints. Andrei and Cujean (2017) show that short-term

momentum can be generated by an economy where private information flows at an increas-

ing rate. Cujean and Hasler (2017) investigate an economy with heterogenous agents where

some agents continuously update their beliefs while others do so intermittently.

Another strand of literature connects momentum to firms’ specific attributes, such as

growth options, dividend growth rate, revenues, and costs. Berk, Green, and Naik (1999),

Johnson (2002), and Sagi and Seasholes (2007), do so in a partial equilibrium setup. Relat-

edly, Liu and Zhang (2008) identifies the loading on the growth rate of industrial production

as the source for momentum, and Liu and Zhang (2014) study a partial equilibrium produc-

tion based setup to study momentum.

More recent studies connect the asset management industry to momentum and reversal.

This strand of literature is the most relevant to this paper. Dasgupta, Prat, and Verardo

(2011) assume that investors observe asset managers’ actions and form beliefs about their

ability to perform. Asset managers internalize the reputational cost of underperformance,

which causes a herding behavior that positively predicts short-term returns. Vayanos and

Woolley (2013) suggest that a slow-moving flow between active and passive funds due to

active funds’ performance is the source of momentum and reversal.

Our paper is the first to show that a predictable pattern in asset managers’ risk pref-

erences generates momentum and reversal and that the predictable changes to asset man-
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agers’ risk preferences arise due to the time-varying nature of their incentive contracts. In

particular, the incentives to outperform the benchmark are stronger for asset managers who

underperform. However, as performance improves, the incentives to outperform the bench-

mark become less relevant, and instead, asset managers’ incentives shift to maintain their

performance in a bid not to lose the bonus.

Furthermore, our article contributes to the expanding body of literature examining the

impact of professional asset management on asset prices. In particular, our research aligns

with a strand of this literature that investigates the asset pricing implications resulting from

benchmarking incentives.

The paper most closely related to ours is Sotes-Paladino and Zapatero (2019). Their

setup introduces a kink to the performance base fees of the asset manager, which changes

the sensitivity of the objective to the relative (to the benchmark) wealth. Similar to our

setup, the kink represents a shift in the performance sensitivity between the end-of-period

underperformance and outperformance regions. While the kink introduces a convexity to the

asset manager’s objective, the slope at the outperformance region could be concave, which

aligns with our setup. They find that the asset manager overinvests in assets outside the

benchmark and underinvests in the benchmark, which aligns with our predictions when asset

managers are likely to outperform (the risk-off region). The main difference from our paper

is that they investigate the asset manager’s behavior, given prices, in a partial equilibrium

setup, while our setup focuses on the pricing implications in an equilibrium setup.

By and large, the asset management literature investigates a setup where asset man-

agers’ objective is always convex and does not become concave when outperformance is

likely in a bid to maintain performance. The idea to embed the benchmark into the asset

manager’s objective started by Brennan (1993) and Gómez and Zapatero (2003). Cuoco and

Kaniel (2011) were the first to study the equilibrium implications of benchmarking incentives

through performance-based fees. Later, Basak and Pavlova (2013) and Basak and Pavlova

(2016) introduce a reduced form approach to incorporate the benchmark, which allows for

much tractability. Buffa and Hodor (2023) extended their setup to investigate the pricing

implications of heterogenous benchmarking incentives and Hodor and Zapatero (2023) to

investigate the pricing implications of heterogenous horizons.

Unlike the literature, we investigate the pricing implications when the asset manager’s

benchmarking incentives are time-varying. The asset manager exhibits incentives to out-
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perform the benchmark when underperformance is likely (similar to the literature), but

these incentives weaken, and eventually flips when outperformance is more likely, in a bid to

maintain performance (instead of outperforming the benchmark).

Lastly, our paper relates to Friedman and Savage (1948) early work. They investigated

a case whereby a wealthy individual is willing to pay an insurance premium to avoid a fair

gamble with an equal chance of winning or losing a dollar, while a poor individual is willing

to purchase a lottery ticket to participate in such a fair gamble. They introduced the utility

characteristics that jointly induce these two behaviors in a rational expected utility maxi-

mizing framework. Rationalizing these behaviors implies that when the individual wealth is

low, the agent’s marginal utility increases with wealth, and the utility is convex. In contrast,

when individual wealth is high, the agent’s marginal utility decreases with wealth, and util-

ity becomes concave, eventually leading to an S-shape utility function: a convex segment

followed by a concave segment.

We incorporate Friedman and Savage (1948) main insights into an asset management

framework with relative wealth concerns. In particular, when wealth is expected to fall below

the index, asset managers behave similarly to poor individuals and face risk-on incentives

(purchasing lottery tickets): convex incentives that increase their marginal utility of wealth

the further the wealth falls below the index. In contrast, when wealth is expected to surpass

the index, asset managers behave similarly to wealthy individuals and face risk-off incentives

(purchasing insurance): concave incentives that reduce their marginal utility of wealth the

further the wealth increases above the index.

3 The Economy

This section lays out a simple and tractable model to study the joint equilibrium effect of

risk-on and risk-off incentives of asset managers. We consider a simple and tractable standard

pure-exchange finite horizon economy in which time t is continuous and goes from zero to

T . The economy is populated by two types of investors: passive investors, P , and asset

managers, A. While the economy could be generalized and accommodate multiple assets

and different specifications of the index against which the asset managers’ performance is

evaluated, critical aspects of the mechanism can be analyzed with three assets. Accordingly,

uncertainty is driven by a (3)-dimensional Brownian motion Z = (Z1, Z2, Z3)
′.
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3.1 Investment Opportunities

The are 3 risky assets and a single riskless bond in the economy. We set the bond as numeraire

and normalize its interest rate to zero. The risky asset is denoted by Skt, k = 1, 2, 3, and

represents a claim on the dividends DkT arriving at time T . We assume each risky asset is

in unit supply and posit that it follows

dSkt = Skt

(
µS
ktdt+ σS′

ktdZt

)
. (1)

Prices (Skt), the (instantaneous) vector of expected returns µS
t ≡ (µS

1t, µ
S
2t, µ

S
3t)

′, and the

(instantaneous) volatility matrix ΣS
t ≡

(
σS

1t,σ
S
2t,σ

S
3t

)′
are endogenous and determined in

equilibrium. The bold symbols represent vectors and the ′ represents the transpose through-
out the analysis.

The dividends (DkT ) are determined by the dynamics of the processes

dDkt = Dkt

(
µkdt+ σD′

k dZt

)
, Dk0 > 0, (2)

which we refer to as dividend news. The parameter µk and the vector σD
k are constants

for the first two dividends. We follow Menzly, Santos, and Veronesi (2004), Basak and

Pavlova (2013), and Buffa and Hodor (2023) and leave the remaining dividend news process

unspecified, and, instead, we specify an aggregate process as soon follows. The procedure

substantially improves the tractability of the model and provides closed-form precise equi-

librium characterization.

We assume that stocks’ fundamentals are independent, implying that the vector σD
k (2)

has a positive kth element equaling σk > 0, while the remaining entries are zero. This

assumption provides clear interpretation to the type of shocks that affect prices. To simplify

the analysis, we assume that the distributional properties of news are the same, σ1 = σ2 = σ3

and µ1 = µ2 = µ3.
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3.2 The Index

For the baseline analysis we assume that the first asset is the index.

SI
t ≡ S1t. (3)

The asset manager’s performance is evaluated against the performance of this index and the

passive investor invests its entire wealth in it. The index does not include the remaining

assets in the economy because we are interested in analyzing the asset managers’ holdings

within and outside its mandate.

For consistency of the analysis, we refer to It as the index news, which in the baseline

economic setup equals the news about asset 1,

It ≡ D1t, σI ≡ σD
1 . (4)

3.3 Investors

The passive investors (P) are endowed with (1− λ) units of the index at time 0

WP
0 = (1− λ)SI

0 (5)

and remain passive until time T . The asset managers (A) are endowed with the remaining

(λ) units of the index and holds the entire supply of the other assets,

WA
0 = λSI

0 + S20 + S30 ≡ SA
0 (6)

The asset managers’ initial endowment identifies the active section of the asset market, which

is a claim on the total asset market dividends minus the passive index holdings’ dividends,

VT ≡ I1T +D2T +D3T − (1− λ) I1T , (7)

where we assume that this terminal value is determined by the process

dVt = Vt (ηdt+ ν ′dZt) , V0 > 0. (8)
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The parameter η is positive and the vector ν ≡ (ν1, ν2, ν3)
′ has positive entries. We assume

that (ν1, ν2, ν3) = (λσ1/3, σ2/3, σ3/3) to mimic the aggregate active dividends and following

the standard in the literature. We refer to Vt as the market news.

3.4 Risk-On and Risk-Off Incentives

Empirical evidence indicates that individuals sometimes choose to pay an insurance premium

to avoid a fair gamble, while at other times they prefer to take the gamble. At first glance,

these behaviors appear inconsistent with the expected utility maximization theory, which

would require a rational agent to pay for insurance in some situations and buy a lottery

ticket in others.

Friedman and Savage (1948) addressed this puzzle by introducing utility characteristics

that explain these two behaviors within a rational, expected utility-maximizing framework.

They demonstrated that rationalizing these behaviors means that, at certain wealth levels,

an agent’s marginal utility increases with wealth, while at other wealth levels, the marginal

utility decreases.

The empirical evidence on asset managers and their benchmarking incentives aligns with

the behaviors of individual agents as described by Friedman and Savage (1948). Specifically,

when wealth is expected to fall below the index, asset managers act like individuals willing to

take a fair gamble, facing risk-on incentives. These convex incentives increase their marginal

utility of wealth as it falls further below the index. Conversely, when wealth is expected to

exceed the index, asset managers behave like individuals willing to purchase insurance to

avoid a fair gamble, facing risk-off incentives. These concave incentives reduce their marginal

utility of wealth as it rises above the index.

Crucially, the arguments and insights of Friedman and Savage (1948) apply to asset

managers’ risk-on and risk-off incentives because the key factor for prices is the marginal

utility of wealth. Changes in the index impact prices solely through their effect on the

marginal utility of wealth.

Therefore, Friedman and Savage (1948)’s arguments in this context suggest that asset

managers’ marginal utility of wealth increases with the index level when their wealth is

below the index, (UWSI > 0), indicating a stronger desire to increase wealth when they

are underperforming. Conversely, when wealth is above the index, their marginal utility
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of wealth decreases, (UWSI < 0), indicating a weaker desire to increase wealth when they

are outperforming the benchmark. Any changes in the index level that do not affect the

marginal utility of wealth have no implications for prices. Figure 3 illustrates this argument.

0.3 0.4 0.5 0.6 0.7
0.25

0.75

Figure 3. The left figure plots the SI − W plane. At the top left triangle, the asset
managers have concave incentives because W > SI , while at the bottom right triangle, the
asset managers have convex incentives because W < SI , where the solid linear line represents
W = −SI + 1. As we trace that line from the top left corner to the bottom right corner,
incentives shift from concave to convex incentives. Indeed, the middle figure shows that the
cross derivative UWSI is concave initially and becomes convex as the line crosses the dashed
line. The cross derivative (UWSI ) in the direction of the solid line (in the left figure) can be
captured by the rate of change in US(W,SI) in the direction (−1, 0), leading to a negative
cross derivative: −UWSI (W,SI). Therefore, we include a minus sign in front of U to capture
UWSI . The right figure shows what the cross derivative captures. When W < SI (right
side of the figure), the marginal utility of wealth increases when SI increases, indicating the
asset manager desire to outperform. In contrast, when W > SI (left side of the figure), the
marginal utility of wealth decreases when SI increases, indicating the asset manager desire
to maintain performance. The function U represents the asset managers’ objective (11) with
α1 = 0.5 and α2 = 4.5.

While many potential objective functions may satisfy the requirements for risk-on and

risk-off incentives. The goal is to introduce an objective that switches between risk-on and

risk-off incentives based on the state of asset managers’ wealth relative to the index without

losing tractability.

To do so, we start with a variation of Basak and Pavlova (2013)s’ asset manager objective

function, and introduce the risk-on objective

−E

[(
SI
T

)1−γ1 (WA
T

)1−γ2

(γ2 − 1) (1− γ1)

]
, γ2 > 1 > γ1 > 0. (9)
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Similar to the original objective function of Basak and Pavlova (2013), the risk-on objective

(9) is always convex, UWSI =
(
SI
T

)−γ1 (WA
T

)−γ2 > 0. The parameter of risk aversion in this

case is γ2.

If we alternate the wealth and the index in the risk-on objective (9) and remove the

minus sign, we attain a risk-off objective,

E

[(
WA

T

)1−γ1 (SI
T

)1−γ2

(γ2 − 1) (1− γ1)

]
, γ2 > 1 > γ1 > 0, (10)

which is always concave, UWSI = −
(
SI
T

)−γ2 (WA
T

)−γ1 < 0. The parameter of risk aversion

in this case is γ1.

Perhaps more importantly, by combining the risk-on (9) and risk-off (10) incentives we

attain an objective function that switches between risk-on and risk-off depending on whether

the wealth is below or above the index.

U
(
WA, SI

)
≡ E

[
1Off

(
SI
T

)1−γ2
(
WA

T

)1−γ1

(γ2 − 1) (1− γ1)
− 1On

(
SI
T

)1−γ1
(
WA

T

)1−γ2

(γ2 − 1) (1− γ1)

]
, γ2 > 1 > γ1 > 0. (11)

The indicators 1Off,1On in (11) allow to separate the asset pricing implications of each

incentive individually and their joint effect. A fully risk-on asset manager has only the

second component in (11), 1Off = 0,1On = 1, while a fully risk-off asset manager has only

the second component in (11), 1Off = 1,1On = 0. When taken together, 1Off = 1,1On = 1,

the risk-off component dominates when SI < WA, while the risk-on component dominates

when SI > WA, and the asset manager has both risk-on and risk-off incentives, in line with

Friedman and Savage (1948) main insights. The parameter of risk aversion in this case is

endogenous and time-varying.

