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Abstract

We propose a double robust Bayesian inference procedure on the average

treatment effect (ATE) under unconfoundedness. Our robust Bayesian approach

involves two important modifications: first, we adjust the prior distributions of

the conditional mean function; second, we correct the posterior distribution of

the resulting ATE. Both adjustments make use of pilot estimators motivated by

the semiparametric influence function for ATE estimation. We prove asymptotic

equivalence of our Bayesian procedure and efficient frequentist ATE estimators

by establishing a new semiparametric Bernstein-von Mises theorem under double

robustness; i.e., the lack of smoothness of conditional mean functions can be

compensated by high regularity of the propensity score and vice versa. Consequently,

the resulting Bayesian credible sets form confidence intervals with asymptotically

exact coverage probability. In simulations, our double robust Bayesian procedure

leads to significant bias reduction of point estimation over conventional Bayesian

methods and more accurate coverage of confidence intervals compared to existing

frequentist methods. We illustrate our method in an application to the National

Supported Work Demonstration.

Keywords: Average treatment effects, unconfoundedness, double robustness, nonparametric Bayesian

inference, Bernstein–von Mises theorem, Gaussian processes.

∗We thank Guido Imbens, the editor, and the anonymous reviewers, as well as Xiaohong Chen, Yanqin
Fan, Essie Maasoumi, Yichong Zhang, and numerous seminar and conference participants for helpful
comments and illuminating discussions. Yu gratefully acknowledges the support of JSPS KAKENHI Grant
Number 21K01419.
†Department of Economics, University of Bonn. Email: cbreunig@uni-bonn.de
‡CUHK Business School, Chinese University of Hong Kong. Email: ruixuanliu@cuhk.edu.hk
§Faculty of Humanities and Social Sciences, University of Tsukuba. Email: yu.zhengfei.gn@u.

tsukuba.ac.jp

1

cbreunig@uni-bonn.de
ruixuanliu@cuhk.edu.hk
yu.zhengfei.gn@u.tsukuba.ac.jp
yu.zhengfei.gn@u.tsukuba.ac.jp


1 Introduction

This paper proposes a double robust Bayesian approach for estimating the average

treatment effect (ATE) under unconfoundedness, given a set of pretreatment covariates.

Our robust Bayesian procedure involves two important modifications to the standard

Bayesian approach. First, following Ray and van der Vaart [2020], we adjust the prior

distributions of the conditional mean function using an estimator of the propensity scores.

Second, we use this propensity score estimator together with a pilot estimator of the

conditional mean to correct the posterior distribution of the ATE. The adjustments in both

steps are closely related to the functional form of the semiparametric influence function for

ATE estimation under unconfoundedness. They do not only shift the mean but also change

the shape of the posterior distribution. For our robust Bayesian procedure, we derive a new

Bernstein–von Mises (BvM) theorem, which means that this posterior distribution, when

centered at an efficient estimator, is asymptotically normal with the efficient variance in

the semiparametric sense. The key innovation of our paper is that this result holds under

double robust smoothness assumptions within the Bayesian framework.

Despite the recent success of Bayesian methods, the literature on ATE estimation

is predominantly frequentist-based. For the missing data problem specifically, it was

shown that conventional Bayesian approaches (i.e., using uncorrected priors) can produce

inconsistent estimates, unless some unnecessarily harsh smoothness conditions on the

underlying functions were imposed; see the results and discussion in Robins and Ritov

[1997] or Ritov et al. [2014]. Once the prior distribution was adjusted using some pre-

estimated propensity score, Ray and van der Vaart [2020] recently established a novel

semiparametric BvM theorem under much less stringent smoothness requirements for the

propensity score function.1 However, a minimum differentiability of order p{2 is still

required for the conditional mean function in the outcome equation, where p denotes the

dimensionality of covariates. In this paper, we are interested in Bayesian inference under

double robustness that allows for a trade-off between the required levels of smoothness in

the propensity score and the conditional mean functions.

Under double robust smoothness conditions, we show that Bayesian methods, which

use propensity score adjusted priors, satisfy the BvM Theorem only up to a “bias term”

depending on the unknown true conditional mean and propensity score functions. In this

paper, our robust Bayesian approach accounts for this bias term in the BvM Theorem

1Strictly speaking, the main objective in Ray and van der Vaart [2020] concerns the mean response in
a missing data model, which is equivalent to observing one arm (either the treatment or control) of the
causal setup.
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by considering an explicit posterior correction (in addition to the prior adjustment of

Ray and van der Vaart [2020]). Not only the prior adjustment but also the posterior

correction are based on functional forms that are closely related to the efficient influence

function for the ATE, see Hahn [1998]. We show that the corrected posterior still satisfies

the BvM Theorem under double robust smoothness assumptions. Our novel procedure

combines the advantages of Bayesian methodology with the robustness features that are the

strengths of frequentist procedures. Our credible intervals is Bayesianly justifiable, as the

uncertainty quantification is made conditional on the observed data ([Rubin, 1984]) and can

be also interpreted as frequentist confidence intervals with asymptotically exact coverage

probability. Our procedure is inspired by the double machine learning (DML), as well as the

bias-corrected matching approach from Abadie and Imbens [2011], as our robustification

of an initial procedure removes some non-negligible bias and remains asymptotically valid

under weaker regularity conditions. While the main part of our theoretical analysis focuses

on the ATE of binary outcomes, also considered by Ray and van der Vaart [2020], we also

outline extensions of our methodology to continuous and multinomial cases, as well as other

causal parameters.

In both simulations and an empirical illustration using the National Supported Work

Demonstration data, we provide evidence that our procedure performs well compared to

existing bayesian and frequentist approaches. In our Monte Carlo simulations, we find that

our method results in improved empirical coverage probabilities, while maintaining very

competitive lengths for confidence intervals. This finite sample advantage is also observed

over Bayesian methods that rely solely on prior corrections. In particular, we note that our

approach leads to more accurate uncertainty quantification and is less sensitive to estimated

propensity scores being close to boundary values.

While the BvM theorem for parametric Bayesian models is well-established [van der

Vaart, 1998], the semiparametric version is still being studied very actively when

nonparametric priors are used. The area has received an enormous amount of attention

[Castillo, 2012, Castillo and Rousseau, 2015, Ray and van der Vaart, 2020]. To the best

of our knowledge, our new semiparametric BvM theorem is the first one that possesses the

double robustness property. Our paper is also connected to another active research area

concerning Bayesian inference that is robust with respect to partial or weak identification

in finite dimensional models [Chen et al., 2018, Giacomini and Kitagawa, 2021, Andrews

and Mikusheva, 2022]. The framework and the approach we take is different. Nonetheless,

they share the same scope of tailoring the Bayesian inference procedure to new challenges

in contemporary econometrics.
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2 Setup and Implementation

This section provides the main setup of the average treatment effect (ATE) and motivates

the new Bayesian methodology.

2.1 Setup

We consider a family of probability distributions tPη : η P Hu for some parameter space H,

where the (possibly infinite dimensional) parameter η characterizes the probability model.

Let η0 be the true value of the parameter and denote P0 “ Pη0 , which corresponds to

the frequentist distribution of observed data in the classical framework of causal inference.

For individual i, consider a treatment indicator Di P t0, 1u. The observed outcome Yi is

determined by Yi “ DiYip1q` p1´DiqYip0q where pYip1q, Yip0qq are the potential outcomes

of individual i associated with Di “ 1 or 0. This paper focuses on the binary outcome case

where both Yip1q and Yip0q take values of t1, 0u. The covariates for individual i are denoted

by Xi, a vector of dimension p, with the distribution F0 and the density f0.2 Let π0pxq “

P0pDi “ 1|Xi “ xq denote the propensity score and m0pd, xq “ P0pYi “ 1|Di “ d,Xi “ xq

the conditional mean. Suppose that the researcher observe an independent and identically

distributed (i.i.d.) observations of Zi “ pYi, Di, X
J
i q
J for i “ 1, . . . , n. The joint density of

Zi is given by pπ0,m0,f0 where

pπ,m,f pzq “ πpxqdp1´ πpxqq1´dmpd, xqyp1´mpd, xqqp1´yqfpxq. (2.1)

The parameter of interest is the ATE given by τ0 “ E0rYip1q´Yip0qs, where E0r¨s denotes the

expectation under P0. For its identification, we impose the following standard assumption

of unconfoundedness and overlap [Rosenbaum and Rubin, 1984, Imbens, 2004, Imbens and

Rubin, 2015].

Assumption 1. (i) pYip0q, Yip1qq |ù Di | Xi and (ii) there exists π̄ ą 0 such that π̄ ă

π0pxq ă 1´ π̄ for all x in the support of F0.

We introduce additional notations from the Bayesian perspective, following the similar

setup from Ray and van der Vaart [2020]. For the purpose of assigning prior distributions

to pπ,mq in the Bayesian procedure, it is convenient to transform them by a link function.

We consider the logistic function Ψptq “ 1{p1 ` e´tq here. Specifically, we consider the

reparametrization of pπ,m, fq given by η “ pηπ, ηm, ηf q. We index the probability model

2If Xi does not have a density we can simply consider the conditional density of pYi, Diq given Xi “ x
instead of the joint density of pYi, Di, Xiq.
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by Pη consistent with the notation that describes the underlying statistical experiment in

the first paragraph of this section, where

ηπ “ Ψ´1
pπq, ηm “ Ψ´1

pmq, ηf “ log f. (2.2)

Below, we write mη “ Ψpηmq, πη “ Ψpηπq, and fη “ exppηf q to make the dependence on η

explicit. Given any prior on the triplet pηπ, ηm, ηf q, the Bayesian solution to the estimation

and inference of the ATE is to obtain the posterior distribution of

τη “ Eη rmηp1, Xq ´mηp0, Xqs , (2.3)

where Eηr¨s denotes the expectation denotes the expectation under Pη. Our aim is to

examine large-sample behavior of the posterior of τη and compare Bayesian methods with

frequentist estimators based on the true probability distribution P0. In the same vein, the

true parameter of interest becomes τ0 “ τη0 .

The construction of our double robust Bayesian procedure in Section 2.2 has

fundamental connection to the efficient influence function. For any generic component

η, the efficient influence function (see Hahn [1998], Hirano et al. [2003]) is given by

rτηpzq “ mηp1, xq ´mηp0, xq ` γηpd, xqpy ´mηpd, xqq ´ τη (2.4)

for the Riesz representor γη, which is given by

γηpd, xq “
d

πηpxq
´

1´ d

1´ πηpxq
. (2.5)

We assume throughout the paper that πη is uniformly bounded away from zero and one.

We write rτ0 “ rτη0 and γ0 “ γη0 .

2.2 Double Robust Bayesian Point Estimators and Credible Sets

Our doubly robust inference procedure builds on a nonparametric Bayesian prior

specification for mη, which depends on a preliminary estimator for γ0. We consider pilot

estimators pπ of the propensity score π0 and pm of the conditional mean function m0, which

both are based on an auxiliary sample. We consider a plug-in estimator for the Riesz
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representor γ0 given by

pγpd, xq “
d

pπpxq
´

1´ d

1´ pπpxq
.

The use of an auxiliary data for pilot estimators simplifies the technical analysis related to

the propensity score adjusted priors; see Ray and van der Vaart [2020]. Also, it provides

an effective way to control some negligible higher-order terms, see our Lemma C.2 in the

online supplement; cf. related discussion on the sample splitting in the DML type methods

on Page C6 of Chernozhukov et al. [2018]. In practice, we use the full data twice and do

not split the sample, as we have not observed any over-fitting or loss of coverage thereby.

Our procedure builds on the following three steps that approximates the posterior

distribution of τη, from which one can readily obtain the Bayesian point estimator and

the credible set through Monte Carlo simulation draws.

1. Compute the adjusted prior on m:

mηpd, xq “ Ψ pηmpd, xqq and ηmpd, xq “ Wm
pd, xq ` λ pγpd, xq, (2.6)

where Wmpd, ¨q is a continuous stochastic process independent of the random

variable λ, which follows a normal prior Np0, σ2
nq for some σn ą 0. The prior

adjustment incorporates an initial estimator of the propensity score, with the variable

λ determining the extent of this adjustment through its variance σ2
n. Next, generate

Monte Carlo samples from the posterior of ηmp1, xq and ηmp0, xq; see Section 4 for

more details. We denote a generic random function drawn from this posterior by

ms
ηp¨q, for s “ 1, . . . , B.

2. Generate Bayesian bootstrap weights M s
n1, . . . ,M

s
nn where M s

ni “ esi {
řn
i“1 e

s
i and esi ’s

are i.i.d. draws from the exponential distribution Expp1q for s “ 1, . . . , B. A generic

draw from the corrected posterior distribution for the ATE τη admits the following

representation:

τ̌ sη “ τ sη ´
pbsη, s “ 1, . . . , B, (2.7)

where

τ sη “
n
ÿ

i“1

M s
ni

`

ms
ηp1, Xiq ´m

s
ηp0, Xiq

˘

and pbsη “
1

n

n
ÿ

i“1

τ rms
η ´ pmspZiq, (2.8)

using the notation τ rmspzq :“ mp1, xq ´mp0, xq ` pγpd, xqpy ´mpd, xqq.
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3. Our 100 ¨ p1´ αq% credible set Cnpαq for the ATE parameter τ0 is computed by

Cnpαq “
 

τ : qnpα{2q ď τ ď qnp1´ α{2q
(

, (2.9)

where qnpaq denotes the a quantile of tτ̌ sη : s “ 1, . . . , Bu. Additionally, we get the

Bayesian point estimator (the posterior mean) by averaging the simulation draws:

τ η “
1
B

řB
s“1 τ̌

s
η .

In Section 4, we provide further guidance on the implementation of our double robust

Bayesian method, using adjusted Gaussian process priors. Additionally, we provide

recommendations on the implementation of the tuning parameter σn; for more details,

refer to Section 5.1. Regarding the pilot estimator for the propensity score, we employ

Lasso for logistic regression. As a pilot estimator of the conditional mean function, we use

the posterior mean of uncorrected Gaussian process priors. More details are provided in

Sections 4 and 5.1.

Remark 2.1 (Bayesian bootstrap). Under unconfoundedness and the reparametrization

in (2.2), the ATE can be written as τη “
ş

rΨ pηmp1, xqq ´ Ψ pηmp0, xqqsdFηpxq. With

independent priors on ηm and Fη, their posteriors also become independent. It is thus

sufficient to consider the posterior for ηm and Fη separately. We place a Dirichlet process

prior for Fη with the base measure to be zero. Consequently, the posterior law of Fη

coincides with the Bayesian bootstrap [Rubin, 1981]; also see Chamberlain and Imbens

[2003]. One key advantage of the Bayesian bootstrap is that it allows us to incorporate a

broad class of data generating processes, whose posterior can be easily sampled. Replacing

Fη by the standard empirical cumulative distribution function does not provide sufficient

randomization of Fη, as it yields an underestimation of the asymptotic variance; see [Ray

and van der Vaart, 2020, p. 3008]. In principle, one could consider other types of bootstrap

weights; however, these generally do not correspond to the posterior of any given prior

distribution.

3 Main Theoretical Results

In this section, we derive the Bernstein-von Mises (BvM) theorem which establishes

the asymptotic equivalance between our Bayesian procedure and frequentist-type efficient

semiparametric estimation of the ATE. We consider asymptotically efficient estimators pτ
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with the following linear representation:

pτ “ τ0 `
1

n

n
ÿ

i“1

rτ0pZiq ` oP0pn
´1{2

q, (3.1)

where rτ0 “ rτη0 is the efficient influence function in accordance with (2.4). Below, we

denote Zpnq “ pZ1, . . . , Znq. By virtue of the BvM Theorem, two conditional distributions
?
npτη ´ pτq|Zpnq and

?
nppτ ´ τηq|η “ η0 are asymptotically equivalent under the underlying

sampling distribution. Another important consequence of the BvM theorem is about the

asymptotic normality and efficiency of the Bayesian point estimator. That is,
?
npτ η ´ τ0q

is asymptotically normal with mean zero and variance v0 “ E0 rrτ
2
0 pZiqs. Thus, τ η achieves

the semiparametric efficiency bound of Hahn [1998].

3.1 Least Favorable Direction

Our prior correction through the Riesz representor γ0 is motivated by the least favorable

direction of Bayesian submodels. We first provide least favorable calculations of Bayesian

submodels, which are closely linked to semiparametric efficiency derivations. Consider the

one-dimensional submodel t ÞÑ ηt defined by the path

πtpxq “ Ψpηπ ` tpqpxq, mtpd, xq “ Ψpηm ` tmqpd, xq, ftpxq “
fpxqetfpxq

ş

etfpxqfpxqdx
, (3.2)

for the given direction pp,m, fq with
ş

fpxqfpxqdx “ 0. The difficulty of estimating the

parameter τηt for the submodels depends on the direction pp,m, fq. Among them, let

ξη “ pξ
π
η , ξ

m
η , ξ

f
η q be the least favorable direction that is associated with the most difficult

submodel, i.e., gives rise to the largest asymptotic optimal variance for estimating τηt . Let

pηt denote the joint density of Z depending on ηt :“ pπt,mt, ftq. Taking derivative of the

logarithmic density log pηtpzq with respect to t and evaluating at t “ 0 gives the score

operator:

Bηpp,m, fqpzq “ Bπ
η ppzq `B

m
η mpzq `B

f
η fpzq, (3.3)

where Bπ
η ppzq “ pd´ πηpxqqppxq, B

m
η mpzq “ py ´mηpd, xqqmpd, xq and Bf

η fpzq “ fpxq. The

least favorable direction is defined as the solution ξη which solves the equation Bηξη “ rτη,

see Ghosal and Van der Vaart [2017, p.370] and we immediately obtain:

Lemma 3.1. Consider the submodel (3.2). Under Assumption 1, the least favorable
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direction for estimating the ATE parameter in (2.3) is:

ξηpd, xq “ p0, γηpd, xq,mηp1, xq ´mηp0, xq ´ τηq , (3.4)

where the Riesz representer γη is given in (2.5).

