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Effi cient Resource Allocation in Discrete-Time Breakthrough Bandit
Models

by Audrey Hu and Liang Zou

Abstract. We study a two-armed bandit model in discrete time, where a team of

agents allocates limited resources (e.g., time) per period to achieve a breakthrough

under uncertainty. In the cooperative case, we characterize (Pareto) effi cient alloca-

tion strategies with interior solutions, improving upon the binary strategies prevalent

in existing literature. These strategies exhibit two notable features: (i) persistence,

where experimentation continues until a breakthrough is achieved, and (ii) adher-

ence to a "Goldilocks principle," whereby each agent’s incentives to experiment are

maximized at specific team sizes or task diffi culties. In the noncooperative case, we

identify a symmetric equilibrium of strategic experimentation, characterized by free-

riding, ineffi ciency, and procrastination, with no other equilibria existing. We further

demonstrate that Pareto-effi cient outcomes can be restored in equilibrium using a

dynamic profit-sharing contract that satisfies budget-balancing and limited-liability

constraints.

Keywords: Pareto effi ciency, Resource allocation, Strategic experimentation,

Dynamic profit-sharing contract, Discrete time, Exponential bandit, Goldilocks prin-

ciple.
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1 Introduction

Optimizing resource allocation under uncertainty is a fundamental challenge across

diverse real-world contexts. This paper examines a discrete-time, two-armed bandit

model that encapsulates the core economic trade-off between exploiting a "safe" arm

with a guaranteed return and exploring a "risky" arm with uncertain but potentially

superior rewards. The risky arm is either "good," offering a present value greater than

the safe arm, or "bad," devoid of any value. A team of agents, each endowed with a

single unit of divisible resources (e.g., time) per period, must decide how to allocate

their resources between the two arms. Success is achieved when a "breakthrough"

confirms the risky arm is good. If the arm is bad, all exploration time is ultimately

wasted.

This "breakthrough bandit" framework serves as a tractable model for numer-

ous real-world problems, such as R&D investment, pharmaceutical trials, mineral

exploration, and the search for evidence to support an unproven conjecture. While

prior research has extensively analyzed bandit problems, economic applications often

restrict attention to binary strategies: allocating all available resources to either the

safe or risky arm, combined with an optimal stopping rule in the absence of suc-

cess (see, e.g., Bergemann and Välimäki (2008)). Consistent with the Gittins index

theorem (Gittins and Jones (1974); Gittins (1979)), such strategies simplify analy-

sis while omitting the tradeoffs between marginal benefit and cost– a typical feature

characterizing interior solutions.1 Indeed, many real-world problems naturally involve

continuous allocation variables, such as determining annual R&D budgets, balancing

research time across projects, or setting experimental prices for new products. In such

settings with periodic decisions and concave objective functions, effi cient allocation

strategies are more likely to involve interior solutions (Rothschild (1974)).

This study addresses the gap in the literature by analyzing a breakthrough

bandit model with continuous, interior solutions, assuming the probability of success

is an exponential function of the time allocated to the good risky arm– a standard

but non-essential assumption that simplifies characterizing the optimal policy. Our

key methodological contribution is a transformation approach that incorporates both

posterior beliefs and allocation strategies as state variables, allowing for a transparent

and tractable characterization of the optimal policy. A pivotal lemma (Lemma 1)

1See, e.g., Malueg and Tsutsui (1997) and Bonatti and Hörner (2017) for analyses of interior

solutions in continuous time, and Aghion et al. (1991) in discrete time.
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simplifies the first-order conditions, providing a useful tool for understanding the

optimal trade-offbetween marginal benefit and cost associated with bandit dynamics.

Under cooperative decision-making, we find that effi cient strategies feature con-

tinuous allocations in the range (0,1), and experimentation never ceases unless a

breakthrough is achieved. This persistence arises from a subtle interaction between

Bayesian belief updates and first-order optimality conditions. While continuous explo-

ration does not guarantee discovering the good arm, it ensures that experimentation

only diminishes asymptotically over time in the absence of success. Moreover, the

optimal allocation follows a "Goldilocks principle," where incentives to experiment

peak when the task is neither too easy nor too diffi cult.

In contrast, when agents act noncooperatively, strategic experimentation under

hidden actions leads to a symmetric equilibrium, which is unique among all Nash

equilibria. Unlike continuous-time models, which often allow multiple equilibria (e.g.,

Keller et al. (2005); Bonatti and Hörner (2011); Hörner et al. (2022)), our discrete-

time framework ensures uniqueness due to the concavity of payoff functions. However,

ineffi ciencies such as free-riding and procrastination persist, highlighting the need for

mechanisms to align individual incentives with effi cient outcomes.

To address ineffi ciencies arising from strategic experimentation, we design an

outcome-contingent, dynamic profit-sharing contract that restores Pareto effi ciency

in equilibrium. In our public-good environment, it is possible to achieve the first-

best solution under both budget-balancing and limited-liability constraints. Although

players’actions are hidden information and the outcomes depend largely on luck, we

show that, at least in theory, there exist fine-tuned profit-sharing rules based on

the information available in each period that perfectly align players’incentives with

the effi cient policies. Additionally, our optimal contract avoids extreme rules like

"winner-takes-all," instead preserving the public-good nature of experimentation and

ensuring all agents benefit to some extent from a breakthrough.

The remainder of the paper is structured as follows. Section 2 reviews related

literature. Section 3 introduces the cooperative model and derives the Pareto-effi cient

solution. Section 4 extends the analysis to strategic experimentation with hidden

actions, characterizing equilibrium behavior. Section 5 presents the dynamic profit-

sharing rule that restores effi ciency. Section 6 concludes, and the Appendix contains

technical or lengthier proofs.
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2 Related Literature

This paper builds on the extensive literature on breakthrough bandit models, par-

ticularly the continuous-time framework introduced by Keller et al. (2005). Their

seminal work assumes conclusive breakthroughs with arrival times following an expo-

nential distribution. In addition to focusing on the discrete-time counterpart of Keller

et al. (2005), this study also introduces a two-dimensional transformation approach

that offers a tractable solution method for exponential bandit problems, addressing

continuous allocation strategies.

The literature on discrete-time bandit problems is vast but has primarily focused

on finite control sets.2 Among the exceptions, Chikte (1980) examined continuous

allocation strategies in discrete-time bandit problems but relied on the assumption

that the conditional probability mass function is log-supermodular, which implies

convexity of the objective function and corner solutions. In contrast, our exponential

bandit model exhibits log-submodularity, which gives rise to interior solutions, dis-

tinguishing it from Chikte’s framework. Aghion et al. (1991) advanced the analysis

of experimentation by considering continuous decisions in a general model, but their

focus is mainly on the asymptotic properties of beliefs and actions as time tends to

infinity. While Aghion et al. (1991) only made a limited attempt at characterizing

optimal experimentation strategies, the present study fully characterizes the optimal

strategies for the exponential bandit models.

In the context of discrete-time breakthrough bandits, prior research has predom-

inantly explored binary actions and optimal stopping times. Bergemann and Hege

(1998, 2005) analyzed innovation financing with linear breakthrough probabilities,

deriving binary strategies, and focused on stopping decisions. Rosenberg et al. (2007)

extended Keller et al. (2005)’s continuous-time framework to discrete time with un-

observable outcomes, showing that equilibria involve time-varying cutoff strategies

under binary-action assumptions. Heidhues et al. (2015) examined payoff observ-

ability and cheap-talk communication in discrete-time bandits with binary actions,

identifying conditions for socially optimal equilibria. Halac et al. (2016) analyzed

a principal-agent contracting problem in an exponential bandit setting with binary

actions. To the best of our knowledge, this study is the first that provides an interior

2For example, Berry and Fristedt (1985)’s book, which includes over 200 annotated references,

defines a strategy as a mapping that assigns an integer to each (partial) history of observations,

indicating which arm to select at the next stage.

5



solution for continuous, effi cient allocation strategies in discrete-time breakthrough

bandit models.

The study is also related to the growing literature on strategic experimentation,

which has been extensively studied in the continuous-time framework following the

seminal work of Bolton and Harris (1999). For the exponential bandit, Keller et al.

(2005) derived the influential "bang-bang" strategy for cooperative solutions, where

resources are fully allocated to the risky arm above a belief threshold and withdrawn

below it. This strategy has been widely applied in theoretical and practical contexts

(e.g., Awaya and Krishna (2021); Thomas (2021); Besanko and Wu (2013); Murto

and Välimäki (2011)). Among the earlier works, Choi (1997) explored R&D races

under hazard rate uncertainty, while Malueg and Tsutsui (1997) characterized in-

terior solutions by introducing quadratic cost functions. Extensions to inconclusive

breakthroughs (Keller and Rady (2010)), career concerns with continuous decision

variables (Bonatti and Hörner (2017)), and principal-agent problems (Guo (2016);

Halac et al. (2017)) further highlight the adaptability of continuous-time models.

However, discrete-time and continuous-time exponential bandits exhibit fundamental

differences. For one thing, in discrete time, breakthrough probabilities are expo-

nential and concave in allocations, reflecting diminishing returns to exploration. In

continuous time, probabilities are linear in allocations due to their Poisson structure,

leading to corner solutions for risk-neutral agents with linear cost functions. In these

situations, interior (or mixed) allocations in continuous time arise mainly in nonco-

operative equilibria, where players are indifferent between arms. While Keller et al.

(2005), Bonatti and Hörner (2011), and Hörner et al. (2022) document the multiplic-

ity of equilibria in continuous-time frameworks, we demonstrate that discrete time

ensures equilibrium uniqueness.

In the context of contracting under bandit dynamics, our study is related to,

among others, the above-cited studies by Bergemann and Hege (1998, 2005), Guo

(2016); and Halac et al. (2016) on principal-agent problems, Bonatti and Hörner

(2011) on free riding, Halac et al. (2017) on contest design, and Bonatti and Hörner

(2017) on career concerns. Our dynamic profit-sharing contract complements Bon-

atti and Hörner (2011)’s self-enforcing deadline contracts by fully restoring Pareto

effi ciency. Moreover, our optimal contracting result complements Halac et al. (2017)’s

findings regarding the optimality of “public winner-takes-all”or “hidden equal-sharing”

contests under certain scenarios. Notably, our contract preserves the public-good na-

ture of experimentation, allowing all agents to share the benefits of breakthroughs.
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Finally, this study relates to broader applications of exponential bandits in eco-

nomics. Sadler (2021) examined optimal tax and subsidy policies to enhance research

spillovers in sequential exponential bandits, while Hörner and Skrzypacz (2017) em-

phasized the versatility of bandit models for studying innovation and strategic exper-

imentation. By addressing interior solutions and introducing dynamic profit-sharing

mechanisms, this study deepens our understanding of discrete-time settings and offers

practical insights for real-world applications.