Besides the risk-on and risk-off incentives, the asset manager objective function (11)

satisfies other useful characteristics: it increases and concave in wealth (UW > 0, UWW < 0),

and satisfies the inada conditions stating that the marginal utility of wealth (UW ) takes the

value of ∞ as wealth approaches zero, and the value 0 as wealth approaches infinity. These

conditions are at the core of expected utility maximization.

There are two variations to the original Basak and Pavlova (2013) objective function.

First, we introduce a risk aversion parameter larger than one (γ2) instead of the typical log
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utility of wealth, and second, the objective is a power function of the index (γ1) instead of

being linear. The are two reasons for these variations.

The symmetrical structure of the asset manager’s objective function (11) is the primary

characteristic, inducing the shift between risk-on and risk-off incentives. If we were to follow

Basak and Pavlova (2013) log utility of wealth for the risk-on incentives, the symmetrical

structure would require a log of the index for the risk-off incentives. This outcome would,

in turn, violates the requirement for the increasing-in-wealth objective function (UW > 0)

because the index log becomes negative when the index level falls below one, and UW would

eventually turn negative. Similarly, if we were to follow Basak and Pavlova (2013)s’ linearity

in the index for risk-on incentives, the symmetrical structure would require linearity in

wealth for the risk-off incentives. This outcome would, in turn, violates the requirement for

a decreasing marginal utility in wealth, UWW < 0. Due to these two reasons, we introduce

the two variations to the original asset manager objective function, as laid out by Basak and

Pavlova (2013).

Starting with their initial endowments, the asset managers dynamically choose a portfolio

πA
t , which represents the fraction of wealth invested in each of the risky assets. The wealth

process of the asset managers, therefore, follows the dynamics

dWA
t

WA
t

= πA ′
t

(
µStdt+ΣS

t dZt

)
, t ≤ T. (12)

4 The Equilibrium

We define the equilibrium in a standard way: equilibrium prices and portfolio holdings are

such that (i) the asset managers choose their optimal portfolio for given prices, and (ii)

stocks, the bond, and consumption-good markets clear.

Asset managers’ risk-on and risk-off objectives are of a constant relative risk aversion

type individually. However, when taken together, the relative risk aversion of the asset

managers’ objective (11) is a weighted average of the two risk aversion coefficients (γ1, γ2),

with time-varying weights that depend on the likelihood of the asset managers to outperform

or underperform. We denote the relative risk aversion by RA(W,SI). By applying the
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definition of relative risk aversion to the asset managers’ objective function, we find that:

RA(W,SI) = γ1

(
1− 1

1 + (1−γ1)
(γ2−1)

(W/SI)(γ2−γ1)

)
︸ ︷︷ ︸

≡1−w

+γ2

(
1

1 + (1−γ1)
(γ2−1)

(W/SI)(γ2−γ1)

)
︸ ︷︷ ︸

≡w

, (13)

where w ∈ (0, 1) since 0 < γ1 < 1 < γ2. The formulation shows that risk aversion,

RA(W,SI), is endogenous, time-varying, and dependent on the ratio of the asset managers’

wealth to the index. When asset managers’ wealth is low relative to the index, they are in

the risk-on region since W < SI . In this case, the risk aversion aligns more closely to the

risk-aversion coefficient in the risk-on region (γ2) since the weight on the risk-off risk-aversion

(γ1) declines.

As the performance of asset managers improve, their total wealth increases relative to

the index. Consequently, the weight on the risk-off risk-aversion parameter rises while the

weight on the risk-on risk-aversion parameter falls, resulting in an overall objective function

that is decreasing in relative risk aversion: the risk aversion decreases as asset managers

becomes wealthier.

Since market clearing requires asset managers to hold the entire active supply, the index

price must equal its dividends at maturity, and in equilibrium, RA(W,SI) = RA(V, I).

Interestingly, the state variable (V/I) that determines the variations in risk aversion also

dictates how asset managers hedge against shifts between the risk-off and the risk-on regions,

ultimately determining the equilibrium quantities.

Before we start the equilibrium analysis we first define the asset managers’ risk-on hedging

demand, Hit, which is given by

Hit ≡
1

1 + 1−γ1
γ2−1

(Vt/It)
γ2−γ1 Eit

, i = 1, 2, 3, 4, (14)

where i refer to four different determinstic functions of time, E1t, E2t, E3t, E4t, given in (A.3),

(A.6), (A.9), (A.12), respectively. We refer to Hit as the risk-on hedging demand because

the closer it is to one, the more correlated the equilibrium quantities of the joint incentives

case are with those of the purely risk-on incentives case. The deterministic functions Eit
determines the speeds at which the hedging demand changes with the market-index ratio,
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Figure 4. This figure plots the asset managers’ risk aversion as a function of W/SI . It
converges to γ2, the risk aversion coefficient of the risk-on region when W/SI ↓ 0, and to γ1,
the risk aversion coefficient of the risk-off region when W/SI ↑ ∞, resulting in a decreasing
relative risk aversion utility.

∂Hit/∂(V/I). Thus, we refer to Hit for i = 1, 2, 3, 4 as the risk-on hedging demand. The

market-index ratio governs both the risk-on hedging demand and the risk aversion parameter,

and it serves as the key state variable that determines all equilibrium quantities.

We begin by analyzing the partial equilibrium effect of how shocks impact the wealth

of asset managers, given prices. This approach allows us to identify the different shock

propagation channels for risk-on and risk-off incentives, both individually and jointly. To

facilitate this, let us denote the (equilibrium) discount factor by ξt and its dynamics by

dξt = −ξt

(
θ

′

tdZt

)
. (15)

By definition of the discount factor, the vector of market prices of risk process, θt, can be

represented as

θt =
(
ΣS

t

)−1
µS

t , (16)

which in a single asset economy simplifies to the ratio of an asset’s (excess) expected return

and its standard deviation.
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Lemma 1 (Risk Exposure). The asset managers’ risk exposure due to risk-on incentives

is given by

ΣS′
t π

A
t = θt − (γ2 − 1)ν + (1− γ1)σ

I , (17)

while the risk exposure due to risk-off incentives is given by

ΣS′
t π

A
t = θt + (1− γ1)ν − (γ2 − 1)σI . (18)

In the presence of both risk-on and risk-off incentives the risk exposure is given by

ΣS′πA
t = θt +

[
− (γ2 − 1)ν + (1− γ1)σ

I
]
H2t +

[
(1− γ1)ν − (γ2 − 1)σI

]
(1−H2t) (19)

The function H2t is defined in (14).

There are three shock propagation channels. The first is the myopic mean-variance

channel, where asset managers seek a risk exposure proportional to the assets’ risk-return

tradeoff, correlating their wealth with the market price of risk, θt. Lemma 1 demonstrates

that this channel remains unaffected regardless of the type of incentives. However, the exact

exposure will be determined in equilibrium once the market prices of risk are identified.

The second channel is a risk-aversion adjustment channel, and Lemma 1 indicates that

it has different implications for risk-on and risk-off incentives. In the pure risk-on incentives

case (17), asset managers are risk averse with respect to the market and desire to hedge

against adverse market moves. They do so by requiring higher wealth following adverse

market movements since the risk aversion coefficient is greater than one, γ2 > 1. The logic

reverses for risk-off incentives. In pure risk-off incentives (18), asset managers are risk takers

with respect to the market and correlate their wealth with the market. They do so because

the risk aversion coefficient is less than one, γ1 < 1.

The third channel is the benchmark consideration. Similar to the risk aversion adjustment

channel, it has opposing implications for risk-on and risk-off incentives. When asset managers

trail the index and desire to outperform the index (17), they are risk-takers with respect to

the index and correlate their wealth with the index since γ1 < 1. Conversely, when asset

managers outperform the index and desire to maintain performance (18), they are risk averse

with respect to the benchmark and desire to hedge against adverse benchmark moves.

The joint effect is a time-varying weighted average of the incentives to outperform the
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benchmark and maintain performance. The weights are determined by the likelihood of

outperformance relative to underperformance and controlled by the risk-on hedging demand,

H2t. As asset managers’ wealth declines relative to the index, the demand for risk-on hedging

rises. Consequently, asset managers sell part of their risk-off portfolios and purchase more

of their risk-on portfolios.

We proceed by uncovering the closed-form expressions for the equilibrium quantities,

beginning with the market prices of risk.

Proposition 1 (Market Prices of Risk). The market prices of risk in the presence of

risk-on incentives is given by

θt = − (1− γ1)σ
I + γ2ν , (20)

while in the presence of risk-off incentives, it is given by

θt = (γ2 − 1)σI + γ1ν . (21)

In the presence of both risk-on and risk-off incentives the market prices of risk are given by

θt =
[
− (1− γ1)σ

I + γ2ν
]
(H1t) +

[
(γ2 − 1)σI + γ1ν

]
(1−H1t) . (22)

The function H1t is defined in (14).

The market prices of risk in the pure risk-on incentives case, (20), align with findings

documented in the literature over the past decade: the incentives to outperform the bench-

mark decreases the market prices of risk that correlate with benchmark. Asset managers are

risk takers with respect to the index and seek to buy it with a proportion of their wealth,

creating additional demand for the index. Equilibrium is restored by making these assets

less attractive from a risk-return tradeoff perspective, thereby reducing their market prices

of risk.

The logic reverses for pure risk-off incentives (21). In this case, asset managers aim to

maintain performance and, therefore, are risk-averse with respect to the benchmark. They

do so by hedging against adverse benchmark moves, which introduces an extra supply for

the index. Equilibrium is restored by enhancing the risk-return tradeoff of the index, leading

to a higher market price of risk.
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The joint incentives case (22) is a time-varying weighted average of the two individual

effects, with H1t determining the weights. The greater the outperformance, the closer the

market price of risk aligns with the maintaining performance incentive case (21). Conversely,

the more significant the underperformance, the closer it aligns with the incentives to outper-

form the benchmark (20).

Consequently, the market prices of risk that correlate with the benchmark are cyclical

with asset managers’ performance: as their relative performance improves, market prices of

risk increase. Previous literature has demonstrated that benchmarking reduces the market

price of risk for benchmarked assets. This paper refines that statement by asserting that it

is true when asset managers underperform the benchmark. However, the statement reverses

when they outperform the benchmark.

We proceed by characterizing the risk exposures.

Proposition 2 (Volatility). The return volatilities in the presence of either risk-on incen-

tives or risk-off incentives, separately, are given by

σS
1t = σD

1t, σS
2t = σD

2t. (23)

The return risk exposures in the presence of joint risk-on and risk-off incentives are given by

σS
1t = σD

1 + (γ2 − γ1)
(
σI − ν

)
(H3t −H1t) , (24)

σS
2t = σD

2 − (γ2 − γ1)
(
σI − ν

)
(H1t −H4t) . (25)

where H1t, H3t, H4t are given in (14), and H3t −H1t > 0, H1t −H4t > 0.

The index asset is the most sensitive to news when H1t + H3t = 1, and the non-index

asset is the most sensitive to news when H1t +H4t = 1.

Positive index news increases the index price, while positive non-index news decreases the

index price:

σS
1t(1) > 0, σS

1t(2) < 0, σS
1t(3) < 0. (26)

In contrast, positive index news decreases the non-index price, while positive non-index news
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increases the non-index price:

σS
2t(1) < 0, σS

2t(2) > 0, σS
2t(3) > 0. (27)

In a traditional endowment economy without benchmark incentives, prices only reflect

news about the assets’ fundamentals. In such environments, optimal portfolios remain un-

changed by the arrival of news, and, therefore, equilibrium does not alter the exposure of

prices to future news, leading to the immediate reflection of news in prices.

Proposition 2 reveals that pure incentives cause asset managers to respond to news dif-

ferently than market participants in a traditional setup. However, similar to a traditional

endowment economy, optimal portfolios (and risk exposures) remain unchanged by the ar-

rival of news. Therefore, equilibrium does not alter the exposure of prices to future news.

In contrast, in previous pure risk-on models, such as those by Basak and Pavlova (2013),

and Buffa and Hodor (2023), asset managers’ portfolios change with the arrival of news,

since the incentives to outperform the benchmark increases as performance deteroriates. As

a result, equilibrium changes how the index price will react to future news. In the pure

risk-on (and risk-off) setups of this paper, this behavior does not occur.

In the joint incentives case, equilibrium reacts to changes in the incentives to outperform

the benchmark relative to the incentives to maintain performance. As the performance of

asset managers converges to the benchmark, H1t +H3t and H1t +H4t get closer to one, and

assets become riskier due to the higher uncertainty of performance.

Furthermore, when index news arrives, the index price increases, making asset managers

more likely to fall behind the benchmark and underperform. Anticipating this, asset man-

agers aim to buy more of the benchmark as positive news arrives, increasing the demand

for the index. Consequently, equilibrium causes the index price to overreact to index news.

To purchase more of the index, asset managers must sell other assets they hold, leading

non-index assets to underreact to index news.

Lastly, when non-index news arrives, the non-index price increases, boosting the overall

market relative to the index. In this scenario, asset managers are more likely to outperform.

Anticipating this, asset managers buy less of (or sell) the benchmark as positive non-index

news arrives, decreasing the demand for the index. Consequently, equilibrium causes the

index price to underreact to non-index news.
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5 Active Share and Tracking Error

In this section, we analyze the equilibrium predictions on two primary empirical measures

designed to assess the asset manager’s activity level in relation to their benchmark.

The literature distinguishes between two main types of measures used to assess asset

management activity: tracking error and active share. Tracking error, the earliest method of

the two, quantifies the volatility of the difference between the portfolio’s return and that of

its benchmark index. Subsequently, the active share measure was developed to offer a direct

comparison between the portfolio’s holdings and those of the benchmark index.

By empirically comparing these two measures, one might hypothesize that they capture

different aspects of management activity. Cremers and Petajisto (2009) argue that tracking

error serves as a proxy for a factor bet strategy, whereas active share represents a stock

selection strategy. The factor bet strategy involves rotating across systemic factors such as

sectors and industries. Conversely, the stock selection strategy focuses on choosing individual

stocks across all investment classes, rather than systemic factors. Their analysis indicates

that the factor bet strategy results in a higher tracking error and lower active share compared

to the stock selection strategy.

