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Abstract

We propose a double robust Bayesian inference procedure on the average
treatment effect (ATE) under unconfoundedness. Our robust Bayesian approach
involves two important modifications: first, we adjust the prior distributions of
the conditional mean function; second, we correct the posterior distribution of
the resulting ATE. Both adjustments make use of pilot estimators motivated by
the semiparametric influence function for ATE estimation. We prove asymptotic
equivalence of our Bayesian procedure and efficient frequentist ATE estimators
by establishing a new semiparametric Bernstein-von Mises theorem under double
robustness; i.e., the lack of smoothness of conditional mean functions can be
compensated by high regularity of the propensity score and vice versa. Consequently,
the resulting Bayesian credible sets form confidence intervals with asymptotically
exact coverage probability. In simulations, our double robust Bayesian procedure
leads to significant bias reduction of point estimation over conventional Bayesian
methods and more accurate coverage of confidence intervals compared to existing
frequentist methods. We illustrate our method in an application to the National

Supported Work Demonstration.
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1 Introduction

This paper proposes a double robust Bayesian approach for estimating the average
treatment effect (ATE) under unconfoundedness, given a set of pretreatment covariates.
Our robust Bayesian procedure involves two important modifications to the standard
Bayesian approach. First, following Ray and van der Vaart| [2020], we adjust the prior
distributions of the conditional mean function using an estimator of the propensity scores.
Second, we use this propensity score estimator together with a pilot estimator of the
conditional mean to correct the posterior distribution of the ATE. The adjustments in both
steps are closely related to the functional form of the semiparametric influence function for
ATE estimation under unconfoundedness. They do not only shift the mean but also change
the shape of the posterior distribution. For our robust Bayesian procedure, we derive a new
Bernstein—von Mises (BvM) theorem, which means that this posterior distribution, when
centered at an efficient estimator, is asymptotically normal with the efficient variance in
the semiparametric sense. The key innovation of our paper is that this result holds under
double robust smoothness assumptions within the Bayesian framework.

Despite the recent success of Bayesian methods, the literature on ATE estimation
is predominantly frequentist-based. For the missing data problem specifically, it was
shown that conventional Bayesian approaches (i.e., using uncorrected priors) can produce
inconsistent estimates, unless some unnecessarily harsh smoothness conditions on the
underlying functions were imposed; see the results and discussion in |Robins and Ritov
[1997] or Ritov et al. [2014]. Once the prior distribution was adjusted using some pre-
estimated propensity score, Ray and van der Vaart [2020] recently established a novel
semiparametric BvM theorem under much less stringent smoothness requirements for the
propensity score functionE] However, a minimum differentiability of order p/2 is still
required for the conditional mean function in the outcome equation, where p denotes the
dimensionality of covariates. In this paper, we are interested in Bayesian inference under
double robustness that allows for a trade-off between the required levels of smoothness in
the propensity score and the conditional mean functions.

Under double robust smoothness conditions, we show that Bayesian methods, which
use propensity score adjusted priors, satisfy the BvM Theorem only up to a “bias term”
depending on the unknown true conditional mean and propensity score functions. In this

paper, our robust Bayesian approach accounts for this bias term in the BvM Theorem

1Strictly speaking, the main objective in |[Ray and van der Vaart| [2020] concerns the mean response in
a missing data model, which is equivalent to observing one arm (either the treatment or control) of the
causal setup.



by considering an explicit posterior correction (in addition to the prior adjustment of
Ray and van der Vaart| [2020]). Not only the prior adjustment but also the posterior
correction are based on functional forms that are closely related to the efficient influence
function for the ATE, see Hahn| [1998]. We show that the corrected posterior still satisfies
the BvM Theorem under double robust smoothness assumptions. Our novel procedure
combines the advantages of Bayesian methodology with the robustness features that are the
strengths of frequentist procedures. Our credible intervals is Bayesianly justifiable, as the
uncertainty quantification is made conditional on the observed data ([Rubin, [1984]) and can
be also interpreted as frequentist confidence intervals with asymptotically exact coverage
probability. Our procedure is inspired by the double machine learning (DML), as well as the
bias-corrected matching approach from |Abadie and Imbens| [2011], as our robustification
of an initial procedure removes some non-negligible bias and remains asymptotically valid
under weaker regularity conditions. While the main part of our theoretical analysis focuses
on the ATE of binary outcomes, also considered by Ray and van der Vaart [2020], we also
outline extensions of our methodology to continuous and multinomial cases, as well as other
causal parameters.

In both simulations and an empirical illustration using the National Supported Work
Demonstration data, we provide evidence that our procedure performs well compared to
existing bayesian and frequentist approaches. In our Monte Carlo simulations, we find that
our method results in improved empirical coverage probabilities, while maintaining very
competitive lengths for confidence intervals. This finite sample advantage is also observed
over Bayesian methods that rely solely on prior corrections. In particular, we note that our
approach leads to more accurate uncertainty quantification and is less sensitive to estimated
propensity scores being close to boundary values.

While the BvM theorem for parametric Bayesian models is well-established [van der,
Vaart|, [1998|, the semiparametric version is still being studied very actively when
nonparametric priors are used. The area has received an enormous amount of attention
[Castillo| 2012} |Castillo and Rousseau, 2015, Ray and van der Vaart|, 2020]. To the best
of our knowledge, our new semiparametric BvM theorem is the first one that possesses the
double robustness property. Our paper is also connected to another active research area
concerning Bayesian inference that is robust with respect to partial or weak identification
in finite dimensional models [Chen et al., 2018, (Giacomini and Kitagawa, 2021, Andrews
and Mikusheva, 2022|. The framework and the approach we take is different. Nonetheless,
they share the same scope of tailoring the Bayesian inference procedure to new challenges

in contemporary econometrics.



2 Setup and Implementation

This section provides the main setup of the average treatment effect (ATE) and motivates

the new Bayesian methodology.

2.1 Setup

We consider a family of probability distributions {P, : n € H} for some parameter space H,
where the (possibly infinite dimensional) parameter 7 characterizes the probability model.
Let no be the true value of the parameter and denote Py = P, , which corresponds to
the frequentist distribution of observed data in the classical framework of causal inference.
For individual i, consider a treatment indicator D; € {0,1}. The observed outcome Y; is
determined by Y; = D;Y;(1) + (1 — D;)Y;(0) where (Y;(1),Y;(0)) are the potential outcomes
of individual ¢ associated with D; = 1 or 0. This paper focuses on the binary outcome case
where both Y;(1) and Y;(0) take values of {1,0}. The covariates for individual ¢ are denoted
by X;, a vector of dimension p, with the distribution Fy and the density ng] Let mo(z) =
Py(D; = 1|X; = x) denote the propensity score and mq(d, z) = Py(Y; = 1|D; = d, X; = x)
the conditional mean. Suppose that the researcher observe an independent and identically
distributed (i.i.d.) observations of Z; = (Y;, D;, X)) for i = 1,...,n. The joint density of

Z; is given by pr me.f, Where
Prang(2) = w(2)!(1 = 7(2))' " m(d, 2)" (1 = m(d, 2))" 7 f (x). (2.1)

The parameter of interest is the ATE given by 7o = Eo[Y;(1)—Y;(0)], where Ey[-] denotes the
expectation under F,. For its identification, we impose the following standard assumption

of unconfoundedness and overlap [Rosenbaum and Rubin|, 1984} Imbens, 2004, Imbens and
Rubin, 2015].

Assumption 1. (i) (Y;(0),Yi(1)) A D; | X; and (ii) there exists # > 0 such that 7 <

mo(z) < 1 — 7 for all = in the support of Fj.

We introduce additional notations from the Bayesian perspective, following the similar
setup from Ray and van der Vaart| [2020]. For the purpose of assigning prior distributions
to (m,m) in the Bayesian procedure, it is convenient to transform them by a link function.
We consider the logistic function W(t) = 1/(1 + e™*) here. Specifically, we consider the
reparametrization of (m,m, f) given by n = (n™,7™,n/). We index the probability model

2If X; does not have a density we can simply consider the conditional density of (Y;, D;) given X; = x
instead of the joint density of (Y;, D;, X;).



by P, consistent with the notation that describes the underlying statistical experiment in

the first paragraph of this section, where
=W (m), g =" (m), 7/ =logf. (2:2)

Below, we write m,, = ¥(n™), m, = ¥(n™), and f, = exp(n’) to make the dependence on 7
explicit. Given any prior on the triplet (™, 7™, n/), the Bayesian solution to the estimation

and inference of the ATE is to obtain the posterior distribution of
7y = Ey [my(1, X) — m, (0, X)], (2.3)

where E,[-] denotes the expectation denotes the expectation under P,. Our aim is to
examine large-sample behavior of the posterior of 7,, and compare Bayesian methods with
frequentist estimators based on the true probability distribution F,. In the same vein, the
true parameter of interest becomes 75 = 7.

The construction of our double robust Bayesian procedure in Section has
fundamental connection to the efficient influence function. For any generic component

n, the efficient influence function (see [Hahn| [1998], |Hirano et al. [2003]) is given by

Tn(2) = my(1,2) —m,(0,z) + v, (d, z)(y — m,(d, z)) — 7, (2.4)
for the Riesz representor -, which is given by

d 1—-d

() 1—m(z)

Yuld, x) = (2.5)
We assume throughout the paper that m, is uniformly bounded away from zero and one.

We write 7p = 7, and o = Yp,-

2.2 Double Robust Bayesian Point Estimators and Credible Sets

Our doubly robust inference procedure builds on a nonparametric Bayesian prior
specification for m,,, which depends on a preliminary estimator for 7. We consider pilot
estimators 7 of the propensity score mg and m of the conditional mean function mg, which

both are based on an auxiliary sample. We consider a plug-in estimator for the Riesz



representor vy, given by

d 1-d

7(x) 1-7(z)

a(d7 [)3) =

The use of an auxiliary data for pilot estimators simplifies the technical analysis related to
the propensity score adjusted priors; see Ray and van der Vaart| [2020]. Also, it provides
an effective way to control some negligible higher-order terms, see our Lemma in the
online supplement; cf. related discussion on the sample splitting in the DML type methods
on Page C6 of Chernozhukov et al.|[2018]. In practice, we use the full data twice and do
not split the sample, as we have not observed any over-fitting or loss of coverage thereby.

Our procedure builds on the following three steps that approximates the posterior
distribution of 7,, from which one can readily obtain the Bayesian point estimator and

the credible set through Monte Carlo simulation draws.

1. Compute the adjusted prior on m:
my(d,a) = (" (d,x)  and  g"(da) = W(d2) + AA(da),  (26)

where W™(d,-) is a continuous stochastic process independent of the random
variable )\, which follows a normal prior N(0,02) for some o, > 0. The prior
adjustment incorporates an initial estimator of the propensity score, with the variable
A determining the extent of this adjustment through its variance o2. Next, generate
Monte Carlo samples from the posterior of 7™ (1,z) and n™(0,x); see Section {| for
more details. We denote a generic random function drawn from this posterior by
m(-), for s =1,..., B.

2. Generate Bayesian bootstrap weights M2, ..., Mg where MS, = ef/> " | ef and €f’s
are i.i.d. draws from the exponential distribution Exp(1) for s = 1,..., B. A generic
draw from the corrected posterior distribution for the ATE 7, admits the following
representation:

=7, -b, s=1,...,B, (2.7)

where

~ 1& R
Mg, (mi (1, X;) —m5(0,X,))  and bf7=527'[mf7—m](Zi), (2.8)
=1
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using the notation 7[m](z) := m(1,z) — m(0,2) + 5(d, x)(y — m(d, x)).



3. Our 100 - (1 — a)% credible set C,(«) for the ATE parameter 7, is computed by
Cole) = {7 : qn(a/2) < 7 < ¢, (1 — /2)}, (2.9)

where ¢,,(a) denotes the a quantile of {7; : s = 1,..., B}. Additionally, we get the

Bayesian point estimator (the posterior mean) by averaging the simulation draws:
Ty = % Zsle it
In Section {4, we provide further guidance on the implementation of our double robust
Bayesian method, using adjusted Gaussian process priors. Additionally, we provide
recommendations on the implementation of the tuning parameter o,; for more details,
refer to Section [5.1 Regarding the pilot estimator for the propensity score, we employ

Lasso for logistic regression. As a pilot estimator of the conditional mean function, we use

the posterior mean of uncorrected Gaussian process priors. More details are provided in

Sections [l and (.11

Remark 2.1 (Bayesian bootstrap). Under unconfoundedness and the reparametrization
in [2.2), the ATE can be written as 7, = §[¥ (y™(1,2)) — ¥ (y™(0,))]dF,(z). With
independent priors on 0™ and F,, their posteriors also become independent. It is thus
sufficient to consider the posterior for n™ and F, separately. We place a Dirichlet process
prior for F, with the base measure to be zero. Consequently, the posterior law of I,
coincides with the Bayesian bootstrap [Rubin, |1981]; also see |Chamberlain and Imbens
(2005]. One key advantage of the Bayesian bootstrap is that it allows us to incorporate a
broad class of data generating processes, whose posterior can be easily sampled. Replacing
F, by the standard empirical cumulative distribution function does not provide sufficient
randomization of F,, as it yields an underestimation of the asymptotic variance; see |[Ray
and van der Vaart, 2020, p. 3008]. In principle, one could consider other types of bootstrap
weights; however, these generally do not correspond to the posterior of any given prior

distribution.

3 Main Theoretical Results

In this section, we derive the Bernstein-von Mises (BvM) theorem which establishes
the asymptotic equivalance between our Bayesian procedure and frequentist-type efficient

semiparametric estimation of the ATE. We consider asymptotically efficient estimators 7



with the following linear representation:

i ) + op, (n12), (3.1)

=)
||
3IH

where 7y = 7, is the efficient influence function in accordance with (2.4). Below, we
denote Z(™ = (Zy,...,Z,). By virtue of the BvM Theorem, two conditional distributions
Vn(r, —7)|Z™ and \/n(7 — 7,))|n = 1o are asymptotically equivalent under the underlying
sampling distribution. Another important consequence of the BvM theorem is about the
asymptotic normality and efficiency of the Bayesian point estimator. That is, /n(7, — )
is asymptotically normal with mean zero and variance vy = Eq [73(Z;)]. Thus, 7, achieves

the semiparametric efficiency bound of [Hahn| [199§].

3.1 Least Favorable Direction

Our prior correction through the Riesz representor 7, is motivated by the least favorable
direction of Bayesian submodels. We first provide least favorable calculations of Bayesian
submodels, which are closely linked to semiparametric efficiency derivations. Consider the

one-dimensional submodel ¢ — 7, defined by the path

f ()"

@) = VO £ t9)(a), muldx) = WO+ tm)(da), Sile) = T s

(3.2)
for the given direction (p,m,§) with {f(z)f(z)dx = 0. The difficulty of estimating the
parameter 7, for the submodels depends on the direction (p,m,f). Among them, let
& = (&, ff ) be the least favorable direction that is associated with the most difficult
submodel7 i.e., gives rise to the largest asymptotic optimal variance for estimating 7,,. Let

. denote the joint density of Z depending on 7, := (m, my, fi). Taking derivative of the
logarithmic density log p,,(z) with respect to ¢ and evaluating at ¢ = 0 gives the score

operator:
By(p.m,f)(z) = Byp(z) + By'm(2) + Byf(2), (3.3)
where Blp(z) = (d — my(2))p(z), Bi'm(z) = (y — my(d, z))m(d, 2) and Bf(z) = f(x). The

least favorable direction is defined as the solution &, which solves the equation B,§, = T,
see |Ghosal and Van der Vaart| [2017, p.370] and we immediately obtain:

Lemma 3.1. Consider the submodel (3.2). Under Assumption the least favorable



direction for estimating the ATE parameter in (2.3)) is:

fn(d, :L') = (07 ’yn(da x)? m77<17 33‘) - mn(07 .QC) - TT]) ) (3'4>
where the Riesz representer vy, is given in (2.5)).