Lemma 3.1 motivates the adjustment of the prior distribution as considered in our

Bayesian estimator in Section 2.2. Our prior correction, which takes the form of

the (estimated) least favorable direction, provides an exact invariance under a shift of

nonparametric components by giving the prior an explicit adjustment in this direction. It

provides additional robustness against posterior inaccuracy in the “most difficult direction”,

i.e., the one inducing the largest bias in the average treatment effects. We also note that

Lemma 3.1 extends the result in Section 2.1 in Ray and van der Vaart [2020] for the missing

data problem, which is equivalent as observing only one arm (either the treatment or control

arm), to the context of ATE estimation that involves both arms.

3.2 Assumptions for Inference

We now provide additional notations and assumptions. The posterior distribution plays an

important role in the following analysis and is given by

Π
`

pπ,mq P A,F P B|Zpnq
˘

“

ż

B

ş

A

śn
i“1 pπ,mpYi, Di|XiqdΠpπ,mq

ş
śn

i“1 pπ,mpYi, Di|XiqdΠpπ,mq
dΠpF |Xpnq

q

where pπ,m denotes the conditional density of pYi, Diq given Xi, given by (2.1) divided

by the marginal density of Xi. We write LΠp
?
npτη ´ pτq|Zpnqq for the marginal posterior

distribution of
?
npτη´pτq. We focus on the case that ηπ has a prior that is independent of the

prior for pηm, F q. Because the factorization of the likelihood function (2.1) into pηm, ηπ, F q

separately, so the posterior of ηπ is also independent of the posterior for pηm, F q. Due

to the fact that τη does not depend on ηπ, it is unnecessary to further discuss a prior or

posterior distribution on ηπ. Also, see Theorem 6.1B in Little and Rubin [2019].

We first introduce high-level assumptions and discuss primitive conditions for those in

the next section. Below, we consider some measurable sets Hm
n of functions ηm such that

Πpηm P Hm
n |Z

pnqq ÑP0 1. To abuse the notation for convenience, we also denote Hn “

tη : ηm P Hm
n u when we index the conditional mean function mη by its subscript η. We

introduce the notation }φ}2,F0 :“
b

ş

φ2pxqdF0pxq for all φ P L2pF0q :“ tφ : }φ}2,F0 ă 8u.
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Assumption 2. [Rates of Convergence] The estimators pπ and pm, which are based on an

auxiliary sample independent of Zpnq, satisfy }pπ ´ π0}2,F0 “ OP0prnq and for d P t0, 1u:

}pmpd, ¨q ´m0pd, ¨q}2,F0 “ OP0pεnq and sup
ηPHn

}mηpd, ¨q ´m0pd, ¨q}2,F0 ď εn,

where maxtεn, rnu Ñ 0 and
?
n εnrn Ñ 0. Further, }pγ}8 “ OP0p1q.

We adopt the standard empirical process notation as follows. For a function h of

a random vector Zi that follows distribution P , we let P rhs “
ş

hpzqdP pzq,Pnrhs “
n´1

řn
i“1 hpZiq, and Gnrhs “

?
n pPn ´ P q rhs. Below, we make use of the notations

m̄ηp¨q “ mηp1, ¨q ´mηp0, ¨q and m̄0p¨q “ m0p1, ¨q ´m0p0, ¨q.

Assumption 3. [Complexity] For Gn “ tm̄ηp¨q : η P Hnu it holds supm̄ηPGn |pPn ´ P0qm̄η| “

oP0p1q and

sup
ηPHn

|Gn rppγ ´ γ0q pmη ´m0qs| “ oP0p1q. (3.5)

Recall the propensity score-dependent prior on m given in (2.6), that is, mp¨q “

Ψ pWmp¨q ` λpγp¨qq. The restriction about λ is made through its hyperparameter σn ą 0.

Assumption 4. [Prior Stability] For d P t0, 1u, Wmpd, ¨q is a continuous stochastic process

independent of the normal random variable λ „ Np0, σ2
nq, where nσ2

n Ñ 8 and that

satisfies: (i) Π
`

λ : |λ| ď unσ
2
n

?
n | Zpnq

˘

ÑP0 1, for some deterministic sequence un Ñ 0

and (ii) Π
`

pw, λq : w ` pλ` tn´1{2qpγ P Hm
n | Z

pnq
˘

ÑP0 1 for any t P R.

Discussion of Assumptions: Assumption 2 imposes sufficiently fast convergence rates

for the pilot estimators for the conditional mean function m0 and the propensity score

π0. In practice, one can explore the recent proposals from Chernozhukov et al. [2020,

2022]. Note that one can also use Bayesian point estimators such as the posterior mean

of the Gaussian process for pm and pπ. The posterior convergence rate for the conditional

mean mη can be derived in the same spirit of Ray and van der Vaart [2020]. The rate

restriction is more likely to be satisfied if one function is easier to estimate, which resembles

Theorem 1 conditions (i) and (ii) of Farrell [2015]. Remark 4.1 illustrates that under

classical smoothness assumptions, this condition is less restrictive than the plug-in method

of Ray and van der Vaart [2020] or other approaches for semiparametric estimation of ATEs

as found in Chen et al. [2008] or Farrell et al. [2021]. Assumption 4 incorporates Conditions

(3.9) and (3.10) from Theorem 2 in Ray and van der Vaart [2020], and it is imposed to

check the invariance property of the adjusted prior distribution.
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Assumption 3 restricts the functional class Gn to form a P0-Glivenko-Cantelli class; see

Section 2.4 of van der Vaart and Wellner [1996] and imposes a stochastic equicontinuity

condition on a product structure involving pγ and mη. The stochastic equicontinuity

condition in (3.5) further relaxes the corresponding one, namely supηPHm
n
Gn rmη ´m0s “

oP0p1q, from Ray and van der Vaart [2020]. In the next section, we demonstrate that our

formulation allows for double robustness under Hölder smoothness classes (see Remark

4.1). Hence, the complexity of the functional class pmη ´ m0q can be compensated by

sufficient regularity of the corresponding Riesz representor and vice versa. In essence, a

condition similar to our Assumption 3 is also used in the frequentist literature; see Section

2 of Benkeser et al. [2017]. Nonetheless, the technical argument differs substantially from

the frequentist’s study, because we mainly need the condition (3.5) to control changes in

the likelihood under perturbations along the estimated and true least favorable directions.

This is unique to Bayesian analysis with nonparametric priors.

3.3 A Double Robust Bernstein-von Mises Theorem

We now establish a new Bernstein–von Mises theorem, which establishes the asymptotic

normality of the posterior distribution, modulo a “bias term”. In a next step, we show

that posterior correction, as proposed in our procedure, eliminates this “bias term”. This

asymptotic equivalence result is established using the bounded Lipschitz distance. For two

probability measures P,Q defined on a metric space X , we define the bounded Lipschitz

distance as

dBLpP,Qq “ sup
fPBLp1q

ˇ

ˇ

ˇ

ˇ

ż

Z
fpdP ´ dQq

ˇ

ˇ

ˇ

ˇ

, (3.6)

where

BLp1q “

"

f : Z ÞÑ R, sup
zPZ

|fpzq| ` sup
z‰z1

|fpzq ´ fpz1q|

}z ´ z1}`2
ď 1

*

.

Here, } ¨ }`2 denotes the vector `2 norm.

Below is our main statement about the asymptotic behavior of the posterior distribution

of τη. As in the modern Bayesian paradigm, the exact posterior is rarely of closed-form,

and one needs to rely on certain Monte Carlo simulations, such as the implementation

procedure in Section 2.2, to approximate this posterior distribution, as well as the resulting

point estimator and credible set.

Theorem 3.1. Let Assumptions 1–4 hold. Then we have

dBL
`

LΠp
?
npτη ´ pτ ´ b0,ηq|Z

pnq
q, Np0,v0q

˘

ÑP0 0,
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where b0,η :“ Pnrγ0pm0 ´mηq ´ pm̄0 ´ m̄ηqs.

We emphasize that the above BvM theorem is not feasible for applications, because

it depends on the “bias term” b0,η, which depends on the unknown conditional mean m0.

Nonetheless, it provides an important theoretical benchmark. One can follow the existing

literature on semiparametric BvM theoresm to impose the so-called “no-bias” condition,

but this generally leads to strong smoothness restrictions and may not be satisfied when the

dimensionality of covariates is large relative to the smoothness properties of the underlying

functions; see the discussion on page 395 of van der Vaart [1998].

This “bias term” in our context consists of two key components, with the first involving

unknown true functions and the second depending on the posterior of mη. We consider

pilot estimators for the unknown functional parameters in b0,η. The correction term pbη, as

introduced in (2.8), results in a feasible Bayesian procedure that satisfies the BvM theorem

under double robustness, as demonstrated below.

Theorem 3.2. Let Assumptions 1–4 hold. Then we have

dBL

´

LΠp
?
npτη ´ pτ ´pbηq|Z

pnq
q, Np0,v0q

¯

ÑP0 0.

We now show how Theorem 3.2 can provide frequentist justification of Bayesian methods

to construct the point estimator and the confidence sets. Recall that τ η represents the

posterior mean. Introduce a Bayesian credible set Cnpαq for τη, which satisfies Πpτη P

Cnpαq|Zpnqq “ 1´ α for a given nominal level α P p0, 1q. The next result shows that Cnpαq
also forms a confidence interval in the frequentist sense for the ATE parameter whose

coverage probability under P0 converges to 1´ α.

Corollary 3.1. Let Assumptions 1–4 hold. Then under P0, we have

?
n pτ η ´ τ0q ñ Np0,v0q. (3.7)

Also, for any α P p0, 1q we have P0

`

τ0 P Cnpαq
˘

Ñ 1´ α.

To the best of our knowledge, this is the first BvM theorem that entails the double

robustness. We discuss the distinction with Theorem 2 in Ray and van der Vaart [2020].

Their work laid the theoretical foundation that supports the usefulness of propensity score

in Bayesian analysis of the ATE. They showed that propensity score adjustment via priors

can allow for weak regularity conditions on the propensity score function, coining the

corresponding property as the single robustness. Our analysis differs from Ray and van der
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Vaart [2020] in two crucial ways. First, we improve on their Lemma 3 by showing that it

is possible to verify the prior stability condition for propensity score-adjusted priors under

the product structure in Assumption 3, modulo the “bias term” b0,η. This separation is

essential to identify the source of the restrictive condition, such as the Donsker property

on mη, which is mainly used to eliminate b0,η. Second, our proposal introduces an explicit

debiasing step, borrowing key insights from recent developments in the DML literature.

Remark 3.1 (Connection with frequentist robust estimation). In our BvM theorem, we

do not restrict the centering estimator pτ , as long as it admits the linear representation as

in (3.1). A popular frequentist estimator for the ATE that achieves double robustness is

pτ “ n´1
n
ÿ

i“1

`

pmp1, Xiq ´ pmp0, Xiq
˘

` n´1
n
ÿ

i“1

pγpDi, Xiq
`

Yi ´ pmpDi, Xiq
˘

(3.8)

based on frequentist-type pilot estimators pm of the conditional mean function m0 and pγ of

the Riesz representer γ0; see Robins and Rotnitzky [1995] and more recently Chernozhukov

et al. [2020, 2022]. The double robust or double machine learning estimator (3.8) recenters

the plug-in type functional by an explicit correction factor that depends on the Riesz

representor.3 Our main result establishes the asymptotic equivalence of our estimator and

(3.8).This not only offers frequentist validity to our Bayesian procedure but also provides

doubly robust frequentist methods with a Bayesian interpretation.

Remark 3.2 (Parametric Bayesian Methods). A couple of recent papers propose doubly

robust Bayesian recipes for ATE inference, under parametric model restrictions. Saarela

et al. [2016] considered a Bayesian procedure based on an analog of the double robust

frequentist estimator given in Equation (3.8), replacing the empirical measure with the

Bayesian bootstrap measure. However, there was no formal BvM theorem presented therein.

Another recent paper by Yiu et al. [2020] explored Bayesian exponentially tilted empirical

likelihood with a set of moment constraints that are of a double-robust type. They proved a

BvM theorem for the posterior constructed from the resulting exponentially tilted empirical

likelihood under parametric specifications. Luo et al. [2023] provided Bayesian results for

ATE estimation in a partial linear model, which implies homogeneous treatment effects.

They also assign parametric priors to the propensity score. Their BvM Theorem allows

for misspecification only in a parametric nonlinear component of the outcome equation. It

is not clear how to extend their analysis to incorporate flexible nonparametric modeling

strategies.
3Another popular method in the statistics literature is the targeted learning approach [Van der Laan

and Rose, 2011, Benkeser et al., 2017].
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4 Illustration with Gaussian Process Priors

We illustrate the general methodology by placing the Gaussian process prior on ηmpd, ¨q

in relation to the conditional mean functions for d P t0, 1u. The Gaussian process

regression has been extensively used among the machine learning community [Rassmusen

and Williams, 2006], and started to gain popularity among economists [Kasy, 2018]. Our

study further strengthened the appealing features of this modern Bayesian toolkit. We

provide primitive conditions used in our main results in the previous section. In addition,

we provide details on the implementation using Gaussian process priors and discuss the

data-driven choices of tuning parameters.

4.1 Inference Based on Gaussian Process Priors

Let pW ptq : t P Rpq be a centered, homogeneous Gaussian random field with covariance

function of the following form ErW psqW ptqs “ φps ´ tq, for a given continuous function

φ : Rp ÞÑ R. We consider W ptq as a Borel measurable map in the space of continuous

functions on r0, 1sp, equipped with the supremum norm } ¨ }8. The covariance function

of a squared exponential process is given by ErW psqW ptqs “ expp´}s ´ t}2`2q, as its name

suggests. We also consider a rescaled Gaussian process
`

W pantq : t P r0, 1sp
˘

. Intuitively

speaking, a´1
n can be thought as a bandwidth parameter. For a large an (or equivalently

a small bandwidth), the prior sample path t ÞÑ W pantq is obtained by shrinking the long

sample path t ÞÑ W ptq. Thus, it employs more randomness and becomes suitable as a prior

model for less regular functions, see van der Vaart and van Zanten [2008, 2009].

Below, Csmpr0, 1spq denotes a Hölder space with the smoothness index sm. Specifically,

we illustrate our theory with the case where m0pd, ¨q P Csmpr0, 1spq for d P t0, 1u. Given

such a Hölder-type smoothness condition, we choose

an — n1{p2sm`pqplog nq´p1`pq{p2sm`pq, (4.1)

which coincides (up to some logarithm factor) with the minimax posterior contraction rate

for the conditional mean function mηpd, ¨q given by εn “ n´sm{p2sm`pqplog nqsmp1`pq{p2sm`pq;

see Section 11.5 of Ghosal and Van der Vaart [2017]. The particular choice of an mimics the

corresponding kernel bandwidth based on any kernel smoothing method. Other choices of

an will generally make the convergence rate slower. Nonetheless, as long as the propensity

score is estimated with a sufficiently fast rate, our BvM theorem still holds.

Proposition 4.1 (Squared Exponential Process Priors). The estimator pγ satisfies }pγ}8 “
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OP0p1q and }pγ ´ γ0}8 “ OP0

`

pn{ log nq´sπ{p2sπ`pq
˘

for some sπ ą 0. Suppose m0pd, ¨q P

Csmpr0, 1spq for d P t0, 1u and some sm ą 0 with
?
sπ sm ą p{2. Also, }pmpd, ¨q ´

m0pd, ¨q}2,F0 “ OP0

`

pn{ log nq´sm{p2sm`pq
˘

. Consider the propensity score-dependent prior

on m given by mpd, xq “ Ψ pWm
d pxq ` λ pγpd, xqq, where Wm

d pxq is the rescaled squared

exponential process for d P t0, 1u, with its rescaling parameter an of the order in (4.1) and

ˆ

n

log n

˙´sm{p2sm`pq

! σn À 1. (4.2)

Then, the corrected posterior distribution for the ATE satisfies Theorem 3.1.

Remark 4.1 (Double Robust Hölder Smoothness). Proposition 4.1 requires
?
sπ sm ą p{2,

which represents a trade-off between the smoothness requirement for m0 and π0. This

encapsulate the double robustness; i.e., a lack of smoothness of the conditional mean

function m0 can be mitigated by exploiting the regularity of the propensity score and vice

versa. Referring to the Hölder class Csmpr0, 1spq, its complexity measured by the bracketing

entropy of size ε is of order ε´2υ for υ “ d{p2smq. One can show that the key stochastic

equicontinuity assumption in Ray and van der Vaart [2020], i.e., their condition (3.5), is

violated by exploring the Sudkov lower bound [Han, 2021] when υ ą 1 or equivalently when

sm ă p{2. In contrast, our framework accommodates this non-Donsker regime as long as
?
sπ sm ą p{2, which enables us to exploit the product structure and a fast convergence

rate for estimating the propensity score. Our methodology is not restricted to the case

where propensity score belongs to a Hölder class per se. For instance, under a parametric

restriction (such as in logistic regression) or an additive model with unknown link function,

the possible range of the posterior contraction rate εn for the conditional mean function

can be substantially enlarged. In the case sm ą p{2, the bias term becomes asymptotically

negligible, i.e., b0,η “ oP0pn
´1{2q. This allows for smoothness robustness only with respect

to the propensity score and is also known as single robustness. In this case, no posterior

correction is required, see Ray and van der Vaart [2020].

4.2 Implementation of Gaussian Process Priors

We provide details on the Gaussian process prior placed on ηmpd, xq and its posterior

computation. Following equation (2.6), the propensity score adjusted prior takes

the form ηmpd, xq “ Wmpd, xq ` λ pγpd, xq: the first component Wmpd, xq is a zero-

mean Gaussian process with the commonly used squared exponential (SE) covariance

function [Rassmusen and Williams, 2006, p.83]. That is, K ppd, xq, pd1, x1qq :“
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ν2 exp p´a2
0npd´ d

1q2{2´
řp
l“1 a

2
lnpxl ´ x

1
lq

2{2q where the hyperparameter ν2 is the kernel

variance and a0n, . . . , apn are rescaling parameters that reflect the relevance of treatment

and each covariate in predicting ηm. In practice, they can be obtained by maximizing the

marginal likelihood.