3 The Basic Model

Time is discrete, with countable periods t ∈ N = {1, 2, ...}. There are n ≥ 1 agents,

each endowed with one unit of a perfectly divisible resource (referred to as time) per

period. Each agent faces an identical two-armed bandit problem. One arm is "safe,"

and the other is "risky." The safe arm provides a known (expected) return of ` > 0 per

period. All agents have the same discount factor δ ∈ (0, 1), so if an agent allocates

full time to the safe arm indefinitely, he enjoys the present value L = `/(1 − δ)

from the safe arm. The risky arm has an unknown type ω ∈ {0, 1}. It is "good"
for all agents when ω = 1 or "bad" for all agents when ω = 0. If it is bad, it yields

nothing; if it is good, it is worth full-time exploitation, with an expected present value

G = γL ∈ (L,∞) to each agent, where γ > 1 measures the relative attractiveness of

the good risky arm compared to the safe arm.

A “breakthrough”occurs when any of the agents obtains conclusive evidence

that the risky arm is good. Before this happens, the agents have independent proba-

bilities of a breakthrough in any period t. Given that the risky arm is good, when an

agent allocates a fraction at ∈ [0, 1] of his time to the risky arm in period t, his break-

through probability follows an exponential distribution: 1− e−λat , where λ ∈ (0,∞)

represents how easy it is to achieve a breakthrough. Following standard approaches

in bandit problems, we assume memoryless experiments, where the probability of

success in each period depends solely on the current allocation.

In this basic model, we assume the agents work cooperatively as a team, jointly

choosing a feasible allocation plan that maximizes the sum of their expected payoffs.

For the exponential bandit problem under investigation, the probability of a break-

through depends on the total sum of agents’times allocated to the risky arm and not

on how they share it. Thus, without loss of effi ciency, we assume that agents share

the total allocation of time equally so that the team’s problem can be analyzed as a
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single (representative) agent’s problem, whose decisions are mimicked by all others.

With at ∈ [0, 1] of his time allocated to the risky arm, the representative agent’s

conditional probability of a breakthrough now equals F (at) = 1 − e−λnat given the
arm is good.

A feasible allocation plan for the team can be now described as a sequence of

contingent allocations (or actions) by each agent: α = (αt)
∞
t=1, such that αt ∈ [0, 1] is

measurable with respect to the information available at the start of period t, and the

plan stops once a breakthrough occurs.

The agents start with a prior common belief that the risky arm has a proba-

bility π0 ∈ [0, 1] to be good. According to Bayes’rule, if the representative agent

(henceforth, agent) allocates α1..., αt−1 in periods 1 to t− 1 without a breakthrough,

the posterior belief by the end of period t is updated as follows:

πt =

{
1+ if a breakthrough occurs in period t

πt−1(1−F (αt))
1−πt−1F (αt) if no breakthrough in t

(1)

where 1+ means that if a breakthrough occurs, πt = 1, together with the fact that the

risky arm is verified (rather than believed) to be good. The sequence (πt)
∞
t=0 forms a

martingale, meaning that the conditional expectation E(πt|πt−1) equals πt−1 for all
αt ∈ [0, 1] and t ∈ N.

If a breakthrough arrives in period t, we assume that the agent enjoys the

present value G starting from period t + 1. Thus, the agent’s conditional expected

payoff in each period t, given that no breakthrough has occurred yet, equals (1 −
αt)`+ δπt−1F (αt)G. Given the allocation plan α and the belief updating rule (1), the

agent’s discounted expected payoff thus equals

∞∑
t=1

δt−1
t−1∏
s=1

(1− πs−1F (αs)) [(1− αt)`+ δπt−1F (αt)G] (2)

where
∏0

s=1(·) := 1, and
∏t−1

s=1(1− πs−1F (αs)) is the probability of no breakthrough

until t−1. The representative agent’s objective is to choose a feasible allocation plan

α to maximize the expected payoff in (2) subject to (1), given the prior π0, with the

understanding that the plan will stop as soon as a breakthrough arrives. By standard

arguments (e.g., Karlin (1955)), an optimal solution exists for the agent’s problem.

Using dynamic programming, if α attains optimality, then the agent’s optimal

expected payoff satisfies the functional equation, or Bellman equation, for all t ∈ N:

v(αt, πt−1) = max
a∈[0,1]

v(a, πt−1) s.t. (1) (3)
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where v : [0, 1]2 → [L,G] represents the agent’s conditional expected payoff given no

breakthrough has occurred:

v(a, πt−1) = (1− a)`+ δπt−1F (a)G+ δ(1− πt−1F (a))v(αt+1, πt) (4)

The interpretation is straightforward: suppose there has been no breakthrough

so far and the agent’s past allocations imply a posterior belief πt−1. If the agent

allocates a to the risky arm in period t, he receives an immediate return (1−a)` from

the safe arm. There is a probability πt−1F (a) that a breakthrough will occur by the

end of period t, rewarding the agent with G. If no breakthrough occurs, the agent

updates his belief and continues to the next period. By the principle of optimality

for dynamic programming (e.g., Stokey et al. (1989), Chapter 4), since payoffs are

bounded, the sequence α maximizes (2) if and only if αt maximizes v(a, πt−1) for all

t ∈ N, subject to (1).
The standard approach to solving (3)-(4) often restricts attention to solutions

and policies that are time-invariant functions of the posterior beliefs. Suppose there

exists a value function v∗ : [0, 1]→ [L,G] as the solution to (3)-(4), along with a pure

stationary Markov policy function ϕ : [0, 1]→ [0, 1] that achieves this solution. Then,

given any prior π0, the sequence α = (αt)
∞
t=1, defined by αt = ϕ(πt−1), represents the

optimal allocation plan, attaining the value v∗(πt−1) = v(ϕ(πt−1), πt−1).

While this restriction is theoretically sound (Blackwell (1965), Puterman (1994))

and works effectively in specific cases (e.g., Bergemann and Hege (1998, 2005)), it

presents significant tractability challenges in more general scenarios. For instance,

when allocation strategies involve interior solutions characterized by first-order con-

ditions, the optimal policy often can only be defined implicitly. Furthermore, with

belief-updating, the conditions that define the optimal policy function typically de-

pend on and interact with subsequent belief updates in a manner that is analytically

intricate and diffi cult to disentangle. Of course, this restriction is unnecessary. Given

the initial state of belief and updating rules, any complete prescription that specifies

actions in each period t, accounting for all contingencies, qualifies as a valid strategy

(Karlin (1955)). To overcome the potential diffi culties in characterizing the optimal

policy as a single-dimensional state function, we therefore adopt a two-dimensional

transformation approach to solve the program in (3)-(4). Specifically, we define both

the allocation αt and the posterior belief πt−1 as state variables, combining the alloca-

tion space and the posterior space into a product state space [0, 1]2. Our objective is

then to derive a time-invariant, continuous and monotone transformation from [0, 1]2
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to itself, mapping each paired state (αt, πt−1) to its adjacent paired state.

This transformation, together with a given prior π0 and a terminal or transver-

sality condition on limt→∞(αt, πt−1), enables us to derive the optimal allocation-belief

pair in the first period, (α1, π0), using backward induction (Theorem 1). The resulting

optimal policy plan is then uniquely characterized by the law of motion implied by

the transformation (Theorem 2). Furthermore, denoting vt = v(αt, πt−1), the process

{(αt, πt−1)}∞t=1 uniquely determines the value process (vt)
∞
t=1 through the recursive

relation:

vt = δG+ (1− αt)`+ δ(1− πt−1F (αt)) (vt+1 −G) (5)

Definition 1 The process {(αt, πt−1)}∞t=1 is called an optimal policy plan if it sat-
isfies (1) and v(αt, πt−1) = maxa∈[0,1] v(a, πt−1) for all t ∈ N. The plan stops from
period t onward if πt−1 = 1+.

As will be seen, the proposed transformation approach significantly simplifies

the analysis, providing a dynamic framework that balances exploration and exploita-

tion in optimal allocation strategies. An additional advantage of this approach is its

flexibility, as it naturally accommodates the possibility of an exogenous deadline for

experimentation– a practical feature not afforded by pure stationary Markov policies

or Gittins indexing policies. While we do not address exogenous deadlines separately,

this possibility is naturally embedded as straightforward corollaries in our main the-

orems.

Before presenting Theorem 1, we need to establish some preparatory results

first. By standard arguments, v(a, π) is continuously differentiable in both arguments

(given F exponential). Therefore, for all a = αt at which (3) has an interior solution,

the first-order condition must hold:
∂

∂a
v(αt, πt−1) = −`+ δπt−1F

′(αt) [G− v(αt+1, πt)] (6)

+δ(1− πt−1F (αt))
∂v(αt+1, πt)

∂πt

∂πt
∂a

(7)

= 0,

or else αt = 0 or 1, depending on whether v(0, πt−1) or v(1, πt−1) is the greatest over

the entire interval [0, 1].

The term in (7) captures the learning effect inherent in the bandit problem.

This effect is negative because, by the envelope theorem,

d

dπt
v(αt+1, πt) =

∂

∂πt
v(αt+1, πt) > 0
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(holding any allocation fixed, increasing posterior πt increases the probability of a

breakthrough), and ∂πt/∂a < 0, for all πt−1 6= 0, 1. Myopic solutions, on the other

hand, ignore this learning effect and equate the marginal cost ` with the current-period

marginal benefit δπt−1F ′(αt) [G− v(αt+1, πt)] . As a result, optimal allocations that

account for learning effects are generally lower than the myopic allocations.

We now derive a simpler expression for the partial derivative in (6)-(7), which

will prove highly useful. The lemma below holds for a general probability function F.

So, we continue to use the more general functional form F for ease of applications.

Lemma 1 Suppose {(αt, πt−1)}∞t=1 is an optimal policy plan. Then, ∀t ∈ N,

∂

∂a
v(a, πt−1) = −`+ δπt−1F

′(a)Ht+1 (8)

where Ht+1 ∈ (0, G− L] is defined recursively by

Ht+1 = (γ − 1 + αt+1)`+ δ(1− F (αt+1))Ht+2 (9)

Proof. See Appendix.