Lemma motivates the adjustment of the prior distribution as considered in our
Bayesian estimator in Section Our prior correction, which takes the form of
the (estimated) least favorable direction, provides an exact invariance under a shift of
nonparametric components by giving the prior an explicit adjustment in this direction. It
provides additional robustness against posterior inaccuracy in the “most difficult direction”,
i.e., the one inducing the largest bias in the average treatment effects. We also note that
Lemma [3.1]extends the result in Section 2.1 in[Ray and van der Vaart] [2020] for the missing
data problem, which is equivalent as observing only one arm (either the treatment or control

arm), to the context of ATE estimation that involves both arms.

3.2 Assumptions for Inference

We now provide additional notations and assumptions. The posterior distribution plays an

important role in the following analysis and is given by

T,m Y:“D X;)dIl
I ((w,m) € A, F € B|Z") = Jallip | X3)dIL(r, m)

dII(F| X ™
B SHz‘:lpmm(YwDi|Xi)dH(7T7m) ( | )

where pr,, denotes the conditional density of (Y;, D;) given X;, given by divided
by the marginal density of X;. We write Ln(y/n(7, — 7)|Z™) for the marginal posterior
distribution of y/n(7,—7). We focus on the case that ™ has a prior that is independent of the
prior for (n™, F). Because the factorization of the likelihood function into (n™,n", F)
separately, so the posterior of 7™ is also independent of the posterior for (p™, F'). Due
to the fact that 7,, does not depend on 7", it is unnecessary to further discuss a prior or
posterior distribution on n™. Also, see Theorem 6.1B in |Little and Rubin| [2019].

We first introduce high-level assumptions and discuss primitive conditions for those in
the next section. Below, we consider some measurable sets H,' of functions n™ such that
I(y™ € H™|Z™) —p, 1. To abuse the notation for convenience, we also denote H, =
{n :n™ e H"} when we index the conditional mean function m,, by its subscript 7. We
introduce the notation |[¢]ar 1= 4/ #?(x)dEo(z) for all ¢ € L*(Fp) := {¢ :

< o0}.



Assumption 2. [Rates of Convergence] The estimators 7 and m, which are based on an

auxiliary sample independent of Z™ | satisfy |7 — mo[2., = Op, () and for d € {0, 1}:

|m(d, ) —mo(d,-)

2.5, = Opy(en) and Sup lmy(d, -) —mo(d, -)
NEn

2,Fy < En,

where max{e,, r,} — 0 and \/ne,r, — 0. Further, |7/, = Op,(1).

We adopt the standard empirical process notation as follows. For a function h of
a random vector Z; that follows distribution P, we let P[h] = (h(z)dP(z),P,[h] =
n~ '3 W(Z:), and Gulh] = /n (P, — P)[h]. Below, we make use of the notations
() = My (L,-) = my (0, ) and o) = mo(1, ) — mo(0,-).

Assumption 3. [Complexity] For G, = {m, () : n € H,} it holds sup, g, [(Pn — Po)m,| =
op,(1) and

sup |Gy [(7 = 70) (my —mo)]| = oy (1). (3.5)
T)EHn
Recall the propensity score-dependent prior on m given in ({2.6), that is, m(-) =
W (W™(-) + Ay(+)). The restriction about A is made through its hyperparameter o, > 0.

Assumption 4. [Prior Stability] For d € {0,1}, W™(d, ) is a continuous stochastic process
independent of the normal random variable A ~ N(0,02), where no? — o and that
satisfies: (i) IT (A : [A| < u,024/n | Z™) —p 1, for some deterministic sequence u,, — 0
and (i) I ((w, A) : w + (A + tn™2)F e H" | ZW) —p 1 for any t € R.

Discussion of Assumptions: Assumption [2| imposes sufficiently fast convergence rates
for the pilot estimators for the conditional mean function mgy and the propensity score
mo. In practice, one can explore the recent proposals from Chernozhukov et al. [2020
2022]. Note that one can also use Bayesian point estimators such as the posterior mean
of the Gaussian process for m and 7. The posterior convergence rate for the conditional
mean m, can be derived in the same spirit of Ray and van der Vaart [2020]. The rate
restriction is more likely to be satisfied if one function is easier to estimate, which resembles
Theorem 1 conditions (i) and (ii) of Farrell [2015]. Remark illustrates that under
classical smoothness assumptions, this condition is less restrictive than the plug-in method
of Ray and van der Vaart [2020] or other approaches for semiparametric estimation of ATEs
as found in [Chen et al.| [2008] or [Farrell et al|[2021]. Assumption [4incorporates Conditions
(3.9) and (3.10) from Theorem 2 in Ray and van der Vaart| [2020], and it is imposed to

check the invariance property of the adjusted prior distribution.

10



Assumption [3| restricts the functional class G,, to form a Py-Glivenko-Cantelli class; see
Section 2.4 of van der Vaart and Wellner| [1996] and imposes a stochastic equicontinuity
condition on a product structure involving 4 and m,. The stochastic equicontinuity
condition in further relaxes the corresponding one, namely sup,cym Gp, [m, —mg] =
op,(1), from Ray and van der Vaart| [2020]. In the next section, we demonstrate that our
formulation allows for double robustness under Holder smoothness classes (see Remark
. Hence, the complexity of the functional class (m, — mg) can be compensated by
sufficient regularity of the corresponding Riesz representor and vice versa. In essence, a
condition similar to our Assumption |3|is also used in the frequentist literature; see Section
2 of Benkeser et al.| [2017]. Nonetheless, the technical argument differs substantially from
the frequentist’s study, because we mainly need the condition to control changes in
the likelihood under perturbations along the estimated and true least favorable directions.

This is unique to Bayesian analysis with nonparametric priors.

3.3 A Double Robust Bernstein-von Mises Theorem

We now establish a new Bernstein—von Mises theorem, which establishes the asymptotic
normality of the posterior distribution, modulo a “bias term”. In a next step, we show
that posterior correction, as proposed in our procedure, eliminates this “bias term”. This
asymptotic equivalence result is established using the bounded Lipschitz distance. For two
probability measures P, () defined on a metric space X', we define the bounded Lipschitz

distance as

de(P.Q) = sup || f(aP Q). (3.6)
feBL(1) |2
where ,
BL(1) = {f : Z— R sup |f(2)] +supM < 1}.
2€Z 2#2! ”Z -z ”52
Here, | - |, denotes the vector 5 norm.

Below is our main statement about the asymptotic behavior of the posterior distribution
of 7,. As in the modern Bayesian paradigm, the exact posterior is rarely of closed-form,
and one needs to rely on certain Monte Carlo simulations, such as the implementation
procedure in Section to approximate this posterior distribution, as well as the resulting

point estimator and credible set.

Theorem 3.1. Let Assumptions[1H4] hold. Then we have
dpr (‘CH(\/EO—?? -7 boyﬂ)|Z(n))a N(07 VO)) —p, 0,

11



where b, := Pp[v0(mo — my) — (Mo — my)].

We emphasize that the above BvM theorem is not feasible for applications, because
it depends on the “bias term” by ,, which depends on the unknown conditional mean m.
Nonetheless, it provides an important theoretical benchmark. One can follow the existing
literature on semiparametric BvM theoresm to impose the so-called “no-bias” condition,
but this generally leads to strong smoothness restrictions and may not be satisfied when the
dimensionality of covariates is large relative to the smoothness properties of the underlying
functions; see the discussion on page 395 of van der Vaart| [1998].

This “bias term” in our context consists of two key components, with the first involving
unknown true functions and the second depending on the posterior of m,. We consider
pilot estimators for the unknown functional parameters in b ,. The correction term Bn, as
introduced in , results in a feasible Bayesian procedure that satisfies the BvM theorem

under double robustness, as demonstrated below.

Theorem 3.2. Let Assumptions[IH{] hold. Then we have
dpr, (Ln(V(r, = 7 = 5,)120), N(0, Vo)) =, 0.

We now show how Theorem [3.2|can provide frequentist justification of Bayesian methods
to construct the point estimator and the confidence sets. Recall that 7, represents the
posterior mean. Introduce a Bayesian credible set C,(«) for 7,, which satisfies II(7, €
Cn(a)|Z™) =1 — « for a given nominal level a € (0,1). The next result shows that C,(c)
also forms a confidence interval in the frequentist sense for the ATE parameter whose

coverage probability under F, converges to 1 — a.

Corollary 3.1. Let Assumptions[1H{] hold. Then under P,, we have
Vi (Ty = 10) = N(0, Vo). (3.7)

Also, for any o € (0,1) we have Py(1o € Cp(a)) — 1 — a.

To the best of our knowledge, this is the first BvM theorem that entails the double
robustness. We discuss the distinction with Theorem 2 in Ray and van der Vaart| [2020].
Their work laid the theoretical foundation that supports the usefulness of propensity score
in Bayesian analysis of the ATE. They showed that propensity score adjustment via priors
can allow for weak regularity conditions on the propensity score function, coining the

corresponding property as the single robustness. Our analysis differs from |Ray and van der

12



Vaart| [2020] in two crucial ways. First, we improve on their Lemma 3 by showing that it
is possible to verify the prior stability condition for propensity score-adjusted priors under
the product structure in Assumption , modulo the “bias term” bg,. This separation is
essential to identify the source of the restrictive condition, such as the Donsker property
on m,,, which is mainly used to eliminate by ,. Second, our proposal introduces an explicit

debiasing step, borrowing key insights from recent developments in the DML literature.

Remark 3.1 (Connection with frequentist robust estimation). In our BuM theorem, we
do not restrict the centering estimator T, as long as it admits the linear representation as
in (3.1). A popular frequentist estimator for the ATE that achieves double robustness is

n

F=n' ) (M(L,X;) — M0, Z (Di, Xi) (Yi — m(Ds, X3)) (3.8)
i=1 i—1
based on frequentist-type pilot estimators m of the conditional mean function mqg and 5 of
the Riesz representer ~y; see Robins and Rotnitzky [1995] and more recently |Chernozhukov
et al| [2020,|2022]. The double robust or double machine learning estimator (3.8|) recenters
the plug-in type functional by an explicit correction factor that depends on the Riesz
representor.ﬁ Our main result establishes the asymptotic equivalence of our estimator and
.This not only offers frequentist validity to our Bayesian procedure but also provides

doubly robust frequentist methods with a Bayesian interpretation.

Remark 3.2 (Parametric Bayesian Methods). A couple of recent papers propose doubly
robust Bayesian recipes for ATE inference, under parametric model restrictions. |Saarela
et al| [2016] considered a Bayesian procedure based on an analog of the double robust
frequentist estimator given in Equation , replacing the empirical measure with the
Bayesian bootstrap measure. However, there was no formal BuM theorem presented therein.
Another recent paper by |Yiu et al.| [2020] explored Bayesian exponentially tilted empirical
likelihood with a set of moment constraints that are of a double-robust type. They proved a
BuM theorem for the posterior constructed from the resulting exponentially tilted empirical
likelihood under parametric specifications. |Luo et al.| [2023] provided Bayesian results for
ATE estimation in a partial linear model, which implies homogeneous treatment effects.
They also assign parametric priors to the propensity score. Their BuM Theorem allows
for musspecification only in a parametric nonlinear component of the outcome equation. It
is not clear how to extend their analysis to incorporate flexible nonparametric modeling

strategies.

3 Another popular method in the statistics literature is the targeted learning approach [Van der Laan
and Rose, 2011} |Benkeser et al., [2017].

13



4 TIllustration with Gaussian Process Priors

We illustrate the general methodology by placing the Gaussian process prior on n™(d, ")
in relation to the conditional mean functions for d € {0,1}. The Gaussian process
regression has been extensively used among the machine learning community [Rassmusen
and Williams, [2006], and started to gain popularity among economists [Kasy, 2018|. Our
study further strengthened the appealing features of this modern Bayesian toolkit. We
provide primitive conditions used in our main results in the previous section. In addition,
we provide details on the implementation using Gaussian process priors and discuss the

data-driven choices of tuning parameters.

4.1 Inference Based on Gaussian Process Priors

Let (W(t) : t € RP) be a centered, homogeneous Gaussian random field with covariance
function of the following form E[W (s)W(t)] = ¢(s — t), for a given continuous function
¢ : R? — R. We consider W (t) as a Borel measurable map in the space of continuous
functions on [0, 1]?, equipped with the supremum norm || - |,. The covariance function
of a squared exponential process is given by E[W (s)W (t)] = exp(—|s — t|7,), as its name

suggests. We also consider a rescaled Gaussian process (W (a,t) : ¢ € [0,1]7). Intuitively

-1
n

speaking, a_ ' can be thought as a bandwidth parameter. For a large a, (or equivalently
a small bandwidth), the prior sample path ¢t — W (a,t) is obtained by shrinking the long
sample path ¢ — W (t). Thus, it employs more randomness and becomes suitable as a prior
model for less regular functions, see van der Vaart and van Zanten [2008, 2009).

Below, C*" ([0, 1]?) denotes a Holder space with the smoothness index s,,. Specifically,
we illustrate our theory with the case where mq(d,-) € C*([0,1]?) for d € {0,1}. Given

such a Holder-type smoothness condition, we choose

ay, = nl/(QSm +p) (log n)_(1+p)/(2SM+p) , (4 ]_)

which coincides (up to some logarithm factor) with the minimax posterior contraction rate
for the conditional mean function m,,(d, ) given by e, = n=sm/(2sm+P)(log p)sm(1+P)/2sm+p),
see Section 11.5 of |(Ghosal and Van der Vaart| [2017]. The particular choice of a,, mimics the
corresponding kernel bandwidth based on any kernel smoothing method. Other choices of
a, will generally make the convergence rate slower. Nonetheless, as long as the propensity

score is estimated with a sufficiently fast rate, our BvM theorem still holds.

Proposition 4.1 (Squared Exponential Process Priors). The estimator 7 satisfies |¥]o =
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Op,(1) and |7 — Yolle = Op,((n/logn)==/s=*P)) for some s, > 0. Suppose mo(d,-) €
C*m([0,1]7) for d € {0,1} and some s, > 0 with \/Szs, > p/2. Also, |m(d,-) —
mo(d, -)|le.r, = Opo((n/ log n)_sm/(23m+p)). Consider the propensity score-dependent prior
on m given by m(d,z) = V(W7 (x) + Ay(d,z)), where Wi*(x) is the rescaled squared

exponential process for d € {0, 1}, with its rescaling parameter a,, of the order in (4.1)) and

n —8m/(28m+p)
( ) <o, <1 (4.2)
logn

Then, the corrected posterior distribution for the ATE satisfies Theorem [3.1].