Conditional on the data used to obtain the propensity score estimator pπ, the prior

for ηm has zero mean and the covariance kernel Kc including an additional term based

on the estimated Riesz representer pγ is given by Kc ppd, xq, pd1, x1qq “ K ppd, xq, pd1, x1qq `

σ2
npγpd, xq pγpd, x

1q, cf. related constructions from Ray and Szabó [2019] and Ray and van der

Vaart [2020]. The parameter σn, representing the standard deviation of λ, controls the

weight of the prior correction. In the subsequent numerical exercise, we select σn such

that the rate condition specified in Assumption 4 is satisfied. Our simulation results also

suggest that the performance of our approach remains stable across various choices of σn.

Utilizing Gaussian process priors with zero mean and covariance function Kc,

and incorporating the available data, we generate posterior draws of the vector

rηmpd,X1q, ¨ ¨ ¨ , η
mpd,Xnqs

J for d P t0, 1u. This can be achieved through the Laplace

approximation method detailed in online Appendix G. When it comes to the pilot

estimator pm required for our posterior correction in (2.8), we plug in the posterior mean

of mpd, xq “ Ψ pηmpd, xqq, which is calculated using the unadjusted Gaussian process prior

and the sample data. When the rescaling parameter an is as stated in Proposition 4.1,

the convergence rate of pm is OP0

`

pn{ log nq´sm{p2sm`pq
˘

. This can be shown by combining

Theorems 11.22, 11.55 and 8.8 from Ghosal and Van der Vaart [2017].

5 Numerical Results

In this section, we apply our method to the well-known job-training data set that contains

a treated sample of 185 men from the National Supported Work (NSW) experiment and a

control sample of 2490 men from the Panel Study of Income Dynamics (PSID). The data

has been used by LaLonde [1986], Dehejia and Wahba [1999], Abadie and Imbens [2011],

and Armstrong and Kolesár [2021], among others. We also refer readers to Imbens [2004]

and Imbens and Rubin [2015] for comprehensive reviews of the data.

5.1 Simulations

In this section, we consider a simulation study where the observations are randomly

drawn from a large sample generated by the Wasserstein Generative Adversarial Networks
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(WGAN) method from the the job-training real data, see Athey et al. [2021]. We view their

simulated data as the population and repeatedly draw our simulation samples (each with

185 treated and 2490 control observations) for 1, 000 times of Monte Carlo replication. We

slightly depart from previous studies by focusing on a binary outcome Y : the employment

indicator for the year 1978, which is defined as an indicator for positive earnings. The

treatment D is the participation in the NSW program. We are interested in the average

treatment effect of the NSW program on the employment status. We consider three choices

of covariatesX: Spec I follows that of Abadie and Imbens [2011] and contains nine variables:

age, education, black, Hispanic, married, earnings in 1974, earnings in 1975, unemployed

in 1974, unemployed in 1975; Spec II follows Table 3 of Dehejia and Wahba [2002] that

adds six variables to Spec I: the no degree indicator, quadratic terms of age, education,

earnings in 1974 and 1975, and unemployed in 1974 ˆ Hispanic; Spec III further adds the

six interactions between the four continuous covariates (age,education, earnings in 1974 and

1975) and eight other interactions that are selected in Farrell [2015]: education ˆ married,

education ˆ Hispanic, earnings in 1974 ˆ married, earnings in 1974 ˆ Hispanic, earnings

in 1975 ˆ unemployed in 1974, nodegree ˆ unemployed in 1975, black ˆ unemployed in

1975, unemployed in 1974 ˆ unemployed in 1975.

Our double robust Bayesian method (DR Bayes) is implemented as given in τ̌ sη in (2.7)

using the adjusted Gaussian process prior, where the propensity score is estimated by Lasso

for logisitic regression with the penalty parameter chosen by cross-validation [Friedman

et al., 2010]. The posterior correction also builds on a pilot conditional mean estimator pm,

given here by the posterior mean of mη using uncorrected Gaussian process priors. We set

the tuning parameter σn that corresponds to the standard deviation of the adjusted prior by
a

dimpXqn log n{
řn
i“1 |pγpDi, Xiq|, which reflects the rate condition imposed in Assumption

4 (with probability approaching one). Online Appendix H presents additional simulation

evidence, showing that the performance of DR Bayes is stable for different choices of σn, as

long as the latter is not too small. We compare our method to the following two Bayesian

procedures: First, we consider prior adjusted Bayesian method (PA Bayes) proposed by

Ray and van der Vaart [2020] and implemented following τ sη in (2.8) with the same choice

of estimated σn. Second, we consider an unadjusted Bayesian method (Bayes), following

τ sη in (2.8) using Gaussian process priors. For further details on the implementation of the

Gaussian process priors we refer to Section 4.2. All Bayesian methods are implemented

based on 5, 000 posterior draws.
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Table 1: Simulation results using WGAN-generated data for specifications I (dimpXq “ 9q, II
(dimpXq “ 15q, and III (dimpXq “ 29q. Trimming is based on π̂ P rt, 1´ ts and n̄ “ the average
sample size after trimming.

Spec Methods Bias CP CIL Bias CP CIL Bias CP CIL

I t “ 0.10pn̄ “ 240q t “ 0.05pn̄ “ 364q t “ 0.01pn̄ “ 665q

Bayes -0.040 0.682 0.147 -0.010 0.845 0.148 -0.005 0.917 0.120

PA Bayes -0.002 0.982 0.274 0.037 0.940 0.260 0.051 0.875 0.310

DR Bayes -0.021 0.979 0.229 0.016 0.966 0.224 0.026 0.938 0.258

Match 0.027 0.933 0.334 0.048 0.911 0.323 0.033 0.967 0.323

Match BC 0.041 0.881 0.347 0.065 0.818 0.334 0.083 0.800 0.339

DR TMLE 0.014 0.838 0.299 0.040 0.741 0.282 0.038 0.657 0.241

DML 0.030 0.928 0.454 0.054 0.864 0.398 0.045 0.926 0.490

II t “ 0.10pn̄ “ 226q t “ 0.05pn̄ “ 345q t “ 0.01pn̄ “ 603q

Bayes -0.077 0.000 0.046 -0.078 0.000 0.032 -0.080 0.000 0.014

PA Bayes 0.007 0.966 0.282 0.035 0.930 0.269 0.032 0.883 0.290

DR Bayes -0.013 0.964 0.233 0.012 0.957 0.230 0.011 0.930 0.258

Match 0.005 0.956 0.319 0.032 0.923 0.301 0.018 0.963 0.285

Match BC 0.108 0.764 0.388 0.174 0.584 0.454 0.246 0.537 0.635

DR TMLE 0.016 0.860 0.292 0.035 0.755 0.280 0.033 0.716 0.243

DML 0.020 0.942 0.424 0.042 0.868 0.364 0.032 0.918 0.410

III t “ 0.10pn̄ “ 212q t “ 0.05pn̄ “ 321q t “ 0.01pn̄ “ 613q

Bayes -0.077 0.015 0.047 -0.079 0.000 0.030 -0.080 0.000 0.011

PA Bayes 0.005 0.962 0.296 0.029 0.934 0.277 0.035 0.890 0.290

DR Bayes -0.016 0.963 0.243 0.007 0.953 0.237 0.019 0.932 0.266

Match 0.002 0.943 0.323 0.016 0.943 0.306 0.011 0.971 0.299

Match BC -0.024 0.937 0.457 -0.014 0.920 0.470 -0.025 0.941 0.532

DR TMLE -0.003 0.780 0.295 0.008 0.742 0.292 0.029 0.670 0.239

DML -0.001 0.932 0.370 0.020 0.890 0.373 0.027 0.924 0.385

We also compare our method to frequentist estimators. Match/Match BC corresponds

to the nearest neighbor matching estimator and its bias-corrected version, which adjusts for

differences in covariate values through regression Abadie and Imbens [2011]. DR TMLE

corresponds to the doubly robust targeted maximum likelihood estimator by Benkeser

et al. [2017]. DML corresponds to the double/debiased machine learning estimator of

Chernozhukov et al. [2017], where the nuisance functions π0 and m0 are estimated using

random forest. Since the job-training data contains a sizable proportion of units with

propensity score estimates very close to 0 and 1, we follow Crump et al. [2009] and discard

observations with the estimated propensity score outside the range rt, 1 ´ ts, with the
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trimming threshold t P t0.10, 0.05, 0.01u.4

Table 1 presents the finite sample (mean) bias of the point estimator, coverage

probability (CP) and the average length (CIL) of the 95% credible/confidence interval

for the Bayesian and frequentist methods mentioned above. We use the full data twice

in computing the prior/posterior adjustments and the posteriors of the conditional mean

function. Online Appendix H reports the performance of DR Bayes using sample-split,

which has similar coverage but larger credible interval length due to the halved sample.

Concerning the Bayesian methods for estimating the ATE, Table 1 reveals that

unadjusted Bayes yields adequate coverage only in the low-dimensional case of Specification

I and with a trimming constant t “ 0.01. In all other cases, the coverage is

highly inaccurate, and the bias increases significantly as more covariates are introduced.

If the prior is corrected using the propensity score adjustment, then the results

improve significantly. Nevertheless, our DR Bayes method demonstrates two further

improvements: First, DR Bayes leads to smaller average confidence lengths in each

case while simultaneously improving the coverage probability. For trimming thresholds

t P t0.05, 0.01u, this can be attributed to a reduction in bias, while for t “ 0.10, DR Bayes

also shows improvement in the CIL, which appears to stem from more accurate uncertainty

quantification via our posterior correction. Second, when the trimming threshold is small,

i.e., t “ 0.01, propensity score estimators can be less accurate, leading to reduced coverage

probabilities of PA Bayes. Our double robust Bayesian method, on the other hand, is

still able to provide accurate coverage probabilities across all specifications considered. In

other words, DR Bayes exhibits more stable performance than PA Bayes with respect

to the trimming threshold. Take Specification I as an example: the empirical coverage

probabilities for DR Bayes are 0.979, 0.966, and 0.938 when the trimming threshold t is set

to 0.1, 0.05, and 0.01, respectively. In comparison, PA Bayes yields corresponding coverage

probabilities of 0.982, 0.940, and 0.875.5

Our DR Bayes also exhibits encouraging performances when compared to frequentist

methods. It provides a more accurate coverage than bias-corrected matching, DR TMLE

and DML. Compared with the matching estimator that exhibits a similarly good coverage

4Crump et al. [2009] suggested a simple rule of thumb with a threshold of t “ 0.10, while Athey et al.
[2021] used t “ 0.05. Applying the optimal trimming rule proposed by Crump et al. [2009] to our simulated
samples yields an average optimal trimming threshold ranging between 0.072 and 0.074 across the three
specifications.

5In additional simulations without trimming (t “ 0), we find that all double robust methods, including
DR Bayes, substantially under-cover and/or inflate the length of their confidence intervals. This is
consistent with Crump et al. [2009], who point out that propensity score estimates close to the boundaries
tend to induce substantial bias and large variances in estimating the ATE.
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performance, DR Bayes yields considerably shorter credible intervals in each specification

considered.

5.2 An Empirical Illustration

We apply the Bayesian and frequentist methods considered above to the real job-

training data. We report the estimation for the three different specification considered

in the previous subsection and consider a varying choice of the threshold constant t P

t0.10, 0.05, 0.01u.6 The results are presented in Table 2.

As a benchmark, the experimental data that uses both treated and control groups in

NSW (n “ 445) yields an ATE estimate (treated-control mean difference) equal to 0.111

with the 95% confidence interval r0.026, 0.196s. As we see from Table 2, the unadjusted

Bayesian method yields large estimates under Spec I while very small ones under Spec II

and Spec III. The adjusted Bayesian methods (PA and DR Bayes), on the other hand,

produce estimates comparable to the experimental estimate. Taking t “ 0.05 for example,

PA Bayes finds that the job training program enhanced the employment by 11.2% to 16.8%

across different specifications, and DR Bayes estimates the effect from 7.5% to 18.3%.

Consistent with our simulation results, bias-corrected matching and DR TMLE

sometimes exhibit undesirable behavior: The bias-corrected matching produce large

estimates (up to 39.2%) for Spec II and III. DR TMLE produces negative estimates for

t “ 0.10 when all other estimates are positive. In the case t “ 0.01, where the overlapping

condition is closer to violation for some units, adjusted Bayesian methods yield close-to-zero

estimates under Spec II and III, while bias-corrected matching and DML yields tends to

overestimate. The matching estimator, which performs best among frequentist methods in

our simulations, produces similar estimates as PA and DR Bayes. In terms of estimation

precision, the credible intervals based on DR Bayes are the shortest among the adjusted

Bayesian and all the frequentist methods considered over all cases except for Spec II with

t “ 0.01. The credible intervals based on unadjusted Bayes are too short under Spec II

and III to be expected to have a reasonable coverage.

6Applying the optimal trimming rule proposed by Crump et al. [2009] yields an optimal threshold of
0.064 for Spec I and II and 0.057 for Spec III.
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Table 2: Estimates of ATE for the job-training data: trimming based on π̂ P rt, 1´ ts, n̄ “ sample
size after trimming.

Spec I t “ 0.10pn̄ “ 245q t “ 0.05pn̄ “ 398q t “ 0.01pn̄ “ 740q

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL

Bayes 0.214 [0.125, 0.299] 0.174 0.214 [0.130, 0.293] 0.163 0.197 [0.141, 0.251] 0.111

PA Bayes 0.151 [0.002, 0.283] 0.282 0.168 [0.037, 0.285] 0.248 0.090 [-0.075, 0.227] 0.302

DR Bayes 0.172 [0.051, 0.289] 0.238 0.183 [0.058, 0.299] 0.241 0.119 [-0.027, 0.250] 0.277

Match 0.188 [0.022, 0.355] 0.333 0.140 [-0.029, 0.309] 0.338 0.079 [-0.111, 0.269] 0.380

Match BC 0.157 [-0.006, 0.321] 0.327 0.145 [-0.021, 0.310] 0.331 0.180 [-0.004, 0.365] 0.369

DR TMLE -0.022 [-0.173, 0.128] 0.301 0.084 [-0.067, 0.235] 0.302 0.037 [-0.202, 0.275] 0.477

DML 0.170 [0.013, 0.327] 0.314 0.126 [-0.054, 0.306] 0.360 0.338 [-0.143, 0.818] 0.962

Spec II t “ 0.10pn̄ “ 222q t “ 0.05pn̄ “ 369q t “ 0.01pn̄ “ 645q

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL

Bayes 0.010 [-0.021, 0.043] 0.065 0.027 [-0.009, 0.063] 0.072 -0.005 [-0.024, 0.013] 0.038

PA Bayes 0.049 [-0.096, 0.187] 0.284 0.112 [-0.035, 0.232] 0.267 -0.004 [-0.139, 0.111] 0.249

DR Bayes 0.040 [-0.087, 0.158] 0.245 0.078 [-0.031, 0.174] 0.204 -0.006 [-0.200, 0.151] 0.352

Match 0.158 [-0.004, 0.320] 0.324 0.134 [-0.022, 0.290] 0.313 0.065 [-0.094, 0.223] 0.317

Match BC 0.250 [0.083, 0.417] 0.334 0.392 [0.194, 0.590] 0.396 0.352 [0.146, 0.558] 0.412

DR TMLE 0.029 [-0.111, 0.169] 0.280 0.130 [-0.050, 0.310] 0.360 0.107 [-0.106, 0.320] 0.426

DML 0.138 [-0.044, 0.321] 0.365 0.117 [-0.050, 0.284] 0.334 0.319 [-0.080, 0.718] 0.799

Spec III t “ 0.10pn̄ “ 234q t “ 0.05pn̄ “ 390q t “ 0.01pn̄ “ 712q

ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL

Bayes 0.006 [-0.019, 0.031] 0.051 0.025 [ -0.019, 0.067] 0.086 -0.001 [-0.009, 0.006] 0.015

PA Bayes 0.096 [-0.058, 0.230] 0.288 0.117 [-0.034, 0.247] 0.281 -0.020 [-0.254, 0.122] 0.345

DR Bayes 0.068 [-0.050, 0.167] 0.218 0.075 [-0.040, 0.178] 0.219 -0.010 [-0.149, 0.099] 0.248

Match 0.192 [0.026, 0.358] 0.332 0.156 [-0.012, 0.325] 0.337 0.006 [-0.181, 0.192] 0.373

Match BC 0.173 [-0.005, 0.350] 0.355 0.280 [0.109, 0.451] 0.342 0.335 [0.114, 0.555] 0.441

DR TMLE -0.038 [-0.217, 0.140] 0.358 0.232 [0.025, 0.438] 0.413 -0.054 [-0.236, 0.128] 0.364

DML 0.155 [-0.028, 0.338] 0.366 0.176 [-0.046, 0.398] 0.444 0.144 [-0.052, 0.339] 0.391

6 Extensions

This section extends the binary variable Y to encompass general cases, including

continuous, counting, and multinomial outcomes. First, we examine the class of single-

parameter exponential families, where the conditional density function is solely determined

by the nonparmatric conditional mean function. This covers continuous outcomes and

counting variables. Second, we consider the “vector” case of exponential families for

multinomial outcomes. For both classes, we derive the novel correction to the Bayesian
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procedure and delegate more technical discussions to the online Appendices D and F.

Additionally, we outline extensions to other causal parameters of interest.

6.1 A Single-parameter Exponential Family

In this part, we assume that the distribution of Yi conditional on Di and Xi belongs to the

“single-parameter” exponential family, where the unknown parameter is the nonparametric

conditional mean function mpd, xq “ ErYi|Di “ d,Xi “ xs. The conditional density

function is given by

fY |D,Xpy;mpd, xqq “ cpyq exp rqpmpd, xqqay ´ Apmpd, xqqs , (6.1)

where Apmq “ log
ş

cpyq exp rqpmqys dy, and the function qp¨q links the mean to the “natural

parameter” of the exponential family. We also restrict the sufficient statistic to be linear

in y.