The proof of this lemma demonstrates that tracking future posteriors is unnec-

essary. In comparison to (6)-(7), we observe from (8) that the function Ht+1 captures

the overall marginal benefit, including learning effects, of investing time in the risky

arm. The simplified form of ∂v/∂a arises because Ht+1 does not depend directly on

the sequence of posterior beliefs {πt, πt+1, ...}, unlike v(αt+1, πt).

3.1 Basic properties of the optimal plan

From now on in the basic model, we invoke the assumption F (a) = 1 − e−λna. If

exploring the risky arm is deemed unprofitable, the agent will choose the safety arm

indefinitely so that v ≡ L. To avoid this trivial case, we assume

Assumption 1 δλ (γ − 1) > 1− δ.

Clearly, this assumption fails to hold if γ is close to 1 (the potential reward

is too low), if λ is suffi ciently low (too diffi cult to make a breakthrough), or if δ is

suffi ciently low (too costly to wait for an outcome). Assumption 1 allows us to define

a minimum posterior belief:

πmin =
1− δ

δλn (γ − 1)
∈ (0, 1) (10)
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Note that:
∂

∂at
v(at, πmin)|at=0 = −`+ δπminλn(G− L) = 0,

which implies that αt > 0 if and only if πt−1 > πmin.

We partition the bandit environment into two complementary scenarios:

Scenario I : δe−λn (1 + λnγ) < 1 (11)

Scenario II : δe−λn (1 + λnγ) ≥ 1 (12)

For simplicity of notation, we will often denote λn by θ when there is no need

to distinguish between λ and n individually.

We now introduce a "no stopping" result that sharply contrasts with existing

literature on the cooperative exponential bandit problems under binary strategies.

Proposition 1 Suppose π0 ∈ (πmin, 1], and {(αt, πt−1)}∞t=1 is an optimal policy plan
attaining (vt)

∞
t=1, a solution to (3)-(3).

(i) If π0 = 1, then αt ≡ α̂ ∈ (0, 1] and vt ≡ v∗, given by

v∗ = G− (γ − 1 + α̂) `

1− δe−λnα̂ ,

In Scenario I, α̂ ∈ (0, 1) is the unique solution of

δe−λnα̂ (λn(γ − 1 + α̂) + 1)− 1 = 0 (13)

In Scenario II, α̂ = 1.

(ii) If π0 ∈ (πmin, 1), then αt ∈ (0, 1] and vt > L for all t ∈ N.
Consequently, experimentation with the risky arm never stops without a break-

through.

Proof. (i) Suppose π0 = 1. In this case, the Bellman equations in (3)-(4 involve no

learning effect, as the belief that the risky arm is good is already certain. This allows

for a direct derivation of the solution. Substituting πt−1 = 1 and αt = α̂ for all t, the

equations reduce to the following (recall θ = λn):

v∗ = (1− α̂)`+ δ
(
1− e−θα̂

)
G+ δe−θα̂v∗

=
(1− α̂)`+ δ

(
1− e−θα̂

)
G

1− δe−θα̂

= G− (γ − 1 + α̂) `

1− δe−θα̂

12



We now differentiate v(at, 1) in (4) with respect to at, holding future actions fixed at

α̂ :
∂

∂at
v(at, 1) = −`+ δθe−θat (G− v∗)

Noting that v(at, 1) is a concave function of at, the optimal α̂ can then be determined

by solving the first-order condition ∂
∂a
v(α̂, 1) = 0, or by verifying boundary conditions

when α̂ reaches its limit α̂ = 0 or α̂ = 1.

We can now substitute v∗ into the equation and rearrange the terms to obtain:

∂

∂a
v(α̂, 1) = −`+ δθe−θα̂ (G− v∗)

=
[
δe−θα̂ (θ(γ − 1 + α̂) + 1)− 1

] `

1− δe−θα̂

Define the term in square brackets by M(α̂). This is a continuous and strictly de-

creasing function:

M ′(α̂) = −θ2δe−α̂θ (γ − 1 + α̂) < 0

The condition πmin < 1 implies M(0) > 0, so α̂ > 0. Under Scenario I, we have

M(1) < 0, so M(α̂) = 0 defines a unique solution α̂ ∈ (0, 1). Under Scenario II, we

have M(1) ≥ 0 so that α̂ = 1.

(ii) Consider next that π0 ∈ (πmin, 1). It suffi ces to show that πt−1 > πmin

implies πt > πmin for all t ∈ N. We prove this by contradiction. Pick any t such
that πt−1 > πmin, meaning αt > 0. Suppose πt ≤ πmin. Then, αt+1 = 0, implying

Ht+1 = G − L. From (8) in Lemma 1, αt, πt−1 and πt must satisfy the following

conditions:

∂

∂at
v(αt, πt−1) = −`+ δπt−1θe

−θαt(G− L) ≥ 0

∂

∂at+1
v(0, πt) = −`+ δπtθ(G− L) ≤ 0

where the second inequality comes from the assumption πt ≤ πmin. Cancelling terms,

these two conditions imply
πt−1
πt
≥ eθαt . (14)

However, by (1), for αt > 0, we have

πt−1
πt

= eθαt (1− πt−1) + πt−1 < eθαt (15)

The contradiction between (14) and (15) proves πt > πmin, and therefore αt+1 > 0

and vt+1 > L.
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The general "no-stop" result in this proposition might appear counterintuitive

at first glance. The proof highlights a key reason: for stopping to be optimal at any

time t + 1, two conditions must be met simultaneously. One condition, outlined in

(14), arises from the first-order condition for optimality, while the other, in (15), is

derived from Bayes’rule. However, stopping in any period t creates a conflict between

these conditions, rendering it impossible for both to hold simultaneously.

This result naturally raises an important question: if the agent never stops

experimenting with the risky arm, does this imply that the good arm will always

be discovered with probability 1? More formally, suppose that in period 0, Nature

randomly determines the type of the risky arm ω ∈ {0, 1} to be good, i.e., ω = 1.

Without knowing this outcome, will the agent, through persistent experimentation,

eventually discover the truth about the risky arm’s type?

Our next proposition directly addresses this question.

Let Pα(ω) : {0, 1} → [0, 1] denote the conditional probability of an eventual

breakthrough under plan {(αt, πt−1)}∞t=1 , given that the type of the risky arm is ω.

Obviously, we have Pα(0) = 0.

Proposition 2 Suppose π0 ∈ (πmin, 1] and {(αt, πt−1)}∞t=1 is optimal.
(i) If π0 = 1, then Pα(1) = 1.

For π0 ∈ (πmin, 1), the following results hold.

(ii) πt → πmin and αt → 0 as t→∞.
(iii) Given that the risky arm is good, the conditional breakthrough probability

equals

Pα(1) =
π0 − πmin

π0 (1− πmin)
∈ (0, 1) (16)

Consequently, the unconditional breakthrough probability is given by

π0Pα(1) =
π0 − πmin
1− πmin

∈ (0, 1) (17)

(iv) Both probabilities in (16) and (17) are increasing functions of π0, δ, λ, n,

and γ.

Proof. The conditional probability of no breakthrough by period T , given that the
risky arm is good, equals e−θ

∑T
t=1 αt .

(i) Suppose π0 = 1. By Proposition 1(i), αt ≡ α̂ > 0. It follows that given ω = 1,

the conditional breakthrough probability 1− e−θT α̂ → 1 as T →∞.
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(ii) Suppose π0 ∈ (πmin, 1). By Bayes’ rule, the odds ratios of the posterior

beliefs are updated as follows:

πT
1− πT

= e−θαT
πT−1

1− πT−1
= e−θ

∑T
t=1 αt

π0
1− π0

(18)

The sequence of no-breakthrough posteriors (πt)
∞
t=0 forms a decreasing sequence,

bounded below by πmin. Thus, by the Monotone Convergence Theorem, πt tends to

a limit π∞ ≥ πmin. Taking the limit as T →∞ in (18) yields

π∞
1− π∞

= e−θ
∑∞
t=1 αt

π0
1− π0

(19)

This implies limt→∞ αt = 0 because the sum of the nonnegative numbers
∑∞

t=1 αt is

finite. Consequently, taking the limit in (9), we obtain

lim
t→∞

Ht+1 = (γ − 1 + lim
t→∞

αt+1)`+ δ lim
t→∞

e−θαt+1 lim
t→∞

Ht+2

= (γ − 1)`+ δ lim
t→∞

Ht+2

Solving this gives

lim
t→∞

Ht+1 =
γ − 1

1− δ ` ( = G− L)

By Lemma 1, for all t such that αt ∈ (0, 1), we have

∂

∂at
v(αt, πt−1) = −`+ δπt−1θe

−θαtHt+1 = 0

Thus, as t→∞, we obtain

−`+ δπ∞θ
γ − 1

1− δ ` = 0 =⇒ π∞ = πmin

Thus, the proof of (ii) is complete.

(iii) Given ω = 1, the agent’s breakthrough probability can now be computed

from (19), substituting πmin for π∞ :

Pα(1) = 1− e−θ
∑∞
t=1 αt (20)

= 1− πmin
1− πmin

1− π0
π0

=
π0 − πmin

π0 (1− πmin)

which gives (16). Multiplying both sides by π0 gives (17).
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(iv) The results are straightforward to verify, noting that πmin is a decreasing

function of δ, λ, n, and γ.

This proposition demonstrates that the good risky arm will be discovered with

probability 1 if and only if the agent’s prior belief is correct, i.e., π0 = 1. This scenario

corresponds to the "certain success project" discussed in Bergemann and Hege (2005).

The certainty of success arises because, in this case, the posterior belief remains at 1

regardless of any failures in previous periods, thereby encouraging the agent to persist

with a constant, positive allocation of time (α̂ > 0) to the risky arm (Proposition 1).

As a result, the probability of failure diminishes to 0 as the number of trials increases

indefinitely.

In contrast, when π0 < 1, even though the agent never stops experimenting,

the lack of a breakthrough leads to repeated downward adjustments of the posterior

belief toward πmin. This, in turn, causes the time allocated to the risky arm (αt) to

gradually decline toward 0. While this decline alone does not necessarily imply that

the probability of failure remains above 0 as t → ∞, the result is driven by Bayes’
rule in (18), combined with the breakthrough probability expressions in (16) and (17).

Proposition 2 thus shows that “adequate learning” that the true state of the risky

arm will be uncovered with certainty in the long run is not guaranteed. See, e.g.,

Aghion et al. (1991) for more about adequate learning in related contexts.

The necessary condition for α to be optimal– that (αt, πt−1) must tend to

(0, πmin) as t → ∞– serves as a critical transversality condition in deriving the op-
timal policy plan. This condition ensures consistency with the underlying dynamic

programming framework and the natural progression of beliefs and allocations in the

absence of a breakthrough.