Remark 4.1 (Double Robust Hélder Smoothness). Proposz'tion TeqUITES \/Sx Sm > D)2,
which represents a trade-off between the smoothness requirement for mg and m. This
encapsulate the double robustness; i.e., a lack of smoothness of the conditional mean
function mq can be mitigated by exploiting the reqularity of the propensity score and vice
versa. Referring to the Holder class C* ([0, 1]7), its complexity measured by the bracketing
entropy of size € is of order eV for v = d/(2s,,). One can show that the key stochastic
equicontinuity assumption in |Ray and van der Vaart [2020], i.e., their condition (3.5), is
violated by exploring the Sudkov lower bound [Han, |2021] when v > 1 or equivalently when
Sm < p/2. In contrast, our framework accommodates this non-Donsker regime as long as
/57 Sm > p/2, which enables us to exploit the product structure and a fast convergence
rate for estimating the propensity score. Qur methodology is not restricted to the case
where propensity score belongs to a Holder class per se. For instance, under a parametric
restriction (such as in logistic regression) or an additive model with unknown link function,
the possible range of the posterior contraction rate €, for the conditional mean function
can be substantially enlarged. In the case s,, > p/2, the bias term becomes asymptotically
negligible, i.e., by, = op,(n"Y2). This allows for smoothness robustness only with respect
to the propensity score and is also known as single robustness. In this case, no posterior

correction is required, see|Ray and van der Vaart (2020)].

4.2 Implementation of Gaussian Process Priors

We provide details on the Gaussian process prior placed on n™(d,z) and its posterior
computation.  Following equation ([2.6), the propensity score adjusted prior takes
the form n™(d,z) = W™(d,z) + \y(d,z): the first component W™ (d,z) is a zero-
mean Gaussian process with the commonly used squared exponential (SE) covariance
function [Rassmusen and Williams, 2006, p.83].  That is, K ((d,z),(d,2")) :=
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v2exp (—ag,(d —d')?/2 =¥ | a7 (z, — x))?/2) where the hyperparameter v* is the kernel
variance and agy, . .., a,, are rescaling parameters that reflect the relevance of treatment
and each covariate in predicting n™. In practice, they can be obtained by maximizing the
marginal likelihood.

Conditional on the data used to obtain the propensity score estimator 7, the prior
for n™ has zero mean and the covariance kernel K¢ including an additional term based
on the estimated Riesz representer 7 is given by K¢ ((d,z),(d',z")) = K ((d,z),(d',z")) +
o27(d, z)7(d, '), cf. related constructions from Ray and Szabd| [2019] and Ray and van der
Vaart| [2020]. The parameter o, representing the standard deviation of A, controls the
weight of the prior correction. In the subsequent numerical exercise, we select o, such
that the rate condition specified in Assumption {4 is satisfied. Our simulation results also
suggest that the performance of our approach remains stable across various choices of o,,.

Utilizing Gaussian process priors with zero mean and covariance function K¢,
and incorporating the available data, we generate posterior draws of the vector
[™(d, X1), - ,n"(d, X,)]" for d € {0,1}. This can be achieved through the Laplace
approximation method detailed in online Appendix [G| When it comes to the pilot
estimator m required for our posterior correction in , we plug in the posterior mean
of m(d,x) = ¥ (n™(d, x)), which is calculated using the unadjusted Gaussian process prior
and the sample data. When the rescaling parameter a, is as stated in Proposition [1.1]
the convergence rate of M is Op, ((n/logn)=*m/(>sn+P)) This can be shown by combining
Theorems 11.22, 11.55 and 8.8 from |Ghosal and Van der Vaart| [2017].

5 Numerical Results

In this section, we apply our method to the well-known job-training data set that contains
a treated sample of 185 men from the National Supported Work (NSW) experiment and a
control sample of 2490 men from the Panel Study of Income Dynamics (PSID). The data
has been used by LaLonde| [1986], Dehejia and Wahba [1999], |Abadie and Imbens| [2011],
and Armstrong and Kolesar| [2021], among others. We also refer readers to Imbens [2004]

and Imbens and Rubin| [2015] for comprehensive reviews of the data.

5.1 Simulations

In this section, we consider a simulation study where the observations are randomly

drawn from a large sample generated by the Wasserstein Generative Adversarial Networks
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(WGAN) method from the the job-training real data, see Athey et al. [2021]. We view their
simulated data as the population and repeatedly draw our simulation samples (each with
185 treated and 2490 control observations) for 1,000 times of Monte Carlo replication. We
slightly depart from previous studies by focusing on a binary outcome Y: the employment
indicator for the year 1978, which is defined as an indicator for positive earnings. The
treatment D is the participation in the NSW program. We are interested in the average
treatment effect of the NSW program on the employment status. We consider three choices
of covariates X: Spec I follows that of|Abadie and Imbens|[2011] and contains nine variables:
age, education, black, Hispanic, married, earnings in 1974, earnings in 1975, unemployed
in 1974, unemployed in 1975; Spec II follows Table 3 of |Dehejia and Wahbaj [2002] that
adds six variables to Spec I: the no degree indicator, quadratic terms of age, education,
earnings in 1974 and 1975, and unemployed in 1974 x Hispanic; Spec III further adds the
six interactions between the four continuous covariates (age,education, earnings in 1974 and
1975) and eight other interactions that are selected in [Farrell [2015]: education x married,
education x Hispanic, earnings in 1974 x married, earnings in 1974 x Hispanic, earnings
in 1975 x unemployed in 1974, nodegree x unemployed in 1975, black x unemployed in
1975, unemployed in 1974 x unemployed in 1975.

Our double robust Bayesian method (DR Bayes) is implemented as given in 7, in
using the adjusted Gaussian process prior, where the propensity score is estimated by Lasso
for logisitic regression with the penalty parameter chosen by cross-validation [Friedman
et al., 2010]. The posterior correction also builds on a pilot conditional mean estimator m,
given here by the posterior mean of m,, using uncorrected Gaussian process priors. We set
the tuning parameter o,, that corresponds to the standard deviation of the adjusted prior by
v/dim(X)nlogn/ X" |3(D;, X;)|, which reflects the rate condition imposed in Assumption
(with probability approaching one). Online Appendix [H| presents additional simulation

evidence, showing that the performance of DR Bayes is stable for different choices of o,,, as
long as the latter is not too small. We compare our method to the following two Bayesian
procedures: First, we consider prior adjusted Bayesian method (PA Bayes) proposed by
Ray and van der Vaart| [2020] and implemented following 7, in with the same choice
of estimated o,. Second, we consider an unadjusted Bayesian method (Bayes), following
7, in (2.8)) using Gaussian process priors. For further details on the implementation of the
Gaussian process priors we refer to Section [£.2] All Bayesian methods are implemented

based on 5,000 posterior draws.
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Table 1: Simulation results using WGAN-generated data for specifications I (dim(X) = 9), II
(dim(X) = 15), and III (dim(X) = 29). Trimming is based on 7 € [t,1 — t] and 7 = the average
sample size after trimming.

Spec  Methods Bias CP CIL Bias CP CIL Bias CP CIL
I t = 0.10(7 = 240) t = 0.05(n = 364) t =0.01(n = 665)
Bayes -0.040 0.682 0.147 -0.010 0.845 0.148 -0.005 0.917 0.120
PA Bayes -0.002 0.982 0.274 0.037 0.940 0.260 0.051 0.875 0.310
DR Bayes -0.021  0.979 0.229 0.016 0.966 0.224 0.026 0.938 0.258
Match 0.027 0.933 0.334 0.048 0.911 0.323 0.033 0.967 0.323
Match BC 0.041 0.881 0.347 0.065 0.818 0.334 0.083 0.800 0.339
DR TMLE 0.014 0.838 0.299 0.040 0.741 0.282 0.038 0.657 0.241
DML 0.030 0.928 0.454 0.054 0.864 0.398 0.045 0.926 0.490
11 t = 0.10(n = 226) t = 0.05(n = 345) t = 0.01(n = 603)
Bayes -0.077  0.000 0.046 -0.078 0.000 0.032 -0.080 0.000 0.014
PA Bayes 0.007 0.966 0.282 0.035 0.930 0.269 0.032 0.883 0.290
DR Bayes -0.013 0.964 0.233 0.012 0.957 0.230 0.011 0.930 0.258
Match 0.005 0.956 0.319 0.032 0.923 0.301 0.018 0.963 0.285
Match BC 0.108 0.764 0.388 0.174 0.584 0.454 0.246  0.537 0.635
DR TMLE 0.016 0.860 0.292 0.035 0.755 0.280 0.033 0.716 0.243
DML 0.020 0.942 0.424 0.042 0.868 0.364 0.032 0.918 0.410
111 t =0.10(7 = 212) t =0.05(n = 321) t =0.01(n = 613)
Bayes -0.077 0.015 0.047 -0.079  0.000 0.030 -0.080 0.000 0.011
PA Bayes 0.005 0.962 0.296 0.029 0.934 0.277 0.035 0.890 0.290
DR Bayes -0.016 0.963 0.243 0.007 0.953 0.237 0.019 0.932 0.266
Match 0.002 0.943 0.323 0.016 0.943 0.306 0.011 0.971 0.299
Match BC -0.024 0.937 0.457 -0.014 0.920 0.470 -0.025 0.941 0.532
DR TMLE -0.003 0.780 0.295 0.008 0.742 0.292 0.029 0.670 0.239
DML -0.001 0.932 0.370 0.020 0.890 0.373 0.027 0.924 0.385

We also compare our method to frequentist estimators. Match/Match BC corresponds
to the nearest neighbor matching estimator and its bias-corrected version, which adjusts for
differences in covariate values through regression |Abadie and Imbens [2011]. DR TMLE
corresponds to the doubly robust targeted maximum likelihood estimator by |Benkeser
et al| [2017]. DML corresponds to the double/debiased machine learning estimator of
Chernozhukov et al| [2017], where the nuisance functions my and mg are estimated using
random forest. Since the job-training data contains a sizable proportion of units with
propensity score estimates very close to 0 and 1, we follow (Crump et al.| [2009] and discard

observations with the estimated propensity score outside the range [t,1 — t], with the
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trimming threshold ¢ € {0.10,0.05,0.01} ]

Table (1| presents the finite sample (mean) bias of the point estimator, coverage
probability (CP) and the average length (CIL) of the 95% credible/confidence interval
for the Bayesian and frequentist methods mentioned above. We use the full data twice
in computing the prior/posterior adjustments and the posteriors of the conditional mean
function. Online Appendix [H] reports the performance of DR Bayes using sample-split,
which has similar coverage but larger credible interval length due to the halved sample.

Concerning the Bayesian methods for estimating the ATE, Table [I] reveals that
unadjusted Bayes yields adequate coverage only in the low-dimensional case of Specification
I and with a trimming constant ¢ = 0.01. In all other cases, the coverage is
highly inaccurate, and the bias increases significantly as more covariates are introduced.
If the prior is corrected using the propensity score adjustment, then the results
improve significantly. Nevertheless, our DR Bayes method demonstrates two further
improvements: First, DR Bayes leads to smaller average confidence lengths in each
case while simultaneously improving the coverage probability. For trimming thresholds
t € {0.05,0.01}, this can be attributed to a reduction in bias, while for ¢ = 0.10, DR Bayes
also shows improvement in the CIL, which appears to stem from more accurate uncertainty
quantification via our posterior correction. Second, when the trimming threshold is small,
i.e., t = 0.01, propensity score estimators can be less accurate, leading to reduced coverage
probabilities of PA Bayes. Our double robust Bayesian method, on the other hand, is
still able to provide accurate coverage probabilities across all specifications considered. In
other words, DR Bayes exhibits more stable performance than PA Bayes with respect
to the trimming threshold. Take Specification I as an example: the empirical coverage
probabilities for DR Bayes are 0.979, 0.966, and 0.938 when the trimming threshold ¢ is set
to 0.1, 0.05, and 0.01, respectively. In comparison, PA Bayes yields corresponding coverage
probabilities of 0.982, 0.940, and 0.875.|ﬂ

Our DR Bayes also exhibits encouraging performances when compared to frequentist
methods. It provides a more accurate coverage than bias-corrected matching, DR TMLE

and DML. Compared with the matching estimator that exhibits a similarly good coverage

4Crump et al.|[2009] suggested a simple rule of thumb with a threshold of ¢ = 0.10, while |Athey et al.
[2021] used t = 0.05. Applying the optimal trimming rule proposed by |Crump et al.| [2009] to our simulated
samples yields an average optimal trimming threshold ranging between 0.072 and 0.074 across the three
specifications.

°In additional simulations without trimming (¢ = 0), we find that all double robust methods, including
DR Bayes, substantially under-cover and/or inflate the length of their confidence intervals. This is
consistent with |Crump et al.| [2009], who point out that propensity score estimates close to the boundaries
tend to induce substantial bias and large variances in estimating the ATE.
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performance, DR Bayes yields considerably shorter credible intervals in each specification

considered.

5.2 An Empirical Illustration

We apply the Bayesian and frequentist methods considered above to the real job-
training data. We report the estimation for the three different specification considered
in the previous subsection and consider a varying choice of the threshold constant ¢t €
{0.10,0.05, 0.0l}ﬂ The results are presented in Table .

As a benchmark, the experimental data that uses both treated and control groups in
NSW (n = 445) yields an ATE estimate (treated-control mean difference) equal to 0.111
with the 95% confidence interval [0.026,0.196]. As we see from Table , the unadjusted
Bayesian method yields large estimates under Spec I while very small ones under Spec II
and Spec III. The adjusted Bayesian methods (PA and DR Bayes), on the other hand,
produce estimates comparable to the experimental estimate. Taking ¢ = 0.05 for example,
PA Bayes finds that the job training program enhanced the employment by 11.2% to 16.8%
across different specifications, and DR Bayes estimates the effect from 7.5% to 18.3%.

Consistent with our simulation results, bias-corrected matching and DR TMLE
sometimes exhibit undesirable behavior: The bias-corrected matching produce large
estimates (up to 39.2%) for Spec II and III. DR TMLE produces negative estimates for
t = 0.10 when all other estimates are positive. In the case ¢t = 0.01, where the overlapping
condition is closer to violation for some units, adjusted Bayesian methods yield close-to-zero
estimates under Spec II and III, while bias-corrected matching and DML yields tends to
overestimate. The matching estimator, which performs best among frequentist methods in
our simulations, produces similar estimates as PA and DR Bayes. In terms of estimation
precision, the credible intervals based on DR Bayes are the shortest among the adjusted
Bayesian and all the frequentist methods considered over all cases except for Spec II with
t = 0.01. The credible intervals based on unadjusted Bayes are too short under Spec II

and III to be expected to have a reasonable coverage.

6 Applying the optimal trimming rule proposed by |Crump et al. [2009] yields an optimal threshold of
0.064 for Spec I and IT and 0.057 for Spec III.
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Table 2: Estimates of ATE for the job-training data: trimming based on # € [t,1—t], 7 = sample
size after trimming.