The family (6.1) not only encompasses the Bernoulli distribution, as considered in the

previous sections, but also allows for counting and continuous outcomes. For instance, when

a “ 1, the Poisson distribution corresponds to the choices cpyq “ 1{py!q, qpmq “ logm, and

Apmq “ m, while the exponential distribution is represented by cpyq “ 1, qpmq “ ´1{m,

and Apmq “ logm. Furthermore, the normal distribution with VarpY |D,Xq “ σ2 for some

σ ą 0, is captured by cpyq “ expp´y2{p2σ2qq{
?

2πσ2, qpmq “ m{σ, Apmq “ m2{p2σ2q, and

a “ 1{σ. We emphasize that model (6.1) does not impose functional form assumptions on

the conditional mean function m. The joint density of pYi, Di, Xiq can be written as

pπ,m,f py, d, xq “ πpxqdp1´ πpxqq1´dcpyq exp rqpmpd, xqqay ´ Apmpd, xqqs fpxq. (6.2)

We consider the same reparametrization of pπ,m, fq as in (2.2) except that now the second

component of η uses the general link function q satisfying ηm “ qpmq. We now state the

least favorable direction for the exponential family case, which serves as motivation for the

prior adjustment.

Lemma 6.1. For the joint distribution (6.2) and the submodel t ÞÑ ηt defined by the path

mtpd, xq “ q´1pηm ` tmqpd, xq with pπt, ftq as defined in (3.2), the least favorable direction

for estimating the ATE parameter in (2.3) is:

ξηpd, xq “

ˆ

0,
1

a
γηpd, xq,mηp1, xq ´mηp0, xq ´ τη

˙

, (6.3)
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where the Riesz representer γη is given in (2.5).

For the outcome family with a “ 1, which includes Bernoulli, Poisson and exponential

distributions, the least favorable direction for ATE estimation coincides with the one

as given in Lemma 3.1. To implement the double robust Bayesian procedure for

general outcomes, one can still follow the algorithm described in Section 2.2, with

the logistic function Ψ in (2.6) replaced by the inverse link function q´1. For the

normal (homoscedastic) outcome where prior adjustment in (2.6) becomes λpγpd, xq{a,

the hyperparameter a can be determined together with other parameters of the Gaussian

process by optimizing the marginal likelihood as in Ray and Szabó [2019]. In Proposition

F.1, in the online supplementary appendix, we provide primitive conditions for the BvM

Theorem to hold under double robust smoothness conditions.

6.2 Multinomial Outcomes

We now assume that the dependent variable Yi takes values in a finite set, specifically Yi P

t0, 1, . . . , Ju. The ATE can then be written as τη “
řJ
j“0 j Eη rmη,jp1, Xq ´mη,jp0, Xqs,

where the choice probabilities are given by mη,jpd, xq “ Ψj pη
m1 , ¨ ¨ ¨ , ηmJ q with the

multinomial logit specification:

Ψ0 pη
m1 , ¨ ¨ ¨ , ηmJ q “

1

1`
řJ
l“1 exppηmlq

and Ψj pη
m1 , ¨ ¨ ¨ , ηmJ q “

exppηmjq

1`
řJ
l“1 exppηmlq

,

for j “ 1, . . . , J. The multinomial logit specification implies mη,0pd, xq “ 1´
řJ
j“1mη,jpd, xq.

We now provide the least favorable direction for multinomial outcomes in the presence of

multinomial outcomes and discuss its consequences for prior adjustment below.

Lemma 6.2. Consider the submodel t ÞÑ ηt defined by the path mt,jpd, xq “ Ψpηmj `

tmjqpd, xq, 1 ď j ď J , with pπt, ftq as defined in (3.2). Under Assumption 1, the least

favorable direction for estimating the ATE parameter is:

ξηpd, xq “ p0, γηpd, xq, 2γηpd, xq, . . . , Jγηpd, xq,mηp1, xq ´mηp0, xq ´ τηq ,

where the Riesz representer γη is given in (2.5).

We emphasize that the least favorable direction calculation is not a trivial extension of

Hahn [1998] or Ray and van der Vaart [2020]. This is because there are J nonparametric

components involved in the conditional probability function of the multinomial outcomes
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given covariates, and we need to consider the perturbation of those J components together.

Nonetheless, we show that the efficient influence function is of the same generic form as

derived in Hahn [1998]. In the proof of 6.2, we compute the derivative of the parameter

mapping along the path considered herein. We derive inner products involving the least

favorable direction for each nonparametric component consisting of the conditional choice

probabilities. The extension to the multinomial case had not been considered in the

literature to our knowledge, and it offers a result of independent interest.

Lemma 6.2 motivates the following modification of our double robust Bayesian estimator

based on the propensity score-dependent prior on mη,j for 1 ď j ď J :

mη,jpd, xq “ Ψj pη
m1 , ¨ ¨ ¨ , ηmJ q and ηmjpd, xq “ Wmjpd, xq ` λ jpγpd, xq,

where Wmjpd, ¨q is a continuous stochastic process independent λ „ Np0, σ2
nq for σn ą 0.

We may then follow the implementation as described in Section 2.2 using mηpd, xq “
řJ
j“0 j mη,jpd, xq.

6.3 Other Causal Parameters

We now extend our procedure to general linear functionals of the conditional mean function.

We do so only for binary outcomes, as the modification to other types of outcomes follows

as above. Recall that the observable data consists of i.i.d. observations of Z “ pY,D,XJqJ.

The causal parameter of interest is τ0 “ E0rψpZ,m0qs, where the function ψ is linear with

respect to the conditional mean function m0. We introduce the Riesz representor γ0pd, xq

satisfying E0rψpZ,mqs “ E0rγ0pD,XqmpD,Xqs. Let pm and pγ be pilot estimators for the

conditional mean and Riesz representor, respectively, computed over an external sample.

Our double robust Bayesian procedure can be extended by considering the corrected

posterior distribution for τη as follows: τ̌ sη “
řn
i“1M

s
niψpZi,m

s
ηq´n

´1
řn
i“1 τ rm

s
η´ pmspZiq,

s “ 1, . . . , B, where here τ rmspzq :“ ψpz,mq ` pγpd, xqpy´mpd, xqq. The derivations of the

least favorable directions in the following two examples are provided in online Appendix E.

Example 6.1 (Average Policy Effects). The policy effect from changing the distribution

of X is τPη “
ş

mηpxqdpG1pxq ´ G0pxqq, where the known distribution functions G1 and

G0 have their supports contained in the support of the marginal covariate distribution Fη.

Following the general setup, ψpz,mηq “ ψpmηq :“
ş

mηpxqdpG1pxq ´G0pxqq with its Riesz

representor γPη pxq “ pg1pxq ´ g0pxqq{fηpxq, where g1 and g0 stand for the density function

of G1 and G0, respectively.
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Example 6.2 (Average Derivative). For a continuous scalar (treatment) variable D, the

average derivative is given by τADη “ Eη rBdmηpD,Xqs, where Bdm denotes the partial

derivatives of m with respect to the continuous treatment D. Thus, we have ψpZ,mηq “

BdmηpD,Xq with its Riesz representor given by γADη pD,Xq “ BdπηpD,Xq{πηpD,Xq, where

here πη denotes the conditional density function of D given X.

A Proofs of Main Results

In the Appendix, C ą 0 denotes a generic constant, whose value might change line by line.

We introduce additional subscripts when there are multiple constant terms in the same

display. For two sequences an, bn, we write an À bn, if an ď Cbn. In the following, we

denote the log-likelihood based on Zpnq “ pZiq
n
i“1 as

`npηq “
n
ÿ

i“1

log pηpZiq “ `πnpη
π
q ` `mn pη

m
q ` `fnpη

f
q,

where each term is the logarithm of the factors involving only π or m or f . Recall the

definition of the measurable sets Hm
n of functions ηm such that Πpηm P Hm

n | Z
pnqq ÑP0 1.

We introduce the conditional prior Πnp¨q :“ Πp¨ X Hm
n q{ΠpHm

n q. The following posterior

Laplace transform of
?
npτη ´ pτ ´ b0,ηq given by

Inptq “ EΠn
”

et
?
npτη´pτ´b0,ηq | Zpnq

ı

, @t P R (A.1)

plays a crucial role in establishing the BvM theorem [Castillo, 2012, Castillo and Rousseau,

2015, Ray and van der Vaart, 2020]. To abuse the notation slightly, we define a

perturbation of η “ pηπ, ηmq along the least favorable direction, restricted to the

components corresponding to π and m:

ηtpηq :“

ˆ

ηπ, ηm ´
t
?
n
ξm0

˙

. (A.2)

We explicitly write the perturbation of ηm by ηmt :“ ηtpη
mq “ ηm ´ tξm0 {

?
n. Recall that

ξm0 coincides with the Riesz representer γ0 by Lemma 3.1.

Proof of Theorem 3.1. Since the estimated least favorable direction pγ is based on

observations that are independent of Zpnq, we may apply Lemma 2 of Ray and van der

Vaart [2020]. It suffices to handle the ordinary posterior distribution with pγ set equal to a

deterministic function γn. By Lemma 1 of Castillo and Rousseau [2015], it is sufficient to
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show that the Laplace transform Inptq given in (A.1) satisfies

Inptq ÑP0 exp
`

t2v0{2
˘

, (A.3)

for every t in a neighborhood of 0, where the limit at the right hand side of (A.3) is

the Laplace transform of a Np0,v0q distribution. Note that we can write τη “
ş

m̄ηdFη.

Further, let pτ “
ş

m̄0dF0 ` Pnrrτ0s, which satisfies (3.1).

The Laplace transform Inptq can thus be written as

ż ż

Hm
n

exp
`

t
?
np
ş

m̄ηdFη ´ m̄0dF0 ´ b0,ηq ´ tGnrrτ0s ` `
m
n pη

mq ´ `mn pη
m
t q

˘

exp
`

`mn pη
m
t q

˘

ş

Hm
n

exp
`

`mn pη
m1q

˘

dΠpηm1q
dΠpηmqdΠpFη|Z

pnqq.

The expansion in Lemma B.1 gives the following identity for all t in a sufficiently small

neighborhood around zero and uniformly for ηm P Hm
n :

`mn pη
m
q´`mn pη

m
t q “ tGnrγ0ρ

m0s`tGnrγ0pm0´mηqs`t
?
n

ż

pm̄0´m̄ηqdF0`
t2

2
P0pB

m
0 ξ

m
0 q

2
`oP0p1q,

where we make use of the notation ρmpy, d, xq “ y ´mpd, xq and the score operator Bm
0 “

Bm
η0

defined through (3.3).
Next, we plug this into the exponential part in the definition of Inptq, which then gives

ż ż

Hm
n

exp
`

t
?
n
`ş

pm̄ηdFη ´ m̄0dF0q `
ş

pm̄0 ´ m̄ηqdF0 ´ b0,η
˘

` tGnrγ0pm0 ´mηqs ` `
m
n pη

m
t q

˘

ş

Hn
exp p`mn pη

m1qq dΠpηm1q
dΠpηmqdΠpFη|Z

pnqq

ˆ exp

ˆ

´tGnrrτ0s ` tGnrγ0ρm0s `
t2

2
P0pB

m
0 ξ

m
0 q

2 ` oP0p1q

˙

“

ż ż

Hm
n

exp
`

t
?
n
`ş

m̄ηdpFη ´ F0q ´ b0,η
˘

` tGnrγ0pm0 ´mηqs
˘

exp p`mn pη
m
t qq

ş

Hn
exp p`mn pη

m1qq dΠpηm1q
dΠpηmqdΠpFη|Z

pnqq

ˆ exp

ˆ

´tGnrrτ0s ` tGnrγ0ρm0s `
t2

2
P0pB

m
0 ξ

m
0 q

2 ` oP0p1q

˙

.

Because all variables have been integrated out in the integral in the denominator, it is

a constant relative to either mη or Fη. By Fubini’s Theorem, the double integral without

this normalizing constant is

ż

Hm
n

exp
´

tGnrγ0pm0´mηqs´t
?
nb0,η``

m
n pη

m
t q

¯

ż

exp

ˆ

t
?
n

ż

m̄ηdpFη ´ F0q

˙

dΠpFη|Z
pnq
qdΠpηmq.

By the assumed P0-Glivenko-Cantelli property for Gn “ tm̄η : η P Hnu in Assumption 3,
i.e., supm̄ηPGn |pPn ´ P0qm̄η| “ oP0p1q, and the boundedness of m̄η, we apply Lemma C.4.
Further, we may apply the convergence of mη imposed in Assumption 2, so that the above
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display becomes

eoP0p1q

ż

Hm
n

exp
´

tGnrγ0pm0 ´mηqs ´ t
?
nb0,η ` `

m
n pη

m
t q

¯

exp

ˆ

t
?
n

ż

m̄ηdpFn ´ F0q `
t2

2
}m̄0 ´ F0m̄0}

2
2,F0

˙

dΠpηmq

“ eoP0p1q exp

ˆ

t
?
n

ż

m̄0dpFn ´ F0q `
t2

2
}m̄0 ´ F0m̄0}

2
2,F0

˙

ˆ

ż

Hm
n

exp
´

tGnrγ0pm0 ´mηq ´ pm̄0 ´ m̄ηqs ´ t
?
nb0,η

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“0

``mn pη
m
t q

¯

dΠpηmq,

where F0m̄0 ”
ş

m̄0pxqdF0pxq and Fnm̄0 ” 1{n
řn
i“1 m̄0pXiq. We take a closer examination

about the empirical process term in the integral. Note that dmpd, xq “ dmp1, xq and

p1´ dqmpd, xq “ p1´ dqmp0, xq for any mp¨, ¨q and x. Thus, we get

Gnrγ0pm0 ´mηq ´ pm̄0 ´ m̄ηqs “ Gn

„ˆ

dpm0p1, xq ´mηp1, xqq

π0pxq
´
p1´ dqpm0p0, xq ´mηp0, xqq

1´ π0pxq

˙

´Gn rpm0p1, xq ´m0p0, xqq ´ pmηp1, xq ´mηp0, xqqs

“ Gn

„ˆ

pd´ π0pxqqpm0p1, xq ´mηp1, xqq

π0pxq
´
pπ0pxq ´ dqpm0p0, xq ´mηp0, xqq

1´ π0pxq

˙

. (A.4)

Note that both term are centered, so that one can replace the operator Gn with
?
nPn

therein. Therefore, it cancels this bias term b0,η exactly.

Further, observe that Gnrγ0ρ
m0s´Gnrτ̃0s “ ´Gnrm̄0s and Gnrm̄0s “

?
n
ş

m̄0dpFn´F0q

by the definition of the efficient influence function given in (2.4). As we insert these in the

previous expression for Inptq, we obtain for all t in a sufficiently small neighborhood around

zero and uniformly for η P Hn:

Inptq “ exp

˜

´tGnrm̄0s ` t
?
n

ż

m̄0dpFn ´ F0q
looooooooooooooooooooomooooooooooooooooooooon

“0

`
t2

2

´

P0pB
m
0 ξ

m
0 q

2 `

“P0pB
f
0 ξ
f
0 q

2

hkkkkkkkkkikkkkkkkkkj

}m̄0 ´ F0m̄0}
2
2,F0

loooooooooooooooooooomoooooooooooooooooooon

“P0pB0ξ0q2

¯

` oP0p1q

¸

ˆ

ş

Hm
n

exp
`

`mn pη
m
t q

˘

dΠpηmq
ş

Hm
n

exp
`

`mn pη
m1q

˘

dΠpηm1q

“ exp

ˆ

t2

2
P0pB0ξ0q

2

˙

` oP0p1q,

where the last line follows from the prior invariance condition established in Lemma B.2.

This implies (A.3) using that P0pB0ξ0q
2 “ P0rτ

2
0 “ v0 by the Lemma 3.1.

Proof of Theorem 3.2. It is sufficient to show that supηPHn

ˇ

ˇ

ˇ
b0,η ´

pbη

ˇ

ˇ

ˇ
“ oP0pn

´1{2q, where

b0,η “ Pnrγ0pm0´mηq ` m̄η ´ m̄0s and pbη “ Pnrpγppm´mηq ` m̄η ´ pm̄s. We make use of the
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decomposition

b0,η ´
pbη “ Pnrγ0pm0 ´mηq ´ pγρmη s ´ Pnrm̄0 ´ pm̄´ pγρ pm

s. (A.5)

Consider the first summand on the right hand side of the previous equation. We have

uniformly for η P Hn:

Pnrγ0pm0 ´mηq ´ pγρmη s “ ´ Pnrpγρm0s ` Pnrpγ0 ´ pγqpm0 ´mηqs

“ ´ Pnrpγρm0s ` oP0pn
´1{2

q,

where the last equation follows from the following derivation:

?
n sup
ηPHn

|Pnrpγ0 ´ pγqpm0 ´mηqs| ď sup
ηPHn

|Gnrpγ0 ´ pγqpm0 ´mηqs|

`
?
n sup
ηPHn

|P0rpγ0 ´ pγqpm0 ´mηqs|

ď oP0p1q `OP0p1q ˆ
?
n}π0 ´ pπ}2,F0 sup

ηPHn

}mη ´m0}2,F0 “ oP0p1q,

using the Cauchy-Schwarz inequality, Assumption 2, and Assumption 3. Consider the

second summand on the right hand side of (A.5). From Lemma C.8 we infer

Pnrpm̄` pγρ pm
´ m̄0s “ Pnrγ0ρ

m0s ` oP0pn
´1{2

q.

Consequently, decomposition (A.5) together with the asymptotic expansion of each

summand yields

sup
ηPHn

ˇ

ˇ

ˇ
b0,η ´

pbη

ˇ

ˇ

ˇ
ď |Pnrpγ0 ´ pγqρm0s| ` oP0pn

´1{2
q “ oP0pn

´1{2
q,

where the last equation is due to the equation C.7.

Proof of Corollary 3.1. The weak convergence of the Bayesian point estimator directly

follows from our asymptotic characterization of the posterior and the argmax theorem;

see the proof of Theorem 10.8 in van der Vaart [1998]. The corrected Bayesian credible set

Cnpαq satisfies Πpτ̌η P Cnpαq | Zpnqq “ 1´ α for any α P p0, 1q. In particular, we have

Π
´

a

n{v0pτη ´ pτ ´pbηq P
a

n{v0pCnpαq ´ pτq | Zpnq
¯

“ 1´ α.