Our theory indicates that the cross-sectional empirical analysis they conducted may be

influenced by inherent differences in mutual funds’ performance. Specifically, our theory

demonstrates that active share exhibits a U-shaped relationship with fund performance, while

tracking error shows an inverted U-shaped relationship. As a mutual fund’s performance

deviates from the benchmark performance, either towards outperformance or underperfor-

mance, its active share tends to increase and its tracking error to diminish. Consequently,

the variations in active share and tracking error among different funds may be attributed

to differences in their current performance levels rather than to inherent differences in their

investment strategies.

Our theory also rationalizes conflicting empirical findings. Hu et al. (2011) argue a U-

shaped relationship between performance in the first 6 months of the year and the fund

manager’s risk choices in the second half of the year. In contrast, Lee et al. (2019) claim

that their findings contrast sharply with the previous findings of Hu et al. (2011) since they

document an inverted U-shaped relationship between the performance in the first 6 month

and a risk shifting measure in the second half of the year. Our theoretical findings suggest
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that these two predictions are completely consistent with each other since the risk choice

measure of Hu et al. (2011) aligns with the active share, whereas the risk-shift measure of

Lee et al. (2019) correlates with the tracking error.

From a partial equilibrium perspective, the inverse relationship between active share and

tracking error appears contradictory, as one measure suggests increased management activity

while the other measure indicates reduced management activity. The equilibrium perspective

resolves the conflict because asset managers’ trading strategies propagate to prices. The logic

is as follows.

When the benchmark performance aligns closely with the market performance, it is

equally likely that the asset manager will outperform or underperform the benchmark. In

such scenarios, the asset manager’s portfolio is equally weighted between risk-on and risk-off

strategies. This balanced approach is reflected in balanced prices, indicating that assets in

the economy have similar risk and return trade-offs. Consequently, asset managers tend to

have a lower active share compared to situations where they either significantly underperform

or outperform the benchmark.

The tracking error depicts a different picture. When it is equally likely that the asset

manager will outperform or underperform the benchmark, equilibrium increases assets’ sen-

sitivities to news due to the uncertainty of performance. This result implies that the asset

market becomes more volatile overall. However, different assets in the economy have dif-

ferent sensitivities to news. Since the asset manager’s portfolio is equally weighting risk-on

and risk-off strategies, this result implies that the volatility of the difference between the

portfolio return and the benchmark return becomes large when the active share becomes

low.

The difference between the portfolio exposure and the benchmark exposure is given by

ΣS′πA
t − σS

1t. (28)

By plugging the market prices of risk, (22), into the asset manager’s portfolio exposure, (19),

and taking the variance, we find that the equilibrium tracking error per unit of time is given

by

Tracking Error = [(γ2 − γ1) (H3t −H2t) + 1]2 ∥σI − ν∥2. (29)
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The formulation of the tracking error reveals that it attains its maximum when the

difference between H2t and H3t is maximized. The derivative of the difference increases

initially, becomes zero when 1 = H3t +H2t, and negative afterwards.

The active share compares the portfolio weight of all assets to their respective weight

in the benchmark index. However, market participants may attain the exposure of the

benchmark from the exposures of the replicating portfolio. So, in principle, the asset manager

may hold a portfolio that has no weight on the benchmark, but generates precisely the same

exposure to news, and by no arbitrage has the same value. Since our equilibrium is closed-

form, we account for the replicating portfolio by directly measuring the correlation between

the asset manager’s portfolio and the benchmark. Therefore, the active share is defined as

the correlation between the portfolio and the benchmark exposures per unit of time,

σS′
1t

(
ΣS′πA

t

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥
. (30)

For example, if the asset manager holds either the benchmark or its replicating portfolio,

the correlation is 100%, despite the fact that the asset manager does not necessarily hold

the benchmark. Conversely, if the asset manager’s exposure is orthogonal to the benchmark

exposure, the correlation is 0%. When applied to the asset manager portfolio relative to the

benchmark, the correlation measures the active share.1 By plugging the market prices of

risk, (22), into the asset manager’s portfolio exposure, (19), and applying the definition, we

find that the active share per unit of time is given by

Active Share =
σI′ν − (γ2 − γ1) (H1t −H2t) [1 + (γ2 − γ1) (H3t −H1t)]

(
∥σI∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

−
(γ2 − γ1) (H3t −H1t) [1 + (γ2 − γ1) (H1t −H2t)]

(
∥ν∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

. (31)

The active share attains its minimum in the neighborhood of the location that the track-

ing error attains its maximum. First, notice that the active share decreases when the differ-

ences H1t −H2t and H3t −H1t increase. Second, the two differences governing the tracking

error and the difference governing the active share all attain their maximum roughly at the

1This measure is similar to co-sign similarity between the benchmark and the portfolio holdings of asset
managers. See Buffa and Hodor (2023) for details.
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same location, as we show in the following proposition.
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Figure 5. The figure plots the tracking error (29) and the active share (31). It shows that
in equilibrium, when the active share is minimized the tracking error is maximized. The
parameters are γ2 = 4.5, γ1 = 0.5, µ1 = µ2 = 0.05, σ1 = σ2 = 0.25, λ = 0.5, Vt = 5, V0 = 2.5,
I0 = 1, T = 5, t = 2.

Proposition 3 (Tracking Error and Active Share). The tracking error attains its max-

imum in the neighborhood of the minimum active share. The tracking error is given in (29)

and the active share in (31).

6 Time-Series Predictability

This section examines how an asset’s past returns can predict its current return. Positive

autocorrelation is known as time-series momentum, while negative autocorrelation is referred

to as time-series reversal. Predictability arises from predictable changes to both quantities

of risk and market prices of risk. We separate these two predictability channels throughout

the analysis.

To deepen our understanding of the equilibrium mechanism, we start by analyzing how

the market prices of risk and the quantities of risk react to news.
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6.1 Equilibrium Response to Frictions

Prices not only react to information about the fundamentals but also react to news about

management frictions.

To illustrate the intuitions clearly, we rewrite the vector of market prices of risk, (22), as

a sum of the index news exposure (σI) and the market news exposure (ν),

θt = [(γ2 − 1)− (γ2 − γ1) (H1t)]σ
I + [γ1 + (γ2 − γ1) (H1t)]ν . (32)

When asset managers are purely risk-on or purely risk-off (or do not have incentives alto-

gether), the market prices of risk do not reflect news about the management frictions because

the risk-on hedging demand (H1t) is a constant that equals one or zero, respectively, and

never changes. As a result, prices fully incorporate fundamental information. However, when

asset managers balance both strategies, market prices of risk reflect not only fundamentals

but also news about asset management frictions. Note that from a purely fundamental per-

spective, the price reaction to management friction might appear as incorrect pricing, or an

overreaction.

As asset managers’ performance deteriorates, risk-on incentives become more pronounced

than risk-off incentives, leading asset managers to invest more in the benchmark and less in

assets outside the benchmark. To restore equilibrium, market prices of risk associated with

the benchmark are depressed to make the index assets less attractive and more expensive.

Conversely, the market prices of risk associated with assets outside the benchmark increase

to make these assets more attractive and less expensive.

Similar to the market price of risk, we rewrite the vector of return exposures (quantities

of risk) as a sum of index news exposure (σI) and market news exposure (ν),

σS
1t = σD

1 + (γ2 − γ1) (H3t −H1t)σ
I − (γ2 − γ1) (H3t −H1t)ν, (33)

σS
2t = σD

2 − (γ2 − γ1) (H1t −H4t)σ
I + (γ2 − γ1) (H1t −H4t)ν . (34)

The representations reveal that when asset managers are purely risk-on or purely risk-off,

asset prices react only to news about fundamentals since the risk-on hedging demands are

constant, either equaling one or zero, respectively. In contrast, when asset managers weigh

both strategies, assets incorporate news about management frictions in addition to the news
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about fundamentals.

The difference between the risk-on hedging demands attain its maximum when the sum of

the risk-on hedging damands equals one, Hit+Hjt = 1, i, j = 1, 2, 3, 4. The maximum values

for different i and j are reached close to each other and identify the state at which asset

managers have an equal likelihood of outperforming or underperforming the benchmark.

This likelihood influences prices. The arrival of news can cause the asset managers’ perfor-

mance to either align more closely with the benchmark or deviate away from the benchmark.

The uncertainty about performance is strongest when asset managers’ performance closely

matches the benchmark, compared to when their performances diverge. Consequently, the

price sensitivity to news is the largest in this scenario.

When asset managers’ performance diverges towards underperformance, their portfolios

weigh more towards the risk-on strategy relative to the risk-off strategy. In this case, it

becomes more likely that asset managers will underperform. Equilibrium reflects this higher

certainty of underperformance by reducing the risks in the asset markets. Conversely, when

asset managers’ performance diverges towards outperformance, their portfolios weigh more

towards the risk-off strategy relative to the risk-on strategy. Equilibrium reflects this higher

certainty of outperformance by reducing the risks in the asset markets.

The equilibrium response to news about management frictions, through both the market

prices of risk and quantities of risk, reveals two predictability channels.

6.2 Time-Series Predictability

So far, we have shown that market prices of risk and quantities of risk react to news about

asset management frictions.

Before we delve into why these responses are predictable, let us first establish how we

identify predictability. Let’s begin by defining the expected return dynamics for both the

index and non-index assets as follows

dµS
1t = αµ

1tdt+ bµ
′

1tdZt, dµS
2t = αµ

2tdt+ bµ
′

2tdZt. (35)
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The covariance between the expected returns in time t and t+∆ (for ∆ > 0) is given by

Covt
(
dSkt

Skt

,
dSkt+∆

Skt+∆

)
=Covt

((
µS
ktdt+ σS′

ktdZt

)
,
(
µS
kt+∆d (t+∆) + σS′

kt+∆dZt+∆

))
(36)

=Covt
(
σS′

ktdZt, µ
S
kt+∆d (t+∆)

)
= σS′

ktEt

[
(dZt)µ

S
kt+∆

]
d (t+∆) .

This covariance indicates that the predictability of asset k depends on how today’s news

(dZt) influences the asset’s expected return in t+∆. It reflects the response of the expected

return µS
kt+∆ to the news dZt.

To obtain a closed-form characterization, we examine predictability as ∆ approaches 0.

Plugging the dynamics of µS
kt and taking the covariance leads to

Covt
(
dSkt

Skt

,
dSkt+∆↓0

Skt+∆↓0

)
= σS′

ktb
µ
ktdt, (37)

where bµkt is the exposure of asset k expected return to news, (35). The following definition

characterizes momentum and reversal.

Definition 1 (Momentum - Reversal). Asset k exhibits momentum if both the asset

return and its expected return move in the same direction,

σS′
ktb

µ
kt > 0, (38)

and exhibits reversal if the asset return and the expected return move in opposite directions,

σS′
ktb

µ
kt < 0, (39)

where k = 1, 2 and identifies the index and non-index assets, respectively.

The definition is straightforward. We identify momentum when returns rise (fall) and

the equilibrium expectation is that they will continue to rise (fall). Conversely, we identify

reversal when returns rise (fall) but the equilibrium expectation is that they will fall (rise) in

the future. However, identifying the direction of predictability in equilibrium is challenging

because the definition captures the average effect across all shocks.

There are two potential predictable channels that emerge from the no arbitrage condition,

θ′
tσ

S
it = µS

it. The first channel is a pricing effect, which is driven by the predictable change in
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the market prices of risk, θt. The second channel is a quantity-of-risk effect, which is driven

by the predictable change in the asset’s risk exposures, σS
it.

To disentangle these two channels and examine how shocks in each channel propagate

to expected returns, we adopt the approach of Buffa and Hodor (2023). This approach

introduces the concept of elasticity between two quantities within a dynamic system, akin

to an impulse-response function.2 Accordingly, we define the shock elasticity at time t of an

equilibrium quantity X at time t as the time t expectation of the Malliavin derivative Dt of

Xt, normalized by the absolute value of the time t expectation of Xt,

εt(X, ℓ) ≡ Et[DtXt]

|Et[Xt]|
=

Dℓ
tXt

|Xt|
=

σX
t (ℓ)

|Xt|
, (40)

where σX
t (ℓ) is entry ℓ of the diffusion term of dXt. The shock elasticity εt(X, ℓ) is well-

defined for Xt ̸= 0. News in the economy can be separated into two mutually exclusive

types: index news and non-index news, which implies that there are two shock elasticities,

one for each type of news. By applying the chain rule, we find that

εt(µ
S
it, ℓ) = εt(σ

S′
it θt, ℓ) =

σS′
it

|µS
it|

 (
Dℓ

tθt

)︸ ︷︷ ︸
benchmarking

incentives

+
θ′
t

|µS
it|

 (
Dℓ

tσ
S
it

)︸ ︷︷ ︸
uncertainty of
performance

 , (41)

where the vector of Malliavin derivatives is the vector of derivatives for every entry. For

example, Dℓ
tθt is the Malliavin derivative of each entry of the market price of risk vector

with respect to news ℓ, which could be either index news or non-index news.

Let εt(µ
S
it) be the vector of shock-elasticities. The definition of momentum implies a

positive cross product between the shock elasticities of the expected return and the asset

price. Conversely, the definition of reversal is indicated by a negative cross product,

Momentum ⇒ εt(µ
S
it)

′εt(Sit) > 0, Reversal ⇒ εt(µ
S
it)

′εt(Sit) < 0. (42)

2This methodology was originally presented by Borovička, Hansen, and Scheinkman (2014), which, in
continuous time, builds on Malliavin calculus. Please refer to Detemple, Garcia, and Rindisbacher (2003)
for further discussion on Malliavin calculus with Markovian processes in finance.
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6.3 Incentives Channel

This channel causes a reversal in asset returns. Whenever the index asset return reacts

positively to news, it also strengthens the incentives to outperform the benchmark versus

the incentives to maintain performance. The shift in incentives means that asset managers

require a stronger benchmark hedging position. As a result, equilibrium market clearing

reduces the expected return of the benchmark asset. In contrast, whenever the index asset

return reacts negatively to news, it also weakens the incentives to outperform the benchmark

versus the incentives to maintain performance, and equilibrium increases expected returns.

Similar logic applies to the non-index assets.

