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Abstract

We revisit the welfare properties of competitive credit markets with endogenous

debt limits that arise from limited commitment. We introduce a novel concept of

constrained efficiency to encompass economies where market interest rates influence

default values and participation constraints. We explore this concept through a baseline

economy featuring heterogeneous agents with cyclical endowments. The analysis shows

that the efficiency of market equilibria and welfare outcomes are sensitive to the nature

of default punishments. It suggests that laissez-faire debt limits, while supportive

of risk-sharing, might not always optimize welfare. The study illustrates how credit

rationing—tightening future debt limits—can enhance current risk-sharing and overall

welfare. This occurs because such interventions influence market interest rates and

the default option’s value, thereby affecting agents’ present consumption and saving

choices, and enabling a more efficient allocation of resources.
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1 Introduction

We revisit welfare properties of competitive credit markets with debt limits that endoge-

nously arise from limited commitment, as analyzed in the foundational works of Kehoe and

Levine (1993), Kocherlakota (1996), and Alvarez and Jermann (2000). Our point of de-

parture is an infinite-horizon general equilibrium model in which agents with heterogeneous

income shocks trade debt contracts and may choose to default on their debts. This lack

of commitment endogenously gives rise to state- and agent-specific debt limits (akin to an

individual’s debt limit on the credit card). With rational lenders, these debt limits should be

tight enough to prevent default. However, with a competitive credit market, the limits should

be loose enough to allow as much risk-sharing as possible. In other words, our laissez-faire

baseline is a general equilibrium with not-too-tight debt limits, as pioneered by Alvarez and

Jermann (2000). This framework has been proven to be valuable for studying the welfare

implications, as well as the asset pricing, business cycles, and consumption/wealth inequality

implications of incomplete financial markets, where the incompleteness is microfounded by

limited commitment (Alvarez and Jermann 2001, Krueger and Perri 2006, Azariadis et al.

2016).

Our first contribution is to show that the nature of the default punishment is pivotal in

determining the efficiency of competitive equilibrium outcomes. Specifically, efficiency relies

on the assets agents can trade upon default. In settings where defaulting agents are entirely

excluded from trading activities (effectively, financial autarky), laissez-faire allocations ex-

hibit finite-time efficiency. This essentially means that Pareto improvements are infeasible

when the scope of the social planner’s redistributive actions is confined to a finite number

of periods.1 However, analyzing the efficiency properties of equilibria becomes considerably

1Standard Pareto efficiency assumes that a planner can enhance welfare by undertaking feasible redis-
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more intricate in settings where the default punishment is less severe than financial autarky.

Specifically, inspired by the works of Bulow and Rogoff (1989), Krueger and Uhlig (2006),

Krueger and Perri (2006) and Hellwig and Lorenzoni (2009), we study the practically rele-

vant case where defaulters (akin to individuals with poor credit scores) are excluded from

borrowing but retain the ability to save.2 In this context, existing concepts of constrained

efficiency, which typically involve specifying exogenous outside values (such as the continua-

tion value in autarky), become inapplicable. This is because when a defaulter can save in the

financial market, the value of default naturally and endogenously depends on the prevailing

interest rates in the market. It is precisely this dependence that might overturn the first

welfare theorem. To see this, we should first carefully define constrained efficiency, a task

that proves quite challenging.

In standard textbooks, an efficient allocation is defined as a feasible allocation (where

total consumption does not exceed total endowments) that is not Pareto dominated by an-

other feasible allocation. With limited commitment, where the risk of default restricts the

set of consumption and asset allocations, efficiency is similarly defined, with the additional

requirement that a feasible allocation must satisfy participation constraints. These partic-

ipation constraints are straightforward when the default punishment is autarky: at every

state, each agent must prefer their consumption allocation to the consumption in autarky.

However, when the default punishment does not preclude agents from saving in the

financial market, the value of the default option depends on the market interest rate. Con-

tributions across the infinite timeline of the economy. This criterion sets a high bar, as competitive markets

with sequential trading often fail to curtail welfare-improving reallocations in the distant future without

explicit limits on price behavior in the long term. Notably, in situations where the consequence of default

is financial autarky, Bloise and Reichlin (2011) highlighted that laissez-faire equilibria could become Pareto

inefficient if interest rates remain persistently low. In settings with full commitment, the equilibrium prices

naturally adhere to a transversality condition, eliminating the possibility of long-term mutual gains from

trade and thus safeguarding Pareto efficiency. However, in contexts of limited commitment, without imposing

additional constraints, equilibrium prices are not guaranteed to fulfill this critical condition.