Now the definition of the estimator pτ given in (3.1) yields
?
npτ “

?
n
`

τ0 ` Pnrτ0

˘

` oP0p1q.
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For any set A, we write NpAq :“
ş

A
e´u

2{2{
?

2πdu. Theorem 3.1 implies

N
´

a

n{v0pCnpαq ´ τ0 ´ Pnrτ0q

¯

ÑP0 1´ α.

We may thus write Cnpαq “
a

v0{nBnpαq` τ0`Pnrτ0`oP0p1q for some set Bnpαq satisfying

NpBnpαqq ÑP0 1´ α. Therefore, the frequentist coverage of the Bayesian credible set is

P0 pτ0 P Cnpαqq “ P0

´

τ0 P
a

v0{nBnpαq ` τ0 ` Pnrτ0

¯

“ P0

ˆ

´
Gnrτ0
?
v0

P Bnpαq
˙

Ñ 1´ α,

noting that Gnrτ0 is asymptotically normal with mean zero and variance v0 under P0.

Proof of Proposition 4.1. With slight abuse of notation, we stick to Hm
n for the set that

receives the posterior mass going to 1 and ηmpd, ¨q P Hm
n for d P t0, 1u.7 Note that pγ

is based on an auxiliary sample and hence we can treat pγ below as a deterministic of

functions denoted by γn satisfying the rate restrictions }γn}8 “ Op1q and }γn ´ γ0}8 “

O
`

pn{ log nq´sπ{p2sπ`pq
˘

. We first verify Assumption 2 with εn “ pn{ log nq´sm{p2sm`pq. Let

Hm
n :“ twd ` λγn : pwd, λq PWnu, where

Wn :“
 

pwd, λq : wd P Bmn , |λ| ďMσn
?
nεn

(

X tpwd, λq : }Ψpwdp¨q ` λγnq ´m0pd, ¨q}2,F0 ď εnu ,

where the sieve space Bmn in the first restriction for the Gaussian process Wd is defined in

the equation (C.8) with d P t0, 1u. Intuitively speaking, the bulk of the Gaussian process

is contained in an εn-shell of a big multiple of the unit ball of the RKHS8. The second

restriction concerns the posterior contraction rate and it is shown in our Lemma C.3.

Referring to the condition }pγ}8 “ OP0p1q and }pγ ´ γ0}8 “ OP0

`

pn{ log nq´sπ{p2sπ`pq
˘

, we

write rn :“ Crpn{ log nq´sπ{p2sπ`pq. Then
?
nεnrn “ op1q holds, if 2sm{p2sm`pq`2sπ{p2sπ`

pq ą 1, which can rewritten as
?
sπ sm ą p{2.

We now verify Assumption 3. It is sufficient to deal with the resulting empirical process

Gn. Note that the Cauchy-Schwartz inequality implies

|P0pmη ´m0q| “ |E0rDpmηp1, Xq ´m0p1, Xqqs ` E0rp1´Dqpmηp0, Xq ´m0p0, Xqqs|

ď

b

E0rpmηp1, Xq ´m0p1, Xqq2s `
b

E0rpmηp0, Xq ´m0p0, Xqq2s

“ }mηp1, ¨q ´m0p1, ¨q}2,F0 ` }mηp0, ¨q ´m0p0, ¨q}2,F0 .

7When we write ηm P Hmn , it means pηmp1, ¨q, ηmp0, ¨qq P Hmn ˆHmn .
8We refer readers to the discussion leading to Lemma C.7 on the Reproducing Kernel Hilbert Space

(RKHS) and related norms.
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Consequently, from Lemma C.5 we infer

E0 sup
ηPHm

n

|Gnrpγn ´ γ0qpmη ´m0qs| ď 4}γn ´ γ0}8E0 sup
ηPHm

n

|Gnrmη ´m0s|

` }γn ´ γ0}2,F0 sup
ηPHn

´

}mηp1, ¨q ´m0p1, ¨q}2,F0 ` }mηp0, ¨q ´m0p0, ¨q}2,F0

¯

À pn{ log nq´sπ{p2sπ`pqE0 sup
ηPHm

n

|Gnrmη ´m0s| ` pn{ log nq´sπ{p2sπ`pqpn{ log nq´sm{p2sm`pq

“ pn{ log nq´sπ{p2sπ`pqE0 sup
ηPHm

n

|Gnrmη ´m0s| ` op1q.

Note that if sm ą p{2, from Lemma C.9 we infer E0 supηPHm
n
Gn rmη ´m0s “ op1q. Thus

it remains to consider the case sm ď p{2. By the entropy bound presented in the proof of

Lemma C.3, we have logNpεn,Hm
n , L

2pF0qq À ε´2υ
n , with υ “ p{p2smq modulo some log n

term on the right hand of the bound. Because Ψp¨q is monotone and Lipschitz, a set of

ε-covers in L2pF0q for ηm P Hm
n translates into a set of ε-covers for mη. In this case, the

empirical process bound of [Han, 2021, p.2644] yields

E0 sup
ηPHm

n

|Gnrmη ´m0s| À Lnn
pυ´1q{p2υq

“ OpLnn
1{2´sm{pq,

where Ln represents a term that diverges at certain polynomial order of log n. Consequently,

we obtain

pn{ log nq´sπ{p2sπ`pqE0 sup
ηPHm

n

|Gnrmη ´m0s| “ op1q,

which is satisfied under the smoothness restriction ´sπ{p2sπ ` pq ` 1{2 ´ sm{p ă 0 or

equivalently 4sπsm ` 2psm ą p2. This condition automatically holds given
?
sπ sm ą p{2.

Finally, it remains to verify Assumption 4. By the univariate Gaussian tail bound, the

prior mass of the set Λn :“ tλ : |λ| ą unσ
2
n

?
nu is bounded above by e´u

2
nσ

2
nn{2. Also, the

Kullback-Leibler neighborhood around ηm0 has prior probability at least e´nε
2
n ; see Lemma

4 in Ray and van der Vaart [2020]. By the assumption σn " εn as imposed in the rate

restriction (4.2), we have ε2
n À u2

nσ
2
n, which means

Πpλ P Λnq

Π
` 

pw, λq : K _ V ppηm0 , pw`λγq ď ε2
n

(˘ “ ope´nε
2
nq.

The stated contraction Πpλ P Λn | Z
pnqq ÑP0 0 in Assumption 4(i) follows from Lemma 4

of Ray and van der Vaart [2020]. Regarding Assumption 4(ii), this set hardly differs from
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the set Hm
n because

?
nεn Ñ 0 and }γn}8 “ Op1q. Its posterior probability is seen to tend

to 1 in probability by the same arguments as for Hm
n , possibly after replacing εn with a

multiple of itself.

B Key Lemmas

We now present key lemmas used in the derivation of our BvM Theorem. We introduce

ηu :“ pηπ, ηmu q where

ηmu “ ηm ´ tuξm0 {
?
n, for u P r0, 1s. (B.1)

This defines a path from ηu“0 “ pη
π, ηmq to ηu“1 “ pη

π, ηmt q. We also write gpuq :“ log pηmu ,

for u P r0, 1s, so that log pηm ´ log pηmt “ gp0q ´ gp1q, cf. the proof of Theorem 1 in Ray

and van der Vaart [2020].

Lemma B.1. Let Assumptions 1 and 2 hold. Then, we have uniformly for η P Hn:

`mn pη
m
q´`mn pη

m
t q “ tGnrγ0ρ

m0s`tGnrγ0pm0´mηqs`t
?
n

ż

pm̄0´m̄ηqdF0`
t2

2
P0pB

m
0 ξ

m
0 q

2
`oP0p1q.

Proof. We start with the following decomposition:

`mn pη
m
q ´ `mn pη

m
t q “ tGnrγ0ρ

m0s `
?
nGnrlog pηm ´ log pηmt ´

t
?
n
γ0ρ

m0s

looooooooooooooooooooooomooooooooooooooooooooooon

Stochastic Equicontinuity

`nP0rlog pηm ´ log pηmt s
looooooooooooomooooooooooooon

Taylor Expansion

.

From the calculation in Lemma C.1, we have g1p0q “ ´ t?
n
γ0ρ

m0 ` t?
n
γ0pmη ´m0q. Then,

we infer for the stochastic equicontinuity term that

?
nGnrlog pηm ´ log pηmt ´

t
?
n
γ0ρ

m0s ` tGnrγ0pmη ´m0qs “ oP0p1q,

uniformly in ηm P Hm
n . We can thus write uniformly in ηm P Hm

n :

`mn pη
m
q ´ `mn pη

m
t q “ tGnrγ0ρ

m0s ` tGnrγ0pm0 ´mηqs ` nP0rlog pηm ´ log pηmt s ` oP0p1q.

The rest of the proof involves a standard Taylor expansion for the third term on the right

hand side of the above equation. By the equation (C.5) in our Lemma C.1, we get

´nP0g
1
p0q “ t

?
nP0rγ0ρ

m0s ` t
?
nP0rγ0pm0 ´mηqs “ t

?
n

ż

pm̄0 ´ m̄ηqdF0,
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by the fact that P0rγ0ρ
m0s “ 0 and the definition of the Riesz representor γ0 in (2.5).

Regarding the second-order term in the Taylor expansion in the equation (C.6) of Lemma

C.1, we get

gp2qp0q “ ´
t2

n
γ2

0m0p1´m0q ´
t2

n
γ2

0pmηp1´mηq ´m0p1´m0qq.

Considering the score operator Bm
0 “ Bm

η0
defined in (3.3), we have

P0pB
m
0 ξ

m
0 q

2
“ E0

“

γ2
0pD,XqpY ´m0pD,Xqq

2
‰

“ E0

„

D

π2
0pXq

pY p1q ´m0p1, Xqq
2



` E0

„

1´D

p1´ π0pXqq2
pY p0q ´m0p0, Xqq

2



.

Consequently, by the unconfoundedness imposed in Assumption 1(i) and the binary nature

of Y , we have E0rY pdq
2|D “ d,X “ xs “ E0rY pdq|D “ d,X “ xs “ m0pd, xq. We thus

obtain

P0pB
m
0 ξ

m
0 q

2
“ E0

„

D

π2
0pXq

m0p1, Xqp1´m0p1, Xqq



` E0

„

1´D

p1´ π0pXqq2
m0p0, Xqp1´m0p0, Xqq



“ P0rγ
2
0m0p1´m0qs.

Then, by employing Assumption 1(ii), i.e., π̄ ă π0pxq ă 1´ π̄ for all x, it yields uniformly

for η P Hn:

´nP0g
p2q
p0q ´ t2P0pB

m
0 ξ

m
0 q

2
“ t2P0rγ

2
0pmηp1´mηq ´m0p1´m0qqs

“ t2P0rγ
2
0pmη ´m0qp1´m0qs ` t

2P0rγ
2
0mηpm0 ´mηqs

ď 2t2 E0

„

D

π2
0pXq

ˇ

ˇmηp1, Xq ´m0p1, Xq
ˇ

ˇ



` 2t2 E0

„

1´D

p1´ π0pXqq2
ˇ

ˇmηp0, Xq ´m0p0, Xq
ˇ

ˇ



ď
2t2

π̄2

´

}mηp1, ¨q ´m0p1, ¨q}2,F0 ` }mηp0, ¨q ´m0p0, ¨q}2,F0

¯

“ oP0p1q,

where the last equation is due to the posterior contraction rate of the conditional mean

function mpd, ¨q imposed in Assumption 2. Consequently, we obtain, uniformly for η P Hn,

nP0rlog pηm ´ log pηmt s “ ´npP0g
1
p0q ` P0g

p2q
p0qq ` oP0p1q

“ t2P0pB
m
0 ξ

m
0 q

2
` t
?
n

ż

pm̄0 ´ m̄ηqdF0 ` oP0p1q,

which leads to the desired result.
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The next lemma verifies the prior stability condition under our double robust

smoothness conditions.

Lemma B.2. Let Assumptions 1–4 hold. Then we have

ş

Hm
n

exp
`

`mn pη
m
t q

˘

dΠpηmq
ş

Hm
n

exp
`

`mn pη
m1q

˘

dΠpηm1q
ÑP0 1, (B.2)

for a sequence of measurable sets Hm
n such that Πpηm P Hm

n |Z
pnqq ÑP0 1.

Proof. Since pγ is based on an auxiliary sample, it is sufficient to consider deterministic

functions γn with the same rates of convergence as pγ. Denote the corresponding propensity

score by πn. By Assumption 4, we have λ „ Np0, σ2
nq and

ş

Hm
n

exp
`

`mn pη
m
t q

˘

dΠpηmq
ş

Hm
n

exp
`

`mn pη
m1q

˘

dΠpηm1q
“

ş

Bn
e`
m
n pw`λγn´tγ0{

?
nqφσnpλqdλdΠpwq

ş

Bn
e`mn pw`λγnqφσnpλqdλdΠpwq

` oP0p1q, (B.3)

where φσn denotes the probability density function of a Np0, σ2
nq random variable and the

set Bn is defined by Bn “ tpw, λq : w ` λγn P Hm
n , |λ| ď 2unσ

2
n

?
nu where un Ñ 0 and

unnσ
2
n Ñ 8. Considering the log likelihood ratio of two normal densities together with the

constraint |λ| ď 2unσ
2
n

?
n, it is shown on page 3015 of Ray and van der Vaart [2020] that

ˇ

ˇ

ˇ

ˇ

log
φσnpλq

φσnpλ´ t{
?
nq

ˇ

ˇ

ˇ

ˇ

ď
|tλ|
?
nσ2

n

`
t2

2nσ2
n

Ñ 0.

We show at the end of the proof that |`mn pw ` λγn ´ tγ0{
?
nq ´ `mn pw ` λγn ´ tγn{

?
nq| “

oP0p1q, uniformly for pw, λq P Bn. Consequently, the numerator of this leading term in

(B.3) becomes

ż

Bn

e`
m
n pw`λγn´tγ0{

?
nqφσnpλqdλdΠpwq “ eoP0 p1q

ż

Bn

e`
m
n pw`γnpλ´t{

?
nqqφσnpλ´ t{

?
nqdλdΠpwq.

By the change of variables λ ´ t{
?
n ÞÑ λ1 on the numerator and using the notation

Bn,t “ tpw, λq : pw, λ` t{
?
nq P Bnu, the prior invariance property becomes

eoP0 p1q

ş

Bn,t
e`
m
n pw`λ

1γnqφσnpλ
1qdλ1dΠpwq

ş

Bn
e`mn pw`λγnqφσnpλqdλdΠpwq

“ eoP0 p1q
ΠpBn,t|X

pnqq

ΠpBn|Xpnqq
.

The desired result would follow from ΠpBn|X
pnqq “ 1 ´ oP0p1q and ΠpBn,t|X

pnqq “ 1 ´

oP0p1q. The first convergence directly follows from Assumption 4. The set Bn,t is the
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intersection of these two conditions in Assumption 4, except that the restriction on λ

in Bn,t is |λ` t{
?
n| ď 2un

?
nσ2

n instead of |λ| ď un
?
nσ2

n. By construction, we have

t{
?
n “ opun

?
nσ2

nq, so that ΠpBn,t|X
pnqq “ 1´ oP0p1q.

We finish the proof by establishing the following result:

sup
ηmPHm

n

ˇ

ˇ`mn pη
m
´ tγn{

?
nq ´ `mn pη

m
´ tγ0{

?
nq
ˇ

ˇ “ oP0p1q. (B.4)

We denote ηmn,t “ ηm´tγn{
?
n and ηmt “ ηm´tγ0{

?
n. Consider the following decomposition

of the log-likelihood:

`mn pη
m
n,tq ´ `

m
n pη

m
t q “ `mn pη

m
n,tq ´ `

m
n pη

m
q ` `mn pη

m
q ´ `mn pη

m
t q

“ nPnrlog pηmn,t ´ log pηms ` nPnrlog pηm ´ log pηmt s.

Next, we apply third-order Taylor expansions in Lemma C.1 separately to the two terms

in the brackets of the above display:

nPnrlog pηmn,t ´ log pηms “ ´t
?
nPn rγnpy ´mηqs ´

t2

2
Pn

“

γ2
nmη p1´mηq

‰

´
t3
?
n
Pn

“

γ3
nΨp2q

pηmu˚q
‰

,

nPnrlog pηm ´ log pηmt s “ t
?
nPn rγ0py ´mηqs `

t2

2
Pn

“

γ2
0mη p1´mηq

‰

`
t3
?
n
Pn

“

γ3
0Ψp2q

pηmu˚˚q
‰

,

for some intermediate points u˚, u˚˚ P p0, 1q, cf. the equation (B.1). Combining the previous

calculation yields

`mn pηn,tq ´ `
m
n pηtq “ t

?
nPnrpy ´mηqpγ0 ´ γnqs ´

t2

2
Pnrdmηp1´mηqpγ

2
n ´ γ

2
0qs

`
t3
?
n
Pn

“

pγ3
0 ´ γ

3
nq
`

Ψp2q
pηmu˚˚q ´Ψp2q

pηmu˚q
˘‰

“: T1 ` T2 ` T3.

In order to control T1, we evaluate

T1 “ tGnrpy ´m0qpγ0 ´ γnqs ` tGnrpm0 ´mηqpγ0 ´ γnqs ` t
?
nP0rpy ´mηqpγ0 ´ γnqs.

Note that the first term is centered, so it becomes t
?
nPnrpy ´ m0qpγ0 ´ γnqs. We apply

Lemma C.2 to conclude that it is of smaller order. The middle term is negligible by our
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Assumption 3. Referring to the last term, the Cauchy–Schwarz inequality yields

sup
ηPHn

ˇ

ˇ

?
nP0rpγn ´ γ0qpmη ´m0qs

ˇ

ˇ

À
?