Let’s examine this channel more closely, which is derived by the Malliavin derivative of

the market prices of risk, which is given by

Dℓ
tθt =

{
− (γ2 − γ1)

2H1t (1−H1t)
(
σI(ℓ)− ν(ℓ)

)} (
σI − ν

)
. (43)

The factor in the curly brackets determines how every entry of the market price of risk vector

changes with the arrival of news. It shows that index news (ℓ = 1) decreases the market

prices of risk that correlate with the benchmark (σI > 0) and non-index news (ℓ = 2, 3)

increases these market prices of risk. The opposite effect applies for market prices of risk

that are not correlated with the benchmark (σI = 0).

The logic is as follows. When positive index news arrives, the likelihood of underperfor-

mance increases because the portfolio of the asset manager is not fully correlated with the

benchmark. Asset managers respond by hedging against further declines, increasing their

allocation to the benchmark. To sustain equilibrium, the benchmark asset must become less

attractive to offset the asset manager’s demand, thereby reducing the market price of risk

and the expected return of the benchmark. In contrast, when positive news unrelated to

the benchmark arrives, the likelihood of underperformance decreases, and the logic follows

in the opposite direction.

When asset managers desire more from the benchmark, their desire for other assets is

reduced, which implies that the effects described here are reversed for assets excluded from

the benchmark.

When cross multiplying Dℓ
tθt by σS

it, we obtain the incentives shock elasiticity, εt(µ
S
it, ℓ).

This cross multiplication reveals that for any enrty whereby Dℓ
tθt is negative, σ

S
1t is positive,
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Figure 6. The left figure illustrates the curly brackets in (43). Positive index news decreases
the market prices of risk that covary with the benchmark, and positive non-index news
increases these market prices of risk. The reverse applies for the market prices of risk that
do not covary with the benchmark. The right figure shows that the overall effect coming
from the incentives channel produces a reversal in asset returns. The parameters are as in
Figure 5.

and vice versa,

(
Dℓ

tθt

)′
σS

1t = − (γ2 − γ1)
3H1t (1−H1t) (H3t −H1t)

(
σI(ℓ)− ν(ℓ)

)
∥σI − ν∥2

− (γ2 − γ1)
2H1t (1−H1t)

(
σI(ℓ)− ν(ℓ)

) (
∥σI∥2 − ν ′σI

)
, (44)(

Dℓ
tθt

)′
σS

2t = − (γ2 − γ1)
3H1t (1−H1t) (H1t −H4t)

(
σI(ℓ)− ν(ℓ)

)
∥σI − ν∥2

+(γ2 − γ1)
2H1t (1−H1t)

(
σI(ℓ)− ν(ℓ)

) (
ν ′σD

2

)
. (45)

To determine whether the incentives channel generates price momentum or reversal, we

first need to identify the index asset shock elasticity to index and non-index news. This

elasticity is given by

εt(S1t, ℓ) = σS
1t(ℓ), εt(S2t, ℓ) = σS

2t(ℓ), (46)

which reveals that positive index news boosts the index return, while positive non-index

news reduces it. Conversely, positive index news reduces the non-index asset return, whereas

positive non-index news increases it.

In sum, the analysis reveals that the incentives channel induce an opposite reaction on

the expected return and asset return shock elasticities: whenever one shock elasticity is
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positive the other is negative, and vice versa. Therefore, this channel causes asset price

reversals during periods of both underperformance and outperformance.

Underperformance and

Outperformance
:

εt(Sit, ℓ) > 0 ⇒ S1t ↑
εt(µ

S
it, ℓ) < 0 ⇒ µS

1t ↓
εt(Sit, ℓ) < 0 ⇒ S1t ↓
εt(µ

S
it, ℓ) > 0 ⇒ µS

1t ↑

⇒ Reversal. (47)

6.4 Uncertainty of Performance Channel

This mechanism leads to momentum in asset returns when asset managers outperform the

benchmark, and can result in either reversal or momentum when they underperform the

benchmark. When performance converges to the benchmark, it becomes less certain whether

asset managers will outperform or underperform the benchmark. This uncertainty increases

the assets response to news because asset managers balance risk-on and risk-off strategies

more closely. Equilibrium market clearing compensates asset managers for the heightened

uncertainty by weighing the return correlation with the market prices of risk.

When asset managers outperform the benchmark, news that brings their performance

more closely in line with the benchmark boosts the benchmark asset return and its expected

return. This is because the pricing impact of the correlation with the index news contributes

to a positive expected return, which outweighs the negative pricing impact of the correlation

with the market news. In contrast, similar news depresses the non-index asset return and

also its expected return since the pricing impact of the correlation with the index news

contributes to negative expected returns for the non-index asset. Therefore, asset returns

exhibit momentum when asset managers outperform the benchmark.

When asset managers underperform relative to the benchmark, news that aligns their

performance more closely with the benchmark decreases the benchmark asset return and

increases the non-index asset return, causing reversals in both. However, as performance

further declines, the pricing impact of the correlation with both the market news and the

index news contribute to a negative price impact. Consequently, in such cases, news that

brings performance closer to the benchmark reduces the benchmark’s expected return and

increases the non-index asset’s expected return, leading to momentum when performance is

significantly below the benchmark.
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This channel is driven by the predictable change in the benchmark asset risk exposures,
(41), which is given by the derivatives

Dℓ
tσ

S
1t = (γ2 − γ1) (H3t −H1t)

{
(γ2 − γ1) (1−H1t −H3t)

(
σI(ℓ)− ν (ℓ)

)} (
σI − ν

)
, (48)

Dℓ
tσ

S
2t = − (γ2 − γ1) (H1t −H4t)

{
(γ2 − γ1) (1−H1t −H4t)

(
σI(ℓ)− ν (ℓ)

)} (
σI − ν

)
. (49)

The factors in the curly brackets determines how every entry of the risk exposure vec-

tor changes with the arrival of news. It shows that the direction of the effect depends on

whether the asset manager outperforms or underperforms the benchmark because, in out-

performance, the risk-on hedging demands (H1t, H3t, and H4t) are close to zero, whereas in

underperformance, they are close to one.

The curly brackets further indicates that news pushing the state variable V/I towards the

center increases assets sensitivity (further away from zero sensitivity), while news pushing the

state variable V/I away from the center reduces assets sensitivity (closer to zero sensitivity).

In the outperformance region (H1t + H3t < 1 and H1t + H4t < 1), positive index news

pushes the state variable towards the center, whereas in underperformance, positive index

news pushes it away from the center. Conversely, positive non-index news pushes the state

variable away from the center in outperformance, whereas in underperformance, positive

non-index news pushes it towards the center. See Figure (7) for an illustration.

To determine whether this predictability channel induces momentum or reversal, we

incorporate the pricing effect and analyze the shock elasticity of the expected return at-

tributable to the uncertainty of performance channel, which is driven by the cross multipli-

cation θ′
t

(
Dℓ

tσ
S
it

)
. These inner products are given by

θ′
t

(
Dℓ

tσ
S
1t

)
=

uncertainty of performance︷ ︸︸ ︷{
(γ2 − γ1) (1−H1t −H3t)

(
σI(ℓ)− ν (ℓ)

)}
× (50)

(γ2 − γ1) (H3t −H1t) { [(γ2 − 1)− (γ2 − γ1) (H1t)]σ
I′ (σI − ν

)
− [γ1 + (γ2 − γ1) (H1t)]ν

′ (ν − σI
)
}︸ ︷︷ ︸

expected return of the price-dividend ratio

,

θ′
t

(
Dℓ

tσ
S
2t

)
=

uncertainty of performance︷ ︸︸ ︷{
(γ2 − γ1) (1−H1t −H4t)

(
σI(ℓ)− ν (ℓ)

)}
× (51)

− (γ2 − γ1) (H1t −H4t) { [(γ2 − 1)− (γ2 − γ1) (H1t)]σ
I′ (σI − ν

)
− [γ1 + (γ2 − γ1) (H1t)]ν

′ (ν − σI
)
}︸ ︷︷ ︸

expected return of the price-dividend ratio

.
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Figure 7. The left figure illustrates the predictable change in the quantities of risk of the
benchmark asset, capture by the curly brackets in (48). When V/I is to the right of the
vertical line 1 = H1t +H3t, positive index news increases the sensitivities of the benchmark
asset: the positive sensitivities becomes more positive and the negative ones becomes more
negative. When V/I is to the left of the vertical line, the roles are reversed: positive index
news decreases the sensitivities of the benchmark asset, and positive non-index news increases
the sensitivities of the benchmark asset. The middle figure considers the contribution of the
market prices of risk to the shock elasticity of the expected return, (50). When V/I is to
the right of the vertical line indicated by H̄1t (52), the predictable change in the quantities
of risk passes through to the expected return shock elasticity because the contribution of
the market prices of risk is positive. However, when V/I falls below the vertical line H̄1t,
the predictable change in the quantities of risk does not pass through: the market price of
risk contribution flips the effects coming from the predictable change in the quantities of
risk. The right figure shows the overall effect coming from the unceratinty of performance
channel. When V/I is above the vertical line H̄1t, the predictability patterns in the quantity
of risk pass to the expected return shock elasticity because the contribution of the market
prices of risk is positive. In this case, the unceratinty of performance generates momentum
when V/I is above the vertical line 1 = H1t +H3t (indicating the outperformance region),
and reversal when it is below (indicating the underperformance region). However, when V/I
is below the vertical line H̄1t, the predictability patterns in the quantity of risk reverse since
the contribution of the market prices of risk are negative. In this case, the unceratinty of
performance generates momentum in asset returns. The parameters are as in Figure 5.

The representations reveal that the predictability patterns can be represented by the

factor representing the uncertainty of performance multiplied by the expected return of the

price-dividend ratio, which factors in the correlation of the asset return with index news

and market news. When performance is above a threshold, the correlation between asset

returns and the index contributes to a positive expected return, outweighing the negative

contribution of the correlation with the market. However, as performance further declines
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and falls below a threshold, the correlation between asset returns and both the index and

the market becomes negative, leading to a negative price impact. Despite the increase in

uncertainty, expected returns may fall due to an adverse price reaction. The threshold is

given by,

H̄1 ≡
(γ2 − 1)σI′ (σI − ν

)
− γ1ν

′ (ν − σI
)

(γ2 − γ1) ∥σI − ν∥2
, (52)

and it exists when the numerator is strictly positve, which is true when the risk-on risk

aversion parameter is sufficiently large,

γ2 > 1 + γ1
ν ′ (ν − σI

)
σI′ (σI − ν)

. (53)

Overall, when the asset manager outperforms the benchmark, we find that the uncertainty

of performance induces the same reaction on the expected return and asset return shock

elasticities: whenever one shock elasticity is positive the other is also positive, and vice versa.

Therefore, this channel creates asset price momentum during periods of outperformance.

Outperformance: ⇒

εt(Sit, ℓ) > 0 ⇒ S1t ↑
εt(µ

S
it, ℓ) > 0 ⇒ µS

1t ↑
εt(Sit, ℓ) < 0 ⇒ S1t ↓
εt(µ

S
it, ℓ) < 0 ⇒ µS

1t ↓

⇒ Momentum. (54)

We proceed with the discussion of underperformance. In this case, the uncertainty of

performance contributes to price reversals as long the contribution of the market prices of risk

is positive, H1t ≤ H̄1. The reason is that news that pushes the asset manager performance

towards the benchmark performance have a negative price impact today. Conversely, any

news that makes underperfomance more ceratin have a positive price impact today.

Underperformance, H1t ≤ H̄1t : ⇒

εt(Sit, ℓ) > 0 ⇒ S1t ↑
εt(µ

S
it, ℓ) < 0 ⇒ µS

1t ↓
εt(Sit, ℓ) < 0 ⇒ S1t ↓
εt(µ

S
it, ℓ) > 0 ⇒ µS

1t ↑

⇒ Reversal. (55)
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When underperformance deteroriates further and H1t > H̄1, the pricing effects flips the re-

versal predictability patterns, resulting in momentum when performance deteroriate further.

Underperformance, H1t > H̄1t : ⇒

εt(Sit, ℓ) > 0 ⇒ S1t ↑
εt(µ

S
it, ℓ) > 0 ⇒ µS

1t ↑
εt(Sit, ℓ) < 0 ⇒ S1t ↓
εt(µ

S
it, ℓ) < 0 ⇒ µS

1t ↓

⇒ Momentum. (56)

6.5 The Joint Effect of the Two Predictable Channels

The two predictable channels, incentives and uncertainty of performance, work in opposite

directions when asset managers outperform the benchmark, H1t + H3t < 1, and when the

contribution of the market prices of risk becomes negative, which occurs when asset managers

underperform the benchmark, H1t > H̄1.

The sum of the two predictable channels lead to an asymmetric price reaction: when asset

managers underperform the benchmark, the benchmarking incentives channel dominates

and lead to price reversals. However, when asset managers outperform the benchmark, the

uncertainty of performance channel dominates and leads to price momentum.

In the following proposition, we identify a parametric restriction on the risk-on risk aver-

sion parameter, γ2. This ensures that the benchmarking incentives is at least as significant

as the uncertainty of performance. Specifically, when the risk-on risk-aversion parameter

falls within the specified range, γ
2
≤ γ2 ≤ γ̄2, prices show overall momentum during outper-

formance periods and reversal in underperformance periods.

The same two mechanisms apply similarly to the non-index asset, though with a slightly

different parametric restriction on the risk-on risk-aversion parameter. When asset managers

underperform, the reversal channel is more dominant. Conversely, when outperformance is

more likely, the momentum channel is stronger under the parametric restriction γ
2
≤ γ2 ≤ ¯̄γ2.