Part (iv) of Proposition 2 examines the comparative statics of breakthrough

probabilities with respect to key parameters π0, θ, δ, and γ. Before interpreting these

results, it is useful to first analyze the comparative statics of the total maximum time

that the representative agent plans to allocate to the risky arm.

Proposition 3 Suppose π0 ∈ (πmin, 1) and {(αt, πt−1)}∞t=1 is an optimal plan. Define
for each agent the maximum time that he plans to allocate to the risky arm by A =∑∞

t=1 αt.

(i) A is an increasing function of (π0, δ, γ).

(ii) Fix any (π0, δ, γ) and consider A as a function of θ. There exists a unique

θ∗ that maximizes A such that A′(θ) > 0 for θ < θ∗ and A′(θ) < 0 for θ > θ∗.

16



Proof. By (16), we have

A =
1

θ
ln

(
π0

(1− π0)
1− πmin
πmin

)
(i) The right-hand side increases in π0 and decreases in πmin. Given that πmin is a

decreasing function of δ and γ, A is an increasing function of (π0, δ, γ).

(ii) Substituting (10), we get

A′(θ) = −1

θ

(
A− δ (γ − 1)

δ − θδ + θγδ − 1

)
Therefore, A′ = 0 implies

A =
δ (γ − 1)

δ − θδ + θγδ − 1

and A′′ = −1

θ

(
A′ − ∂

∂θ

δ (γ − 1)

δ − θδ + θγδ − 1

)
= −1

θ
A2 < 0

The statement (ii) is thus confirmed.

Since A is directly related to the breakthrough probabilities in (17)-(16), the

comparative statics results in Proposition 3(i) and Proposition 2(iv) can be inter-

preted as follows: In (17), increasing π0 has two effects. First, there is a direct effect,

as a higher initial belief (π0) increases the probability that the risky arm is good. Sec-

ond, there is an indirect effect, where a higher π0 encourages the agent to commit a

greater total amount of time (A) to exploring the risky arm. Both effects are positive

and contribute to a higher probability of a breakthrough. In (16), only the indirect

effect is present, as belief updating through exploration remains the primary driver.

Nonetheless, this indirect effect still leads to a higher probability of a breakthrough

by inducing a greater allocation of time (A). Similarly, increases in δ or γ make ex-

ploration more appealing. This results in a positive, indirect effect on breakthrough

probabilities, driven by an increased level of total time allocated to exploration (A).

Regarding the hazard rate, an increase in λ has a direct positive effect on the

breakthrough probability. However, its impact on the agent’s exploration intensity is

ambiguous and may vary, as illustrated in Figure 1. Interestingly, Proposition 3(ii)

highlights a new observation: A(λn) follows the Goldilocks principle. Specifically,

optimal allocation to the risky arm increases with λn when the task is challenging

(low λn) but decreases when the task becomes easier (high λn).
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Figure 1: The Goldilocks Principle in Optimal Allocation.
Left Panel : The representative agent allocates the maximum total time to experi-

mentation when the task diffi culty is moderate– neither too challenging (low λ) nor

too easy (high λ). This panel depicts the planned total exploration time from the

current period onward (A) as a function of λ and the updated belief π, for parameters

δ = 0.95, γ = 2, and n = 1.

Right Panel : The representative agent maximizes total time committed to experi-

mentation when the team size (n) is optimal– neither too small nor too large– as

indicated by the taller bars. However, the probability of eventually discovering the

good arm increases with team size, as shown by the shorter bars. This figure is

generated with parameters λ = 0.1, π0 = 0.2, δ = 0.9 and γ = 5.

The intuition behind this result lies in the agent’s confidence in achieving a

breakthrough. When λ or n is high, there is already substantial confidence that a

breakthrough will occur as long as the risky arm is good. A further increase in λ

or n reduces the marginal need for additional time allocation due to the opportunity

cost of exploration. Conversely, when the task is suffi ciently diffi cult, a higher λ or n

makes the breakthrough more attainable, motivating the agent to allocate more time

to exploration in pursuit of the potential reward.

The finding in Proposition 3(ii) contrasts with Malueg and Tsutsui (1997), who

predicted that optimal allocation should always increase with λ. In the binary-choice
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literature, Choi (1997) was the first to observe indeterminate comparative static pre-

dictions regarding the effect of λ. Choi attributed this ambiguity to hazard rate

uncertainty, demonstrating that increasing λ could extend the experiment’s stopping

time when the prior belief π0 is low but shorten it when π0 is high. In contrast, our

study provides clearer insights: for any team size n, the total allocation A peaks at a

unique λ∗n ∈ (0,∞), which is a function of all the exogenous variables.

Similar non-monotonic comparative static results have been documented in

other contexts, such as in Halac et al. (2016) regarding the optimal stopping time

and in Bobtcheff and Levy (2017) concerning the optimal trigger time for investment.

Learning offers one explanation for the negative effect of increasing λ when the task

is relatively easy, as posterior beliefs decline more rapidly with higher λ. However,

in the present setting with continuous strategies, we can show that the pattern in

Figure 1 persists even in a single-period problem. This indicates that learning alone

does not fully account for the observed non-monotonicity.

A more fundamental reason for this effect lies in the expected marginal benefit

of allocation: it increases with λ when the exploration task is diffi cult (low λ) but

decreases when the task becomes easy (high λ). Thus, the pattern observed in Figure

1 reflects an inherent structural property of the optimization problem, influenced by

but not limited to the exponential probability function. We term this phenomenon

the "Goldilocks principle," capturing the idea that optimal allocation is maximized

when the exploration task is "just right" in diffi culty.

The Goldilocks principle also applies to team size. As illustrated in Figure 1

(right, tall bars), there exists an optimal team size, n = 4, that maximizes each

agent’s total time commitment to the risky arm. For n < 4, increasing the team size

"boosts morale," leading each team member to allocate more time to the risky arm.

However, for n ≥ 4, further increases in team size lead to a "taking-it-easy" effect,

causing each member to reduce their committed time for experimentation.

Despite this decline in individual commitment, the overall effect of increasing

n on the probability of an eventual breakthrough remains positive. As team size

approaches infinity, the good risky arm will be discovered with probability 1, as

indicated by the short bars in Figure 1 (right).

3.2 Optimal solution

We are ready now to present the main result of the basic model.
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Theorem 1 There exists a unique solution (vt)
∞
t=1 to (3)-(4), attained by a unique

optimal policy plan {(αt, πt−1)}∞t=1. For π0 ∈ [0, πmin], (αt, πt−1) ≡ (0, πmin) and

vt ≡ L. For π0 = 1, (αt, πt−1) ≡ (α̂, 1) and vt ≡ v∗, as given in Proposition 1.

For π0 ∈ (πmin, 1), there exists a time-invariant, continuous and increasing backward

transformation (φ, ξ) : [0, 1]2 → [0, 1]2 such that

(i) in Scenario I, (11), for all t ∈ N :

αt = φ (αt+1, πt) :=
1

λn
ln

(
1 + δλn (γ − 1 + αt+1)−

1− δ
πt

)
∈ (0, 1) (21)

πt−1 = ξ (αt+1, πt) :=
πt

πt + e−λnφ(αt+1,πt)(1− πt)
∈ (πmin, π0) (22)

(ii) in Scenario II, (12), there is a unique switching period τ ∈ {0} ∪ N such that

αt = 1 for all t ≤ τ 3 and the remaining plan {(αt, πt−1)}∞t=τ+1 satisfies (21)-(22).
(iii) The sequence (vt)

∞
t=1 satisfies (5), with the inputs from {(αt, πt−1)}

∞
t=1, un-

der both Scenarios I and II.

Proof. See Appendix.

Theorem 1 demonstrates that, in any period t, the pair of optimal allocation

and belief (αt, πt−1) is uniquely determined by the subsequent state via the mapping

(φ, ξ) defined in (21)-(22). This mapping is time-invariant, continuous and increasing,

offering a remarkably simple algorithm for determining the optimal allocation plan

given any prior π0 (see Figure 2).

As seen in the proof of this theorem, we introduce a novel approach featuring

a form of backward recursion to derive the transformation (21)-(22). This approach

consists of three steps:

1. Initial Assumption: We begin by considering an arbitrarily large but finite T ,

assuming the experiment stops after period T . In this context, the posterior

belief in the last period is πT−1 = (1 + εT )πmin with εT > 0 but suffi ciently

small. Crucially, we treat πT−1 as a free variable rather than a function of the

preceding state or history of the past allocations.

2. Backward Optimization:. Using backward induction while ensuring consistency

with Bayes’rule for posteriors, we derive an optimal sequence (αt, πt−1|εT )Tt=1
parameterized by εT .

3If τ = 0, without any consequence we define α0 = 1.
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3. Existence and Uniqueness: We show the existence of a unique εT (π0) such

that the sequence (αt, πt−1|εT (π0))
T
t=1 has the initial prior equal to π0. Fi-

nally, by taking the limit as T → ∞ and applying the transversality condition

(αT , πT−1) → (0, πmin), which implies εT (π0) → 0, we establish the existence

and uniqueness of the optimal policy plan.

Since the mapping (21)-(22) is bijective, the functional relationship between any

two adjacent pairs of states can also be expressed by a forward-moving law of motion,

given the optimal period-1 state (α1, π0).

Theorem 2 The optimal policy plan characterized in Theorem 1, {(αt, πt−1)}∞t=τ+1
after the possible switching period τ ∈ {0} ∪ N, obeys the law of motion

αt+1 =
1

δλn

(
eλnαt +

1− δ
πt
− 1

)
− (γ − 1) ∈ (0, 1) (23)

πt =
πt−1e

−λnαt

1− πt−1(1− e−λnαt)
∈ (πmin, π0) (24)

given the initial interior optimal state (ατ+1, πτ ) .

Proof. This is a straightforward corollary of Theorem 1, given the equivalence be-

tween (21)-(22) and (23)-(24).

Compared to Theorem 1, the forward motion described in Theorem 2 offers

the advantage of being more practical to implement, for example, by an automated

system or robot once the agent has specified the initial interior state. The agent may

begin by fully allocating time to exploring the risky arm. As time progresses without a

breakthrough, the agent will switch to a reduced allocation strategy at a specific time

τ , allocating less than the full amount. Unlike the "bang-bang" strategy, where the

allocation drops abruptly from 1 to 0 at a cutoff posterior belief, Theorem 2 predicts

more gradual downward adjustments in response to the absence of breakthroughs.