2n }πn ´ π0}2,F0 sup
ηPHn

´

}mηp1, ¨q ´m0p1, ¨q}2,F0 ` }mηp0, ¨q ´m0p0, ¨q}2,F0

¯

“ oP0p1q,

where the last equality is due to Assumption 2. We thus obtain T1 “ oP0p1q uniformly in

η P Hm
n . Consider T2. We note that }mηp1 ´mηq}8 ď 1 uniformly in η P Hm

n . Hence, we

obtain

P0|T2| ď
t2

2
P0|γ

2
n ´ γ

2
0 | “

t2

2
P0rpγn ´ γ0qpγn ` γ0qs À

t2

2
}πn ´ π0}2,F0 Ñ 0

as πn Ñ π0 in L2pF0q-norm by Assumption 2. Thus, T2 “ oP0p1q uniformly in η P Hn.

Finally, we control T3 by evaluating |T3| À
t3?
n
Pnp}γn}38 ` }γ0}

3
8q “ oP0p1q uniformly in

η P Hm
n , which shows (B.4).
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Average Treatment Effects”
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This online supplementary appendix contains materials to support our main paper.

Appendix C collects some auxiliary results. Appendix D collects the proofs for lemmas in

Section 6 of the main paper. Appendix E provides least favorable directions for other causal

parameters of interest besides the ATE. Appendix F states and proves the BvM theorem for

outcome variables belonging to one-parameter exponential family described in Section 6 of

the main paper. Appendix G describes how to draw the posterior of the conditional mean

function using the Laplace approximation. Appendix H presents additional simulation

evidence.

In this supplement, C ą 0 denotes a generic constant, whose value might change line

by line. We introduce additional subscripts when there are multiple constant terms in the

same display. For two sequences an, bn, we write an À bn, if an ď Cbn.

C Auxiliary Results

The likelihood associated with the component ηm “ Ψ´1pmq is given by

pηmpzq “ mpd, xqyp1´mpd, xqq1´y, (C.1)

with the corresponding log-likelihood `mn pη
mq “

řn
i“1 log pηmpZiq. In other words, pηmp¨q is

the density with respect to the dominating measure

dνpx, d, yq “ pπ0pxqq
d
p1´ π0pxqq

1´ddϑpd, yqdF0pxq, (C.2)

1



where ϑ stands for the counting measure on tt0, 0u, t0, 1u, t1, 0u, t1, 1uu. We introduce some

simplifying notations by writing

m1
p¨q “ mp1, ¨q and m0

p¨q “ mp0, ¨q.

For two generic probability densities p and q, we denote the Kullback-Leibler (KL)

divergence by Kpp, qq and the square KL variation by V pp, qq; see Appendix B in Ghosal

and Van der Vaart [2017].

Lemma C.1. Let Assumption 1 be satisfied and mη “ Ψpηmq, then we have

log pηm ´ log pηmt “
t
?
n
γ0ρ

mη `
t2

2n
γ2

0mηp1´mηq `Rn,

where }Rn}8 À n´3{2.

Proof. First of all, the link function Ψ satisfies that Ψ1 “ Ψp1 ´ Ψq and Ψp2q “ Ψp1 ´

Ψqp1 ´ 2Ψq by straightforward calculus. Thus, log pηm ´ log pηmt “ gp0q ´ gp1q, where

gpuq “ log pηmu . We examine the following Taylor expansion:

gp0q ´ gp1q “ ´g1p0q ´ gp2qp0q{2´ θ, (C.3)

where θ ď }gp3q}8. We express the part of the log-likelihood involving ηm explicitly as

follows.

log pηmpzq “dy log
eη

mp1,xq

1` eηmp1,xq
` dp1´ yq log

1

1` eηmp1,xq

`p1´ dqy log
eη

mp0,xq

1` eηmp0,xq
` p1´ dqp1´ yq log

1

1` eηmp0,xq

“dpyηm
1

´ ψpηm
1

qq ` p1´ dqpyηm
0

´ ψpηm
0

qq (C.4)

where ψpηq “ logp1` eηq.

Recall the least favorable direction ξm0 pd, xq “ γ0pd, xq “ d{π0pxq ´ p1´ dq{p1´ π0pxqq.

Also, note that dp1 ´ dq “ 0. These derivatives can be calculated by splitting the right

hand side of the equation (C.4) into these d and p1´dq terms separately. For instance, the

first-order derivative is

g1puq “ ´
t
?
n

„

d

π0pxq
py ´Ψpηm

1

u qq



`
t
?
n

„

1´ d

1´ π0pxq
py ´Ψpηm

0

u qq



“ ´
t
?
n
γ0py ´Ψpηmu qq.
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The other two can be computed along the same lines:

gp2qpuq “ ´
t2

n
γ2

0Ψ1
pηmu q, gp3qpuq “ ´

t3

n3{2
γ3

0Ψp2q
pηmu q.

In the above expression involving the Riesz representor, we have

γ2
0pd, xq “

d

π2
0pxq

`
1´ d

p1´ π0pxqq2
and γ3

0pd, xq “
d

π3
0pxq

´
1´ d

p1´ π0pxqq3
,

again because of dp1 ´ dq “ 0. Evaluating at u “ 0, we have Ψpηmu q “ Ψpηmq “ mη and

consequently,

g1p0q “ ´
t
?
n
γ0ρ

m0 `
t
?
n
γ0pmη ´m0q, (C.5)

and

gp2qp0q “ ´
t2

n
γ2

0pmηp1´mηqq. (C.6)

For the remainder term, we have }gp3q}8 À n´3{2, given the uniform boundedness of Ψp2qp¨q.

Lemma C.2. Let Assumptions 1 and 2 be satisfied. Then, we have

?
nPnrppγ ´ γ0qρ

m0s “ oP0p1q. (C.7)

Proof. Since pγ is based on an auxiliary sample, it is sufficient to consider deterministic

functions γn with the same rates of convergence as pγ. We also write the corresponding

propensity score as πn, which is associated with γn. Denoting Ui “ Yi ´ m0pDi, Xiq, we

evaluate for the conditional expectation that

E0

«

´ 1
?
n

n
ÿ

i“1

pγn ´ γ0qpDi, XiqUi

¯2

| pD1, X1q, . . . , pDn, Xnq

ff

“
1

n

ÿ

i‰i1

pγn ´ γ0qpDi, Xiqpγn ´ γ0qpDi1 , Xi1qE0 rUiUi1 | pDi, Xiq, pDi1 , Xi1qs

“
1

n

n
ÿ

i“1

pγn ´ γ0q
2
pDi, XiqV ar0pYi|Xiq.

We have V ar0pYi|Xiq ď 1 since Yi P t0, 1u and thus we obtain for the unconditional squared

3



expectation that

E0

«

´ 1
?
n

n
ÿ

i“1

pγn ´ γ0qpDi, XiqUi

¯2

ff

À }πn ´ π0}
2
2,F0

“ op1q

by Assumption 2, which implies the desired result.

Each Gaussian process comes with an intrinsic Hilbert space determined by its

covariance kernel. This space is critical in analyzing the rate of contraction for its induced

posterior. Consider a Hilbert space H with inner product x¨, ¨yH and associated norm } ¨ }H.

H is an Reproducing Kernel Hilbert Space (RKHS) if there exists a symmetric, positive

definite function k : XˆX ÞÑ R, called a kernel, that satisfies two properties: (i) kp¨,xq P H
for all x P X and; (ii) fpxq “ xf, kp¨,xqyH for all x P X and f P H. It is well-known that

every kernel defines a RKHS and every RKHS admits a unique reproducing kernel.

Let Han
1 be the unit ball of the RKHS for the rescaled squared exponential process and

let Bsm,p1 be the unit ball of the Hölder class Csmpr0, 1spq in terms of the supremum norm

} ¨ }8. We take the sieve space to be

Bmn :“ εnBsm,p1 `MnHan
1 , (C.8)

where an “ n1{p2sm`pqplog nq´p1`pq{p2sm`pq, εn “ n´sm{p2sm`pq logp`1
pnq, and Mn “

´2Φ´1pe´Cnε
2
nq. The addition of the small ball εnBsm,p1 creates an εn-cushion around the

multiple MnHan
1 . This is necessary to create enough mass of the sieve space for the Gaussian

process W . For notational simplicity, we suppress the dependence of the rescaled Gaussian

process on the rescaling parameter an in the following proofs.

Lemma C.3. Under the conditions of Proposition 4.1, the posterior distributions of the

conditional mean functions contract at rate εn, i.e.,

Π
`

}mηpd, ¨q ´m0pd, ¨q}2,F0 ěMεn | Z
pnq
˘

ÑP0 0

for d P t0, 1u and every sufficiently large M , as nÑ 8.

Proof. By the assumed stochastic independence between the pair Zpnq and pγ, we can

proceed by studying the ordinary posterior distribution relative to the prior with pγ set

equal to a deterministic function γn and pw, λq following their prior. In other words, it

is sufficient to consider the prior on m given by mpd, xq “ Ψ pWm
d pxq ` λ γnpd, xqq where

Wm
d p¨q is the rescaled squared exponential process independent of λ „ Np0, σ2

nq and γn a
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sequence of functions }γn}8 “ Op1q. It suffices to examine two conditional means mηp1, ¨q

and mηp0, ¨q separately. We focus on the treatment arm with d “ 1, and leave d off the

notations in Wm or ηm as understood.

We verify the following generic results in Theorem 2.1 of Ghosal et al. [2000] to obtain

the proper concentration rate for the posterior for the rescaled squared exponential process:

I. Πppw, λq : K _ V ppηm0 , pw`λγnq ď ε2
nq ě c1 expp´c2nε

2
nq, (C.9)

II. ΠpPcnq ď expp´c3nε
2
nq, (C.10)

III. logNpεn,Pn, } ¨ }L2pνqq ď c4nε
2
n, (C.11)

for positive constant terms c1, ¨ ¨ ¨ , c4 and for the set:

Pn “
 

pw`λγn : w P Bmn , |λ| ďMσn
?
nεn

(

.

(I). The inequality (C.15) in Lemma C.6 yields

tpw, λq : }w ´ ηm0 }8 ď cεn, |λ| ď cεnu Ă
 

pw, λq : K _ V ppηm0 , pw`λγnq ď ε2
n

(

.

Given that we have independent priors of Wm and λ, the prior probability of the set on

the left of the above display can be lower bounded by Πp}Wm ´ ηm0 }8 ď cεnqΠp|λ| ď cεnq.

By Proposition 11.19 of Ghosal and Van der Vaart [2017] regarding the small exponent

function φan0 and together with the upper bound (C.17), we infer

Πp}Wm
´ ηm0 }8 ď cεnq ě exp p´φan0 pεn{2qq ě exp

`

´cnε2
n

˘

,

for some positive constant c. The second term is lower bounded by Cεn{σn, which is of

order Opεnq for σn “ Op1q. Therefore, we have ensured that the prior assigns enough mass

around a Kullback-Leibler neighborhood of the truth.

(II). Referring to the sieve space for the Gaussian process, we apply Borell’s inequality

from Proposition 11.17 of Ghosal and Van der Vaart [2017]:

PrtWm
R Bmn u ď 1´ Φpιn `Mnq,

where Φp¨q is the c.d.f. of a standard normal random variable and the sequence ιn is given

by Φpιnq “ PrtW P εnBsm,p1 u “ e´φ
an
0 pεnq. Since our choice of εn leads to φan0 pεnq ď nε2

n,

we have ιn ě ´Mn{2 if Mn “ ´2Φ´1pe´Cnε
2
nq for some C ą 1. In this case, ΠpBmcn q ď

5



1´ ΦpMn{2q ď e´Cnε
2
n . Next, we apply the univariate Gaussian tail inequality for λ:

Prt|λ| ě unσn
?
nu ď 2e´u

2
nnσ

2
n{2,

which is bounded above by e´Cnε
2
n for un Ñ 0 sufficiently slowly, given our assumption

εn “ opσnq. Hence, by the union bound, we have ΠpPcnq À e´Cnε
2
n .

(III). To bound the entropy number of the functional class Pn, consider the inequality

}pw`λγ ´ pw̄`λ̄γn}L2pνq À }w ´ w̄}2,F0 ` |λ´ λ̄|}γn}8,

where the dominating measure ν is (C.2). Thus, we have

Npεn,Pn, } ¨ }L2pνqq ď Npεn{2,Bmn , } ¨ }8q ˆNpcεn, r0, 2Mσn
?
nεns, | ¨ |q À nε2

n. (C.12)

Note that the logarithm of the second term grows at the rate of Oplog nq, and it is the

first term that dominates. Because Ψ is monotone and Lipschitz, a set of ε-brackets in

L2pF0q for Bmn translates into a set of ε-brackets in L2pνq for Pn. Thus, Lemma C.7 gives

us logNp3εn,Bmn , } ¨ }q À nε2
n.

By Lemma 15 of Ray and van der Vaart [2020], this delivers the posterior contraction

rate for mηp1, ¨q in terms of the L2pF0π0q-norm, which is equivalent to the L2pF0q-norm

weighted by the propensity score π0. Analogous arguments lead to the desired result for

the conditional mean mηp0, ¨q for the control group.

Let Mni “ ei{
řn
i“1 ei, where ei’s are independently and identically drawn from

the exponential distribution Expp1q. We also denote Xpnq “ pXiq
n
i“1. We adopt the

following notations: F˚nm̄η “
řn
i“1Mnim̄ηpXiq, Fnm̄η “ n´1

řn
i“1 m̄ηpXiq and F0m̄η “

ş

m̄ηpxqdF0pxq. Let Xpnq “ pXiq
n
i“1.

Lemma C.4. Let the functional class tm̄η : η P Hnu be a P0-Glivenko-Cantelli class. Then

for every t in a sufficiently small neighborhood of 0, in P0-probability,

sup
m̄η :ηPHn

ˇ

ˇ

ˇ
E
”

et
?
nppF˚n´Fnqm̄ηq | Xpnq

ı

´ et
2F0pm̄η´F0m̄ηq

2
{2
ˇ

ˇ

ˇ
Ñ 0.

Proof. We verify the conditions from Lemma 1 in Ray and van der Vaart [2020]. First, the

Bayesian bootstrap law F˚n is the same as the posterior law for F , when its prior is a Dirichlet

process with its base measure taken to be zero. Second, the assumed P0-Glivenko-Cantelli
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class entails

sup
ηPHn

|pFn ´ F0qm̄η| “ oP0p1q.

Last, the required moment condition on the envelope function for the class involving m̄η is

automatically satisfied because of }m̄η}8 ď 1.

The following lemma is in the same spirit of Lemma 9 in Ray and van der Vaart [2020]

with one important difference. That is, we do not restrict the range of the function ϕ to be

r0, 1s. As we apply this lemma by taking ϕ “ γn ´ γ0, it can take on negative values. We

apply the more general contraction principle from Theorem 4.12 of Ledoux and Talagrand

[1991] instead of Proposition A.1.10 of van der Vaart and Wellner [1996]. This allows us to

relax the positive range restriction in Ray and van der Vaart [2020].

Lemma C.5. Consider a set H of measurable functions h : Z ÞÑ R and a bounded

measurable function ϕ. We have

E sup
hPH

|Gnpϕhq| ď 4}ϕ}8E sup
hPH

|Gnphq| `
a

P0ϕ2 sup
hPH

|P0h|.

Proof. We start with Gnpϕhq “ Gnpϕph´P0hqq`P0hGnpϕq. The expectation of P0hGnpϕq

is bounded by the second term on the right hand side of the inequality in the stated lemma.

It suffices to bound Gnpϕph´ P0hqq for any function h such that P0h “ 0.

Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of observations Zpnq.

By Lemma 2.3.6 of van der Vaart and Wellner [1996],

E sup
h

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

pϕpZiqhpZiq ´ P0rϕhsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2}ϕ}8E sup
h

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

εi
ϕpZiq

}ϕ}8
hpZiq

ˇ

ˇ

ˇ

ˇ

ˇ

. (C.13)

Because ´1 ď ϕpZiq{}ϕ}8 ď 1 for all i “ 1, . . . , n, we can apply the contraction principle

as in Theorem 4.12 on page 112 of Ledoux and Talagrand [1991]. The contraction mapping

is understood to be h ÞÑ ϕ
}ϕ}8

ˆ h herein. Hence, the above inequality (C.13) remains

true if the variables ϕpZiq
}ϕ}8

on the right hand side are removed. Another application by

the symmetrization inequality from Lemma 2.3.6 of van der Vaart and Wellner [1996] that

decouples the Rademacher variables leads to the desired result.

The next lemma upper bounds the L2 distance and Kullback-Leibler divergence of the

probability density functions by the L2 distance of the reparametrized function ηm, cf.

Lemma 2.8 of Ghosal and Van der Vaart [2017] or Lemma 15 of Ray and van der Vaart

[2020].
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Lemma C.6. For any measurable functions vm, wm : r0, 1s ÞÑ R, we have

}pvm ´ pwm}L2pνq ď }Ψpv
m1

q ´Ψpwm
1

q}L2pF0π0q _ }Ψpv
m0

q ´Ψpwm
0

q}L2pF0p1´π0qq

ď }vm
1

´ wm
1

}2,F0 _ }v
m0

´ wm
0

}2,F0 . (C.14)

In addition, it holds that

Kppvm , pwmq _ V ppvm , pwmq ď }v
m1

´ wm
1

}
2
2,F0

_ }vm
0

´ wm
0

}
2
2,F0

. (C.15)

The small ball exponent function for the associated Gaussian process prior is

φ0pεq :“ ´ log Prp}W }8 ă εq;

see equation (11.10) in Ghosal and Van der Vaart [2017]. In the above display, } ¨ }8 is

the uniform norm of Cpr0, 1spq, the Banach space in which the Gaussian process sits. H is

the reproducing kernel Hilbert space (RKHS) of the process with its RKHS norm } ¨ }H.

To abuse the notation a bit, we denote the small ball exponent of the rescaled process

W patq by φa0pεq. Lemma 11.55 in Ghosal and Van der Vaart [2017] gives this bound for the

(rescaled) squared exponential process:

φa0pεq À applogpa{εqq1`p.

Lemma C.7. Assume that εn “ n´sm{p2sm`pqplog nqsmp1`pq{p2sm`pq and Mn “

´2Φ´1pe´Cnε
2
nq for a positive constant C ą 1. Also, let an — n1{p2sm`pqplog nq´p1`pq{p2sm`pq.