The following proposition summarizes our main findings.
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Figure 8. The top figures sums the two separate predictability channels: the benchmarking
incentives channel in the middle figures, and the uncertainty of performance channel in the
bottom figures. The left column figures are for the index asset and the right column figure
is for the non-index asset. These figures illustrate the cross product between the shock
elasticities of an asset return vector and the shock elasticities of its expected return. They
demonstrate that the index and non-index assets exhibit reversal during underperformance
and momentum during outperformance. Overall, momentum comes from the uncertainty
of performance channel, and it dominates when asset managers outperform. Conversely,
reversal comes from the benchmarking incentives channel, and it dominates when asset
managers underperform. The parameters are as in Figure 5.
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Proposition 4 (Time-Series Momentum and Reversal). The index asset exhibits mo-

mentum when asset managers outperform and reversal if they underperform, if and only

if

γ
2
< γ2 < γ̄2. (57)

Similarly, the non-index asset exhibits momentum when asset managers outperform and

reversal if they underperform, if and only if

γ
2
< γ2 < ¯̄γ2. (58)

The risk-on risk-aversion parameter thresholds γ
2
, γ̄2, γ

2
, and ¯̄γ2 depend on the risk-off risk

aversion parameter, γ1, and the active management share λ. For a given γ1, there always

exist an active management share λ such that (57) holds. The same is true for the non-index

asset under the parametric restriction in (A.97). The thresholds are given in (A.77), (A.79),

(A.82), and (A.83), respectively.

7 Cross-Sectional Predictability

Since the work of Jegadeesh and Titman (1993), the analysis of predictability in asset returns

has involved constructing long-short portfolios by purchasing assets with high returns and

selling those with low returns. According to this framework, momentum is identified when

the long-short portfolio yields a positive return, whereas reversal is identified when the

portfolio yields a negative return.

In this section, we show that the predictability patterns obsereved in the time-series of

each asset separately also exist in the long-short portfolio: our theory implies that we expect

momentum in the long-short portfolio when asset managers outperform their benchmark

index and reversal when they underperform it.

It is neither obvious nor immediate that time-series predictability would manifest in

the cross-section. This phenomenon primarily occurs because time-series momentum and

reversal work in opposite directions for index and non-index assets. The long-short port-

folio buys the asset that has risen and sells the asset that has fallen, as the former has a

positive return and the latter a negative return. When asset managers outperform the bench-
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mark, momentum causes the rising asset to continue rising and the falling asset to continue

falling. Consequently, this strategy results in a positive return, aligning with traditional

cross-sectional momentum. Conversely, when asset managers underperform the benchmark,

reversal causes the rising asset to fall in the future and the falling asset to rise. As a result,

this strategy leads to a negative return, aligning with traditional cross-sectional reversal.

Proposition 5 (Momentum and Reversal in the Cross-Section). The shock sensitivity

of the index asset is positive if and only if the shock sensitivity of the non-index asset is

negative,

εt(S1t, ℓ) > 0 ⇐⇒ εt(S2t, ℓ) < 0, ℓ = 1, 2, 3. (59)

Suppose that the risk-on risk aversion parameter satisfies the conditions (57) and (58), which

guarentee time-series momentum in outperformance and time-series reversal in underperfor-

mance.

A long-short portfolio that takes a long position on the asset with positive shock sensi-

tivity and a short position on the asset with negative shock sensitivity generates momentum

when asset managers outperform the benchmark and reversal when they underperform the

benchmark.

7.1 Prices and Expected Returns

To clearify the mechanism, this section characterizes the index and non-index prices and their

expected returns. This analysis provides further intuitions for why the long-short portfolio

generates momentum in the outperformance region and reversal in the underperformance

region. We start by characterizing the index and non-index prices.

Proposition 6 (Stock Prices). The index and non-index price-dividend ratios in the pres-

ence of risk-on incentives are given by

SI
t /It =

EOn
3t

EOn
1t

, S2t/D2t =
EOn
4t

EOn
1t

, (60)
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while in the presence of risk-off incentives, they are given by

SI
t /It =

EOff
3t

EOff
1t

, S2t/D2t =
EOff
4t

EOff
1t

. (61)

The index and non-index prices in the presence of both risk-on and risk-off incentives are

given by

SI
t /It =

EOn
3t

EOn
1t

[
H1t

H3t

]
, S2t/D2t =

EOn
4t

EOn
1t

[
H1t

H4t

]
. (62)

The comparison between the index and non-index price-dividend ratios reveals that the index

price-dividend ratio

• is higher than the non-index one with pure risk-on incentives.

• is lower than the non-index one with pure risk-off incentives, if the difference between

risk-on and risk-off risk aversion parameters is greater than one: γ2 − γ1 ≥ 1.

In the joint incentives case, if γ2 − γ1 ≥ 1, the index price-dividend ratio is higher than

the non-index one if and only if the ratio of the market news to the index news is below a

deterministic threshold,

Vt

It
≤

 (EOn
3t − EOn

4t

)(
EOff
4t − EOff

3t

) (γ2 − 1)

(1− γ1)

 1
γ2−γ1

. (63)

Further, in the joint incentives case, the index price-dividend ratio SI
t /It

• decreases following news about the market: ∂
(
SI
t /It

)
/∂Vt < 0,

• increases following news about the index: ∂
(
SI
t /It

)
/∂It > 0.

The results flip for the non-index price-dividend ratio, S2t/D2t; it

• increases following news about the market: ∂ (S2t/D2t) /∂Vt > 0,

• decreases following news about the index: ∂ (S2t/D2t) /∂It < 0,

where H1t, H3t, and H4t are given in (14), and EOff
1t , EOn

1t , EOff
3t , EOn

3t , EOff
4t , EOn

4t are given in

(A.1), (A.2), (A.7), (A.8), (A.10), and (A.11), respectively.
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In pure risk-on incentives, asset managers desire to post higher returns when the bench-

mark is high rather than when it is low. These risk-on incentives induce asset managers

to buy the benchmark to hedge against unexpected increases in the benchmark, which, in

turn, creates extra demand for the benchmark. Equilibrium is restored by raising the prices

of assets within the benchmark and lowering the prices of assets outside the benchmark,

thereby diminishing the benchmark’s attractiveness relative to the market.

In pure risk-off incentives, asset managers desire to maintain their performance. In

this case, asset managers are risk-averse and protect their portfolio against scenarios where

the benchmark declines. To achieve that goal, asset managers substantially reduce their

benchmark position, which increases the available supply for the benchmark. Equilibrium

is restored by decreasing the prices of benchmark assets and increasing the prices of non-

benchmark assets, which in turn, enhances the attractiveness of the benchmark relative to

the market.

In the joint incentives case, asset managers weigh the risk-on and risk-off strategies,

depending on the likelihood that they will outperform the benchmark. Since their portfolio

is not fully correlated with the benchmark, the likelihood of outperformance is influenced

by the ratio of market news to index news, V/I. When V is large relative to I, the asset

managers are likely to outperform, whereas when V is small relative to I, the asset managers

are likely to underperform.

Thus far, we have demonstrated a negative correlation between index and non-index

prices, an increase in the index price leads to a decrease in the non-index price, and vice

versa. Next, we discuss the implications for expected returns.

By applying the covariaion between between the discount factor exposure (32) and the

assets exposure, (24) and (25), we find that the expected return (per unit of time) of the

index is given by

µS
1t =(γ2 − γ1) (H3t −H1t)× (64){

[(γ2 − 1)− (γ2 − γ1) (H1t)]σ
I′ (σI − ν

)
− [γ1 + (γ2 − γ1) (H1t)]ν

′ (ν − σI
)}

+
{
[(γ2 − 1)− (γ2 − γ1) (H1t)]σ

I′ (σD
1

)
+ [γ1 + (γ2 − γ1) (H1t)]ν

′ (σD
1

)}
,
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and the expected return (per unit of time) of the non-index asset is given by

µS
2t =(γ2 − γ1) (H1t −H4t)× (65){

− [(γ2 − 1)− (γ2 − γ1) (H1t)]σ
I′ (σI − ν

)
+ [γ1 + (γ2 − γ1) (H1t)]ν

′ (ν − σI
)}

+
{
[(γ2 − 1)− (γ2 − γ1) (H1t)]σ

I′ (σD
2

)
+ [γ1 + (γ2 − γ1) (H1t)]ν

′ (σD
2

)}
.

There are two curly brackets in each representation. These brackets identify the contri-

bution of the market prices of risk, which reflects the incentives channel. As asset managers’

performance declines, equilibrium lowers the market prices of risk that correlate with the

benchmark and raises the market prices of risk orthogonal to the benchmark. Consequently,

this channel reduces the expected return of benchmark assets and increases the expected

return of assets outside the benchmark.

The leading factor multiplying the first curly brackets in each representation highlights

assets’ response due to the uncertainty of performance. As asset managers’ performance

aligns more closely with the benchmark, assets become increasingly sensitive to news in

equilibrium, which increases the expected returns of both assets.

The expected returns are influenced by two channels, causing the benchmark asset’s

expected return to increase as asset managers’ performance aligns more closely with the

benchmark. Conversely, this alignment leads to a decrease in the non-index asset’s expected

return. Figure 9 illustrates that when asset managers underperform, the two channels work

together for the index asset but operate in opposite directions for the non-index asset. When

asset managers outperform the benchmark, the effects are reversed: the two channels work

together for the non-index asset but operate in opposite directions for the index asset.

The fact that the expected returns of the index and non-index assets work in opposite

direction is the key driver of the cross-sectional predictability: if the arrival of news increases

the expected return of the index, it also decreases the expected return of assets outside the

index. Figure 10 illustrates the predictability in the cross-section.

The following proposition summarizes our key findings.

Proposition 7 (Expected Return). The expected returns for the index and non-index

assets are given by (64) and (65), respectively. The expected return of the index in the case

of extreme outperformance is strictly higher than in the case of extreme underperformance

(µS
1t |Hit↓0 −µS

1t |Hit↑1> 0). In contrast, the expected return of the non-index asset in extreme
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Figure 9. The solid line in the left figure plots the curly brackets for the index asset
(64), and the dashed line represents the non-index asset (65). The figure shows that as
performance deteriorates, the benchmarking incentives (changes to the market prices of risk)
lead the benchmark asset’s expected return to decline and the non-index asset’s expected
return to rise. The solid line in the right figure plots the leading factor multiplying the
first curly brackets for the index asset (64), and the dashed line represents the non-index
asset (65). The figure shows that expected returns of both assets rise due to the uncertainty
of performance. The figures illustrate that when asset managers underperform, the two
channels work together for the index asset but operate in opposite directions for the non-
index asset. When asset managers outperform the benchmark, the effects are reversed: the
two channels work together for the non-index asset but operate in opposite directions for the
index asset. The parameters are as in Figure 5.

outperformance is strictly lower than in the case of extreme underperformance (µS
2t |Hit↓0

−µS
2t |Hit↑1< 0). Furthermore, the index expected return

• decreases in outperformance if and only if γ
2
≤ γ2,

• increases in underperformance if and only if γ̄2 ≥ γ2.

Conversly, the non-index expected return

• increases in outperformance if and only if γ
2
≤ γ2,

• decreases in underperformance if and only if ¯̄γ2 ≥ γ2,

where γ
2
, γ̄2, γ

2
, and ¯̄γ2 are given in (A.77), (A.79), (A.82), and (A.83), respectively.
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Figure 10. The left figure plots the index and non-index price-dividend ratios in the joint
incentives case as a function of (V/I), the state variable governing the likelihood of perfor-
mance. The vertical line is given in (63) and captures the location at which the price-dividend
ratios flip. The figure shows that when the arrival of news causes one asset to rise, it also
causes the other asset to fall. The right figure plots the expected returns of index and non-
index assets as a function of (V/I). The long-short portfolio buys the asset that has risen
(positive slope in the right figure) and sells the asset that has fallen (negative slope in the
left figure). When asset managers outperform the benchmark, momentum causes the rising
asset to continue rising (positive slope in the left figure) and the falling asset to continue
falling (negative slope in the left figure). Consequently, this strategy results in a positive re-
turn, aligning with traditional cross-sectional momentum. Conversely, when asset managers
underperform the benchmark, reversal causes the rising asset to fall (negative slope in the
right figure) in the future and the falling asset to rise (positive slope in the right figure).
As a result, this strategy leads to a negative return, aligning with traditional cross-sectional
reversal. The parameters are as in Figure 5.

8 Conclusion

Mutual fund managers aim to balance incentives to outperform the index and incentives to

maintain performance levels. This balance leads asset managers to optimally adjust their

risk-on and risk-off portfolio positions based on their current performance. When managers

are likely to underperform the index, they increase the weight of the risk-on portfolio to

boost their performance above the benchmark. As their performance improves, they shift

towards a risk-off portfolio, reducing the weight of the risk-on portfolio.

This paper incorporates these time-varying incentives into a dynamic continuous-time
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asset pricing model and derives equilibrium quantities in closed form.

The paper demonstrates that the active share follows a U-shaped pattern, while the

tracking error follows an inverted U-shaped pattern in relation to fund performance. This

prediction reconciles conflicting empirical findings: some researchers claim a U-shaped rela-

tionship between early-year performance and later-year risk choices, while others claim an

inverted U-shape. We contend that U-shaped risk measures are associated with the active

share, whereas inverted U-shaped risk measures are linked to the tracking error.

In addition, previous research suggests that the differences between active-share and

tracking-error measures stem from varying investment strategies. Our theory posits that

these differences can be partially explained by the performance of the funds, rather than by

inherent differences in their investment strategies. Furthermore, early research attributes the

difference between active-share and tracking-error measures to different investment strate-

gies. Our theory claims this difference can be partially reconciled by the performance of the

funds rather than inherent differences in their investment strategies.

Perhaps more importantly, asset managers’ aim to balance between risk-on and risk-off

investment strategies serves as a potential reason for the observed momentum and reversal in

asset markets, both in the time-series and cross-section. We observe time-series momentum

when asset managers outperform the benchmark and time-series reversal when they fall

behind the benchmark. Furthermore, we show that the predictability patterns observed in

the time-series also exist in the long-short portfolio. A portfolio that buys the asset with a

higher return and sells the asset with a lower return generates a positive return (momentum)

when asset managers outperform the benchmark and results in a negative return (reversal)

when they underperform the benchmark.

Return predictability emerges from two primary channels. The first channel is driven

by predictable changes in incentive contracts: as new information becomes available, asset

managers adjust the optimal balance between risk-on and risk-off portfolios. This adjustment

impacts returns through market clearing. The second channel is related to performance

uncertainty. When the chances of outperformance and underperformance are equal, there is

heightened uncertainty about asset managers’ performance. This uncertainty amplifies asset

sensitivity to news through equilibrium.
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A Proofs

Before we begin with the formal proofs, we solve the following expected values.