Spec I t = 0.10(n = 245) t = 0.05(n = 398) t =0.01(n = 740)

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL
Bayes 0.214 [0.125,0.299] 0.174]0.214 [0.130, 0.293] 0.163 | 0.197 [0.141, 0.251] 0.111
PA Bayes  0.151 [0.002, 0.283] 0.282 | 0.168 [0.037, 0.285] 0.248 | 0.090 [-0.075, 0.227] 0.302
DR Bayes 0.172 [0.051, 0.289] 0.238 | 0.183 [0.058, 0.299] 0.241 | 0.119 [-0.027, 0.250] 0.277
Match 0.188 [0.022, 0.355] 0.333|0.140 [-0.029, 0.309] 0.338 | 0.079 [-0.111, 0.269] 0.380
Match BC  0.157 [-0.006, 0.321] 0.327 | 0.145 [-0.021, 0.310] 0.331 | 0.180 [-0.004, 0.365] 0.369
DR TMLE -0.022 [-0.173, 0.128] 0.301|0.084 [-0.067, 0.235] 0.302 | 0.037 [-0.202, 0.275] 0.477
DML 0.170 [0.013, 0.327] 0.314|0.126 [-0.054, 0.306] 0.360 | 0.338 [-0.143, 0.818] 0.962
Spec 11 t =0.10(n = 222) t = 0.05(7 = 369) t =0.01(n = 645)

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL
Bayes 0.010 [-0.021, 0.043] 0.065 | 0.027 [-0.009, 0.063] 0.072 |-0.005 [-0.024, 0.013] 0.038
PA Bayes  0.049 [-0.096, 0.187] 0.284 | 0.112 [-0.035, 0.232] 0.267 | -0.004 [-0.139, 0.111] 0.249
DR Bayes  0.040 [-0.087, 0.158] 0.245 | 0.078 [-0.031, 0.174] 0.204 | -0.006 [-0.200, 0.151] 0.352
Match 0.158 [-0.004, 0.320] 0.324 | 0.134 [-0.022, 0.290] 0.313 | 0.065 [-0.094, 0.223] 0.317
Match BC  0.250 [0.083, 0.417] 0.334 | 0.392  [0.194, 0.590] 0.396 | 0.352 [0.146, 0.558] 0.412
DR TMLE 0.029 [-0.111, 0.169] 0.280 | 0.130 [-0.050, 0.310] 0.360 | 0.107 [-0.106, 0.320] 0.426
DML 0.138 [-0.044, 0.321] 0.365 | 0.117 [-0.050, 0.284] 0.334 | 0.319 [-0.080, 0.718] 0.799
Spec III t =0.10(n = 234) t = 0.05(7 = 390) t=0.01(n = 712)

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL
Bayes 0.006 [-0.019, 0.031] 0.051]0.025 [-0.019, 0.067] 0.086 |-0.001 [-0.009, 0.006] 0.015
PA Bayes  0.096 [-0.058, 0.230] 0.288 | 0.117 [-0.034, 0.247] 0.281 | -0.020 [-0.254, 0.122] 0.345
DR Bayes  0.068 [-0.050, 0.167] 0.218 | 0.075 [-0.040, 0.178] 0.219 | -0.010 [-0.149, 0.099] 0.248
Match 0.192 [0.026, 0.358] 0.332]0.156 [-0.012, 0.325] 0.337 | 0.006 [-0.181, 0.192] 0.373
Match BC  0.173  [-0.005, 0.350] 0.355 | 0.280 [0.109, 0.451]  0.342 | 0.335 [0.114, 0.555] 0.441
DR TMLE -0.038 [-0.217, 0.140] 0.358 | 0.232 [0.025, 0.438] 0.413 | -0.054 [-0.236, 0.128] 0.364
DML 0.155 [-0.028, 0.338] 0.366 | 0.176 [-0.046, 0.398] 0.444 | 0.144 [-0.052, 0.339] 0.391

6 Extensions

This section extends the binary variable Y to encompass general cases, including

continuous, counting, and multinomial outcomes. First, we examine the class of single-

parameter exponential families, where the conditional density function is solely determined

by the nonparmatric conditional mean function. This covers continuous outcomes and

counting variables.

Second, we consider the “vector” case of exponential families for

multinomial outcomes. For both classes, we derive the novel correction to the Bayesian
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procedure and delegate more technical discussions to the online Appendices [D] and [F]

Additionally, we outline extensions to other causal parameters of interest.

6.1 A Single-parameter Exponential Family

In this part, we assume that the distribution of Y; conditional on D; and X; belongs to the
“single-parameter” exponential family, where the unknown parameter is the nonparametric
conditional mean function m(d,z) = E[Y;|D; = d,X; = z]. The conditional density

function is given by

frip.x(y;m(d, x)) = c(y) exp [q(m(d, x))ay — A(m(d, ))], (6.1)

where A(m) = log { ¢(y) exp [¢(m)y] dy, and the function ¢(-) links the mean to the “natural
parameter” of the exponential family. We also restrict the sufficient statistic to be linear
in y.

The family not only encompasses the Bernoulli distribution, as considered in the
previous sections, but also allows for counting and continuous outcomes. For instance, when
a = 1, the Poisson distribution corresponds to the choices ¢(y) = 1/(y!), ¢(m) = log m, and
A(m) = m, while the exponential distribution is represented by c(y) = 1, ¢(m) = —1/m,
and A(m) = logm. Furthermore, the normal distribution with Var(Y'|D, X) = ¢2 for some
o > 0, is captured by c(y) = exp(—y?/(20?))/v2m02, g(m) = m/a, A(m) = m?/(20?), and
a = 1/0. We emphasize that model does not impose functional form assumptions on

the conditional mean function m. The joint density of (Y;, D;, X;) can be written as

Prg (ys ds ) = m(2)(1 = () e(y) exp [q(m(d, x))ay — A(m(d, z))] f(z).  (6.2)

We consider the same reparametrization of (w, m, f) as in (2.2]) except that now the second
component of 7 uses the general link function ¢ satisfying ™ = ¢(m). We now state the
least favorable direction for the exponential family case, which serves as motivation for the

prior adjustment.

Lemma 6.1. For the joint distribution (6.2]) and the submodel t — n; defined by the path
my(d,z) = ¢ (0™ + tm)(d, x) with (74, f;) as defined in (3.2)), the least favorable direction
for estimating the ATE parameter in (2.3)) is:

&)(d,a) = <0, é%(d, 2),my (1, ) = my(0, ) — Tn) , (6.3)
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where the Riesz representer vy, is given in (2.5)).

For the outcome family with a = 1, which includes Bernoulli, Poisson and exponential
distributions, the least favorable direction for ATE estimation coincides with the one
as given in Lemma [3.1] To implement the double robust Bayesian procedure for
general outcomes, one can still follow the algorithm described in Section with
the logistic function ¥ in replaced by the inverse link function ¢=!. For the
normal (homoscedastic) outcome where prior adjustment in becomes A\y(d, z)/a,
the hyperparameter a can be determined together with other parameters of the Gaussian
process by optimizing the marginal likelihood as in [Ray and Szabd| [2019]. In Proposition
.1 in the online supplementary appendix, we provide primitive conditions for the BvM

Theorem to hold under double robust smoothness conditions.

6.2 Multinomial Outcomes

We now assume that the dependent variable Y; takes values in a finite set, specifically Y; €
{0,1,...,J}. The ATE can then be written as 7, = 37 j B, [my;(1,X) —m, ;(0, X)],
where the choice probabilities are given by m,, ;(d,z) = ¥, (n™,--- ,n™) with the

multinomial logit specification:

1 exp(n™)

‘PO (nmla"' 77]mJ): and \Ilj (nml7“' 777m‘]) = )
1+ 33 exp(nm™) 1+ 37 exp(nm)

for j = 1,..., J. The multinomial logit specification implies m,, o(d, ) = 1—2;.]:1 my;(d, x).
We now provide the least favorable direction for multinomial outcomes in the presence of

multinomial outcomes and discuss its consequences for prior adjustment below.

Lemma 6.2. Consider the submodel t — n; defined by the path my;(d,z) = VU(n™ +
tm;)(d,z), 1 < j < J, with (m, f;) as defined in (3.2). Under Assumption the least

favorable direction for estimating the ATE parameter is:

&(d,z) = (0,7v,(d, z),2v,(d, z),...,Jy(d z),m,(1,x) —m,(0,z) — 7,),
where the Riesz representer vy, is given in ([2.5)).

We emphasize that the least favorable direction calculation is not a trivial extension of
Hahn| [1998] or Ray and van der Vaart| [2020]. This is because there are J nonparametric

components involved in the conditional probability function of the multinomial outcomes
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given covariates, and we need to consider the perturbation of those J components together.
Nonetheless, we show that the efficient influence function is of the same generic form as
derived in Hahn! [1998]. In the proof of , we compute the derivative of the parameter
mapping along the path considered herein. We derive inner products involving the least
favorable direction for each nonparametric component consisting of the conditional choice
probabilities. The extension to the multinomial case had not been considered in the
literature to our knowledge, and it offers a result of independent interest.

Lemmal6.2) motivates the following modification of our double robust Bayesian estimator

based on the propensity score-dependent prior on m,, ; for 1 < j < J:
mnvj(d»x) = qjj (nm17"' ﬂ?mJ) and nmj(da ZL‘) = ij(dv l’) +)\Ja(d,$),

where W™i(d, ) is a continuous stochastic process independent A ~ N(0,c?) for o, > 0.

We may then follow the implementation as described in Section using m,(d,xz) =
J .
Z]‘:oJ my,;(d, ).

6.3 Other Causal Parameters

We now extend our procedure to general linear functionals of the conditional mean function.
We do so only for binary outcomes, as the modification to other types of outcomes follows
as above. Recall that the observable data consists of i.i.d. observations of Z = (Y, D, XT)".
The causal parameter of interest is 79 = Eg[¢)(Z, mo)], where the function ¢ is linear with
respect to the conditional mean function my. We introduce the Riesz representor 7y (d, z)
satisfying Eo[¢(Z, m)] = Eo[yo(D, X)m(D, X)]. Let m and 4 be pilot estimators for the
conditional mean and Riesz representor, respectively, computed over an external sample.
Our double robust Bayesian procedure can be extended by considering the corrected
posterior distribution for 7, as follows: 77 = " | M (Zs, mf) —n~' 33" 7[mj —m](Z;),
s =1,..., B, where here 7[m](z) := (2, m) +7(d, z)(y —m(d, z)). The derivations of the

least favorable directions in the following two examples are provided in online Appendix [E]

Example 6.1 (Average Policy Effects). The policy effect from changing the distribution
of X is 77 = {my(2)d(G1(x) — Go(x)), where the known distribution functions G; and
G have their supports contained in the support of the marginal covariate distribution £7,.
Following the general setup, ¢ (z,m,) = ¢¥(m,) := {m,(x)d(G1(z) — Go(x)) with its Riesz
representor v, () = (g1(z) — go(x))/fy(x), where g and go stand for the density function
of G7 and Gy, respectively.
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Example 6.2 (Average Derivative). For a continuous scalar (treatment) variable D, the
average derivative is given by 7,7 = E, [04m,(D, X)], where dgm denotes the partial

derivatives of m with respect to the continuous treatment D. Thus, we have ¢(Z,m,) =
0gmy(D, X) with its Riesz representor given by v,*P(D, X) = dgm,(D, X)/m,(D, X), where

here 7, denotes the conditional density function of D given X.

A Proofs of Main Results

In the Appendix, C' > 0 denotes a generic constant, whose value might change line by line.
We introduce additional subscripts when there are multiple constant terms in the same
display. For two sequences a,, b,, we write a,, < b,, if a, < Cb,. In the following, we
denote the log-likelihood based on Z™ = (Z;)%, as

) = Sloapy(2) = £67) + 626 + i),

where each term is the logarithm of the factors involving only 7 or m or f. Recall the
definition of the measurable sets H™ of functions n™ such that II(n™ € H™ | Z(M) —p, 1.
We introduce the conditional prior I, (-) := II(- n H")/II(H}"). The following posterior
Laplace transform of \/n(7, — 7 — by,,) given by

I,(t) = E™ [em(ﬂ,_;_bw | Z(”)] , VteR (A.1)

plays a crucial role in establishing the BvM theorem [Castillol 2012, (Castillo and Rousseaul,
2015, Ray and van der Vaart| 2020]. To abuse the notation slightly, we define a
perturbation of n = (n™,n™) along the least favorable direction, restricted to the

components corresponding to m and m:
() = ("~ = (A2)
mn)=\{n,n \/ﬁ 0 . .
We explicitly write the perturbation of ™ by 1™ := n,(n™) = 9™ — t&'/y/n. Recall that
&0 coincides with the Riesz representer o by Lemma [3.1]

Proof of Theorem[3.1 Since the estimated least favorable direction 7 is based on
observations that are independent of Z(™  we may apply Lemma 2 of Ray and van der
Vaart| [2020]. It suffices to handle the ordinary posterior distribution with 4 set equal to a

deterministic function =,. By Lemma 1 of (Castillo and Rousseau [2015], it is sufficient to
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show that the Laplace transform I,,(¢) given in (A.1) satisfies
L,(t) —p, exp (£*vo/2) (A.3)

for every ¢t in a neighborhood of 0, where the limit at the right hand side of is
the Laplace transform of a N(0, Vo) distribution. Note that we can write 7, = {m,dF),.
Further, let 7 = {modF, + P,[7], which satisfies (3.1]).

The Laplace transform I,,(¢) can thus be written as

JJ exp t\f SmndF modFy — bo ) — tGy[T0] + 47 (™) — E;”(nzn)) exp (Eff(ng”

) att(ym (m)

The expansion in Lemma gives the following identity for all ¢ in a sufficiently small

neighborhood around zero and uniformly for ™ € H":

t2
™) —=6(n") = th[’Yopmo]+th[’Yo(mo—mn)]+t\/ﬁJ(mo—mn)dFoJr§P0(B?581)2+0P0(1)7

where we make use of the notation p"(y,d,x) = y — m(d,x) and the score operator Bj' =

B,y defined through (3.3)).
Next, we plug this into the exponential part in the definition of I,,(¢), which then gives

fj exp (ty/n (§(mndF,) — modFy) + §(mo — my)dFo — bo,y) + tGn[v0(mo — my)] + €7 (™))
$2, exp (fm( ™)) dI (™)

<exp (1G] + (G lp™] + SRBEEE Y +on, (1)

JJ exp (ty/n (§mnd(Fy — Fo) = bo.y) + tGn[y0(mo — my)]) exp (67 (ni"))
e $20, exp (G (™)) dIL (™)

N ¢2
X exp <—th[To] +tGp[y0p™°] + EPO(B{J"%”F + 0p0(1)> .

dIl(n™)dIL(F,|Z™)

dIl(n™)dIL(F,|Z™)

Because all variables have been integrated out in the integral in the denominator, it is
a constant relative to either m, or F;. By Fubini’s Theorem, the double integral without

this normalizing constant is
J exp <th[Vo(mo—mn)]—t\/ﬁbom—kﬁnm(ntm)> fexp <t\/ﬁjmnd(E7 - FO)) dII(F,|Z™)dti(n™).