It is important to emphasize that at the switching time τ , the pair of state

variables (ατ+1, πτ ) must satisfy optimality conditions. If not, the forward motion law

described in (23)-(24) would lack an optimality foundation. Thus, applying Theorem

2 requires first deriving (ατ+1, πτ ) using the backward recursion algorithm outlined

in Theorem 1.

Figure 2 depicts the dynamics of the paired state (πt−1, αt) for Scenario I (left)

and Scenario II (right). Consistent with the Goldilocks principle, when λ or n is
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Figure 2: Both figures assume δ = 0.9, γ = 2, starting with π0 = 0.95. They differ

only in λn.

relatively high (λn = 1.5), expecting an easy breakthrough the agent does not allocate

full time to the risky arm. But after a few periods of failure, the posterior quickly

drops toward πmin indicating that the risky arm is most likely bad. As a result,

αt quickly drops toward 0. When λn is reasonably encouraging but not suffi ciently

low (λn = 0.5), the agent allocates full time to the risky arm, switching to a more

moderate allocation strategy after some periods of failure as the posterior declines

gradually towards πmin.

The basic model presented in this section offers broad applicability within the

context of exponential bandit theory. We demonstrate its usefulness through exam-

ining the consequences of strategic experimentation under noncooperative behavior

in Section 4, and exploring optimal contracting solutions for noncooperative agents

in Section 5.

4 Strategic Experimentation

In this section, we apply the basic model to strategic experimentation, assuming

n ≥ 2 homogeneous agents (or players). Each agent i ∈ {1, 2, ..., n} allocates in each
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period t a fraction of his time, denoted ai,t ∈ [0, 1], to the risky arm and 1−ai,t to the
safe arm. Again, a breakthrough occurs when at least one agent obtains conclusive

evidence that the risky arm is good, in which case each agent will enjoy an expected

present value G = γL ∈ (L,∞) from the risky arm.

Conditional on that the risky arm is good (ω = 1), each agent i independently

has a breakthrough probability 1 − eλai,t in any period t, so that the probability of
a breakthrough equals F (at) = 1 − eλ

∑n
i=1 ai,t , given at = (a1,t, ..., an,t) ∈ [0, 1]n. We

assume that a breakthrough by any agent is publicly observable, ending everyone’s

need for further experimentation. However, each agent’s allocation decision is private

information, so that ai,t is unknown to agents other than i (see Bonatti and Hörner

(2011)).

We model the agents as playing a dynamic noncooperative game under incom-

plete information due to hidden actions. They start with a common prior belief

that the probability of ω = 1 is π0 ∈ [0, 1]. While a (pure) strategy for player i

could be defined by a pure stationary Markov policy as a function of the common

belief, this approach is cumbersome and unnecessary, as discussed in the basic model.

We thus define player i’s strategy by a feasible allocation plan κi = (κi,t)
∞
t=1 such

that each κi,t ∈ [0, 1] is measurable with respect to the information available at the

start of period t. The strategy terminates once the game concludes upon a break-

through. A strategy profile is then defined as the collection of all players’strategies

κ = (κ1, ..., κn). In each period t, let κt = (κ1,t, ..., κn,t) represent the vector of players’

allocations, and let κ−i,t denote the allocation vector excluding player i’s allocation

κi,t. The total allocation of all players in period t is denoted by Kt =
∑n

i=1 κi,t, with

K−i,t = Kt − κi,t representing the total allocation by all players except player i.
Given strategy profile κ and that no breakthrough has occurred till t − 1, the

players’common belief is updated as follows:

ηt =

{
1+ if breakthrough occurs in t

ηt−1e
−λKt

1−ηt−1(1−e−λKt )
if no breakthrough in t

(25)

where η0 = π0. Following this updating rule, player i’s expected payoff is expressed

as

∞∑
t=1

δt−1

(
t−1∏
s=1

(1− ηs−1(1− e−λKs))
[
(1− κi,t)`+ δηt−1(1− e−λKt)G

])
(26)

Each player i seeks to maximize his expected payoff (26) by choosing a policy plan
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(κi,t, ηt−1)
∞
t=1 (see Definition 1), taking as given the other players’strategy profile κ−i

and the common belief process (ηt−1)
∞
t=1.

At the start of any period t, a player’s information set consists of his private

information regarding past allocations and the public news of whether a breakthrough

has occurred. If a breakthrough occurs, the game ends. If no breakthrough occurs,

the no-breakthrough news reveals nothing about any player’s private past allocations.

Consequently, the process of common beliefs along any equilibrium path remains

unaffected by deviations from equilibrium strategies. This fact simplifies the analysis

of perfect Bayesian equilibria in this game, allowing them to be analyzed as Nash

equilibria without requiring additional refinements. In this framework, each player

selects a personal policy plan, treating the other players’strategies and the updated

common belief as given.

Extending the basic model (see, e.g., Definition 1), we define
(
κt, ηt−1

)
∈

[0, 1]n+1 as the state in period t where κt represents the vector of players’ alloca-

tions and ηt−1 the common belief at the start of the period.

Definition 2 We say that the process
{(
κt, ηt−1

)}∞
t=1

constitutes a Perfect Bayesian

Equilibrium (PBE, or simply Nash equilibrium) if:

1. The common belief ηt is updated according to (25).

2. For each player i, given the strategies of all other players, κ−i, the process

(κi,t, ηt−1)
∞
t=1 is an optimal policy plan.

The optimality of the policy plan ensures sequential rationality. In the probability-

0 events where a player– perhaps by mistake– deviates from the equilibrium path,

we may assume that they will update their private belief and adjust subsequent al-

locations accordingly. But since such deviations are suboptimal and unobservable by

other players, the common equilibrium beliefs remain unaffected. This completes the

formal description of the Perfect Bayesian Equilibrium (PBE).

Consequently, if
{(
κt, ηt−1

)}∞
t=1

is an equilibrium, then for all i = 1, ..., n and

t ∈ N:
vi(κt, ηt−1) = max

a∈[0,1]
vi(a, κ−i,t, ηt−1) s.t. (25) (27)

where vi(·, κ−i,t, ηt−1) : [0, 1]→ [L,G] represents agent i’s conditional expected payoff

given no breakthrough has occurred:

vi(a, κ−i,t, ηt−1) = (1− a)`+ δηt−1
(
1− e−λ(a+K−i,t)

)
G (28)

+δ(1− ηt−1
(
1− e−λ(a+K−i,t)

)
)vi(κt+1, ηt) (29)
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Following the approach in the basic model, we now define a cutoff belief level

under strategic experimentation:

ηmin =
1− δ

δλ (γ − 1)
= nπmin

Let κ−i be given and suppose κi is player i’s optimal response. Then, in Lemma

1 with F (a) = 1−e−λ(a+K−i,t), for all t ∈ N the marginal effect of a one-stage deviation
from κi,t is given by

∂

∂a
vi(a, κ−i,t, ηt−1) = −`+ δηt−1λe

−λ(a+K−i,t)Hi,t+1 (30)

where Hi,t+1 ∈ (0, G− L], and is defined recursively by

Hi,t+1 = (γ − 1 + κi,t+1)`+ δe−λKt+1Hi,t+2 (31)

By the “one-stage deviation principle,”for
{(
κt, ηt−1

)}∞
t=1

to be an equilibrium each

agent must be deterred from deviating for one period and then following the equilib-

rium strategy (see, e.g., Athey and Segal (2013)).

Theorem 3 Suppose η0 ∈ (ηmin, 1].

(i) If there exists any equilibrium
{(
κt, ηt−1

)}∞
t=1

, then the equilibrium must be

symmetric, in that κi,t ≡ κt ∈ [0, 1] for all t ∈ N.
For all η0 ∈ (ηmin, 1),

(ii) the game, in any equilibrium, never stops without a breakthrough, i.e., κt > 0

and ηt−1 > ηmin for all t ∈ N, such that limt→∞
(
κt, ηt−1

)
= (0, ηmin).

(iii) there exists a unique symmetric equilibrium, which is characterized by a

unique switching time τ ∈ {0} ∪N such that κt = 1 for all t ≤ τ , and the sequence of

the joint states
{(
κt, ηt−1

)}∞
t=τ+1

satisfies the backward transformational relation:

κt =
1

λn
ln

(
1 + δλ (γ − 1 + κt+1)−

1− δ
ηt

)
∈ (0, 1) (32)

ηt−1 =
ηt

ηt + e−λnκt(1− ηt)
∈ (ηmin, η0) (33)

(iv) If η0 = 1, then κt ≡ κ̂ such that κ̂ = 1 when δe−λn (1 + λγ) ≥ 1 and

otherwise, κ̂ ∈ (0, 1) is the unique solution of

δe−λnκ̂ (λ(γ − 1 + κ̂) + 1)− 1 = 0 (34)
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Proof. See Appendix.

The equilibrium uniqueness result in Theorem 3 stands in contrast to the find-

ings of multiple (asymmetric) equilibria reported in prior studies (e.g., Keller et al.

(2005); Bonatti and Hörner (2011)). The proof of Theorem 3 identifies two key fac-

tors underlying this result, both stemming from the discrete-time exponential bandit

framework:

1. Strict Concavity of Payoffs: Each player’s expected payoff is a strictly concave

function of their action, ensuring the existence of a unique pure allocation plan

necessary for an optimal response.

2. Dependence on Aggregate Allocations: A player’s marginal expected payoff in

equilibrium depends solely on the total sum of all players’allocations. As a

result, starting with a homogeneous population of agents, every player faces

the same equilibrium trade-off. This symmetry in trade-offs leads all players to

choose the same optimal response, resulting in a symmetric equilibrium.

Consistent with previous studies, Theorem 3 indicates that the probability of

an eventual breakthrough in the strategic equilibrium is equivalent to what a single

agent can achieve. In the initial periods, the strategic players typically allocate a

joint effort Kt that is strictly lower than the single-agent allocation. Over time, as no

breakthrough occurs, the strategic common beliefs surpass the single-agent posterior

belief. Once this difference becomes suffi ciently large, the joint allocations of the

strategic players exceed those of the single agent (see Figure 3).

Following Bonatti and Hörner (2011), the more flattened shape of the equilib-

rium joint-allocation path can be interpreted as a "procrastination effect." This effect

arises from each player’s tendency to free ride more as the number of players increases.

The result in Theorem 3 concerning the “certain success”case, where η0 = 1, provides

a framework to highlight this tendency, as formalized in the following proposition.