EOff
1t = (1Off) E1t (1− γ2,−γ1) ≡

Et

[
(IT )

1−γ2 (VT )
−γ1

]
(It)

1−γ2 (Vt)
−γ1

(A.1)

= e((−γ1)(η)−(γ2−1)(µ1)+(σ1ν1)(γ1)(γ2−1)+ 1
2 (σ1)

2(γ2)(γ2−1)+ 1
2∥ν∥

2(γ1)(1+γ1))(T−t),

EOn
1t = (1On) E1t (1− γ1,−γ2) ≡

Et

[
(IT )

1−γ1 (VT )
−γ2

]
(It)

1−γ1 (Vt)
−γ2

(A.2)

= e((−γ2)(η)+(1−γ1)(µ1)−(σ1ν1)(γ2)(1−γ1)− 1
2 (σ1)

2(γ1)(1−γ1)+
1
2∥ν∥

2(γ2)(1+γ2))(T−t),

EOff
1t

EOn
1t

≡ E1t = e((γ2−γ1)(η−µ1+σ1ν1+
1
2 (σ1)

2(γ1+γ2−1)− 1
2∥ν∥

2(γ1+γ2+1)))(T−t), (A.3)

EOff
2t = (1Off) E2t (1− γ2, 1− γ1) ≡

Et

[
(IT )

1−γ2 (VT )
1−γ1

]
(It)

1−γ2 (Vt)
1−γ1

(A.4)

= e((1−γ1)(η)−(γ2−1)(µ1)−(σ1ν1)(1−γ1)(γ2−1)+ 1
2 (σ1)

2(γ2)(γ2−1)+ 1
2∥ν∥

2(−γ1)(1−γ1))(T−t),

EOn
2t = (1On) E2t (1− γ1, 1− γ2) ≡

Et

[
(IT )

1−γ1 (VT )
1−γ2

]
(It)

1−γ1 (Vt)
1−γ2

(A.5)

= e((1−γ2)(η)+(1−γ1)(µ1)−(σ1ν1)(γ2−1)(1−γ1)− 1
2 (σ1)

2(γ1)(1−γ1)+
1
2∥ν∥

2(γ2)(γ2−1))(T−t),

EOff
2t

EOn
2t

≡ E2t = e((γ2−γ1)(η−µ1+
1
2 [(σ1)

2−∥ν∥2](γ1+γ2−1)))(T−t), (A.6)

EOff
3t = (1Off) E3t (2− γ2,−γ1) ≡

Et

[
(IT )

2−γ2 (VT )
−γ1

]
(It)

2−γ2 (Vt)
−γ1

(A.7)

= e(−γ1η+(2−γ2)(µ1)−(σ1ν1)γ1(2−γ2)+
1
2 (σ1)

2(γ2−1)(γ2−2)+ 1
2∥ν∥

2γ1(1+γ1))(T−t),
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EOn
3t = (1On) E3t (2− γ1,−γ2) ≡

Et

[
(IT )

2−γ1 (VT )
−γ2

]
(It)

2−γ1 (Vt)
−γ2

(A.8)

= e(−γ2η+(2−γ1)(µ1)−(σ1ν1)γ2(2−γ1)+
1
2 (σ1)

2(γ1−1)(γ1−2)+ 1
2∥ν∥

2γ2(1+γ2))(T−t),

EOff
3t

EOn
3t

≡ E3t = e(γ2−γ1)(η−µ1+2(σ1ν1)+
1
2 (σ1)

2(γ2+γ1−3)− 1
2∥ν∥

2(γ2+γ1+1))(T−t), (A.9)

EOff
4t = (1Off) E4t (1− γ2,−γ1) ≡

Et

[
(IT )

1−γ2 (VT )
−γ1 D2T

]
(It)

1−γ2 (Vt)
−γ1 D2t

= e[−(γ2−1)µ1−γ1η+µ2+(σ1ν1)(γ1)(γ2−1)−(σ2ν2)(γ1)+
1
2 (σ1)

2(γ2−1)(γ2)+
1
2∥ν∥

2γ1(1+γ1)](T−t), (A.10)

EOn
4t = (1On) E4t (1− γ1,−γ2) ≡

Et

[
(IT )

1−γ1 (VT )
−γ2 D2T

]
(It)

1−γ1 (Vt)
−γ2 D2t

= e[−(γ1−1)µ1−γ2η+µ2+(σ1ν1)(γ2)(γ1−1)−(σ2ν2)(γ2)+
1
2 (σ1)

2(γ1−1)(γ1)+
1
2∥ν∥

2γ2(1+γ2)](T−t), (A.11)

EOff
4t

EOn
4t

≡ E4t = e(γ2−γ1)[−µ1+η+(σ1ν1)+(σ2ν2)+
1
2 (σ1)

2(γ2+γ1−1)− 1
2∥ν∥

2(γ2+γ1+1)](T−t). (A.12)

We reference to these expected values throughout the proofs. Note that Eit, i = 1, 2, 3, 4

is not well defined in the risk-off incentive case, since EOn
it = 0. In pure risk-on incentives

Eit = 0, i = 1, 2, 3, 4 since EOff
it = 0. By plugging the definition of Eit into Hit we find that

Hit ≡
1

1 + 1−γ1
γ2−1

(Vt/It)
γ2−γ1 Eit

=
EOn
it

EOn
it + 1−γ1

γ2−1
(Vt/It)

γ2−γ1 EOff
it

, (A.13)

implying that Hit = 0 in the pure risk-off incentives and Hit = 1 in the pure risk-on

incentives. Notice that

∥σI∥2 − σI′ν =
σ2
1

N
(N − λ) > 0, (A.14)

∥ν∥2 − ν
′
σI =

σ2
1

N2
(1− λ) ((N − 1)− λ) , (A.15)
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implying that ∥ν∥2 − ν
′
σI approached zero as λ → 1, and that

∥σI∥2 − σI′ν > ∥ν∥2 − ν
′
σI . (A.16)

By using the inequalities (A.14) and (A.15), and the that positive news have a positive

impact on fundamentals, σ2 > 0 and ν2 > 0, we find that

H3t > H1t ⇐⇒ E1t > E3t ⇐⇒ e
(γ2−γ1)

(
∥σI∥2−σI′ν

)
(T−t)

> 1, (A.17)

H1t > H4t ⇐⇒ E4t > E1t ⇐⇒ e(γ2−γ1)(σ2ν2)(T−t) > 1, (A.18)

H1t > H2t ⇐⇒ E2t > E1t ⇐⇒ e
(γ2−γ1)

(
∥ν∥2−ν

′
σI

)
(T−t)

> 1, (A.19)

H3t > H2t ⇐⇒ E2t > E3t ⇐⇒ e
(γ2−γ1)

(
∥σI∥2−ν

′
σI

)
(T−t)

> 1. (A.20)

The definition of the risk-on hedging demand (14) and the ensuing analysis implies that in

extreme underperformance the ratio of market news to index news approaches zero, V/I ↓ 0,

while in extreme outperformance the ratio approaches infinity, V/I ↓ ∞, implying that

lim
V/I→0

Hit −Hjt → 0, lim
V/I→∞

Hit −Hjt → 0. (A.21)

The derivative of the risk-on hedging demand with respect to V/I equals

dHit

dV
I

= − (γ2 − γ1)Hit (1−Hit) (Vt/It)
−1 < 0, (A.22)

and the derivative of Hit −Hjt with respect to V/I is given by

dHit

dV
I

−
dHjt

dV
I

= − (γ2 − γ1) (Vt/It)
−1 (Hit −Hjt

) (
1−Hit −Hjt

)
, (A.23)

which approaches zero at extreme outperformance and underperformance due to (A.21).

Next, we find that H3t − H1t converges to zero as fast as H1t (1−H1t) converges to zero,
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both when Hit → 0 and Hit → 1, and the limits are given by

lim
Hit→0

= lim
V/I→∞

Hjt −H1t

H1t (1−H1t)
=

E1t − Ejt
Ejt

> 0, j = 3, 4, (A.24)

lim
Hit→1

= lim
V/I→0

Hjt −H1t

H1t (1−H1t)
=

E1t − Ejt
E1t

> 0. (A.25)

Lastly,

lim
V/I→0

H1t (1−H1t)

V/I
= lim

V/I→∞

H1t (1−H1t)

V/I
= 0, (A.26)

lim
V/I→0

Hjt −H1t

V/I
= lim

V/I→∞

Hjt −H1t

V/I
= 0, j = 3, 4. (A.27)

Proof of Proposition 8 (Discount Factor). The security market is dynamically com-

plete. As such, there exists a unique state price density process, ξ, and the no arbitrage

relations

ξtSkt = Et [ξTDkT ] , t ∈ [0, T ], k = 1, 2, 3, (A.28)

is always satisfied. In our setup, we set r = 0 for t ≤ T , and thus, the state price density

evolves according to

dξt = −ξt (θ
′
tdZt) , t ≤ T. (A.29)

The vector process θt is the cash-flow news market risk prices. Restating the dynamic budget

constraint as

ξtW
A
t = Et

[
ξTW

A
T

]
, t ∈ [0, T ], (A.30)

and maximizing the asset manager’s objective function (11), subject to (A.30) at time t = 0,

we obtain the first order condition

yAξT = 1Off

(IT )
1−γ2

(
WA

T

)−γ1

(γ2 − 1)
+ 1On

(IT )
1−γ1

(
WA

T

)−γ2

(1− γ1)
, (A.31)

where yA is the Lagrange multiplier, and due to no-arbitrage condition at time T , SI
T = IT .
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To clear markets, the asset managers must hold the entire active supply SA
t , which at

time T equals VT , leading to

yAξT = 1Off
(IT )

1−γ2 (VT )
−γ1

(γ2 − 1)
+ 1On

(IT )
1−γ1 (VT )

−γ2

(1− γ1)
. (A.32)

Since ξt is a martingale, we have

ξ0,t =
Et

[
1Off

(IT )1−γ2 (VT )−γ1

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2

(1−γ1)

]
E
[
1Off

(IT )1−γ2 (VT )−γ1

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2

(1−γ1)

] . (A.33)

By plugging (A.1) and (A.2) into (A.33) we find that

ξ0,t =

1Off

γ2−1
(It)

1−γ2 (Vt)
−γ1 EOff

1t + 1On

1−γ1
(It)

1−γ1 (Vt)
−γ2 EOn

1t

1Off

γ2−1
(I0)

1−γ2 (V0)
−γ1 EOff

10 + 1On

1−γ1
(I0)

1−γ1 (V0)
−γ2 EOn

10

. (A.34)

To find the Lagrange multiplier, we plug the equilibrium discount factor (A.32) into the dy-

namic budget constraint (A.30) evaluated at time t = 0, apply the market clearing condition

so that the asset managers must hold the entire active supply and find that

ξ0S
A
0 = E

[
1

yA

(
1Off

(IT )
1−γ2 (VT )

1−γ1

(γ2 − 1)
+ 1On

(IT )
1−γ1 (VT )

1−γ2

(1− γ1)

)]
, (A.35)

which eventually leads to

yA =
1

ξ0SA
0

E

[(
1Off

(IT )
1−γ2 (VT )

1−γ1

(γ2 − 1)
+ 1On

(IT )
1−γ1 (VT )

1−γ2

(1− γ1)

)]

=
1

ξ0SA
0

[
1Off

γ2 − 1
(I0)

1−γ2 (V0)
1−γ1 E20 (1− γ2, 1− γ1) +

1On

1− γ1
(I0)

1−γ1 (V0)
1−γ2 E20 (1− γ1, 1− γ2)

]
,

(A.36)

where the second equality is due to (A.4) and (A.5) evaluated at time t = 0.

We conclude the proof with the discount factor derivatives. It is straightforward to show

that ξ0,t is decreasing in Vt and increasing in It in the risk-on incentives case, (B.1), and ξ0,t

is decreasing in Vt and It in the risk-off incentives case, (B.2). The derivative of the discount
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factor with respect to It in the joint incentives case equals

∂ξ0,t
∂It

=(1− γ1)
1

It
ξ0,t − ξ0,t

1

H1t

∂H1t

∂It
, (A.37)

where the derivative of the risk-on hedging demand with respect to It equals

∂H1t

∂It
=(H1t)

2

(
1− γ1
γ2 − 1

(γ2 − γ1) (It)
γ1−γ2−1 (Vt)

γ2−γ1 E1t
)

> 0. (A.38)

By plugging the hedging demand derivative (A.38) into the discount factor derivative (A.37),

and by removing strictly positive terms and rearranging, we find that ∂ξ0,t/∂It < 0 if and

only if

(1− γ1)− (γ2 − γ1) (−H1t + 1) < 0, (A.39)

which leads to our desired result in (B.4). Similarly, the derivative of the discount factor

with respect to Vt in the joint incentives case equals

∂ξ0,t
∂Vt

=(−γ2)
1

Vt

ξt − ξt
1

H1t

∂H1t

∂Vt

, (A.40)

where the derivative of the risk-on hedging demand with respect to Vt equals

Hit

∂Vt

=− (Hit)
2

(
1− γ1
γ2 − 1

(γ2 − γ1) (It)
γ1−γ2 (Vt)

γ2−γ1−1 E1t
)

< 0, i = 1, 2, 3, 4. (A.41)

By plugging the hedging demand derivative (A.41) into the discount factor derivative (A.40)

and rearranging, we find that ∂ξ0,t/∂Vt < 0 if and only if

(γ2 − γ1)H1t + γ1 > 0, (A.42)

which is always true because γ2 > γ1 and H1t > 0.

Proof of Lemma 1 (Risk Exposures). We utilize the no-arbitrage condition (A.30) at
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time t, the market clearing condition, and write

ξtW
A
t = Et [ξTVT ] =

1

yA
Et

[(
1Off

(IT )
1−γ2 (VT )

1−γ1

(γ2 − 1)
+ 1On

(IT )
1−γ1 (VT )

1−γ2

(1− γ1)

)]
. (A.43)

By plugging (A.4) and (A.5) we obtain

ξtW
A
t =

1

yA

[
1Off

γ2 − 1
(It)

1−γ2 (Vt)
1−γ1 EOff

2t +
1On

1− γ1
(It)

1−γ1 (Vt)
1−γ2 EOn

2t

]
(A.44)

Applying Itô’s Lemma on both sides of the above equation leads to the desired result.