By the assumed Fy-Glivenko-Cantelli property for G, = {m, : n € H,} in Assumption E,
i.e., supy, g, |(Pn — Fo)my| = or,(1), and the boundedness of m,, we apply Lemma (C.4]
Further, we may apply the convergence of m,, imposed in Assumption , so that the above
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display becomes
t2
e%Po(1) f exp (th[Vo(mO — mn)] — t\/ﬁbom + g;n(ﬁln)) exp <t\/ﬁfﬁ1nd(ﬂ?n — Fo) + 5”7710 — Fom()@,Fo) dH(nm)

_ e _
= e%Po(1) exp (t\/ﬁJmod(Fn — E)) + 5Hm0 — _F()WL()%FO>

< | e (t8ubnlmo —my) ~ (ma = my)) — tyinbo,, 467 () A",

=0

where Fymg = {mo(2)dFy(z) and F,me = 1/n Y, mo(X;). We take a closer examination
about the empirical process term in the integral. Note that dm(d,z) = dm(1l,z) and
(1 —=d)ym(d,z) = (1 —d)m(0, z) for any m(-,-) and x. Thus, we get

Gn[vo(mo — my) — (Mg — my)] = Gy, [(d(mo(la r;)o(;;nn(ljw)) (- d)(mf(_(),;)(;)mn(o,x))ﬂ

— Gy [(mo(1,2) — mg(0,2)) — (my(1,2) — my,(0,2))]
B (d —mo(z))(mo(L,2) —my(L,z))  (mo(x) — d)(mo(0, z) — my(0,x))
o )]

mo(x) B 1 —mo(z
Note that both term are centered, so that one can replace the operator G, with \/nP,
therein. Therefore, it cancels this bias term by, exactly.

Further, observe that G, [y0p™] —G,[7o] = —G,[m] and G,,[mo] = v/n { med(F,, — Fy)
by the definition of the efficient influence function given in (2.4). As we insert these in the
previous expression for I,,(t), we obtain for all ¢ in a sufficiently small neighborhood around
zero and uniformly for n € H,:

=Po(BJ&))?
t? - . ~
+5 (Ro(BEEE)? + limo — Fomol3 , ) + 0p0<1>>

2 ~
=Py(Bo&o)?

In(t) = exp (—th[mo] + tx/ﬁfmgd(]Fn — F())

y Sﬂm exXp ( ):
™)) dIl

SHm exp (7
t2 5
= exp 5130(3050) +op, (1),
where the last line follows from the prior invariance condition established in Lemma [B.2]
This implies (A.3)) using that Py(By)? = Po7é = Vo by the Lemma O

Proof of Theorem[3.4 Tt is sufficient to show that sup, s ‘bo,n —gnl = op,(n""/?), where

bo., = Pulyo(mo —my,) +m, —me] and gn = P,[3(7 —m,) + m, —m]. We make use of the
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decomposition

~

bo.y — by = Pu[r0(mo — my) = 3p"™"] = Pu[me — m — 3p™]. (A.5)

Consider the first summand on the right hand side of the previous equation. We have

uniformly for n € H,:

P[yo(mo —my) —3p™] = = Pu[7p™] + Pp[(v0 — 7) (Mo — my)]
= —P,[3p™] + op,(n 1),

where the last equation follows from the following derivation:

Vi sup [Py[(vo — ) (mo — my)]| < sup [Ga[(v0 = 7)(mo — my)]]
nE€Hn n€Hn

+ \/ﬁselitp [Pol (0 — ) (mo — my)]|

< op(1) + Opy(1) x V/n|mo — 7|2, Sup [my —mol2,m, = op, (1),
NEn

using the Cauchy-Schwarz inequality, Assumption [2 and Assumption Consider the
second summand on the right hand side of (A.5). From Lemma we infer

B[+ 3p™ — mo] = Pu[v0p™] + 0p, (n™?).

Consequently, decomposition (A.5)) together with the asymptotic expansion of each

summand yields

~

SUp |boy = by < [Pul(30 = F)p™ ]| + 0, (") = o, (n17),
N€in

where the last equation is due to the equation [C.7] O

Proof of Corollary[3.1. The weak convergence of the Bayesian point estimator directly
follows from our asymptotic characterization of the posterior and the argmax theorem;
see the proof of Theorem 10.8 in jvan der Vaart| [199§]. The corrected Bayesian credible set
Cn(a) satisfies T1(, € Cp(a) | Z™) =1 — a for any a € (0,1). In particular, we have

11 («/n/vo(fn — % —by) € /n/Vo(Cala) — 7) | Z(”)) —1-a

Now the definition of the estimator 7 given in (3.1)) yields v/n7 = y/n(70 + P, %) + op,(1).
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For any set A, we write N(A) := {, e~*’/2/5/2rxdu. Theorem [3.1] implies
N (Vn/Vo(Cala) = 70 = Puo) ) —>p, 1 - av

We may thus write C,,(a)) = 4/ Vo/n B, (a) + 710+ P,70 + op, (1) for some set B, («) satisfying

N(B,(a)) »p, 1 — a. Therefore, the frequentlst coverage of the Bayesian credible set is

G 7
P()(Toecn( P()(T()E\/Vo/TLB +7'0+]P> Tg>=P0<—\/$OEBn(OZ))—>1—O[7
0

noting that G,,7y is asymptotically normal with mean zero and variance vy under Py. [

Proof of Proposition [f.1. With slight abuse of notation, we stick to H™ for the set that
receives the posterior mass going to 1 and n™(d,-) € H™ for d € {0,1}[] Note that 7
is based on an auxiliary sample and hence we can treat 7 below as a deterministic of
functions denoted by 7, satisfying the rate restrictions |v,[lc = O(1) and [y, — Y00 =
O((n/logn)=s~/@s=+P))  We first verify Assumption [2] with e, = (n/logn)=¥/(2sm*P)_ Let
HT = {wg + My (wg, A) € W, }, where

Wi 1= {(wa, \) : wa € BY', |\ < Mowy/nen} n {(wa, ) 1 ¥ (wal”) + M) —mo(d, ) |z.p < en}

where the sieve space B]" in the first restriction for the Gaussian process Wy is defined in
the equation (C.8]) with d € {0, 1}. Intuitively speaking, the bulk of the Gaussian process
is contained in an e,-shell of a big multiple of the unit ball of the RKHY] The second
restriction concerns the posterior contraction rate and it is shown in our Lemma [C.3]
Referring to the condition [J[s = Op,(1) and |5 — vo|w = Og, ((n/logn) s~/ 4P we
write r,, := C,(n/logn)~**/(2s=*P) Then \/ne,r, = o(1) holds, if 25,,/(28,, +p) + 25, /(25 +
p) > 1, which can rewritten as /s, s, > p/2.

We now verify Assumption [3} It is sufficient to deal with the resulting empirical process

G,,. Note that the Cauchy-Schwartz inequality implies

[Po(my —mo)| = [Eo[D(my (1, X) = mo(1, X))] + Eo[(1 = D)(1m,(0, X) —mo(0, X))]|
< AJEol (51, X) — mo(1, X))2] + 4/Bo[(m, (0. X) — mo(0, X))?]

= Hmﬁ(lv ) - mo(lv ')HQ,FO + Hmn( ) ) - m0<07 )

"When we write n™ € H™, it means (n™(1,-),n™(0,)) € H™ x H™.
8We refer readers to the discussion leading to Lemma on the Reproducing Kernel Hilbert Space
(RKHS) and related norms.
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Consequently, from Lemma we infer

Eo sup [Gu[(1m —70)(my —mo)]| < 4|vm —Y0]wEo sup [Grlmy — mo]|
neHM neHT

2,Fy T Hmfi(07 ) - mO(Oa )

‘2,F0>

< (n/log n) s/ Qs 4P sg{p |G, [my, — mo]| + (n/log n)_s’f/(%”p) (n/log n)_5m/(25m+p)
neHT

= (n/logn) "~/ PRy sup |G,[m, —mo]| + o(1).
neEMHT

+ = ol sup (gL, ) = o1,

T]EHn

Note that if s, > p/2, from Lemma we infer Eq sup,cym Gy, [m, —mo] = o(1). Thus
it remains to consider the case s,, < p/2. By the entropy bound presented in the proof of
Lemma we have log N(e,,, H", L*(Fy)) < €,%, with v = p/(2s,,) modulo some logn
term on the right hand of the bound. Because W(-) is monotone and Lipschitz, a set of
e-covers in L*(Fy) for n™ € H!™ translates into a set of e-covers for m,. In this case, the

empirical process bound of [Hanl, 2021, p.2644] yields

Eoy sup |G, [m, —mo]| < L,nv=0/@v) — O(Lnnl/Qfsm/p),
neHM
where L,, represents a term that diverges at certain polynomial order of log n. Consequently,

we obtain

(n/logn)~*~/F= PR, sup |G,[m, —m]| = o(1),
neMHT

which is satisfied under the smoothness restriction —s,/(2s, + p) + 1/2 — s,,/p < 0 or
equivalently 45,5, + 2ps,, > p?. This condition automatically holds given /57 Sm > p/2.

Finally, it remains to verify Assumption 4] By the univariate Gaussian tail bound, the
prior mass of the set A, := {\ : [\| > u,024/n} is bounded above by e “»?2"/2. Also, the
Kullback-Leibler neighborhood around 7* has prior probability at least 6_%%; see Lemma
4 in Ray and van der Vaart| [2020]. By the assumption o, » &, as imposed in the rate

restriction (4.2)), we have €2 < u20?2, which means

n-n’

H(}\ € An) _ O(B_ngﬁ)-
11 ({(w, A) KV V(pge, Puiry) < 5721})

The stated contraction II(\ € A,, | Z™) —pg, 0 in Assumption (1) follows from Lemma 4
of Ray and van der Vaart| [2020]. Regarding Assumption [4ii), this set hardly differs from
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the set H™ because y/ne, — 0 and |7,/ = O(1). Its posterior probability is seen to tend
to 1 in probability by the same arguments as for H)", possibly after replacing ¢, with a

multiple of itself. O

B Key Lemmas

We now present key lemmas used in the derivation of our BvM Theorem. We introduce
e i= (0", 7;") where
o =n" —tull'//n, for uel0,1]. (B.1)

This defines a path from n,—¢ = (9™, 7™) to nu—1 = (9™, n;"). We also write g(u) := log pym,
for u € [0, 1], so that logpym — logpym = g(0) — g(1), cf. the proof of Theorem 1 in Ray
and van der Vaart| [2020].

Lemma B.1. Let Assumptions[]] and[9 hold. Then, we have uniformly for n € H,:

t2
G (™) =4 (") = th[%me]+th[%(m0—mn)]+t\/ﬁJ(mo—mn)dFOJr§P0(35”§6”)2+0p0(1).
Proof. We start with the following decomposition:

m(, m m(, m m t m
Gr™) = G2 ni") = tGalh0p™] + VnGallog pym = log pyp = —20™] + nPo[log pyr — log pyr]
Stochastic quuicontinuity Taylor Hxpansion

From the calculation in Lemma , we have ¢'(0) = —\/Lﬁ’yopmo + \/Lﬁ'yo(m77 —mg). Then,

we infer for the stochastic equicontinuity term that
t T
VnGy[log pym —log pyp — TP "]+ 1Gn[yo(my —mo)] = op, (1),
uniformly in ™ € H]". We can thus write uniformly in n™ e H™":

(™) =67 (") = tGu[v0p™] + tGulvo(mo — my)] + nPo[log pym — log pyr] + 0p,(1).

The rest of the proof involves a standard Taylor expansion for the third term on the right
hand side of the above equation. By the equation (C.5)) in our Lemma , we get

—nPog'(0) = tv/nPo[y0p™] + tv/nPo[vo(mo — my)] = t\/ﬁj(mo — my)dFo,

31



by the fact that Py[yop™] = 0 and the definition of the Riesz representor 7q in ([2.5)).
Regarding the second-order term in the Taylor expansion in the equation ((C.6]) of Lemma

[C] we get

t? t?
g?(0) = —573”10(1 —mg) — 573(7"%(1 —my) —mo(1 —myg)).

Considering the score operator By = B defined in (3.3), we have
Py(By'&y')* = Eo [%(D. X)(Y — mo(D, X))?]

=E, l%(yu) — mo(l,X))Q] + Eo l

1-D

W(Y(O) —mo(0, X)) ] :

Consequently, by the unconfoundedness imposed in Assumption (1) and the binary nature
of Y, we have Eo[Y(d)?|D = d, X = x] = Eo[Y(d)|D = d, X = z] = mo(d,z). We thus

obtain

1-D

P0<B(7]n£6n) = Eo l mmo(

mo(l,X)(l—mO(l,X))] + Eo [ O,X)(l—mo(O,X))]

D
5 (X)
= Py[ygmo(1 —my)].

Then, by employing Assumption [If(ii), i.e., 7 < mo(z) < 1 — 7 for all z, it yields uniformly
for n e H,:

—nPyg®(0) — * Po(By&)? = t*Po[yg (may (1 — myy) — mo(1 — mg))]
= 1> Bo[v§ (my — mo) (1 — mo)] + £ Po[vgmy (mo — my)]
1-D

m’mn(@)@ —mo(0, X))
2t>

= (I (1) = mo(1, Yamy, + Iy (0,) = mo(0, ) o ) = 0, (1)

D

< 2%, l— my(1, X) = mo(1, X) ] + 212, [
7T%(X)| ! |

<

where the last equation is due to the posterior contraction rate of the conditional mean

function m(d, -) imposed in Assumption [2l Consequently, we obtain, uniformly for n € H,,,

nFy[log pym — log pym] = —n(Pyg'(0) + Pog@)(())) + op, (1)

= t*Py(ByE])? + t\/ﬁj(mo —my,)dFy + op, (1),

which leads to the desired result. O
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The next lemma verifies the prior stability condition under our double robust

smoothness conditions.

Lemma B.2. Let Assumptions[IH hold. Then we have

$3n €0 (€7 (™)) dIT (™)
S0 exp (62 (™)) dIT (™)

—p, 1, (B.2)

for a sequence of measurable sets H™ such that (™ € H™|Z™) —p, 1.

Proof. Since 7 is based on an auxiliary sample, it is sufficient to consider deterministic
functions v, with the same rates of convergence as 4. Denote the corresponding propensity
score by m,. By Assumption [d] we have A ~ N(0,02) and

SHZ{L exp (€7 (™)) dI(n™) B SBn el (wdm=t30/vn) g (\)d\dII(w) 1 .
Fye o0 (G20 dTI(™) (e g, (NdMIT(w) or(1),  (B.3)

where ¢, denotes the probability density function of a N(0,02) random variable and the

set B, is defined by B, = {(w,\):w + Ay, € H™ |\ < 2u,024/n} where u, — 0 and

2

= — 00. Considering the log likelihood ratio of two normal densities together with the

U, NO

constraint |A\| < 2u,024/n, it is shown on page 3015 of Ray and van der Vaart| [2020] that

2y t2

Vno? o 2no?

Go, (A = 1/\/1)

We show at the end of the proof that [ (w + Ay, — tyo/v/n) — 07 (w + Ay, — ty//n)| =

op,(1), uniformly for (w,\) € B,. Consequently, the numerator of this leading term in

(B.3]) becomes

log

J el (wHdm=t/vn) g (\)dAdII(w) = eoPO(l)f e W mO=t/Vm) g (X —t/\/n)dAdII(w).
By the change of variables A — ¢/4/n — X on the numerator and using the notation
B = {(w,\) : (w, A +t/4/n) € B,}, the prior invariance property becomes

SBn t ee;”(w+)\/'yn)¢gn (N)dN dIT(w) " H(Bmt‘X(n))

eOPO (1) > — p9P

[y cm@iag, (Nd\dI(w)  T(BuX™)

The desired result would follow from II(B,|X™) = 1 — op,(1) and II(B, X™) = 1 —
op,(1). The first convergence directly follows from Assumption [ The set B, is the
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intersection of these two conditions in Assumption [4] except that the restriction on A
in B, is |A+t/y/n| < 2u,\/no? instead of |\ < u,y/no2. By construction, we have
t/v/n = o(u,\/no?), so that TI(B, | X™) = 1 — op,(1).