Proposition 4 Suppose η0 = 1. Denote by κ̂(n) the constant symmetric equilib-

rium allocation in each period by each player when the team size is n, and assume

δe−λ (1 + λγ) ≤ 1. Then, nκ̂(n) is a strictly decreasing sequence:

κ̂(1) > 2κ̂(2) > ... > nκ̂(n) > (n+ 1)κ̂(n+ 1)
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Figure 3: Single-agent optimal policy plan vs. multi-player strategic equilib-
rium path. Both processes entail the same probability of an eventual breakthrough,
although their dynamic behaviors differ. The figures assume δ = 0.9, λ = 1.5, γ = 2,

and the prior belief π0 = 0.999.
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Proof. Denote K(n) = nκ̂(n). From (34), K(n) is the solution of

M(K(n), n) := δe−λK(n)
(
λ(γ − 1 +

K(n)

n
) + 1

)
− 1 = 0, ∀n

where the auxiliary functionM satisfiesM(0, n) > 0 (by Assumption 1) and a single-

crossing condition from above:

M(K,n) = 0 implies
∂

∂K
M(K,n) = −δλe−λK

(
λ(γ − 1 +

K

n
) + 1

)
+ δe−λKλ

1

n

= −λ
(

1− δe−λK

n

)
< 0

Since M(K,n) decreases in n, we have

M(K(n), n) = 0

⇒ M(K(n), n+ 1) < 0 = M(K(n+ 1), n+ 1)

⇒ K(n) > K(n+ 1)

This proposition confirms our intuition that given any time horizon T <∞, the
probability of a breakthrough before T decreases as the number of players n increases

when agents engage in strategic experimentation. Consequently, this probability is

maximized when experimentation is performed by a single agent:

1− e−λκ̂(1)T > ... > 1− e−λnκ̂(n)T , ∀T

even though the long-run probabilities converge to the same limit of 1 as T tends to

infinity.

5 Optimal contracting

To address the ineffi ciency caused by free riding, this section explores ways to improve

Pareto effi ciency under the assumption that agents can make monetary transfers

among themselves. We propose a dynamic profit-sharing agreement based on publicly

observable and verifiable outcomes. In the present context, the observable outcome is

whether a breakthrough occurs in a given period and, if so, which agent(s) achieved

it.
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If a contract can be designed that incentivizes each agent to allocate more time

to experimentation, and if the resulting expected payoffexceeds that of the free-riding

equilibrium for all agents, then it will be in every agent’s interest to participate in

such an agreement.

Definition 3 Let the agents who achieve a breakthrough in a given period be referred
to as "winners" and those who do not as "losers." A budget-balanced dynamic profit-

sharing rule for strategic experimentation is a sequence of payment rules ϑ = (ϑk,t :

k = 0, 1, ..., n; t ∈ N) where ϑk,t ∈ [0, 1] represents the percentage of G that each loser

must pay to each of the k winners if the first breakthrough occurs in period t when

0 ≤ k ≤ n agents achieve a breakthrough in that period. Whenever k > 0 in a given

period, the contract terminates starting from the subsequent period.

In addition, the profit sharing rule further satisfies the limited liability constraint

if for all t ∈ N, 0 ≤ kϑk,t ≤ 1.

Among the n agents, for k = 0, 1, ..., n, if each agent allocates αt of their time

to the risky arm, then, based on the Bernoulli distribution, the probability of exactly

k breakthroughs in a period t equals

Φ(k, n, p) :=
n!

k!(n− k)!
(1− e−λαt)ke−(n−k)λαt

where p = 1− e−λαt and n!
k!(n−k)! represents the binomial coeffi cient.

Now consider an arbitrary player and suppose all other players allocate αt in

period t. Let Rt(a) denote this player’s conditional expected reward under the shar-

ing rule (ϑk,t)
n
k=0 in period t, assuming he chooses action a, given that at least one

breakthrough will occur among the players in period t. The conditional expected

reward for this player is then given by:

Rt(a) =
1− e−λa

1− e−λ(a+(n−1)αt)
n−1∑
k=0

Φ(k, n− 1, p) (1 + (n− 1− k)ϑk,t)G (35)

+
e−λa

1− e−λ(a+(n−1)αt)
n−1∑
k=1

Φ(k, n− 1, p) (1− kϑk,t)G (36)

The term in (35) specifies the player’s expected reward in the event he wins.

Conditional on being a winner, the reward depends on how many among the other

n − 1 players also achieve a breakthrough in period t. For example, if k others also

win, then there will be n− 1− k losers. Each loser will pay the winning player ϑk,tG,
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so, including his own gain of G, the winning player will receive (1 + (n− 1− k)ϑk,t)G

reward in total.

The term in (36) specifies the player’s expected reward (which may be negative)

in the event he loses. Conditional on being a loser, his reward also depends on how

many among the other n− 1 players make a breakthrough in period t. For instance,

if k others win, then the losing player will pay each of the k winning player ϑk,tG so

that, subtracted from his own gain of G, the player will receive (1− kϑk,t)G in total.
It is important to note that when the player is a loser, k starts from 1 since at least

one other player must win for this condition to apply.

Lemma 2 Under any payment rule ϑ defined in Definition 3, when everyone follows
the cooperative strategy {(αt, πt−1)}∞t=1 as outlined in the basic model, then Rt(αt) ≡
G.

Proof. Conditional on a breakthrough, the total gain for the n players is nG. The
payment rules defined in Definition 3 are symmetric, in that no player has any ad-

vantage or disadvantage when they contribute the same allocation αt in every period

t. Therefore, given that the rules are (strictly) budget balancing, each player’s con-

ditional expected reward equals G.

Now suppose all other players adhere to the representative agent’s cooperative

strategy {(αt, πt−1)}∞t=1, where πt−1 is now interpreted as the common belief. Let us
analyze the impact of a one-stage deviation on an arbitrary player’s payoff, denoted

by v̂. In (4), substituting 1− e−λ(a+(n−1)αt) for F (a) yields

v̂(a, πt−1)

= (1− a)`+ δπt−1
(
1− e−λ(a+(n−1)αt)

)
Rt(a) + δ

(
1− πt−1

(
1− e−λ(a+(n−1)αt)

))
v̂(αt+1, π̂t)

= (1− a)`+ δπt−1
(
1− e−λ(a+(n−1)αt)

)
G+ δ

(
1− πt−1

(
1− e−λ(a+(n−1)αt)

))
v̂(αt+1, π̂t)

+δπt−1
(
1− e−λ(a+(n−1)αt)

)
(Rt(a)−G) (37)

where π̂t = πt when a = αt, and in general

π̂t =

{
1+ if breakthrough occurs in t

πt−1e−λ(a+(n−1)αt)

1−πt−1(1−e−λ(a+(n−1)αt))
if no breakthrough in t

(38)

By Lemma 2, for a = αt, the last term in (37) vanishes, so

v̂(αt, πt−1) = (1− αt)`+ δπt−1
(
1− e−λnαt

)
G+ δ

(
1− πt−1

(
1− e−λnαt

))
v̂(αt+1, πt)
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which implies v̂(αt, πt−1) = v(αt, πt−1), the optimal solution for the cooperative case,

for all t ∈ N.

Theorem 4 Suppose the players agree on a contract involving a dynamic profit-
sharing rule ϑ from the outset, defined as

ϑk,t = 0, ∀k 6= 1 and ϑ1,t =
1− δ

δγπt−1λne−λ(n−1)αt
(39)

Under this rule:

1. ϑ satisfies budget balancing and limited liability, ensuring ϑ1,t ∈ (0, 1
γ
(γ − 1)),

2. The contract induces the Pareto optimal solution in equilibrium.

Proof. By Lemma 1, the cooperative solution is characterized by

∂

∂a
v(αt, πt−1) = −`+ δπt−1nλe

−nλαtHt+1

{
= 0 if αt ∈ (0, 1)

≥ 0 if αt = 1
(40)

where

Ht+1 = (γ − 1 + αt+1)`+ δe−nλαtHt+2 ≤ G− L (41)

In (35)-(36), substitute ϑk,t = 0 for all k 6= 1, write ϑt for ϑ1,t, and multiply

both sides by 1− e−λ(a+(n−1)αt). The player’s ex ante expected reward equals(
1− e−λ(a+(n−1)αt)

)
Rt(a)

= (1− e−λa)
n−1∑
k=0

Φ(k, n− 1, p) (1 + Φ(0, n− 1, p)(n− 1)ϑt)G

+e−λa
n−1∑
k=0

Φ(k, n− 1, p) (1− Φ(1, n− 1, p)ϑt)G− e−λ(a+(n−1)αt)G

= (1− e−λa)e−(n−1)λαt(n− 1)ϑtG− e−λa (n− 1) (1− e−λαt)e−(n−2)λαtϑtG
+(1− e−λ(a+(n−1)αt))G

= (n− 1)ϑtGe
−(n−2)λαt

[
(1− e−λa)e−λαt − e−λa(1− e−λαt)

]
+ (1− e−λ(a+(n−1)αt))G

from which we confirm Rt(αt) = G, and derive(
1− e−λ(a+(n−1)αt)

)
(Rt(a)−G)

= (n− 1)ϑtGe
−(n−2)λαt

[
(1− e−λa)e−λαt − e−λa(1− e−λαt)

]
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Differentiating both sides yields

∂

∂a

[
(1− e−λ(a+(n−1)αt)) (Rt(a)−G)

]
= (n− 1)ϑtGe

−(n−2)λαtλe−λa

Now, for F (a) = 1− e−λ(a+(n−1)αt), we can apply Lemma 1 and obtain from differen-

tiating (37):

∂

∂a
v̂(a, πt−1) = −`+ δπt−1λe

−λ(a+(n−1)αt)Ht+1

+δπt−1(n− 1)e−(n−2)λαtλe−λaϑtG

Clearly, ∂2

∂a2
v̂(a, πt−1) < 0, so that the first-order condition is both necessary and

suffi cient for an interior solution. Now, in light of (40), let us define

Ot+1 =
`

δπt−1nλe−nλαt

{
= Ht+1 if αt ∈ (0, 1)

≤ Ht+1 if αt = 1
(42)

Define the profit sharing rule as

ϑt = e−λαt
Ot+1

G
(43)

Then, at a = αt,

∂

∂a
v(αt, πt−1) = −`+ δπt−1λe

−λnαtHt+1 + δπt−1(n− 1)e−(n−1)λαtλϑtG

≥ −`+ δπt−1λe
−λnαtOt+1 + δπt−1(n− 1)e−(n−1)λαtλϑtG

= 0

where the inequality holds as an equality for all αt ∈ (0, 1). Since Ot+1 ≤ Ht+1 ≤
G−L, then the sharing rule in (43) is bounded between 0 and (G−L)/G = (γ−1)/γ,

satisfying limited liability. Substituting Ot+1 in (43) gives (39).