Then, for the sieve space Bmn “ εnBsm,p1 `MnHan
1 , we have

logNp3εn,Bmn , } ¨ }8q À nε2
n. (C.16)

Proof. The argument is similar as in Lemma 11.20 of Ghosal and Van der Vaart [2017]. We

provide the proof for completeness. Let h1, ¨ ¨ ¨ , hN P MnHan
1 be 2εn-separated functions

in terms of the Banach space norm. Then, the εn-balls h1 ` εnBsm,p1 , ¨ ¨ ¨ , hN ` εnBsm,p1 are

disjoint. Therefore, we have

1 ě
N
ÿ

j“1

PrtW P hj ` εnBsm,p1 u ě

N
ÿ

j“1

e´}hj}
2
H{2 PrtW P εnBsm,p1 u ě ne´M

2
n{2e´φ

an
0 pεnq,

where the second inequality follows from Lemma 11.18 of Ghosal and Van der Vaart [2017]
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and the last inequality makes use of the fact that h1, ¨ ¨ ¨ , hN P MnH1, as well as the

definition of the small ball exponent function.

For a maximal 2εn-separated set h1, ¨ ¨ ¨ , hN , the balls around h1, ¨ ¨ ¨ , hN of radius 2εn

cover the set MnHan
1 . Thus, we have logNp2εn,MnHan

1 , } ¨ }8q ď logN ď M2
n{2` φan0 pεnq.

Referring to the inequality (iii) of Lemma K.6 of Ghosal and Van der Vaart [2017] for the

quantile function of a standard normal distribution, we have M2
n À nε2

n by the choice of

Mn stated in the lemma. It is straightforward yet tedious to verify that

φan0 pεnq À nε2
n, (C.17)

for the specified an and εn. Since any point of Bmn is within εn of an element of MnHan
1 ,

this also serves as a bound on logNp3εn,Bmn , } ¨ }8q.

A key step in showing the validity of the debiasing step is the following:

Pnrpm̄` pγρ pm
´ m̄0s “ Pnrγ0ρ

m0s ` oP0pn
´1{2

q,

which is equivalent to the following lemma.

Lemma C.8. Under Assumption 2 for the pilot estimators, the following result holds:

Pnrpγρ pm
` pm̄s “ Pnrγ0ρ

m0 ` m̄0s ` oP0pn
´1{2

q.

Proof. We start with the following identity:

Pnrpγρ pm
` pm̄s “ Pnrγ0ρ

m0 ` m̄0s `Rn1 `Rn2.

where

Rn1 “
1

n

ÿ

Di

pYi ´ pmp1, Xiqq

ˆ

1

pπpXiq
´

1

π0pXiq

˙

`
1

n

ÿ

1´Di

pYi ´ pmp0, Xiqq

ˆ

1

1´ pπpXiq
´

1

1´ π0pXiq

˙

,

Rn2 “
1

n

ÿ

i

ppmp1, Xiq ´m0p1, Xiqq

ˆ

1´
Di

π0pXiq

˙

`
1

n

ÿ

i

ppmp0, Xiq ´m0p0, Xiqq
Di ´ π0pXiq

1´ π0pXiq
.
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Referring to the first term Rn1, we have

Rn1 “
1

n

ÿ

Di

pm0p1, Xiq ´ pmp1, Xiqq

ˆ

1

pπpXiq
´

1

π0pXiq

˙

`
1

n

ÿ

Di

pYi ´m0p1, Xiqq

ˆ

1

pπpXiq
´

1

π0pXiq

˙

´
1

n

ÿ

1´Di

pm0p0, Xiq ´ pmp0, Xiqq

ˆ

1

1´ pπpXiq
´

1

1´ π0pXiq

˙

´
1

n

ÿ

1´Di

pYi ´m0p0, Xiqq

ˆ

1

1´ pπpXiq
´

1

1´ π0pXiq

˙

.

The negligibility of the first and third terms in Rn1 follows from the Cauchy-Schwarz

inequality and the rate conditions imposed in Assumption 2. The second and fourth terms

can be combined together so that the negligibility can be shown as in Lemma C.2.

Consider Rn2. To bound its first summand, we condition on pX1, . . . , Xnq, as well as

the pilot estimators pm and pπ, which are computed over the external sample. We use the

fact that pDi ´ π0pXiqq has a conditional zero mean. Specifically, this leads to

E0

«

´ 1
?
n

n
ÿ

i“1

Di ´ π0pXiq

pπpXiq
ppmp1, Xiq ´m0p1, Xiqq

¯2 ˇ
ˇ

ˇ
X1, . . . , Xn, pm, pπ

ff

“
1

n

n
ÿ

i“1

`

pmp1, Xiq ´m0p1, Xiq
˘2V ar0pDi|Xiq

pπ2pXiq

using that V ar0pDi|Xiq “ π0pXiqp1´ π0pXiqq. By the overlapping condition as imposed in

Assumption 1, i.e., π̄ ă π0pXiq for all 1 ď i ď n and the uniform convergence of pπ to π0,

we obtain

E0

«

´ 1
?
n

n
ÿ

i“1

Di ´ π0pXiq

pπpXiq
ppmp1, Xiq ´m0p1, Xiqq

¯2 ˇ
ˇ

ˇ
pm, pπ

ff

À }pmp1, ¨q ´m0p1, ¨q}
2
2,F0

“ oP0p1q,

where the last equation is due to the convergence rate for the pilot estimator pm in

Assumption 3. The negligibility of the second term in Rn2 is proved in a similar fashion.

The following lemma shows the stochastic equicontinuity when the true conditional

mean function belongs to a Hölder space, which is P0-Donsker, i.e., sm ą p{2. The main

complication is that the sieve space related to the Gaussian process prior is not a fixed

P0-Donsker class, as it changes with sample size n and the envelope function is also slowly

diverging, cf. the comments in the third paragraph on Page 2007 of Ray and van der Vaart

[2020]. More specifically, for the rescaled squared exponential process priors, we rely on

the metric entropy bounds in van der Vaart and van Zanten [2009]. With this important

10



modification, the proof is along similar lines with the proof of Lemma 7 of Ray and van der

Vaart [2020] for the Riemann-Lioville process; also, see Lemma 5 of Ray and van der Vaart

[2020].

Lemma C.9. Recall that the sieve space related to the Gaussian process is Bmn “ εnBsm,p1 `

MnHan
1 . For sm ą p{2, we have E0 supηPHm

n
Gn rmη ´m0s “ op1q.

Proof. Because the link function Ψp¨q is monotone and Lipschitz continuous, separate sets

of brackets for the two constituents of the set εnBsm,p1 `MnHan
1 , as well as the bracket for

tλ : |λ| ďMσn
?
nεnu can be combined into brackets for the sum space.

logNrspε,Hmn , L2pP0qq ď logNpε, εnBsm,p1 , }¨}8q`logNpε,MnHan
1 , }¨}8q`logNpcε, r0, 2Mσn

?
nεns, |¨|q.

The last term is of strictly smaller order than the second one. The bound for the first

component attached to the Hölder space can be found in Proposition C.5 of Ghosal and

Van der Vaart [2017]:

logNpε, εnBsm,p1 , } ¨ }8q À
´εn
ε

¯sm{p

,

which is bounded if we take ε “ εn. The entropy bound for the first component is given

in Lemma C.7, which states that logNpε,MnHan
1 , } ¨ }8q À nε2

n À ε´2υ
n , with υ “ p{p2smq

modulo some log n term on the right hand of the bound. In this case, the empirical process

bound of [Han, 2021, p.2644] yields

E0 sup
ηPHm

n

|Gnrmη ´m0s| À Lnn
pυ´1q{p2υq

“ OpLnn
1{2´sm{pq “ op1q,

where Ln represents a term that diverges at certain polynomial order of log n.

D Proofs of Section 6

Proof of Lemma 6.1. For the submodel tÑ ηt defined in 6.1, we evaluate

log pηtpzq “ d log Ψpηπ ` tpqpxq ` p1´ dq logp1´Ψpηπ ` tpqqpxq

` log cpyq ` aypηm ` tmqpd, xq ´ Apq´1
pηm ` tmqqpd, xq

` tfpxq ´ logEretfpXqs ` log fpxq.

Taking derivative with respect to t and evaluating at t “ 0 gives the score operator:

Bηpp,m, fqpZq “ Bπ
η ppZq `B

m
η mpZq `B

f
η fpZq, (D.1)
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where Bπ
η ppZq “ pD ´ πηpXqqppXq, B

f
η fpZq “ fpXq, and

Bm
η mpOq “

„

aY ´
A1pmηpD,Xqq

q1pmηpD,Xqq



mpD,Xq,

“ a pY ´mηpD,XqqmpD,Xq, (D.2)

where the second equality follows from the property of the moments of exponential family,

see e.g., Theorem 9.47 of Wasserman [2004] with T pyq “ ay:

Eη raY |D,Xs “
A1pmηpD,Xqq

q1pmηpD,Xqq
.

In this case, there is a one-to-one correspondence between the conditional density function

and the conditional mean function of the outcome given covariates. One can easily verify

the differentiability of the ATE parameter in the sense of van der Vaart [1998] and show

that the efficient influence function remains the same as in Hahn [1998] and Ray and van der

Vaart [2020]. Given the particular form of the efficient influence function rτη in (2.4), the

function ξη “ pξ
π
η , ξ

m
η , ξ

f
η q defined in (3.4) satisfies Bηξη “ rτη, and hence, ξη defines the least

favorable direction.

Proof of Lemma 6.2. We emphasize that the least favorable direction calculation is not

a trivial extension of Hahn [1998] or Ray and van der Vaart [2020], because there are

J nonparametric components involved in the conditional probabilities of the multinomial

outcomes given covariates, and we need to consider the perturbation of all J components

together.

Consider the log transformation of the joint density of Z “ pY,D,XJqJ given by

log pηpzq “ d logpπηpxqq ` p1´ dq logp1´ πηpxqq `
J
ÿ

j“0

1tyi“ju log pmj,η pd, xqq ` log fpxq

Following the proof of Lemma 3.1, it is sufficient to consider the perturbations for j “

1, . . . , J :

Ψjpη
m1 ` tm1, ¨ ¨ ¨ , η

mJ ` tmJqpd, xq “
expppηmj ` tmjqpd, xqq

1`
řJ
l“1 expppηml ` tmlqpd, xqq

or

log Ψjpη
m1 ` tm1, ¨ ¨ ¨ , η

mJ ` tmJqpd, xq “ pη
mj ` tmjqpd, xq ´ log

´

1`
J
ÿ

l“1

expppηml ` tmlqpd, xqq
¯

.
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Taking derivatives

d log Ψjpη
m1 ` tm1, ¨ ¨ ¨ , η

mJ ` tmJqpd, xq

dt

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“ mjpd, xq ´

řJ
l“1 exppηmlpd, xqqmlpd, xq

1`
řJ
l“1 exppηmlpd, xqq

“ mjpd, xq ´
J
ÿ

l“1

mη,lpd, xqmlpd, xq

by the definition of mη,l. Likewise, we also obtain

d log Ψ0pη
m1 ` tm1, ¨ ¨ ¨ , η

mJ ` tmJqpd, xq

dt

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“ ´

J
ÿ

l“1

mη,lpd, xqmlpd, xq.

We need to verify the differentiability of the ATE parameter in the sense of van der Vaart

[1998]. Due to its technical feature, we leave this to the end of the proof. From there,

we can see that the score operator of the vector of conditional means pm1, . . . ,mJq is as

follows:

Bm
η pm1, . . . ,mJqpzq “

J
ÿ

j“0

1ty“ju
d log Ψjpη

m1 ` tm1, ¨ ¨ ¨ , η
mJ ` tmJqpd, xq

dt

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

J
ÿ

j“1

1ty“ju

˜

mjpd, xq ´
J
ÿ

l“1

mη,lpd, xqmlpd, xq

¸

` 1ty“0u

˜

´

J
ÿ

l“1

mη,lpd, xqmlpd, xq

¸

.

By the fact that 1ty“0u “ 1´
řJ
j“1 1ty“ju, it simplifies to

Bm
η pm1, . . . ,mJqpzq “

J
ÿ

j“1

`

1ty“ju ´mη,jpd, xq
˘

mjpd, xq.

Note that the conditional mean of Bm
η pm1, . . . ,mJqpzq is zero for any mjpd, xq, which agrees

with the requirement of the score operator.

From our verification of the differentiability, we confirm that the influence function is

of the generic form given in Hahn [1998] and Ray and van der Vaart [2020]. Also, it is

contained in the closed linear span of the set of all score functions. Now, if we choose

mj “ jγη, 1 ď j ď J , we obtain

Bm
η pγη, 2γη, . . . , Jγηqpzq “

˜

J
ÿ

j“1

1ty“juj

loooomoooon

“y

´

J
ÿ

j“1

j mη,jpd, xq

looooooomooooooon

“mηpd,xq

¸

γηpd, xq “ py ´mηpd, xqq γηpd, xq,

13



which shows the results.

Now we check the pathwise differentiability of the ATE. To avoid the long display of

various formulas, we consider the following decomposition

d

dt
τηt

∣∣∣
t“0
“

d

dt

ż

EηtrY |D “ 1, X “ xsdFηtpxq ´
d

dt

ż

EηtrY |D “ 0, X “ xsdFηtpxq,

and we focus on the first derivative involving the treatment group, as the other one can be

handled analogously. We start with

d

dt
EηtrEηtrY |D “ 1, Xss “

ĳ

y
d

dt
ptpy|1, xqftpxq

∣∣∣
t“0
dνpyqdµpxq,

where ptpy|1, xq and ftpxq are the perturbed conditional density of outcome and marginal

density of covariates, respectively. In addition, ν stands for the counting measure and µ is

the Lebesgue measure. By the chain rule, we need to compute the following sum:

ĳ

y
d

dt
ptpy|1, xq

∣∣∣
t“0
dνpyqfηpxqdµpxq `

ĳ

ypηpy|1, xqdνpyq
d

dt
ftpxq

∣∣∣
t“0
dµpxq. (D.3)

Regarding the first part of the above sum, we follow the outline in Example 2 of Jonathan

[2019] to compute

d

dt
ptpy|d, xq “

d

dt

«

J
ź

j“0

mt,jpd, xq
1ty“ju

ff

“

J
ÿ

j“0

1ty“ju
B

Bt
mt,jpd, xq

ź

k‰j

m
1ty“ku
t,k pd, xq.

We thus evaluate for the derivatives of the conditional mean functions

B

Bt
mt,jpd, xq

∣∣∣
t“0
“ mη,jpd, xq

˜

mjpd, xq ´
J
ÿ

l“1

mη,lpd, xqmlpd, xq

¸

, for j “ 1, ¨ ¨ ¨ , J,

and

B

Bt
mt,0pd, xq

∣∣∣
t“0
“ mη,0pd, xq

˜

´

J
ÿ

l“1

mη,lpd, xqmlpd, xq

¸

.

Thereafter, derivative of the conditional density can be written as

d

dt
ptpy|d, xq

∣∣∣
t“0
“

«

J
ÿ

j“1

1ty “ ju

˜

mjpd, xq ´
J
ÿ

l“1

mη,lpd, xqmlpd, xq

¸ff

J
ź

j“0

mη,jpd, xq
1ty“ju

“
`

Bm
η pm1, . . . ,mJqpzq ´ EηrBm

η pm1, . . . ,mJqpZq|D “ d,X “ xs
˘

pηpy|d, xq,
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where the last equality follows from the fact that the conditional mean of the score given

pD,Xq is zero. To simplify the notation, we denote this conditional score function by

Sηpzq “ Bm
η pm1, . . . ,mJqpzq.

Referring to the first term in the summation (D.3), we resort to the technique in Example

2 of Jonathan [2019] by converting the conditional argument from d “ 1 to d P t0, 1u.

Similar to the first two terms in the long display on Page 15 of Jonathan [2019], we obtain

ĳ

y
d

dt
ptpy|1, xq

∣∣∣
t“0
dνpyqfpxqdµpxq “ Eη

„

D

πηpXq
pY ´mηpD,XqqSηpZq



.

Referring to the second part of (D.3), we immediately obtain

ĳ

yptpy|1, xqdνpyq
d

dt
ftpxq

∣∣∣
t“0
dµpxq “ Eη rpmηp1, Xq ´ Eηrmηp1, XqsqSηpZqs

Similarly for the control arm, we derive

d

dt

ż

EηtrY |D “ 0, X “ xsdFηtpxq
∣∣∣
t“0

“Eη
„ˆ

mηp0, Xq ´ Eηrmp0, Xqs `
1´D

1´ πηpXq
pY ´mηpD,Xqq

˙

SηpZq



.

The remaining part boils down to the existence of a vector-valued function τ̃Pη such that

d

dt
τpηtq

∣∣∣
t“0

“ Eη
“

τ̃ηpZqB
m
η pm1, . . . ,mJqpZq

‰

“ Eη
„ˆ

pm̄ηpXq ´ τηq `

ˆ

D

πηpXq
´

1´D

1´ πηpXq

˙

pY ´mηpD,Xqq

˙

SηpZq



.

Consequently, we can take the solution as τ̃ηpzq “ m̄ηpxq´τη`γηpd, xqpy´mηpd, xqq, which

concludes the proof.

E Least Favorable Directions for Other Causal

Parameters

In this part, we provide details on the least favorable directions for the first two examples

in Section 6.3. We properly address the binary outcome Y and the reparameterization

through the logistic type link function Ψp¨q.
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E.1 Average Policy Effects

The joint density of Zi “ pYi, Xiq can be written as

pm,f pzq “ mpxqyp1´mpxqqp1´yqfpxq. (E.1)

The observed data Zi can be described by pm, fq. It proves to be more convenient to

consider the reparametrization of pm, fq given by η “ pηm, ηf q, where

ηm “ Ψ´1
pmq, ηf “ log f. (E.2)

Consider the one-dimensional submodel t ÞÑ ηt defined by the path

mtpxq “ Ψpηm ` tmqpxq, ftpxq “ fpxqetfpxq{EretfpXqs,

for the given direction pm, fq with ErfpXqs “ 0. For this submodel, we further evaluate

log pηtpzq “ y log Ψpηm ` tmqpxq ` p1´ yq logp1´Ψpηm ` tmqqpxq

` tfpxq ´ logEretfpXqs ` log fpxq.