We finish the proof by establishing the following result:

sup |G (0™ =ty /) = 6™ — ty0/v/n)| = ory(1). (B.4)
nmEHT

We denote )", = 7" —tv,//n and " = n™—t~y/+/n. Consider the following decomposition
of the log-likelihood:

Oy () = 67 (") = 6 () = 6 (™) + 61 (™) — €3 (")
= nlP,[log pyr, — log Py ] + 1Py [log pym — log pym].

Next, we apply third-order Taylor expansions in Lemma separately to the two terms
in the brackets of the above display:

2

> P [vflmn (1- mn)]

3q,(2) (,,m

t3

nPy[log pym, —log pym] = —tv/nPy [ya(y — my)] — -
12 3

nPy[log pym —log pyn ] = t3/nPu [Y0(y — m)] + 5P [vomy, (1 —m,)] + \/_E]P)n [v80® ()],

for some intermediate points u*, u** € (0, 1), cf. the equation (B.1]). Combining the previous

calculation yields

O (M) — €0 (me) = /Py [(y — my) (Y0 — Ya)] — %Pn[dmn(l —my) (2 —75)]

tg m m
+ =P, [(5 = ) (PP (i) = OO ()] = T + T + T,
\n
In order to control 77, we evaluate

Ty = tGu[(y — mo) (Yo — )] + tGn[(mo — my) (Yo — )] + tvVnPo[(y — my) (Y0 — )]

Note that the first term is centered, so it becomes t/nlP,[(y — mo)(v0 — Vn)]. We apply
Lemma to conclude that it is of smaller order. The middle term is negligible by our
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Assumption [3 Referring to the last term, the Cauchy—Schwarz inequality yields

sup ’\/ﬁpo[(% = Y0)(my — mo)]‘
neHn

S V20— mollgy sup (1) = mo(1, Mo, + [ (0,) = mo(0, s, ) = 0my (1),
N€Tin

where the last equality is due to Assumption 2] We thus obtain 7 = op,(1) uniformly in

n € H". Consider Th. We note that |m,(1 —m,)|, < 1 uniformly in n € H)'. Hence, we

obtain

£ t2 t?
P|Ty| < 53)’%% -l = EPO[('Vn =) (7 + )] < §H7Tn = 7o[2,m, — 0

as T, — m in L?(Fy)-norm by Assumption 2} Thus, 5 = op,(1) uniformly in n € H,.
Finally, we control T3 by evaluating |7T3| < %Pn(u%\\; + |7]2,) = 0r,(1) uniformly in

n € H", which shows (B.4). O
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This online supplementary appendix contains materials to support our main paper.
Appendix [C] collects some auxiliary results. Appendix [D] collects the proofs for lemmas in
Section [6] of the main paper. Appendix[E]provides least favorable directions for other causal
parameters of interest besides the ATE. Appendix[F]states and proves the BvM theorem for
outcome variables belonging to one-parameter exponential family described in Section [6] of
the main paper. Appendix [G] describes how to draw the posterior of the conditional mean
function using the Laplace approximation. Appendix [H| presents additional simulation
evidence.

In this supplement, C' > 0 denotes a generic constant, whose value might change line
by line. We introduce additional subscripts when there are multiple constant terms in the

same display. For two sequences a,,, b,, we write a,, < b,, if a, < Cb,.

C Auxiliary Results

The likelihood associated with the component n™ = U~!(m) is given by
pﬂm(z) = m(d’ x)y<1 - m(dv x)>1_y7 (Cl)

with the corresponding log-likelihood ¢7*(n™) = 1" | log pym (Z;). In other words, p,m(-) is

the density with respect to the dominating measure

dv(z,d,y) = (mo(x))*(1 — mo () ~di(d, y)dFy(x), (C.2)



where ¥ stands for the counting measure on {{0, 0}, {0, 1}, {1,0}, {1, 1}}. We introduce some

simplifying notations by writing
m'() =m(1,-) and m°(-) =m(0,).

For two generic probability densities p and ¢, we denote the Kullback-Leibler (KL)
divergence by K(p,q) and the square KL variation by V(p, q); see Appendix B in |Ghosal
and Van der Vaart|[2017].

Lemma C.1. Let Assumption be satisfied and m, = V(n™), then we have

2

t .t
log pym — log pym = \/—E’Yop "+ %”ngn(l —my) + Ry,

where |R, | < n=32.

Proof. First of all, the link function ¥ satisfies that ¥/ = W¥(1 — ¥) and ¥® = ¥(1 —
U)(1 — 2W) by straightforward calculus. Thus, logpy» — logp,= = g(0) — g(1), where

g(u) = log pym. We examine the following Taylor expansion:

g9(0) — g(1) = —¢'(0) — g®(0)/2 — 6, (C.3)

where 6 < [g®]... We express the part of the log-likelihood involving ™ explicitly as
follows.
en™ (L) 1
log pym (2) =dylog -5y o T d(1 —y)log —— =y o)
en™ (0,z)

m + (1 —d)(l —y)log

+(1 — d)ylog 1+ om0
=d(yn™ — (™)) + (1 — d)(yg™ — (™)) (C.4)

where 1(n) = log(1 + €").

Recall the least favorable direction &J'(d, z) = 7yo(d, z) = d/mo(z) — (1 — d)/(1 — mo(x)).
Also, note that d(1 — d) = 0. These derivatives can be calculated by splitting the right
hand side of the equation into these d and (1 — d) terms separately. For instance, the

first-order derivative is

) = —— [ =
g =~ | - vty |+

t

: l — (=T )) | = ==y —¥nr).

Vi [1=m(x)

B



The other two can be computed along the same lines:

t2 ) t3

99 (u) = =g (), g% () = ——5 v ).
In the above expression involving the Riesz representor, we have
d 1—d d 1—d

and  A3(d, 7) = ——

Yo(d, x) = ma(z) (1 —mo(x))3

72@) (1= mo(@))?

again because of d(1 — d) = 0. Evaluating at u = 0, we have ¥(n') = ¥(n™) = m,, and

consequently,
(0) = =—=300™ + —=10(my = mo) (©5)
9 = \/E’Yop \/ﬁ% n 0) .
and
2) t2 5
9 (0) = _E'Yo(mn(l — my)). (C.6)
For the remainder term, we have ||g® ., < n~%2, given the uniform boundedness of W®)(-).
O
Lemma C.2. Let Assumptions[]] and[d be satisfied. Then, we have
VnPu[(§ = 70)p™] = op,(1). (C.7)

Proof. Since 7 is based on an auxiliary sample, it is sufficient to consider deterministic
functions ~, with the same rates of convergence as 7. We also write the corresponding
propensity score as m,, which is associated with ~,. Denoting U; = Y; — mo(D;, X;), we

evaluate for the conditional expectation that

E, [( Z Dz,X)U) | (D1, X1), ..., (Dny X))
= - 2 —70)(Di, Xi) (90 — 70) (D, Xir)Bo [UsUs | (Ds, X3), (Dir, Xiv)]

— _Z 2(Dy, X;)Var(Y;] X5).

We have Vary(Y;]X;) < 1since Y; € {0, 1} and thus we obtain for the unconditional squared



expectation that

= [(%ﬁ 2,0 = %)(Dmxnw)z] < = molfh 1, = 01)

by Assumption [2| which implies the desired result. O

Each Gaussian process comes with an intrinsic Hilbert space determined by its
covariance kernel. This space is critical in analyzing the rate of contraction for its induced
posterior. Consider a Hilbert space H with inner product ¢, )y and associated norm || - ||g.
H is an Reproducing Kernel Hilbert Space (RKHS) if there exists a symmetric, positive
definite function k : X x X — R, called a kernel, that satisfies two properties: (i) k(-,x) € H
for all x € X and; (ii) f(x) = (f,k(-,x))y for all x € X and f € H. It is well-known that
every kernel defines a RKHS and every RKHS admits a unique reproducing kernel.

Let H{" be the unit ball of the RKHS for the rescaled squared exponential process and
let B{™” be the unit ball of the Holder class C*([0,1]?) in terms of the supremum norm

|- |- We take the sieve space to be
e (C.8)

where a, = n'/ZntP)(logn)=FP)/Csm+r) o = pmem/Csmtp) JogPtl(n) and M, =
—20~!(e~9"%). The addition of the small ball £,B{™” creates an ¢,-cushion around the
multiple M, H{". This is necessary to create enough mass of the sieve space for the Gaussian
process W. For notational simplicity, we suppress the dependence of the rescaled Gaussian

process on the rescaling parameter a,, in the following proofs.

Lemma C.3. Under the conditions of Proposition the posterior distributions of the

conditional mean functions contract at rate €,, i.e.,
II (Hmn(d> ) - mU(dv ')HQ,FU = M€n | Z(n)> PR 0

for d € {0,1} and every sufficiently large M, as n — oo.

Proof. By the assumed stochastic independence between the pair Z(™ and 7, we can
proceed by studying the ordinary posterior distribution relative to the prior with 7 set
equal to a deterministic function 7, and (w, A) following their prior. In other words, it
is sufficient to consider the prior on m given by m(d,z) = U (W7 (x) + Ay,(d, x)) where

Wi (-) is the rescaled squared exponential process independent of A ~ N(0,02) and v, a



sequence of functions |y, = O(1). It suffices to examine two conditional means m,(1,-)
and m, (0, -) separately. We focus on the treatment arm with d = 1, and leave d off the
notations in W™ or n™ as understood.

We verify the following generic results in Theorem 2.1 of |Ghosal et al.| [2000] to obtain

the proper concentration rate for the posterior for the rescaled squared exponential process:

L T(,3) - K v V(o Busans) < €2) > ¢ exp(—cane?), (C.9)

1. TI(PS) < exp(—czne?), (C.10)

ML log N(en, P, | - |12s) < caney, (C.11)
for positive constant terms cy, - - - , ¢4 and for the set:

Pr = {Puwirg, : W€ BN < Moy/ne,}

(I). The inequality (C.15]) in Lemma yields
{(w, 2) + Jw =" oo < czn, [A] < e} & {(w, 2) s KV V(g Do) < 63} -

Given that we have independent priors of W and A, the prior probability of the set on
the left of the above display can be lower bounded by II(||[W™ — ni"||, < cen) II(JA] < ce,).
By Proposition 11.19 of |Ghosal and Van der Vaart| [2017] regarding the small exponent
function ¢g" and together with the upper bound , we infer

(W™ = 05" |oo < cen) = exp (=657 (€0/2)) = exp (—eney) |

for some positive constant ¢. The second term is lower bounded by Ce, /o, which is of
order O(g,) for o, = O(1). Therefore, we have ensured that the prior assigns enough mass
around a Kullback-Leibler neighborhood of the truth.

(IT). Referring to the sieve space for the Gaussian process, we apply Borell’s inequality
from Proposition 11.17 of (Ghosal and Van der Vaart| [2017]:

Pr{W™ ¢ B™} < 1— ®(1,, + M,,),

where ®(-) is the c.d.f. of a standard normal random variable and the sequence ¢, is given
by ®(1,) = Pr{WV € £,B{""} = e=%" () Since our choice of ¢, leads to ¢2"(g,) < ne?,
we have 1, = —M,/2 if M, = —2®!(e~"<%) for some C' > 1. In this case, II(B™) <



1 — ®(M,/2) < e~ C"=n. Next, we apply the univariate Gaussian tail inequality for \:
Pr{|\| > u,0,\/n} < 2640770/,

which is bounded above by e~ for u, — 0 sufficiently slowly, given our assumption
e, = 0(0,). Hence, by the union bound, we have II(P¢) < e~ Cmen,

(III). To bound the entropy number of the functional class P, consider the inequality

2,7y t |)‘ - /_\|H’7nH007

pr+m - pw+5\wn||L2(u) S lw—w
where the dominating measure v is (C.2]). Thus, we have
N(€n,73n, H ’ HLQ(V)) < N(gn/27 B:znu || : ||OO) X N(Cg’m [07 2Mo-n\/ﬁgn]’ ’ ! |) < nai' (012)

Note that the logarithm of the second term grows at the rate of O(logn), and it is the
first term that dominates. Because ¥ is monotone and Lipschitz, a set of e-brackets in
L*(Fy) for B™ translates into a set of e-brackets in L?*(v) for P,. Thus, Lemma gives
us log N(3e,, B™, | - ||) < ne?.

By Lemma 15 of Ray and van der Vaart| [2020], this delivers the posterior contraction
rate for m,(1,-) in terms of the L?(Fym)-norm, which is equivalent to the L?(Fj)-norm
weighted by the propensity score my. Analogous arguments lead to the desired result for

the conditional mean m,, (0, -) for the control group. O

Let M,; = e;/>, e, where e;/’s are independently and identically drawn from
the exponential distribution Exp(1). We also denote X™ = (X;)”,. We adopt the
following notations: Fim, = " M,m,(X;), Fom, = nt X" m,(X;) and Fym, =
§my,(2)dFy(z). Let X™ = (X)) .

Lemma C.4. Let the functional class {m, : n € H,} be a Py-Glivenko-Cantelli class. Then
for every t in a sufficiently small neighborhood of 0, in Py-probability,

sup ‘E [et\/ﬁ((Fﬁ—Fn)ﬁzn) | X(n)] _ PRo(my—Foma)?/2| _,

myneEHn

Proof. We verify the conditions from Lemma 1 in [Ray and van der Vaart| [2020]. First, the
Bayesian bootstrap law [ is the same as the posterior law for F', when its prior is a Dirichlet

process with its base measure taken to be zero. Second, the assumed Fy-Glivenko-Cantelli



class entails
sup |(F, — Fo)riy| = op (1),

neHn
Last, the required moment condition on the envelope function for the class involving m,, is

automatically satisfied because of |m, |, < 1. O

The following lemma is in the same spirit of Lemma 9 in Ray and van der Vaart| [2020]
with one important difference. That is, we do not restrict the range of the function ¢ to be
[0,1]. As we apply this lemma by taking ¢ = ~,, — 70, it can take on negative values. We
apply the more general contraction principle from Theorem 4.12 of [Ledoux and Talagrand
[1991] instead of Proposition A.1.10 of jvan der Vaart and Wellner| [1996]. This allows us to

relax the positive range restriction in Ray and van der Vaart| [2020].

Lemma C.5. Consider a set H of measurable functions h : Z — R and a bounded

measurable function ¢. We have
Esup |G, (¢h)| < 4|p|LEsup |G, (h)| + +/ Pop?sup | Poh|.
heH heH heH

Proof. We start with G,,(¢h) = G, (¢(h— FPyh)) + PohG,(¢). The expectation of ByhG,,(p)
is bounded by the second term on the right hand side of the inequality in the stated lemma.
It suffices to bound G, (p(h — Pyh)) for any function h such that Pyh = 0.

Let €1, ..., €, be iid. Rademacher random variables independent of observations Z.
By Lemma 2.3.6 of van der Vaart and Wellner| [1996],

Bsup | (p(Z(Z) — Ble)| < 2elBsw Y e 20z (c13)
h i=1 h i=1 HSOHOO
Because —1 < ¢(Z;)/|¢lo < 1 for all i = 1,...,n, we can apply the contraction principle

as in Theorem 4.12 on page 112 of Ledoux and Talagrand| [1991]. The contraction mapping
is understood to be h m x h herein. Hence, the above inequality 1) remains
Tﬁg on the right hand side are removed. Another application by

the symmetrization inequality from Lemma 2.3.6 of van der Vaart and Wellner| [1996] that

true if the variables

decouples the Rademacher variables leads to the desired result. O

The next lemma upper bounds the L? distance and Kullback-Leibler divergence of the
probability density functions by the L? distance of the reparametrized function n™, cf.
Lemma 2.8 of |Ghosal and Van der Vaart| [2017] or Lemma 15 of Ray and van der Vaart
[2020].