We have thus shown that if the agent deviates from αt in any period t and then

moves back to the equilibrium path by choosing αt+1, αt+2, ...in the future, he will

not find it optimal. This establishes that the allocation-belief sequence (αt, πt−1)
∞
t=1

is the player’s best policy plan and therefore (αt, πt−1)
∞
t=1 forms a symmetric PBE.

As established in the team moral hazard literature, when each agent’s contribu-

tion to the outcome is observable, numerous approaches exist for designing a first-best

contract (e.g., Holmstrom (1982)). Theorem 4 introduces one of the simplest profit-

sharing rules for our bandit setting, which is both budget balancing and satisfies the
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limited liability constraint. In this agreement, the lucky winner must be the sole

agent who achieves a breakthrough. When limited liability is not a concern, it can

be shown that the sharing rule:

ϑ0,t = ϑn,t = 0 and ϑk,t ≡ ϑt =
(1− δ)

δγπt−1nλe−λαt
for 0 < k < n

also induces the Pareto optimal equilibrium.

Notably, since ϑ1,t ∈ (0, 1), the optimal contract in Theorem 4 allows all losers

to share in the breakthrough reward (see Figure 4). This result differentiates the

optimal contract in our discrete-time exponential bandit model from existing studies,

such as the optimal contests designed by Halac et al. (2017) in continuous time, where

losers receive no reward. The pursuit of Pareto optimality in our contract design is

also a key reason for this distinction.
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Figure 4: Dynamic Profit Sharing Rule. The figure depicts the percentage ϑ1,t
of every loser’s reward G to be paid to the winner. This percentage increases with

t when the game continues without success, and is capped by (γ − 1) /γ (< 1) as

t→∞. Here, it is assumed that δ = 0.9, λ = 0.15, n = 10, and π0 = 0.999.
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6 Conclusion

We conclude with reflections on the practical relevance of our findings and their impli-

cations. The non-stopping result emphasizes the optimality of persistently pursuing a

breakthrough while gradually reducing investment rather than abruptly terminating

exploration after repeated failures. This insight aligns with the adage “persistence

is the mother of success,”providing a rational foundation for traits often associated

with success– optimism, determination, and resilience. However, this result is de-

rived under the idealized assumption that resource allocations can be infinitesimally

small. In practice, projects incur minimum fixed costs, such as offi ce space, wages,

and managerial attention, which often lead to the abandonment of efforts after ex-

tended failures. Consequently, the non-stopping conclusion should be interpreted

qualitatively, serving as a guiding principle rather than a prescriptive rule.

The Goldilocks principle, which identifies an optimal level of task diffi culty

that maximizes incentives for exploration, has clear implications for both individual

and organizational decision-making. For researchers, this suggests that productivity

peaks when a project’s diffi culty is "just right"– neither too easy nor too challenging.

Similarly, for principals hiring agents to undertake experimentation tasks, aligning the

agent’s abilities with the task’s complexity optimally motivates effort. Furthermore,

our finding that an optimal team size maximizes individual incentives underscores

the importance of carefully selecting team configurations for collaborative endeavors.

The transformations characterizing bandit dynamics in Theorems 1 and 2 pro-

vide practical methods for computing optimal allocation plans and could serve as

building blocks for extending the model to richer frameworks. For instance, the dy-

namic profit-sharing rules derived in Theorem 4 offer valuable insights for designing

patents and contests, particularly in scenarios where breakthroughs generate signifi-

cant spillover effects.

Despite its contributions, the current model omits many important features. Ex-

tending the framework to broader contexts remains a promising avenue for advancing

both the theoretical and practical understanding of dynamic decision-making under

uncertainty.
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7 Appendix

Proof of Lemma 1. Let us transform the program (3)-(4) into a mathematically

equivalent form:

v(αt, πt−1)−G = max
a∈[0,1]

(v(a, πt−1)−G) s.t. (1)

where

v(a, πt−1)−G
= (1− a)`− (1− δ)G+ (1− πt−1F (a)) δ [v(αt+1, πt)−G] (44)

To simplify notation, denote

h(αt) = (γ − 1 + αt)` ( = (1− δ)G− (1− αt)`) (45)

qt = πt−1F (αt) (46)

Then, expanding (44) yields

v(αt, πt−1)−G = −h(αt) + (1− qt) δ [v(αt+1, πt)−G] (47)

= −h(αt)−
∞∑
s=1

δs

(
s−1∏
r=0

(1− qt+r)
)
h(αt+s) (48)

The term in large brackets in (48) represents the conditional probability of no break-

through over the next s periods. This can be re-written as:

s−1∏
r=0

(1− qt+r) = 1− πt−1 + πt−1

s−1∏
r=0

(1− F (αt+r)) (49)

Define Ht+1 by

Ht+1 = h(αt+1) +
∞∑
s=1

δs
s∏
r=1

(1− F (αt+r))h(αt+s+1) (50)

It can be readily checked that (50) and (9) are equivalent. Substituting (49) and (50)

into (48), and replacing αt with a, we get

v(a, πt−1) = δG+ (1− a)`− (1− πt−1)Ct+1 − πt−1(1− F (a))δHt+1 (51)

where Ct+1 =

∞∑
s=1

δsh(αt+s). Both Ct+1 and Ht+1 are functions of the optimally

planned actions from period t+ 1 onward, so the envelope theorem implies (8). Since
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Ht+1 is the summation of positive terms, it is positive. Further, comparing (8) to

(6)-(7), and noting that the term in (7) is (weakly) negative, we have

Ht+1 ≤ G− v(αt+1, πt) ≤ G− L

for all t ∈ N.
Proof of Theorem 1. Let 1 < T < ∞ be arbitrarily large, and assume that

exploration stops in period T + 1, so that vT+1 = L and HT+1 = G − L. Let

πT−1 = (1 + εT )πmin represent the belief in period T , where 0 < εT < ε̄ := π0
πmin
− 1.

The method we adopt follows a form of backward recursion. We start by treating

πT−1 (or εT ) as a free variable, rather than a function of the prior belief and the history

of the past allocations. Using backward induction, while ensuring the posteriors

remain consistent with Bayes’rule, we will derive an optimal sequence (αt, πt−1|εT )Tt=1
parameterized by εT and T. In deriving this sequence, we also obtain a sequence of

expected payoffs (vt|εT )Tt=1 in which vt|εT := v(αt, πt−1|εT ), such that

αt|εT ∈ arg max
a∈[0,1]

v(a, πt−1|εT )

and πt−1|εT is determined by Bayes’rule in (22), recalling θ = λn :

πt−1(αt, πt|εT ) =
πt|εT

πt|εT + e−θαt|εT (1− πt|εT )
(52)

Next, we determine a unique εT such that π0|εT equals the initial belief π0.
Finally, we employ a limit argument to establish the existence and uniqueness of the

optimal plan (αt)
∞
t=1 and optimal sequence of expected payoffs (vt)

∞
t=1 conditional on

no breakthrough.

To simplify notation, we will suppress the parameter εT in the following deriva-

tions unless it is needed for clarity.

Parts (i) and (iii). Consider Scenario I. We take four steps to prove the con-
clusions.

Step 1. To begin with, fix πT−1 and consider the problem maxa∈[0,1] v(a, πT−1).

Given Proposition 2(i), we may assume αT ∈ (0, 1) for a suffi ciently large T . By

Lemma 1,
∂

∂a
v(αT , πT−1) = −`+ δπT−1θe

−θαT (G− L) = 0

yields

αT =
1

θ
ln
πT−1
πmin

=
1

θ
ln(1 + εT ) (53)
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where we used (10) and the fact that G − L = (γ−1
1−δ )`, and the assumption πT−1 =

(1 + εT )πmin. Since v(a, πT−1) is strictly concave in a, then αT is unique. We have

thus obtained the paired state (αT , πT−1) , and

vT = (1− αT )`+ δπT−1
(
1− e−θαT

)
(G− L) + δL

HT = (γ − 1 + αT )`+ δe−θαT (G− L)

These outputs from period T can then be used as inputs for period T − 1. Notice

that αT and πT−1 are continuous and increasing functions of εT .

Step 2. By backward induction, suppose, hypothetically, that for 1 < t < T,

the paired states (αt+1, πt), (αt+2, πt+1), ..., (αT , πT−1) have been uniquely determined,

being continuous and increasing functions of εT , and

αt+1 = arg max
a∈[0,1]

v(a, πt|εT ) ∈ (0, 1)

Associated with these states are the hypothetically known vt+1, ..., vT andHt+1, ..., HT ,

and the initial conditions vT+1 = L and HT+1 = G− L.
By (8), αt+1 ∈ (0, 1) implies

∂

∂a
v(αt+1, πt) = −`+ δπtθe

−θαt+1Ht+2 = 0

or equivalently,

Ht+2 =
`

δπtθe−θαt+1
(54)

Using (9), we derive

∂

∂a
v(αt, πt−1) = −`+ δπt−1θe

−θαt
(
(γ − 1 + αt+1)) `+ δe−θαt+1Ht+2

)
Substituting Ht+2 from (54), we get

∂

∂a
v(αt, πt−1|εT ) = −`+ δπt−1θe

−θαt
(

(γ − 1 + αt+1)) +
1

πtθ

)
` (55)

By substituting (1) and (45), and after rearranging terms, we obtain

∂

∂a
v(αt, πt−1|εT ) = [δπt−1M(αt, αt+1)− (1− δ)] ` (56)

where

M(αt, αt+1) := e−θαt (1 + θ (γ − 1 + αt+1)))− 1. (57)
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If αt = 1, then

0 ≤ ∂

∂a
v(1, πt−1|εT ) = [δπt−1M(1, αt+1)− (1− δ)] ` ≤ [δπt−1M(1, 1)− (1− δ)] `

which implies

δπt−1M(1, 1) = δπt−1
(
e−θ (1 + θγ)− 1

)
≥ 1− δ (58)

However, since πt−1 < π0 < 1, the above inequality is ruled out under Scenario
I. Thus, we must have αt ∈ (0, 1), and by induction, this holds for all t ≤ T . This

fact, combined with (55), implies

∂

∂a
v(αt, πt−1) = −`+ δπt−1θe

−θαt
(

(γ − 1 + αt+1)) +
1

πtθ

)
` = 0 (59)

for all t ≤ T. The Bayes rule (52) now gives πt−1. Substituting (52) into (59), and

solving for αt, we obtain

αt|εT =
1

θ
ln

(
1 + δθ (γ − 1 + αt+1|εT )− 1− δ

πt|εT

)
(60)

= arg max
a∈[0,1]

v(a, πt−1|εT )

Using αt and the backward induction hypothesis, we obtain also the unique values of

vt = (1− αt)`+ δπt−1
(
1− e−θαt

)
(G− vt+1) + δvt+1

Ht = (γ − 1 + αt)`+ δe−θαtHt+1.