Taking derivative with respect to t and evaluating at t “ 0 gives the score operator:

Bηpm, fqpZq “ Bm
η mpZq `B

f
η fpZq, (E.3)

where Bm
η mpZq “ pY ´mηpXqqmpXq and Bf

η fpZq “ fpXq.

The efficient influence function for estimation of the policy effect parameter τPη is given

by

rτPη pzq “ γPη pxqpy ´mηpxqq

where γPη pxq “
g1pxq´g0pxq

fpxq
. Now the score operator Bη given in (E.3) applied to ξPη pxq “

`

γPη pxq, 0
˘

, yields Bηξ
P
η “ rτPη . Thus, ξPη defines the least favorable direction for this policy

effect parameter.

E.2 Average Derivative

The joint density of Zi “ pYi, Di, Xiq can be written as

pm,f pzq “ mpd, xqyp1´mpd, xqqp1´yqfpd, xq. (E.4)
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The observed data Zi can be described by pm, fq. It proves to be more convenient to

consider the reparametrization of pm, fq given by η “ pηm, ηf q, where

ηm “ Ψ´1
pmq, ηf “ log f. (E.5)

Consider the one-dimensional submodel t ÞÑ ηt defined by the path

mtpd, xq “ Ψpηm ` tmqpd, xq, ftpd, xq “ fpd, xqetfpd,xq{EretfpD,Xqs,

for the given direction pm, fq with ErfpD,Xqs “ 0. For this submodel defined in (E.5), we

further evaluate

log pηtpzq “ y log Ψpηm ` tmqpd, xq ` p1´ yq logp1´Ψpηm ` tmqqpd, xq

` tfpd, xq ´ logEretfpD,Xqs ` log fpd, xq.

Taking derivative with respect to t and evaluating at t “ 0 gives the score operator:

Bηpm, fqpZq “ Bm
η mpZq `B

f
η fpZq, (E.6)

where Bm
η mpZq “ pY ´mηpD,XqqmpD,Xq and Bf

η fpZq “ fpD,Xq. The efficient influence

function for estimation of the AD parameter τADη “ E rBdmηpD,Xqs is given by

rτADη pzq “ Bdmηpd, xq ´ ErBdmηpd, xqs ` γ
AD
η pd, xqpy ´mηpd, xqq

where γADη pd, xq “ Bdπηpd, xq{πηpd, xq. Now the score operator Bη given in (E.6) applied to

ξADη pd, xq “
`

γADη pd, xq, Bdmηpd, xq ´ ErBdmηpD,Xqs
˘

,

yields Bηξ
AD
η “ rτADη . Thus, ξADη defines the least favorable direction for the AD.

F Theory for One-parameter Exponential Family

We take a “ 1 in the exponential family for simplicity, that is,

fY |D,Xpy;mpd, xqq “ cpyq exp rqpmpd, xqqY ´ Apmpd, xqqs , (F.1)
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and for some known functions cpyq, qpmq and Apmq. We reparameterize the model using

the link function q:

ηmpd, xq “ qpmpd, xqq, mpd, xq “ q´1
pηmpd, xqq,

and we define the mapping B :“ A ˝ q´1.

Proposition F.1 (One-parameter exponential family). Consider the one-parameter

exponential family for the conditional distribution specified by (F.1). Assume that the

function B “ A ˝ q´1 is three time differentiable with }Bp3q}8 ă 8. The estimator pγ

satisfies }pγ}8 “ OP0p1q and }pγ ´ γ0}8 “ OP0

`

pn{ log nq´sπ{p2sπ`pq
˘

for some sπ ą 0.

Suppose m0pd, ¨q P Csmpr0, 1spq for d P t0, 1u and some sm ą 0 with
?
sπ sm ą p{2.

Also, }pmpd, ¨q ´ m0pd, ¨q}2,F0 “ OP0

`

pn{ log nq´sm{p2sm`pq
˘

. Consider the propensity score-

dependent prior on m given by mpd, xq “ q´1 pWm
d pxq ` λ pγpd, xqq, where Wm

d pxq is the

rescaled squared exponential process for d P t0, 1u, with its rescaling parameter an of the

order in (4.1) and pn{ log nq´sm{p2sm`pq ! σn À 1. Then, the posterior distribution satisfies

Theorem 3.1.

Proof. Because our analysis for the binary outcome has served as the template, we only

outline the necessary modifications. Due to the change of the likelihood function form

in the conditional probability density of the outcome, we need to adapt the argument in

showing the contraction rate of the posterior and the local asymptotic normality (LAN)

expansion used in the conditional Laplace transform, as well as verifying the prior stability.

First, in deriving the rate of posterior contraction or determining the proper localized

set Hm
n , we need proper upper bounds for the L2 distance and Kullback-Leibler (KL)

divergence of the probability density functions by the L2 distance of the reparametrized

functions ηm, vm. To abuse the notation a bit, we denote the corresponding probability

densities by pηm and pvm . For the exponential family under consideration, the first and

second order cumulants (conditional on covariates) are:

EηrY |D “ d,X “ xs “ B1pηmpd, xqq, V arηpY |D “ d,X “ xq “ Bp2qpηmpd, xqq.

Considering the KL divergence Kppηm , pvmq “
ş

log ppηmpzq{pvmpzqq pηmpzqdz, we first

compute

log
pηmpzq

pvmpzq
“ pηmpd, xq ´ vmpd, xqqy ´ rBpηmpd, xqq ´Bpvmpd, xqqs.

18



Integrating over the conditional density for any given pd, xq and utilizing the fact that the

conditional mean is mηpd, xq “ B1pηmη pd, xqq, we proceed for some intermediate value η̃m:

Kppηm , pvmq “

ż

pB1pηmqpηm ´ vmq ´ rBpηmq ´Bpvmqsq πdpxqp1´ πpxqq1´dfηpxqdx

“

ż

Bp2qpη̃mqpηm ´ vmq2πdpxqp1´ πpxqq1´dfηpxqdx

À}vm
1

´ ηm
1

}
2
2,Fη _ }v

m0

´ ηm
0

}
2
2,Fη .

Recall that

V ppηm , pvmq “

ż
„

log
pηmpzq

pvmpzq
´Kppηm , pvmq

2

pηmpzqdz ď

ż
„

log
pηmpzq

pvmpzq

2

pηmpzqdz.

(F.2)

Therefore, we continue with the right hand side inequality of F.2.

V ppηm , pvmq

ď

ż

tpηmpd, xq ´ vmpd, xqqy ´ rBpηmpd, xqq ´Bpvmpd, xqqsu2 pηmpzqdz

“

ż

pηmpd, xq ´ vmpd, xqq2rBp2qpηmpd, xqq ` pB1pηmpd, xqqq2sπdpxqp1´ πpxqq1´dfηpxqdx

´2

ż

pBpηmpd, xqq ´Bpvmpd, xqqqpηmpd, xq ´ vmpd, xqqB1pηmpd, xqqπdpxqp1´ πpxqq1´dfηpxqdx

`

ż

pBpηmpd, xqq ´Bpvmpd, xqqq2πdpxqp1´ πpxqq1´dfηpxqdx

“

ż

Bp2qpηmpd, xqqpηmpd, xq ´ vmpd, xqq2πdpxqp1´ πpxqq1´dfηpxqdx

`

ż

tpηmpd, xq ´ vmpd, xqqB1pηmpd, xqq ´ rBpηmpd, xqq ´Bpvmpd, xqqsu
2
πdpxqp1´ πpxqq1´dfηpxqdx

À}vm
1

´ ηm
1

}
2
2,Fη _ }v

m0

´ ηm
0

}
2
2,Fη ,

where in the first equality we have made use of the fact that

EηrY 2
|D “ d,X “ xs “ Bp2qpηmpd, xqq ` pB1pηmpd, xqqq2.

In sum, we have

Kppηm , pvmq _ V ppηm , pvmq ď }v
m1

´ ηm
1

}
2
2,Fη _ }v

m0

´ ηm
0

}
2
2,Fη .

In addition, the squared Hellinger distance can be upper bounded by the KL divergence
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from Lemma B.1 in Ghosal and Van der Vaart [2017], so we have

}
?
pvm ´

?
pηm}L2pνq ď }v

m1

´ ηm
1

}2,Fη _ }v
m0

´ ηm
0

}2,Fη . (F.3)

Second, we outline the changes to the LAN expansion as follows. For this purpose, we

also define

gpuq “ log pupzq “ yηupd, xq ´Bpηupd, xqq ` log cpyq. (F.4)

By the property of the one-parameter exponential family, we know Bp¨q is a convex function

under our smoothness assumption for Bp¨q. Thereafter, we can obtain the first to third

order derivatives as

g1p0q “
t
?
n
γ0py ´B

1
pηmpd, xqqq “

t
?
n
γ0py ´mpd, xqq,

gp2qp0q “
t2

n
γ2

0B
p2q
pηmpd, xqq, gp3qpũq “

t3

n3{2
γ3

0B
p3q
pηmũ pd, xqq.

In a key step to show the prior stability condition, we need to establish the following

log-likelihood expansion:

sup
ηmPHm

n

ˇ

ˇ`mn pη
m
´ tγn{

?
nq ´ `mn pη

m
´ tγ0{

?
nq
ˇ

ˇ “ oP0p1q, (F.5)

where ηmn,t “ ηm ´ tγn{
?
n and ηmt “ ηm ´ tγ0{

?
n. Consider the following decomposition

of the log-likelihood:

`mn pη
m
n,tq ´ `

m
n pη

m
t q “ `mn pη

m
n,tq ´ `

m
n pη

m
q ` `mn pη

m
q ´ `mn pη

m
t q

“ nPnrlog pηmn,t ´ log pηms ` nPnrlog pηm ´ log pηmt s.

Then, we apply third-order Taylor expansions for the one-parameter exponential family

separately to the two terms in the brackets of the above display:

nPnrlog pηmn,t ´ log pηms “ ´t
?
nPn rγnpy ´mηqs ´

t2

2
Pn

“

γ2
nB

p2q
pηmpd, xqq

‰

´
t3
?
n
Pn

“

γ3
nB

p3q
pηmu˚q

‰

,

nPnrlog pηm ´ log pηmt s “ t
?
nPn rγ0py ´mηqs `

t2

2
Pn

“

γ2
0B

p2q
pηmpd, xqq

‰

`
t3
?
n
Pn

“

γ3
0B

p3q
pηmu˚˚q

‰

,

for some intermediate points u˚, u˚˚ P p0, 1q, cf. the equation (B.1). The rest of the proof

follows similar lines to our proof of Proposition 4.1.
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G Algorithm for drawing the posterior of ηm

We describe the Laplace approximation method that is used to draw the posterior of

ηmpd, xq; see Rassmusen and Williams [2006, Chapters 3.3 to 3.5] for more details on

properties of the Laplace approximation. as follows. Let W “ rD,Xs P Rnˆpp`1q be the

matrix of pD,Xq in the data, W ˚ P R2nˆpp`1q the evaluation points p1, Xq and p0, Xq

W ˚
“

«

1n, X

0n, X

ff

,

and η˚n a 2n-vector that gives the latent function ηmpd, xq evaluated at W ˚:

η˚ “ rηmp1, X1q, ¨ ¨ ¨ , η
m
p1, Xnq, η

m
p0, X1q, ¨ ¨ ¨ , η

m
p0, Xnqs

J .

Let η “ rηmpD1, X1q, . . . , η
mpDn, Xnqs

J denote the n-vector of the latent function at W .

For matrices W ˚ and W , we define KcpW
˚,W q as a 2n ˆ n matrix whose pi, jq-th

element is KcpW
˚
i ,Wjq, where W ˚

i is the i-th row of W ˚ and Wj is the j-th row of W .

Analogously, KcpW ,W q is an n ˆ n matrix with the pi, jq-th element being KcpWi,Wjq,

and KcpW
˚,W ˚q is a 2nˆ 2n matrix with the pi, jq-th element being KcpW

˚
i ,W

˚
j q.

Given the mean-zero GP prior with its covariance kernel Kc, the posterior of η˚ is

approximated by a Gaussian distribution with the mean η̄˚ and covariance Vpη˚q using

the Laplace approximation. To be specific, let

η̄˚ “ KcpW
˚,W qK´1

c pW ,W q pη,

Vpη˚q “ KcpW
˚,W ˚

q ´KcpW
˚,W q

`

KcpW ,W q `∇´1
˘´1

KJ
c pW

˚,W q,

where pη “ argmaxηppη|W ,Y q maximizes the posterior ppη|W ,Y q on the latent η and

∇ “ ´
B2 log ppY |ηq
BηBηJ

is a nˆn diagonal matrix with the i-th diagonal entry being ´B
2 log ppY |ηq

Bη2
i

.

We use the Matlab toolbox GPML for the implementation.9 In sum, we get the posterior

draws of the vectors rηmp1, X1q, ¨ ¨ ¨ , η
mp1, Xnqs

J and rηmp0, X1q, ¨ ¨ ¨ , η
mp0, Xnqs

J from the

above approximating Gaussian distribution with the mean η̄˚ and covariance Vpη˚q.We

then obtain the posterior draws of the ATE by equation (2.8) via mpd,Xiq “ Ψpηmpd,Xiqq

for d P t0, 1u.

9The GPML toolbox can be downloaded from http://gaussianprocess.org/gpml/code/matlab/doc/.
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H Additional Simulation Results

Appendix H presents additional simulation results for adjusted Bayesian inference methods.

The design is the same as that in Section 5.1. Tables A1 evaluates the sensitivity of finite

sample performance with respect to the variance σn that determines influence strength

of the prior correction term. We set σn “ cσ ˆ
a

dimpXqn log n{
řn
i“1 |pγpDi, Xiq| with

cσ P t0.5, 1, 10u. Note that cσ “ 1 corresponds to the simulation results reported in the

main text. The performance of PA and DR Bayes, especially the latter, appears stable

with respect to the choice of cσ.

Table A1: The effect of σn on adjusted Bayesian inference methods:trimming based on π̂ P rt, 1´ts,
n̄ “ the average sample size after trimming.

Methods Bias CP CIL Bias CP CIL Bias CP CIL

Spec I t “ 0.10pn̄ “ 240q t “ 0.05pn̄ “ 364q t “ 0.01pn̄ “ 665q

tσ “ 0.5 PA Bayes -0.018 0.979 0.231 0.022 0.960 0.233 0.037 0.956 0.296

DR Bayes -0.029 0.983 0.213 0.008 0.970 0.212 0.017 0.982 0.251

tσ “ 1 PA Bayes -0.002 0.982 0.274 0.037 0.940 0.260 0.051 0.875 0.310

DR Bayes -0.021 0.979 0.229 0.016 0.966 0.224 0.026 0.938 0.258

tσ “ 10 PA Bayes 0.015 0.967 0.313 0.048 0.920 0.277 0.059 0.833 0.314

DR Bayes -0.014 0.977 0.244 0.022 0.958 0.232 0.031 0.899 0.260

Spec II t “ 0.10pn̄ “ 226q t “ 0.05pn̄ “ 345q t “ 0.01pn̄ “ 603q

cσ “ 0.5 PA Bayes -0.005 0.972 0.263 0.025 0.956 0.259 0.026 0.909 0.285

DR Bayes -0.022 0.967 0.220 0.004 0.962 0.222 0.006 0.946 0.253

cσ “ 1 PA Bayes 0.007 0.966 0.282 0.035 0.930 0.269 0.032 0.883 0.290

DR Bayes -0.013 0.964 0.233 0.012 0.957 0.230 0.011 0.930 0.258

cσ “ 10 PA Bayes 0.012 0.959 0.289 0.038 0.919 0.273 0.034 0.876 0.292

DR Bayes -0.009 0.964 0.238 0.015 0.954 0.233 0.013 0.923 0.259

Spec III t “ 0.10pn̄ “ 212q t “ 0.05pn̄ “ 321q t “ 0.01pn̄ “ 613q

cσ “ 0.5 PA Bayes -0.003 0.971 0.282 0.023 0.946 0.271 0.032 0.906 0.287

DR Bayes -0.022 0.966 0.235 0.002 0.953 0.232 0.016 0.945 0.263

cσ “ 1 PA Bayes 0.005 0.962 0.296 0.029 0.934 0.277 0.035 0.890 0.290

DR Bayes -0.016 0.963 0.243 0.007 0.953 0.237 0.019 0.932 0.266

cσ “ 10 PA Bayes 0.008 0.960 0.303 0.031 0.930 0.279 0.036 0.888 0.290

DR Bayes -0.014 0.961 0.246 0.008 0.950 0.238 0.020 0.934 0.266

Table A2 reports the finite sample performance of DR Bayes using sample-split. We

use one half of the sample (92 treated and 1245 control observations) to estimate the prior

and posterior adjustments, and then draw the posterior of the conditional mean mpd, xq

using the other half of the sample (93 treated and 1245 control observations). The effective
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sample size n̄ in Table A2 corresponds to the after-trimming size of the subsample used

for drawing posteriors. As Table A2 shows, DR Bayes using sample-split yields similar

coverage probabilities as its counterpart in Table 1 that uses the full sample twice. The

credible interval length increases as a result of halving the sample size.

Table A2: Double robust Bayesian (DR Bayes) inference methods using sample-split: trimming
based on π̂ P rt, 1´ ts, n̄ “ the average sample size after trimming.

Spec Bias CP CIL Bias CP CIL Bias CP CIL

I t “ 0.10pn̄ “ 124q t “ 0.05pn̄ “ 185q t “ 0.01pn̄ “ 340q

-0.009 0.969 0.332 0.020 0.965 0.324 0.020 0.932 0.389

II t “ 0.10pn̄ “ 118q t “ 0.05pn̄ “ 177q t “ 0.01pn̄ “ 317q

-0.009 0.938 0.333 0.024 0.924 0.330 0.025 0.898 0.416

III t “ 0.10pn̄ “ 115q t “ 0.05pn̄ “ 172q t “ 0.01pn̄ “ 331q

-0.013 0.943 0.350 0.012 0.926 0.340 0.028 0.892 0.427
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