Lemma C.6. For any measurable functions v™,w™ : [0,1] — R, we have

0

mO
) = U (w™ )| L2 (Fy(1-m0))

< o™ = W™ oy v [0 =™ o g (C.14)

m! m! m
Hpvm _pmeL2(V) < H\D(U ) - \Ij<w )HL2(FO7TD) Vv HlII(U

In addition, it holds that
K (pym, pum) v V(pom, pum) < [0 = 0™ 35 v 0™ = 0™ |3 5. (C.15)
The small ball exponent function for the associated Gaussian process prior is
do(e) := —log Pr(|W |, < e);

see equation (11.10) in |Ghosal and Van der Vaart [2017]. In the above display, | - [ is
the uniform norm of C(]0, 1]?), the Banach space in which the Gaussian process sits. H is
the reproducing kernel Hilbert space (RKHS) of the process with its RKHS norm | - [|g.
To abuse the notation a bit, we denote the small ball exponent of the rescaled process
W (at) by ¢&(¢). Lemma 11.55 in |Ghosal and Van der Vaart [2017] gives this bound for the

(rescaled) squared exponential process:

¢ (c) < a”(log(a/e)) 7.

Lemma C.7. Assume that e, = n~/ZmtP)(logn)sm+p)/Qsmtr) gng M, =
—2&1(e=C"<%) for a positive constant C > 1. Also, let a, = n'/Zsm+P)(logn)~(1+p)/(2sm+p)

Then, for the sieve space B = £,B]™" + M,Hi", we have
log N (3¢, B, | - |o0) < e (C.16)

Proof. The argument is similar as in Lemma 11.20 of |Ghosal and Van der Vaart [2017]. We
provide the proof for completeness. Let hq,---,hy € M,H" be 2¢,-separated functions
in terms of the Banach space norm. Then, the e,-balls hy + ¢,B]™",--- | hy + €,B]™" are

disjoint. Therefore, we have

N N
1> Z PI“{W c hj + EnBiW“p} > Z e_th||]12-]1/2 PI"{W c gnBimm} > ne—M3/2€—¢8n(en)’
j=1 j=1

where the second inequality follows from Lemma 11.18 of |Ghosal and Van der Vaart, [2017]



and the last inequality makes use of the fact that hq,--- ,hy € M,H;, as well as the
definition of the small ball exponent function.

For a maximal 2¢,-separated set hq,--- , hy, the balls around hq,--- , hy of radius 2¢,
cover the set M,H{". Thus, we have log N (2¢,,, M,,H{", | - |o) < log N < M?2/2 + ¢5"(g,).
Referring to the inequality (iii) of Lemma K.6 of (Ghosal and Van der Vaart|[2017] for the
quantile function of a standard normal distribution, we have M? < ne? by the choice of

M, stated in the lemma. It is straightforward yet tedious to verify that
0" (en) < mey, (C.17)

for the specified a,, and ¢,. Since any point of ;" is within ¢, of an element of M,H]",

this also serves as a bound on log N (3¢, B, | - |l»)- O

A key step in showing the validity of the debiasing step is the following:
]P)n[f)_\/L + :}\/pfh - 77_10] = Pn [’Yopmo] + Opy (nil/Q)a

which is equivalent to the following lemma.

Lemma C.8. Under Assumption[d for the pilot estimators, the following result holds:
Pn[?[)m + T/_T\L] = Pn[’)/()pmo + 77_7/0] + op, (nil/Q).
Proof. We start with the following identity:

P, me +m] = Pu[yop™ + mo] + Rt + Ryo.

where

1 . 1 1 1 S0 1
P = 3 S0 (1 ) (s - =03 ) + 2 3 0 00.5) (=500 - e )
Ry = %Z(m(l,xl) mo(1, X;)) (1 — m%'(i)) + %Z(m(o,xi) - mo(O,Xi))m.



Referring to the first term R,,;, we have

| . 1 1 L . 1
1 N 1 !
- 1; (mo(0, X;) —m(0, X;)) (1 —A(X;) 1 TF()(Xz‘))
1 1 1
_ nl; (Yi — mo(0, X;)) (1 Xy 1 —Wo(Xi)> .

The negligibility of the first and third terms in R,; follows from the Cauchy-Schwarz

inequality and the rate conditions imposed in Assumption 2] The second and fourth terms

can be combined together so that the negligibility can be shown as in Lemma [C.2]
Consider R,5. To bound its first summand, we condition on (X7,...,X,), as well as

the pilot estimators m and 7, which are computed over the external sample. We use the

fact that (D; — mo(X;)) has a conditional zero mean. Specifically, this leads to

[( 1niDZ (1, X;) — mo(l,Xi)))Q‘Xl,...,Xn,ffL,?r]

LS 1, ) — o1, X))V 0Dl X0)
_n;( (1, X,) o(1,X3)) (X))

using that Vare(D;|X;) = mo(X;)(1 — m(X;)). By the overlapping condition as imposed in
Assumption (1} i.e., T < mo(X;) for all 1 < ¢ < n and the uniform convergence of 7 to o,

we obtain
[(\FZ WX ' m(1X) m0<1,Xi>>)2\m,%] < [@(1, ) —mo(1, )35 = or (1),

where the last equation is due to the convergence rate for the pilot estimator m in

Assumption 3] The negligibility of the second term in R, is proved in a similar fashion. [

The following lemma shows the stochastic equicontinuity when the true conditional
mean function belongs to a Holder space, which is Py-Donsker, i.e., s,, > p/2. The main
complication is that the sieve space related to the Gaussian process prior is not a fixed
Py-Donsker class, as it changes with sample size n and the envelope function is also slowly
diverging, cf. the comments in the third paragraph on Page 2007 of Ray and van der Vaart
[2020]. More specifically, for the rescaled squared exponential process priors, we rely on

the metric entropy bounds in van der Vaart and van Zanten| [2009]. With this important
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modification, the proof is along similar lines with the proof of Lemma 7 of |Ray and van der
Vaart| [2020] for the Riemann-Lioville process; also, see Lemma 5 of [Ray and van der Vaart
[2020].

Lemma C.9. Recall that the sieve space related to the Gaussian process is BI* = £,B7™" +

M,H{". For sy, > p/2, we have Egsup,cqym Gy, [my, — mo] = o(1).

Proof. Because the link function ¥(-) is monotone and Lipschitz continuous, separate sets
of brackets for the two constituents of the set £,B{™" + M, H{", as well as the bracket for

{X|A] < Mo,+/ney} can be combined into brackets for the sum space.
log N[] (57 Hnm7 LQ(PO)) < lOgN(5> Enﬁim’pv H”OO)—i_logN(Ea MnH?n7 ”'HOO)+10gN(CS7 [07 2Man\/ﬁ€n]v H)

The last term is of strictly smaller order than the second one. The bound for the first
component attached to the Holder space can be found in Proposition C.5 of |Ghosal and
Van der Vaart| [2017]:

s En Sm /P
log N (e, 2B, |- [.e) < ()

which is bounded if we take ¢ = ¢,. The entropy bound for the first component is given
in Lemma [C.7} which states that log N (g, M, H{", | - |l0) < ne? < e,2", with v = p/(2s,,)
modulo some log n term on the right hand of the bound. In this case, the empirical process
bound of [Han| 2021} p.2644] yields

Eo sup |G,[m, —mo]| < L,n©@~/ @) = O(L,n'?~m/?) = o(1),
neHT

where L,, represents a term that diverges at certain polynomial order of logn. O

D Proofs of Section

Proof of Lemma[6.1l For the submodel ¢t — 1, defined in[6.1], we evaluate

log py, (2) = dlog W(n" + tp)(x) + (1 — d) log(1 — ¥(n" + tp))(x)
+logc(y) + ay(n™ + tm)(d, z) — A(g' (™ + tm))(d, z)
+ tf(z) — log E[eT®)] + log f(z).

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:
B,(p,m,§)(Z) = Byp(Z) + Bym(Z) + Byi(2), (D.1)

11



where B,’;p(Z) = (D —m,(X))p(X), Bj;f(Z) = f(X), and

q'(my(D, X))

B'm(0) = [aY—M m(D, X),
= a(Y —m,(D,X))m(D, X

) (D.2)

where the second equality follows from the property of the moments of exponential family,
see e.g., Theorem 9.47 of Wasserman [2004] with T'(y) = ay:

A'(my (D, X))

E,[aY|D, X] = T DX

In this case, there is a one-to-one correspondence between the conditional density function
and the conditional mean function of the outcome given covariates. One can easily verify
the differentiability of the ATE parameter in the sense of van der Vaart| [1998] and show
that the efficient influence function remains the same as in|[Hahn|[1998] and Ray and van der
Vaart| [2020]. Given the particular form of the efficient influence function 7, in , the
function &, = ( NS 55 ) defined in satisfies B, &, = T,, and hence, ¢, defines the least
favorable direction. O

Proof of Lemma[6.9 We emphasize that the least favorable direction calculation is not
a trivial extension of Hahn| [1998] or Ray and van der Vaart| [2020], because there are
J nonparametric components involved in the conditional probabilities of the multinomial
outcomes given covariates, and we need to consider the perturbation of all J components

together.
Consider the log transformation of the joint density of Z = (Y, D, X ")T given by

J
log py (2) = dlog(m(x)) + (1 — d)log(1 —my(x)) + D Lyy—g log (my (d, x)) + log f ()

j=0
Following the proof of Lemma 3.1, it is sufficient to consider the perturbations for j =

1,...,J:

exp((n™ + tm;)(d, x))

Ui(n™ 4+ tmy, - 0™ +tmy)(d, x) =
! 1+ 22]:1 exp((n™ + tmy)(d, x))

or

J

log W;(n™ +tmy,--- . 0™ +tmy)(d,z) = (n™ + tm;)(d,z) — log <1 + Zexp((nml + tmy)(d, :U)))
=1

12



Taking derivatives

dlog ¥;(n™ + tmy,--- ,n™ +tm;)(d, z)

= m;(d,z) — 22;1 exp(n™(d, z))my(d, )
dt J )

1+ 3, exp(n™i(d, o))

ni(d, x)my(d, x)

IIMK‘

by the definition of m, ;. Likewise, we also obtain

dlog Uo(n™ + tmy,--- , 0™ +tmy)(d, x)

J
dt = = mga(d, 2)my(d, ).

t=0 =1

We need to verify the differentiability of the ATE parameter in the sense of [van der Vaart
[1998]. Due to its technical feature, we leave this to the end of the proof. From there,
we can see that the score operator of the vector of conditional means (mq,...,my) is as

follows:

J
- dlog U;(n™ + tmy, -+ 0™ + tm;)(d, x)
By(my, .. my)(2) = Y 1gepy ’ 7

Jj=0 t=0

J J
= Z Ly—st <mj (d, x) Zmnl (d, z)my(d, x)) + 1gy—o ( Z 1(d, z)my(d x)) :
j=1

=1

By the fact that 1y, gy = 1 — ijl Lgy—jy, it simplifies to

B(my, ... ,my)(2) = Z (Ly—jy — ma(d, z)) my(d, z).

Note that the conditional mean of B)*(my, ..., m;)(2) is zero for any m;(d, z), which agrees
with the requirement of the score operator.

From our verification of the differentiability, we confirm that the influence function is
of the generic form given in Hahn [1998] and Ray and van der Vaart [2020]. Also, it is
contained in the closed linear span of the set of all score functions. Now, if we choose

m; = j7v,, 1 < j < J, we obtain

B (s 295 - -5 ) (2) (Z Liy=j3J — Z]mm d, x))vn(d z) = (y — my(d,z)) 1(d, x),
7j=1 7j=1
:y :m:,,(d,x)

13



which shows the results.
Now we check the pathwise differentiability of the ATE. To avoid the long display of

various formulas, we consider the following decomposition

d
dt T t=

_d
o dt

d
JEW [Y’D = 1aX = {E]dFm(l’) - % JEW[Y’D = OvX = :U]ant(x)?

and we focus on the first derivative involving the treatment group, as the other one can be

handled analogously. We start with

BB, YD = 1.X) = [ ypol1.) )] dviwdu(o)

where p;(y|1,x) and fi(x) are the perturbed conditional density of outcome and marginal
density of covariates, respectively. In addition, v stands for the counting measure and p is

the Lebesgue measure. By the chain rule, we need to compute the following sum:

|[ sptoin|_ vt @dnte) + [| smtol opivto) 3| _duta). 03

Regarding the first part of the above sum, we follow the outline in Example 2 of |Jonathan

[2019] to compute

d
dtpt [Hmty (d, x) {y J}] Zl{y g},, me(d, z) nml{y k:} d,x

k]

We thus evaluate for the derivatives of the conditional mean functions

0

gmm (d, $) ‘

J
- mn’j<d7 I) (mj<d7 I) - Z m??,l(dv ‘r>ml(d7 x)) ) fOI" j = 17 T JJ
=1

t=0

and

5 J
%mt,o(d, I)LZO =myo(d,x) (—mel(d, x)my(d, x)) :

=1

Thereafter, derivative of the conditional density can be written as

J J
%Myd, -r)L:O = [Z Hy = j} (mg d, x) Zmnl (d, z)oy(d, >] [ [rmni(d, )=

j=1 =1 j=0

= (B (my,...,my)(z) = E[B'(my,...,m;)(Z)|D = d, X = z]) py(yld, z),

14



where the last equality follows from the fact that the conditional mean of the score given

(D, X) is zero. To simplify the notation, we denote this conditional score function by
S(2) = Bl (s ) (2),

Referring to the first term in the summation (D.3)), we resort to the technique in Example
2 of |Jonathan [2019] by converting the conditional argument from d = 1 to d € {0,1}.
Similar to the first two terms in the long display on Page 15 of |Jonathan| [2019], we obtain

[[ st dvins@nte) =&, | Lo =m0, x)5,(2)].

Referring to the second part of (D.3), we immediately obtain

[ ol 01dvt) 5 50)|_ duo) = B, [maf1. X) = By (1, 01) 5,(2)

Similarly for the control arm, we derive

d
a J]Em[yyp = 0.X = aldFy(n)]
5[ (0.0 = B (0. X))+ 20 =y (0.3)) 5,(2)|.

The remaining part boils down to the existence of a vector-valued function 7p, such that

d

—7 (1)

dt ‘t:o = E, [%n(Z)B;"(mL...,mJ)(Z)]

(10 (150

Consequently, we can take the solution as 7, (z) = m,(x) — 7, +7v,(d, ) (y —m,(d, x)), which

concludes the proof. n

E Least Favorable Directions for Other Causal

Parameters

In this part, we provide details on the least favorable directions for the first two examples
in Section [6.3, We properly address the binary outcome Y and the reparameterization
through the logistic type link function W(-).
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E.1 Average Policy Effects
The joint density of Z; = (Y;, X;) can be written as
Pim,g(2) = m(2)! (1 — m(z))" Y f(2). (E.1)

The observed data Z; can be described by (m, f). It proves to be more convenient to

consider the reparametrization of (m, f) given by n = (n™,n7), where
N =0 (m), nf=1logf. (E.2)
Consider the one-dimensional submodel ¢ — n; defined by the path
my(x) = U™ +tm)(z), fi(z) = f(x)e™™ /E[T],
for the given direction (m,f) with E[f(X)] = 0. For this submodel, we further evaluate

log py, (2) = ylog W(n™ + tm)(z) + (1 — y)log(l — ¥(n™ + tm))(x)
+ tf(z) — log E[e"X)] + log f ().