From (52) and (60), it is clear that πt−1 has positive partial derivatives with

respect to αt and πt, and αt has positive partial derivatives with respect to αt+1 and

πt. Thus, both αt and πt−1 are continuous, increasing functions of (αt+1, πt). It follows

that (αt, πt−1) are continuous and increasing in εT .

Step 3. From Step 2, we have thus derived a unique sequence of states

(αt, πt−1|εT )Tt=1 and the associated optimal payoffsequence (vt|εT )Tt=1 . The first-period

paired state (α1, π0|εT ) are continuous and increasing functions of εT . We now show

that a unique εT (π0) exists such that π0|εT (π0) = π0, consistent with the given prior.

To see this, notice that if εT = ε̄ := π0
πmin
− 1, then πT−1 = (1 + εT )πmin = π0.

Bayes’rule implies then π0|ε̄ > πT−1 = π0. If εT = 0, then πT−1 = πmin and αT = 0,

implying πT−2 = πmin. In this case, by backward induction, αt ≡ 0 and πt−1 ≡ πmin

for all t = 1, ..., T , which imply π0|0 = πmin < π0.

Since π0|εT is continuous and increasing in εT , by the Intermediate Value The-
orem there exists a unique εT (π0) ∈ (0, ε̄) such that π0|εT (π0) = π0. Consequently,
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we arrive at a unique sequence (αt, πt−1|εT (π0))
T
t=1 that solves the program in (3)-(4),

satisfying (52) and (60) given any prior π0 ∈ (πmin, 1) and stopping time T + 1.

Step 4. Now consider T →∞. In light of Proposition 2(i), limT→∞ εT (π0) = 0

so that, by continuity in εT (π0), for each t < T the following limits exist:

lim
T→∞

(αt, πt−1|εT (π0)) = lim
εT (π0)→0

(αt, πt−1|εT (π0)) =: (αt, πt−1)

lim
T→∞

v (αt, πt−1|εT (π0)) = lim
εT (π0)→0

v (αt, πt−1|εT (π0)) =: v (αt, πt−1)

It is easily seen that since, fixing any t, the equations in (52) and (60) hold for all

εT = εT (π0), then taking limit on both sides as T →∞ maintains the equations.

Finally, let v∗(π0) denote the optimal expected payoff, unconstrained by any

exogenous deadline, in period 1 (if exists). Since L ≤ v∗(π0) ≤ G, we have

0 ≤ v∗(π0)− v1|εT (π0) ≤ δT+1(G− L) (61)

Thus limT→∞ v1|εT (π0) = v∗(π0), which gives the unconstrained optimal expected

payoff. Part (iii) under Scenario I is thus also established.

Parts (ii) and (iii). Consider now Scenario II. Define

π̄ =
(1− δ)

δ (e−θ (1 + θγ)− 1)

Take any t ≥ 1, we only need to show that αt+1 = 1 implies αt = 1. Replacing t with

t+ 1 in (56)-(58), αt+1 = 1 implies πt ≥ π̄, and therefore πt−1 > π̄. Further, αt+1 = 1

implies
∂

∂a
v(1, πt) = −`+ δπtθe

−θHt+2 ≥ 0

or, equivalently,

Ht+2 ≥
`

δπtθe−θ
. (62)

Similar to the derivation of (56), now using (62) we get

∂

∂a
v(1, πt−1) ≥ [δπt−1M(1, 1)− (1− δ)] `

=
[
δπt−1

(
e−θ (1 + θγ)− 1

)
− (1− δ)

]
`

> 0

where the last inequality holds because πt−1 > π̄. Thus, αt = 1, and by induction,

α1 = ... = αt+1 = 1.
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If α1 ∈ (0, 1), then τ = 0. If α1 = 1, then there exists a unique τ = max{s ∈ N :

αs = 1} such that αt ∈ (0, 1) for all t > τ . Part (i) of the proposition then implies

that the sequence (αt, πt−1)
∞
t=τ+1 satisfies (21)-(22), which in turn establishes the

conclusion in part (iii) under Scenario II.

Proof of Theorem 3. Parts (i)-(ii). Suppose
{(
κt, ηt−1

)}∞
t=1

is an equilibrium.

Consider any period t preceded with no breakthrough, with common belief ηt−1 given

at the start of the period. We prove the conclusions through five steps.

Step 1. We first show that ηt−1 ≤ ηmin implies κi,t = 0 for all i. This conclusion

is immediate, following from Hi,t+1 ≤ G− L, that ηt−1 ≤ ηmin implies

∂

∂a
vi(a, κ−i,t, ηt−1)|a=0 = −`+ δηt−1λe

−λK−i,tHi,t+1

≤ −`+ δηminλ(G− L) = 0,

and the fact that vi(a, κ−i,t, ηt−1) is concave in a for all i.

Step 2. Now suppose ηt−1 > ηmin. We show all players choosing to stop in

period t cannot be an equilibrium. This is because if κi,t = 0 is optimal for all i, then

Kt = 0 and the concavity of vi implies the following holds for all i :

∂

∂a
vi(a, κ−i,t, ηt−1)|(a,κ−i,t)=0 = −`+ δηt−1λHi,t+1 ≤ 0 (63)

If this were true, then the players would face the same problem in period t+ 1 given

no new information. So the above inequality will continue to hold for all i in period

t+ 1, and onwards by induction, implying Hi,t+1 = Hi,t+2... = G− L. But then

∂

∂a
vi(a, κ−i,t, ηt−1)|Kt=0 = −`+ δηt−1λ(G− L)

> −`+ δηminλ(G− L) = 0

contradicting (63).

Step 3. As in the proof of Proposition 1, we show ηt−1 > ηmin implies ηt > ηmin.

By contradiction, suppose ηt−1 > ηmin ≥ ηt. Then, Step 1 implies Kt+1 = 0 and

therefore Hi,t+1 = Hi,t+2... = G− L. Now, Kt > 0 and ηt ≤ ηmin imply

∂

∂a
vi(a, κ−i,t, ηt−1)|a=κi,t = −`+ δηt−1λe

−λKt(G− L) ≥ 0

∂

∂a
vi(a,κ−i,t+1, ηt)|Kt+1=0 = −`+ δηtλ(G− L) ≤ −`+ δηminλ(G− L) = 0
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But then, by the Bayes rule, we derive a contradiction:

eλKt ≤ ηt−1
ηt

= eλKt
(
1− ηt−1

)
+ ηt−1 < eλKt .

We conclude therefore that Kt+1 > 0.

Step 4. As in Proposition 2, similar arguments establish that ηt → ηmin and

Kt → 0 as t → ∞. Thus, for t suffi ciently large, we must have Kt < 1, implying

that no player would choose action 1, and Kt, Kt+1 > 0 imply at least one player in

each period, say i and j, will choose κi,t > 0 and κj,t+1 > 0 respectively. We show

by contradiction that it cannot be an equilibrium strategy that i chooses κi,t+1 = 0

(which would imply asymmetric actions).

To see this, we have

∂

∂a
vi(κt, ηt−1) = −`+ δηt−1λe

−λKtHi,t+1

= −`+ δηt−1λe
−λKt

(
(γ − 1 + κi,t+1)) `+ δe−λKt+1Hi,t+2

)
(64)

and
∂

∂a
vi(κt+1, ηt) = −`+ δηtλe

−λKt+1Hi,t+2

{
= 0 if κi,t+1 > 0

≤ 0 if κi,t+1 = 0
(65)

Substituting (65) into (64), and rearranging terms, it can be shown as in the

proof of Theorem 1, (55)-(57), that

∂

∂a
vi(κt, ηt−1) = M(κi,t+1)

{
= 0 if κi,t+1 > 0

≤ 0 if κi,t+1 = 0
(66)

where M(·) is defined by

M(κi,t+1) =

(
−1 + δηt−1λe

−λKt
(

(γ − 1 + κi,t+1) +
1

ηtλ

))
`, (67)

satisfying M ′ > 0.

Now, notice that the no-breakthrough part of (25) can be written equivalently

as

ηt−1e
−λKt =

ηt
1 + ηt (eλKt − 1)

Substituting into (66) and rearranging terms yield

M(κi,t+1) =

(
−1 + δ

ηt
1 + ηt (eλKt − 1)

(
λ (γ − (1− κi,t+1)) +

1

ηt

))
`

=

(
1− eλKt + δλ (γ − (1− κi,t+1))−

1− δ
ηt

)
ηt`

1 + ηt (eλKt − 1)
(68)
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This deduction holds also for player j, replacing M(κi,t+1) with M(κj,t+1). Notice,

though, since by assumption κj,t+1 > 0, the equality part of (66) holds for j. Now, if

i chooses κi,t+1 = 0, we must have

0 =
∂

∂a
vi(κt, ηt−1) ≤M(0) and 0 ≥ ∂

∂a
vj(κt, ηt−1) = M(κj,t+1)

where the first inequality derives from κi,t ∈ (0, 1) and (66), and the second inequality

derives from κj,t ∈ [0, 1) and κj,t+1 ∈ (0, 1). But these two inequalities are contradic-

tory, because M ′ > 0 and κj,t+1 > 0 imply M(κj,t+1) > M(0).

Step 5. The above results establish that at least one player, say i, will choose
κi,t, κi,t+1 ∈ (0, 1) for suffi ciently large t. This impliesM(κi,t+1) = 0 so that we derive

from (67) that

κi,t+1 =
1

δλ

(
eλKt +

1− δ
ηt
− 1

)
+ 1− γ

Since the right-hand side is independent of i, and our pick of i is arbitrary, we conclude

that κt+1 := κi,t+1 is the optimal allocation strategy for all i = 1, ..., n. In other words,

the equilibrium is necessarily symmetric.

Part (iii). Once we can focus on a symmetric equilibrium, the structure of the

problem reduces to the basic model. The same arguments as in the proof of Theorem

1 establish the conclusion.

Part (iv). The conclusion can be proved by taking limit as ηt → 1 and κt → κ̂

in (68), or by a similar analysis as in the proof of Proposition 1(i).
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