πA ′
t ΣS = θt + (1− γ1)ν − (γ2 − 1)σD

1 + (γ2 − γ1)HOn
2t

(
σD

1 − ν
)

(A.45)

Proof of Proposition 1 (Market Prices of Risk). Applying Itô’s Lemma on both sides

of (A.34) leads to the desired result.

Proof of Proposition 6 (Stock Prices). We start from the no arbitrage condition (A.28),

plug ξ0,T (A.34), and find that the deflated index price satisfies

SI
t ξ0,t =

Et

[(
1Off

(IT )1−γ2 (VT )−γ1

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2

(1−γ1)

)
IT

]
E
[
1Off

(IT )1−γ2 (VT )−γ1

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2

(1−γ1)

] . (A.46)

By plugging the expected values from (A.7) and (A.8), ξ0,t (A.34), and rearranging we obtain

the desired result. Next, we characterize the non-index price. Similar to the index price, we

find that the deflated non-index price satisfies

S2tξ0,t =
Et

[(
1Off

(IT )1−γ2 (VT )−γ1D2T

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2D2T

(1−γ1)

)]
E
[
1Off

(IT )1−γ2 (VT )−γ1

(γ2−1)
+ 1On

(IT )1−γ1 (VT )−γ2

(1−γ1)

] . (A.47)

By plugging the expected values from (A.10) and (A.11) and ξ0,t (A.34), and rearranging we
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obtain the desired result. We conclude the proof by taking the derivative of the index and

non-index price dividend ratios, and find that

∂
(
SI
t /It

)
/∂Vt =

EOn
3t

EOn
1t (H3t)

2 [(∂H1t/∂Vt)H3t − (∂H3t/∂Vt)H1t] (A.48)

∂ (S2t/D2t) /∂Vt =
EOn
4t

EOn
1t (H4t)

2 [(∂H1t/∂Vt)H4t − (∂H4t/∂Vt)H1t] . (A.49)

By plugging the derivative of Hit, i = 1, 3, 4, (14) with respect to Vt, into the price-dividend

ratios (A.48) and (A.49), and by removing strictly positive terms and rearranging, we find

that

∂
(
SI
t /It

)
/∂Vt < 0 ⇐⇒ E3t − E1t < 0, (A.50)

∂ (S2t/D2t) /∂Vt > 0 ⇐⇒ E4t − E1t > 0. (A.51)

The right hand side inequalities are true due to (A.17) and (A.18), respectively, implying

that the left hand side inequality are also true, which is our desire result. In similar fashion,

we obtain

∂
(
SI
t /It

)
/∂It > 0 ⇐⇒ E3t − E1t < 0, (A.52)

∂ (S2t/D2t) /∂It < 0 ⇐⇒ E4t − E1t > 0. (A.53)

The right hand side is always satisfied due to (A.17) and (A.18), respectively, implying that

the left hand side inequality are also true, which is our desire result.

We continue with the comparison of the index price-dividend ratio and the non-index

price-dividend ratio. Dividing the index price-dividend ratio by the non-index price-dividend

ratio (60) in the pure risk-on incentives, we obtain

SI
t /It

S2t/D2t

=
EOn
3t

EOn
4t

= e(µ1−µ2−(σ1ν1)γ2+(σ2ν2)γ2+(σ1)
2(1−γ1))(T−t)

= e(−(λσ
2/3)γ2+(σ2/3)γ2+(σ)2(1−γ1))(T−t) > 1. (A.54)

We obtain the second equality by plugging the definitions of EOn
3t (A.8) and EOn

4t (A.11) and

cancelling similar terms, and the last equality by using the assumptions stating that µ1 = µ2,

σ1 = σ2, and ν1 = λσ/3, ν2 = σ/3. In similar fashion, dividing the index price-dividend
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ratio by the non-index price-dividend ratio (61) in the pure risk-off incentives, we obtain

SI
t /It

S2t/D2t

=
EOff
3t

EOff
4t

=e(µ1−µ2−(σ1ν1)γ1+(σ2ν2)γ1−(σ1)
2(γ2−1))(T−t)

=e(−(λσ
2/3)γ1+(σ2/3)γ1−(σ)2(γ2−1))(T−t) < 1. (A.55)

We obtain the second equality by plugging the definitions of EOff
3t (A.7) and EOff

4t (A.10) and

cancelling similar terms, and the last equality by using the assumptions stating that µ1 = µ2,

σ1 = σ2, and ν1 = λσ/3, ν2 = σ/3. The inequality is true because the exponent simplifies to

σ2
(
γ1
3
(1− λ) + 1− γ2

)
< 0, which is negative because we assume that γ2 − γ1 > 1.

Lastly, dividing the index price-dividend ratio by the non-index price-dividend ratio (62)

in the joint incentives case, we obtain

SI
t /It

S2t/D2t

=

EOn
3t

H3t

EOn
4t

H4t

=

(
EOn
3t + 1−γ1

γ2−1
(Vt/It)

γ2−γ1 EOff
3t

)
(
EOn
4t + 1−γ1

γ2−1
(Vt/It)

γ2−γ1 EOff
4t

) , (A.56)

where the last equality is obtained by plugging the definitions of EOn
3t (A.8) and EOn

4t (A.11)

and the definitions of H3t and H4t, (14), and cancelling similar terms. Thus, we find that
SI
t /It

S2t/D2t
> 1 if and only if V/I is below the deterministic threshold in (63). The threshold is

well defined because EOn
3t > EOn

4t and EOff
4t > EOff

3t since γ2 − γ1 > 1.

Proof of Proposition 2 (Risk Exposures). We start with the joint incentives case. By

applying Itô’s Lemma on both sides of the deflated index price (A.46), given (A.7) and (A.8),

we obtain

σS
1t = θt + (2− γ2)σ

I − γ1ν + (γ2 − γ1) (H3t)
(
σI − ν

)
. (A.57)

And, plugging θt (22) and rearranging leads to the desired result.

σS
1t = σD

1 + (γ2 − γ1)
(
σI − ν

)
(H3t −H1t) . (A.58)

Note that H3t > H1t since E1t > E3t, as (A.17) shows. Therefore, the first entry is always

positive, σS
1t(1) > 0 since ν1 = λσ/3 < σ, while the second and third entries are always

negative because σI ≡ σD
1 = 0 for these two entries. In similar fashion, by applying Itô’s
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Lemma on both sides of the deflated non-index price (A.47), given (A.7) and (A.8), we obtain

σS
2t = θt + σD

2 − (γ2 − 1)σI − γ1ν + (γ2 − γ1)
(
σI − ν

)
(H4t) . (A.59)

And, plugging θt (22) and rearranging leads to the desired result. Note that H4t < H1t since

E1t < E4t, as (A.18) shows. Therefore, the first entry is always negative, σS
2t(1) < 0, because

ν1 = λσ/3 < σ and σD
2 (1) = 0, while the second and third entries are always positive because

σI = 0 and ν > 0 for the second and third entries, and σD
2 (2) = σ > 0.

σS
2t = σD

2 + (γ2 − γ1)
(
ν − σI

)
(H1t −H4t) . (A.60)

The pure incentives cases are two knife-edge cases of the joint incentives case. In the pure

risk-off incentives (1Off = 1,1On = 0), the risk-on hedging demand equals zero, Hit = 0,

which leads to the simplifications in (23). Similarly, in the pure risk-on incentives (1Off =

0,1On = 1), the risk-on hedging demand equals one, Hit = 1, which leads to the same

simplifications.

Proof of Proposition 3 (Tracking Error and Active Share). The difference between

the portfolio exposure and the benchmark exposure is given by

dWA
t

WA
t

− dS1t

S1t

= ΣS′πA
t − σS

1t. (A.61)

By plugging the market prices of risk, (22), into the asset manager’s portfolio exposure, (19),

and taking the variance, we find that the tracking error per unit of time is given by (29).

Similarly, the active share is defined as the correlation between the portfolio exposure

and the benchmark per unit of time,

σS′
1t

(
ΣS′πA

t

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥
. (A.62)

By plugging the market prices of risk, (22), into the asset manager’s portfolio exposure, (19),

and applying the definition, we find that the active share per unit of time is given by (31).

The tracking error is a monotonic trasnformation of (H3t −H2t), which implies that it
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attains its maximum when this difference is maximized,

dTracking Error

dV/I
= 2 [(γ2 − γ1) (H3t −H2t) + 1] ∥σI − ν∥2 (γ2 − γ1)

d (H3t −H2t)

dV/I
= 0.

(A.63)

The derivative of the difference is given in (A.23). It is positive initially, becomes zero when

1 = H3t +H2t, and negative afterwards.

The derivative of the active share is given by

dActive Share

V/I
=
− (γ2 − γ1)

d(H1t−H2t)
dV/I

[1 + (γ2 − γ1) (H3t −H1t)]
(
∥σI∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

− (γ2 − γ1) (H1t −H2t) (γ2 − γ1)
d(H3t−H1t)

dV/I

(
∥σI∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

−
(γ2 − γ1)

d(H3t−H1t)
dV/I

[1 + (γ2 − γ1) (H1t −H2t)]
(
∥ν∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

−
(γ2 − γ1) (H3t −H1t) (γ2 − γ1)

d(H1t−H2t)
dV/I

(
∥ν∥2 − σI′ν

)
∥σS

1t∥∥
(
ΣS′πA

t

)
∥

. (A.64)

Similar to the previous difference, the differences (H1t −H2t) and (H3t −H1t) are positive

initially, attain their maximum when H1t + H2t = 1 and H3t + H1t = 1, respecitvely, and

decrease hereafter.

Suppose that the maximum of (H1t −H2t) and (H3t −H1t) coincides with the maximum

of (H3t −H2t), and they all achieve their maximum exactly at the same location. Since there

is a leading minus sign in all the active share derivatives, it attains its minimum when these

differences attain their maximum. Therefore, the tracking error achieves its maximum when

the tracking error its minimum.

While the maximums of (H1t −H2t), (H3t −H1t) and (H3t −H2t) are not precisely at

the same location, they are close to each other. We find that H1t ≥ H2t, H3t ≥ H1t, and

H3t ≥ H2t, as (A.19), (A.17), (A.20) respectively show. By plugging the definition of the
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risk-on hedging demand (14), we find that

1 = H2t +H1t ⇐⇒ (Vt/It) =

(
γ2 − 1

1− γ1

1√
E2tE1t

) 1
γ2−γ1

, (A.65)

1 = H1t +H3t ⇐⇒ (Vt/It) =

(
γ2 − 1

1− γ1

1√
E1tE3t

) 1
γ2−γ1

, (A.66)

1 = H2t +H3t ⇐⇒ (Vt/It) =

(
γ2 − 1

1− γ1

1√
E2tE3t

) 1
γ2−γ1

. (A.67)

To assess how far these locations are from each other, we derive their ratios. The ratio

of the first maximum location to the second maximum location is given by

(√
E3t
E2t

) 1
γ2−γ1

= e−
1
2(∥σI−ν∥2)(T−t) ≈ 0.91. (A.68)

Similarly, the ratio of the first maximum location to the third maximum location is given by

(√
E3t
E1t

) 1
γ2−γ1

= e−
1
2(σI′(σI−ν))(T−t) ≈ 0.92. (A.69)

Lastly, the ratio of the third maximum location to the second is given by

(√
E1t
E2t

) 1
γ2−γ1

= e−
1
2
ν′(ν−σI)(T−t) ≈ 0.99. (A.70)

Notice that the ratios do not depend on the difference between the risk-on and the risk-off

risk aversion parameters. They only depend on the volatility coeficients of the exogenous

news and the time horizon. The ratios reveal that any reasonable parametric choice leads to

maximum locations that are close to each other.

Proof of Proposition 7 (Expected Return). The index and non-index expected returns

are given by (64) and (65), respectively, and obtained by taking the inner product between

the market price of risk (32) and the return exposures (33) and (34). The six channels are
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identified by the six combinations of inner products between the two components of the

market price of risk (σI , ν) and the three components of the asset exposures (33) and (34)

(σD
i , σ

I , ν). By multiplying the characterizations for θt and σS
1t, we obtain our desired result

in (64) and (65)

Next, we show that the expected return in extreme undeperformance is strictly lower

than the expected return in extreme outperformance. First, notice that the term,

(γ2 − γ1) (H3t −H1t) , (A.71)

in the first four channels is strictly positive (A.17) and approaches zero in extreme outper-

formance and underperformance (A.21). Therefore, in extreme outperformance the index

asset expected return becomes

µS
1t |Hit↓0= (γ2 − 1)σI′σD

1 + γ1ν
′
σD

1 , (A.72)

while in extreme underperformance it becomes

µS
1t |Hit↑1= − (1− γ1)σ

I′σD
1 + γ2ν

′
σD

1 .