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:
B,(m.f)(2) = By'm(Z) + B}§(Z), (E.3)

where B'm(Z) = (Y — m,(X))m(X) and B}§(Z) = §(X).
The efficient influence function for estimation of the policy effect parameter Tf is given
by
7y (2) = 7 (@) (y — my())

91@)-90@) - Now the score operator B, given in (E.3) applied to £ (z) =

f(=)
(v (2),0), yields By&l' = 7. Thus, & defines the least favorable direction for this policy

effect parameter.

where 7} (z) =

E.2 Average Derivative

The joint density of Z; = (Y;, D;, X;) can be written as

Pm.f(2) = m(d, z)(1 —m(d, :U))(l_y)f(d, x). (E.4)
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The observed data Z; can be described by (m, f). It proves to be more convenient to

consider the reparametrization of (m, f) given by n = (n™,n7), where
N =0 (m), n =logf. (E.5)
Consider the one-dimensional submodel ¢ — 7, defined by the path
my(d,x) = U™ +tm)(d,z), f(d,x) = f(d, )T /B[],

for the given direction (m,f) with E[f(D, X)] = 0. For this submodel defined in (E.5)), we

further evaluate

log py, (2) = ylog W (n™ + tm)(d, ) + (1 — y) log(1 — W(n™ + tm))(d, x)
+ tf(d, 2) — log E[e"PX)] + log f(d, x).

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:

B,(m.f)(Z2) = By'm(Z) + B}§(Z), (E.6)

n

where B'm(Z) = (Y — m,(D, X))m(D, X) and BJf(Z) = f(D, X). The efficient influence

function for estimation of the AD parameter 7,'? = E [04m, (D, X)] is given by

720 (2) = Camy(d, ) — E[Qamy(d, 2)] + 7,7 (d, ) (y — my(d, z))
where v, (d, z) = 0qmy(d, ) /m,(d, z). Now the score operator B, given in (E.6) applied to
&7 (d.x) = (7,7 (d, ), dgmuy(d, ) — E[0gmy (D, X)])

n

yields anfl‘D = N;‘D . Thus, fg‘D defines the least favorable direction for the AD.

F Theory for One-parameter Exponential Family

We take a = 1 in the exponential family for simplicity, that is,

fyipx(yzm(d, x)) = c(y) exp [g(m(d, )Y — A(m(d, z))], (F.1)
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and for some known functions c(y), ¢(m) and A(m). We reparameterize the model using

the link function ¢:

nm(dv ZB) = Q(m(d7 x))v m(d> J:) = q_l(nm(da 'I))a

and we define the mapping B := Aoq!.

Proposition F.1 (One-parameter exponential family). Consider the one-parameter
exponential family for the conditional distribution specified by . Assume that the
function B = Ao q~' is three time differentiable with |B®|, < oo. The estimator 7
satisfies |J]w = Op,(1) and |7 — Y0 = Op,((n/logn)==/=*P)) for some s, > 0.
Suppose mo(d,-) € C*([0,1]7) for d € {0,1} and some s, > 0 with \/5; s, > p/2.
Also, |m(d,-) — mo(d,-)|
dependent prior on m giwen by m(d,z) = ¢ 1 (W(z) + A\y(d, z)), where Wi'(z) is the

2.7, = Op, ((n/logn)=sm/@sntP)) = Consider the propensity score-

rescaled squared exponential process for d € {0,1}, with its rescaling parameter a,, of the
order in (4.1)) and (n/log n)_Sm/(QS'"'er) & 0, < 1. Then, the posterior distribution satisfies
Theorem [3.1l.

Proof. Because our analysis for the binary outcome has served as the template, we only
outline the necessary modifications. Due to the change of the likelihood function form
in the conditional probability density of the outcome, we need to adapt the argument in
showing the contraction rate of the posterior and the local asymptotic normality (LAN)
expansion used in the conditional Laplace transform, as well as verifying the prior stability.

First, in deriving the rate of posterior contraction or determining the proper localized
set H"

n?

we need proper upper bounds for the L? distance and Kullback-Leibler (KL)
divergence of the probability density functions by the L? distance of the reparametrized
functions n™,v™. To abuse the notation a bit, we denote the corresponding probability
densities by p,m and p,m. For the exponential family under consideration, the first and

second order cumulants (conditional on covariates) are:
E,[Y|D =d, X = 2] = B (y"(d,z)), Var,(Y|D=d,X =z)=B?n"(d,x)).

Considering the KL divergence K(pym,pym) = {log (pym(2)/pem(2)) pym(2)dz, we first

compute

log P25 — (37, ) = 0" 0oy~ (B (d,0) ~ B (d, )]
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Integrating over the conditional density for any given (d, z) and utilizing the fact that the

conditional mean is m,(d, x) = B'(n;*(d, r)), we proceed for some intermediate value 7™:

Ky pr) = [ (BOMG = 0m) = [BOM = B @)1 - 7)), (o)
- f BOGm) (™ — o™ (x)(1 - (), () d

1 1 0 0
S =™ e, v v =0 g,

Recall that

V (D pom) J[logi’::—gK(pnm,pum)]2pnm(z)dz<J[logzz—gr%m(z)d;g)

Therefore, we continue with the right hand side inequality of [F.2]

V (pym, Dom)
< f {(n™(d,z) —v™(d,2))y — [B(n™(d,x)) — B (d,2))]}* pym (2)dz

= J(nm(da z) — v™(d, 2)*[BP (" (d, 2)) + (B'(n™(d, )] () (1 — 7w (2)) '~ f, () dew

—2 J(B(nm(d, ©)) = B(v™(d, ) (0" (d, x) — v"(d, x))B'(n"(d, x))m"(2)(1 — 7(x))' = fy(x)dz

+ r(B(nm(d, z)) = B(v™(d, x)))*n"(x)(1 — m(2))' =" fy () do

— [ BO G (d 2) (7 (d, ) — 0™ (d, )2 (2) (1 — ()4, (2)d

+ [0 (d @) = v (d,2)) B (7 (d,2) — [BO™(d, ) — BO™(d, )] 7 () (1 — (@) () da

Sl =™ s, v 0™ =1 3 g
where in the first equality we have made use of the fact that
E,[Y?|D =d, X = a] = B (n"(d,2)) + (B'(n™(d, 2)))".
In sum, we have
K (pym, pom) vV (pym, o) < 0™ =™ 3.5, v [0™ = 0™ 3,
In addition, the squared Hellinger distance can be upper bounded by the KL divergence
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from Lemma B.1 in |Ghosal and Van der Vaart| [2017], so we have

ml ml mo mo
Ivpom = /Py llizey < 0™ = 0™ Jop, v 0™ =0 |25, (F.3)

Second, we outline the changes to the LAN expansion as follows. For this purpose, we

also define
g(u) =logpu(z) = ynu(d, z) — B(nu(d, x)) + log c(y). (F.4)

By the property of the one-parameter exponential family, we know B(-) is a convex function
under our smoothness assumption for B(-). Thereafter, we can obtain the first to third

order derivatives as

/(0) = Zo0ly — B"(d,))) = Zonly — m(d.),
9(0) = —FBA(d2)), 9¥(@) = ot BO ().

In a key step to show the prior stability condition, we need to establish the following

log-likelihood expansion:

sup [ (™ — tya/v/n) — £ (0™ — tyo/v/n)| = o, (1), (F.5)

1’]”167'[;{1

where 7', = 0™ — tv,/+/n and 9" = ™ — ty5/y/n. Consider the following decomposition
of the log-likelihood:

Gy () — €31 (ng") = 67 (mty) — 631 (n™) + €' (™) — £ (")
= nlP,[log pyr, — log Py ] + 1Py [log pym — log pym].

Then, we apply third-order Taylor expansions for the one-parameter exponential family
separately to the two terms in the brackets of the above display:

3

nPy[log g, —10g pye] = =tV [y (y — my)] = 5P [1 B (" (d, 2))] - Nk [v2B® ()],

t? 3
nPy[log pyn —log pyp] = t/nlPu [y0(y — my)] + P [15B® (" (d, )] + —=Pn [7 B ()],

7n
for some intermediate points u*, u** € (0, 1), cf. the equation (B.1]). The rest of the proof

follows similar lines to our proof of Proposition 4.1} O]
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G Algorithm for drawing the posterior of n™

We describe the Laplace approximation method that is used to draw the posterior of
n"™(d,z); see Rassmusen and Williams| [2006, Chapters 3.3 to 3.5] for more details on
properties of the Laplace approximation. as follows. Let W = [D, X] € R"*®*1 be the
matrix of (D, X) in the data, W* e R?"*®+1) the evaluation points (1, X) and (0, X)

1, X
W* = ,
[On7 X]

and m} a 2n-vector that gives the latent function n™(d, z) evaluated at W*:
77* = [nm(lv X1)7 T 777m(17 Xﬂ)? nm([]? Xl)? T 7nm(07 Xn)]T :

Let n = [n™(Dy, X1),. .. ,77’”(Dn,Xn)]T denote the n-vector of the latent function at W.
For matrices W* and W, we define K. (W*, W) as a 2n x n matrix whose (¢,j)-th
element is K (W, W;), where W/ is the i-th row of W* and W is the j-th row of W.
Analogously, K.(W,W) is an n x n matrix with the (7, j)-th element being K.(W;, W),
and K (W™ W*) is a 2n x 2n matrix with the (7, j)-th element being K (W}, WF).
Given the mean-zero GP prior with its covariance kernel K., the posterior of n* is
approximated by a Gaussian distribution with the mean n* and covariance V(n*) using

the Laplace approximation. To be specific, let

,f’* = KC(W*,W>K;1(W,W>’I/’;,
V) = K(W*W*) — K (W* W) (KW, W)+ V) K/(W* W),

where ) = argmax,p(n|W,Y) maximizes the posterior p(n|W,Y’) on the latent n and

v = _ Plogp(Yin) 9% log p(Y'|n)
onon'’ on? )

We use the Matlab toolbox GPML for the implementation.ﬁ In sum, we get the posterior
draws of the vectors [™(1, X1), -~ ,7™(1, X,,)]" and [™(0, X3),- - ,7™(0, X,,)]" from the
above approximating Gaussian distribution with the mean ®* and covariance V(n*).We
then obtain the posterior draws of the ATE by equation (2.8)) via m(d, X;) = ¥(n™(d, X;))
for d € {0, 1}.

is a n x n diagonal matrix with the i-th diagonal entry being —

9The GPML toolbox can be downloaded from http://gaussianprocess.org/gpml/code/matlab/doc/.
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H Additional Simulation Results

Appendix [H] presents additional simulation results for adjusted Bayesian inference methods.
The design is the same as that in Section Tables [Al| evaluates the sensitivity of finite
sample performance with respect to the variance o, that determines influence strength
of the prior correction term. We set o, = ¢, x /dim(X)nlogn/Y. | [3(D;, X;)| with

¢, € {0.5,1,10}. Note that ¢, = 1 corresponds to the simulation results reported in the

main text. The performance of PA and DR Bayes, especially the latter, appears stable

with respect to the choice of c,.

Table A1l: The effect of o,, on adjusted Bayesian inference methods:trimming based on 7 € [t, 1—t],
n = the average sample size after trimming.

Methods Bias CP CIL Bias CP CIL Bias CP CIL

Spec I t = 0.10(7 = 240) t =0.05(7 = 364) t =0.01(7 = 665)
to = 0.5 PA Bayes -0.018 0.979 0.231 0.022 0.960 0.233 0.037 0.956 0.296
DR Bayes -0.029 0.983 0.213 0.008 0.970 0.212 0.017 0.982 0.251
t, =1 PA Bayes -0.002 0.982 0.274 0.037 0.940 0.260 0.051 0.875 0.310
DR Bayes -0.021  0.979 0.229 0.016 0.966 0.224 0.026 0.938 0.258
t, =10 PA Bayes 0.015 0.967 0.313 0.048 0.920 0.277 0.059 0.833 0.314
DR Bayes -0.014 0977 0.244 0.022 0.958 0.232 0.031 0.899 0.260

Spec 1T t =0.10(n = 226) t = 0.05(n = 345) t = 0.01(n = 603)
ce = 0.5 PA Bayes -0.005 0.972 0.263 0.025 0.956 0.259 0.026 0.909 0.285
DR Bayes -0.022 0.967 0.220 0.004 0.962 0.222 0.006 0.946 0.253
¢ =1 PA Bayes 0.007 0.966 0.282 0.035 0.930 0.269 0.032 0.883 0.290
DR Bayes -0.013 0.964 0.233 0.012 0.957 0.230 0.011 0.930 0.258
¢e =10 PA Bayes 0.012 0.959 0.289 0.038 0.919 0.273 0.034 0.876 0.292
DR Bayes -0.009 0.964 0.238 0.015 0.954 0.233 0.013 0.923 0.259

Spec 111 t =0.10(n = 212) t =0.05(n = 321) t =0.01(n = 613)
ce = 0.5 PA Bayes -0.003 0.971 0.282 0.023 0.946 0.271 0.032 0.906 0.287
DR Bayes -0.022 0.966 0.235 0.002 0.953 0.232 0.016 0.945 0.263
ce =1 PA Bayes 0.005 0.962 0.296 0.029 0.934 0.277 0.035 0.890 0.290
DR Bayes -0.016 0.963 0.243 0.007 0.953 0.237 0.019 0.932 0.266
¢e =10 PA Bayes 0.008 0.960 0.303 0.031 0.930 0.279 0.036 0.888 0.290
DR Bayes -0.014 0.961 0.246 0.008 0.950 0.238 0.020 0.934 0.266

Table reports the finite sample performance of DR Bayes using sample-split. We

use one half of the sample (92 treated and 1245 control observations) to estimate the prior

and posterior adjustments, and then draw the posterior of the conditional mean m(d,x)

using the other half of the sample (93 treated and 1245 control observations). The effective
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sample size n in Table corresponds to the after-trimming size of the subsample used
for drawing posteriors. As Table shows, DR Bayes using sample-split yields similar
coverage probabilities as its counterpart in Table 1 that uses the full sample twice. The

credible interval length increases as a result of halving the sample size.

Table A2: Double robust Bayesian (DR Bayes) inference methods using sample-split: trimming
based on 7 € [t,1 — t], n = the average sample size after trimming.

Spec Bias CP CIL Bias CP CIL Bias CP CIL

I t =0.10(n = 124) t = 0.05(n = 185) t = 0.01(n = 340)
-0.009 0.969 0.332 0.020 0.965 0.324 0.020 0.932 0.389

11 t =0.10(n = 118) t=0.05(n = 177) t =0.01(n = 317)
-0.009 0.938 0.333 0.024 0.924 0.330 0.025 0.898 0.416

111 t =0.10(n = 115) t =0.05(n = 172) t =0.01(n = 331)

-0.013 0.943 0.350

0.012 0.926 0.340

0.028 0.892 0.427
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