The difference between extreme outperformance and underperformance is strictly positive,

µS
1t |Hit↓0 −µS

1t |Hit↑1= (γ2 − γ1)
(
σI′σD

1 − ν
′
σD

1

)
> 0, (A.73)

because γ2 − γ1 > 0, and (A.14). In similar fashion, the difference between extreme outper-

formance and underperformance for the non-index asset is

µS
2t |Hit↓0 −µS

2t |Hit↑1= − (γ2 − γ1)ν
′
σD

2 < 0. (A.74)

Next, we establish that the index expected return decreases in outperformance and increases

in underperformance. We achieve it by showing the derivative of the expected return with

respect to V/I is negative as V/I → ∞ (Hit → 0) and positive as V/I → 0 (Hit → ∞). We

derive the derivative, dµS
1t/d(V/I), by plugging the derivatives of Hit and Hit − Hjt, given

in (A.22) and (A.23), respectively, and grouping similar terms, which leads to
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dµS
1t/d(V/I) = (Vt/It)

−1
(γ2 − γ1)

2 H1t (1−H1t)×
{

− (H3t −H1t)

H1t (1−H1t)
(1−H1t −H3t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − σI′

ν
)

+
(H3t −H1t)

H1t (1−H1t)
(1−H1t −H3t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − ν

′
σI
)

+(γ2 − γ1) (H3t −H1t) ∥σI − ν∥2 +
(
∥σI∥2 − σI′

ν
)}

. (A.75)

The function multiplying the curly brackets is always positive and approaches zero as

V/I → 0 and V/I → ∞ due to (A.26) and (A.27). Therefore, to show that the derivative is

negative as V/I → ∞, we establish that the function inside the curly brackets is negative as

V/I → ∞. Accordingly, the limit V/I → ∞ of the function inside the curly brackets equals

−E1t − E3t
E3t

(γ2 − 1)
(
∥σI∥2 − σI′

ν
)
+

E1t − E3t
E3t

γ1

(
∥ν∥2 − ν

′
σI
)
+
(
∥σI∥2 − σI′

ν
)

(A.76)

because the limit of
(H3t−H1t)
H1t(1−H1t)

is a strictly positive constant (A.25). Simplifying the term,

we find that the derivative is negative if and only if

γ
2
≡ E1t

E1t − E3t
+ γ1

(
∥ν∥2 − ν

′
σI
)

(∥σI∥2 − σI′ν)
< γ2. (A.77)

Similarly, the limit V/I → 0 of the function inside the curly brackets equals

−E1t − E3t
E1t

(1− γ1)
(
∥σI∥2 − σI′ν

)
− E1t − E3t

E1t
γ2

(
∥ν∥2 − ν

′
σI
)
+
(
∥σI∥2 − σI′ν

)
.

(A.78)

Simplifying the term, we find that the derivative is positive if and only if

γ2 <

(
∥σI∥2 − σI′ν

)
(∥ν∥2 − ν ′σI)

(
E3t

E1t − E3t
+ γ1

)
≡ γ̄2. (A.79)

Similar to dµS
1t/d(V/I), we plug the derivatives of Hit and Hit − Hjt, given in (A.22) and
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(A.23), respectively, and group similar terms, leading to

dµS
2t/d(V/I) = (Vt/It)

−1 (γ2 − γ1)
2H1t (1−H1t)×

{
(H1t −H4t)

H1t (1−H1t)
(1−H1t −H4t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − σI′ν

)
− (H1t −H4t)

H1t (1−H1t)
(1−H1t −H4t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − ν

′
σI
)

− (γ2 − γ1) (H1t −H4t) ∥σI − ν∥2 − ν
′
σD

2

}
. (A.80)

The function multiplying the curly brackets is always positive and approaches zero as V/I →
0 and V/I → ∞ due to (A.26) and (A.27). Therefore, to show that the derivative is positive

as V/I → ∞, we establish that the function inside the curly brackets is positive as V/I → ∞.

Accordingly, the limit V/I → ∞ of the function inside the curly brackets equals

E4t − E1t
E4t

(γ2 − 1)
(
∥σI∥2 − σI′ν

)
− E4t − E1t

E4t
γ1

(
∥ν∥2 − ν

′
σI
)
− ν

′
σD

2 , (A.81)

which is positive if and only if

γ2 > 1 +
1

(∥σI∥2 − σI′ν)

[
γ1

(
∥ν∥2 − ν

′
σI
)
+

E4t
E4t − E1t

ν
′
σD

2

]
≡ γ

2
. (A.82)

Similarly, the limit V/I → 0 of the function inside the curly brackets is negative if and only

if

γ2 <
1

(∥ν∥2 − ν ′σI)

[
E1t

E4t − E1t
ν

′
σD

2 − (1− γ1)
(
∥σI∥2 − σI′ν

)]
≡ ¯̄γ2 (A.83)

Proof of Proposition 4 (Momentum and Reversal). By taking Itó’s Lemma of the
index asset expected return (µS

1t), given in (64), and matching the dZt terms with (35) we
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find that

bµ1t =(γ2 − γ1)
2
[(H3t −H1t) (1−H1t −H3t)] [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − σI′

ν
) (

σI − ν
)

− (γ2 − γ1)
2
[(H3t −H1t) (1−H1t −H3t)] [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − ν

′
σI
) (

σI − ν
)

− (γ2 − γ1)
3
(H3t −H1t) [H1t (1−H1t)] ∥σI − ν∥2

(
σI − ν

)
−
[
(γ2 − γ1)

2 H1t (1−H1t)
] (

∥σI∥2 − σI′
ν
) (

σI − ν
)
. (A.84)

By taking the inner product of bµ1t and σS
1t, we find that

σS′

1tb
µ
1t =(γ2 − γ1)

2 H1t (1−H1t)×
{

(γ2 − γ1)
(H3t −H1t)

2

H1t (1−H1t)
(1−H1t −H3t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − σI′

ν
)
∥σI − ν∥2

− (γ2 − γ1)
(H3t −H1t)

2

H1t (1−H1t)
(1−H1t −H3t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − ν

′
σI
)
∥σI − ν∥2

− (γ2 − γ1)
2
(H3t −H1t)

2 ∥σI − ν∥2∥σI − ν∥2

− (γ2 − γ1) (H3t −H1t)
(
∥σI∥2 − σI′

ν
)
∥σI − ν∥2

(H3t −H1t)

H1t (1−H1t)
(1−H1t −H3t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − σI′

ν
)2

− (H3t −H1t)

H1t (1−H1t)
(1−H1t −H3t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − ν

′
σI
)(

∥σI∥2 − σI′
ν
)

− (γ2 − γ1) (H3t −H1t) ∥σI − ν∥2
(
∥σI∥2 − σI′

ν
)

−
(
∥σI∥2 − σI′

ν
)2}

. (A.85)

The function multiplying the curly brackets is always positive and approaches zero as

V/I → 0 and V/I → ∞ due to (A.26) and (A.27). Therefore, to show that the momentum

condition is satisfied as V/I → ∞, we establish that the function inside the curly brackets is

positive as V/I → ∞ (Hit → 0). Accordingly, the limit V/I → ∞ (Hit → 0) of the function

inside the curly brackets is positive if and only if

γ2 > γ
2
. (A.86)

Similarly, the reversal condition is satisfied as V/I → 0 (Hit → 1), if and only if

γ2 < γ̄2. (A.87)
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We conclude by showing that there always exist an active share λ such that

γ
2
< γ̄2. (A.88)

First, comparing the factors multiplying γ1 in (A.77) and (A.79), it is clear that

γ1

(
∥σI∥2 − σI′ν

)
(∥ν∥2 − ν ′σI)

> γ1

(
∥ν∥2 − ν

′
σI
)

(∥σI∥2 − σI′ν)
,

due to (A.16). Second, comparing the remaining factors in (A.77) and (A.79), it is clear that(
∥σI∥2 − σI′ν

)
(∥ν∥2 − ν ′σI)

E3t
E1t − E3t

>
E1t

E1t − E3t
(A.89)

because the denominator shrinks to zero as the active increases, (A.15). Therefore, there is

always exist a γ2 such that index asset exhibits momentum and reversal.

We continue with the non-index asset. By taking Itó’s Lemma of the non-index asset

expected return (µS
2t), given in (65), and matching the dZt terms with (35) we find that

bµ2t = − (γ2 − γ1)
2
(H1t −H4t) (1−H1t −H4t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − ν

′
σI
) (

σI − ν
)

+(γ2 − γ1)
2
(H1t −H4t) (1−H1t −H4t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − σI′

ν
) (

σI − ν
)

+(γ2 − γ1)
3
(H1t −H4t)H1t (1−H1t) ∥σI − ν∥2

(
σI − ν

)
+(γ2 − γ1)

2
(H1t (1−H1t))ν

′
σD

2

(
σI − ν

)
. (A.90)
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By taking the inner product of bµ2t and σS
2t, we find that

σS′

2tb
µ
2t =(γ2 − γ1)

2 H1t (1−H1t)×
{

(γ2 − γ1)
(H1t −H4t)

2

H1t (1−H1t)
(1−H1t −H4t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − ν

′
σI
)
∥σI − ν∥2

− (γ2 − γ1)
(H1t −H4t)

2

H1t (1−H1t)
(1−H1t −H4t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − σI′

ν
)
∥σI − ν∥2

− (γ2 − γ1) (H1t −H4t)ν
′
σD

2 ∥σI − ν∥2

− (γ2 − γ1)
2
(H1t −H4t)

2 ∥σI − ν∥2∥σI − ν∥2

− (H1t −H4t)

H1t (1−H1t)
(1−H1t −H4t) [(γ2 − 1)− (γ2 − γ1) (H1t)]

(
∥σI∥2 − ν

′
σI
)
σD′

2

(
σI − ν

)
+

(H1t −H4t)

H1t (1−H1t)
(1−H1t −H4t) [γ1 + (γ2 − γ1) (H1t)]

(
∥ν∥2 − σI′

ν
)
σD′

2

(
σI − ν

)
+
(
ν

′
σD

2

)
σD′

2

(
σI − ν

)
+ (γ2 − γ1) (H1t −H4t) ∥σI − ν∥2σD′

2

(
σI − ν

)}
. (A.91)

The function multiplying the curly brackets is always positive and approaches zero as

V/I → 0 and V/I → ∞ due to (A.26) and (A.27). Therefore, to show that the reversal

condition is satisfied as V/I → ∞, we establish that the function inside the curly brackets is

negative as V/I → ∞ (Hit → 0). Accordingly, the limit V/I → ∞ (Hit → 0) of the function

inside the curly brackets is positive if and only if

γ2 > γ
2
. (A.92)

Similarly, the reversal condition is satisfied as V/I → 0 (Hit → 1), if and only if

γ2 < ¯̄γ2 (A.93)

We conclude the proof by showing that there always exist an active share λ such that

γ
2
< ¯̄γ2. (A.94)

First, comparing the factors multiplying γ1 in (A.82) and (A.83), it is clear that

γ1

(
∥σI∥2 − σI′ν

)
(∥ν∥2 − ν ′σI)

> γ1

(
∥ν∥2 − ν

′
σI
)

(∥σI∥2 − σI′ν)
, (A.95)
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due to (A.16). Second, comparing the remaining factors in (A.82) and (A.83), it is clear that

1 +
1

(∥σI∥2 − σI′ν )

[
E4t

E4t − E1t
ν

′
σD

2

]
<

1

(∥ν∥2 − ν ′σI)

[
E1t

E4t − E1t
ν

′
σD

2 −
(
∥σI∥2 − σI′

ν
)]

(A.96)

is true if

E1t
E4t − E1t

≥
(
∥σI∥2 − σI′ν

)
ν ′σD

2

. (A.97)

The denominator in the right hand side of (A.96) shrinks to zero as the active increases

due to (A.15). Therefore, there is always exist a γ2 such that the non-index asset exhibits

momentum in outperformance and reversal in underperformance.

B Further Discussion

Proposition 8 (Discount Factor). The discount factor in the presence of risk-on incentives

is given by

ξ0,t =(It/I0)
1−γ1 (Vt/V0)

−γ2 EOn
1t /EOn

10 , (B.1)

while it is given by

ξ0,t =(It/I0)
−(γ2−1) (Vt/V0)

−γ1 EOff
1t /EOff

10 (B.2)

in presence of risk-off incentives. In the presence of both risk-on and risk-off incentives, the

discount factor is given by

ξ0,t =(It/I0)
1−γ1 (Vt/V0)

−γ2 EOn
1t /EOn

10

1

H1t/H10

, (B.3)

where EOff
1t and EOn

1t are determinstic functions of time given in (A.1) and (A.2), respectively,

and H1t is given in (14). The discount factor exhibits the following characteristics:

• It decreases following market news: ∂ξt/∂Vt < 0.

• It decreases following index news in the risk-off incentives case: ∂ξt/∂It < 0.
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• It increases following index news in the risk-on incentives case: ∂ξt/∂It > 0.

• It has a U-shape with index news in the joint incentives case. It decreases with the index

news (∂ξt/∂It < 0) if and only if the risk-on hedging demand is below a threshold,

H1t <
γ2 − 1

γ2 − γ1
< 1, (B.4)

and increases with the index news (∂ξt/∂It > 0) when H1t passes the threshold.

Regardless of the asset managers’ incentives, Proposition 8 reveals that the state price

density is inversely related to the market news, Vt — a feature that is similar to a traditional

asset pricing model: an asset that pays off in bad states get a high value.

The risk-on incentives imply that assets that pay off when the index is high get a high

value because asset managers with risk-on incentives are concerned about underperforming

the index and are willing to pay high prices for assets that pay in these states. This feature

is typical to an asset pricing model with benchmarking concerns, such as Basak and Pavlova

(2013), Buffa and Hodor (2023), Hodor and Zapatero (2023), among others.

The logic flips with risk-off incentives: assets that pay off when the index is high get a

low value. With risk-off incentives, asset managers are outperforming the index and do not

desire to hold assets that pay off when the benchmark is high. Instead of hedging unexpected

increases in the benchmark, outperforming asset managers hedge unexpected falls by taking

a short position on the benchmark and investing the proceeds in other assets — a feature

unique to risk-off incentives.

When asset managers face both risk-on and risk-off incentives, the joint incentives dis-

count factor fluctuates between risk-on and risk-off pricing environments. When the bench-

mark news (I) is low relative to the market news (V ), the risk-on hedging demand (H1t)

is small, and the asset prices correlate with the purely risk-off prices. In these states, asset

managers are more likely to outperform, and prices adjust to accommodate their risk-off

portfolios. As the benchmark news (I) increases, the risk-on hedging demand (H1t) becomes

more pronounced, and prices adjust to accommodate the heightened likelihood that asset

managers will underperform. Eventually, the risk-on hedging demand (H1t) cross the thresh-

old in (B.4) and becomes so pronounced that prices correlate with the purely risk-on prices.

Figure 11 illustrates this logic.
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Figure 11. This figure plots the discount factor as a function of index news in the joint
incentives case. The discount factor sets prices similar to the risk-off environment when the
risk-on hedging demand is below a threshold. In contrast, the discount factor sets prices
similar to the risk-on environment when the risk-on hedging demand crosses that threshold.
The parameters are as in Figure 5.
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