2In the US, no law prevents a defaulter from saving at banks, and in many cases, states and federal laws

can make it difficult or costly for creditors to garnish bank accounts (Warren et al. 2020).
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sequently, the definition of feasibility must be appropriately adjusted to specify the prices or

interest rates that are integral to formulating the participation constraint. As a result, we in-

troduce a novel concept of feasibility for the planner, where prices (implicitly constructed by

consumption) accompany allocations, and the default option in the participation constraint

depends on these prices. Specifically, the planner sets prices equal to the highest marginal

rates of substitution, as it happens in any self-enforcing equilibrium.3 However, in contrast

to laissez-faire market prices, which are determined by taking the maximum among agents

with nonbinding participation constraints, the planner selects the maximal marginal rate of

substitution among all agents. In doing this, the planner, unlike individuals, internalizes

the broader economic implications of saving and borrowing decisions—which are influenced

by consumption choices—on asset prices, default values, and, ultimately, participation con-

straints.

This paper’s main contribution is to show that finite-time efficiency, defined according to

our novel definition of feasibility, might not prevail in settings where agents can save after

default. The starting point of our analysis amounts to establishing a relationship between

finite-time efficiency and a planner’s problem. This connection enables us to introduce novel

optimality conditions that illustrate how changes in prices impacting the default value–

the pecuniary externality–can lead to finite-time inefficiencies in laissez-faire equilibrium

allocations. Furthermore, we offer an implementability insight: if a laissez-faire allocation

fails to meet the necessary conditions for finite-time efficiency, then it is possible to identify

a superior Pareto allocation among those supported by self-enforcing competitive equilibria

with nonnegative debt limits. Moreover, this Pareto superior allocation differs from the

laissez-faire allocation only for finitely many periods. This is a strong inefficiency result that

aligns closely with practical scenarios where policy interventions last a certain number of

periods because long-term commitments are infeasible.

3This property of the pricing kernel in models with heterogeneous agents is crucial, as it allows these

models to generate pricing kernels that could be sufficiently volatile to help explain behaviors of asset prices

and wealth accumulation in the data (Constantinides and Duffie 1996, Alvarez and Jermann 2001, Heathcote

et al. 2009, Rampini and Viswanathan 2010, Cao 2018).
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The welfare analysis suggests that imposing restrictions on private credit beyond what is

traditionally deemed necessary might yield a finite-time Pareto improvement. To clarify this

point, we examine a baseline economy where two agents face endowment uncertainty exclu-

sively in the initial period, followed by deterministic cyclical endowments thereafter. Within

this framework, we single out a symmetric Markovian laissez-faire equilibrium characterized

by zero interest rates and binding debt limits in the high-income state.

Our analysis delivers two main findings. First, we analytically characterize the optimality

conditions of the planner’s problem and compare them with the ones of the laissez-faire

equilibrium. There, we establish a sufficient parameter condition under which the laissez-

faire allocation is finite-time inefficient and can be Pareto dominated by another feasible

allocation. This alternative allocation corresponds to an equilibrium outcome with debt

limits that are self-enforcing (i.e., sufficiently tight to prevent default) but are possibly too

tight. This means that maximal risk sharing might not always be the planner’s optimal

strategy, indicating that policy interventions that tighten or ration laissez-faire debt limits

could enhance welfare. Second, we formally construct a credit rationing intervention in

this economy. Our findings demonstrate that imposing too-tight debt limits in some future

periods can raise the ex-ante social welfare. Such interventions are interpreted as a simplified

form of regulatory or prudential policies to constrain financial leverage.

Intuitively, even though all agents are fully rational and forward-looking, they fail to

internalize how changes in the severity of credit restrictions affect equilibrium prices and,

most crucially, feedback on the value of the default option. Specifically, tightening the

debt constraints at some period τ reduces (current) risk-sharing and leads to an increase

in bond prices or, equivalently, a decrease in the implied interest rates at that period. In

our model, where default induces exclusion from credit markets, such a policy intervention

could diminish the attractiveness of defaulting in periods t ⩽ τ by making it more expensive

to smooth consumption over time through savings alone. Consequently, the extent of risk-

sharing implemented at the previous periods t < τ might increase, paving the way for a

potential Pareto improvement: the benefits of the enlarged risk-sharing opportunities at
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periods t < τ may compensate for the costs of facing tighter constraints at period τ .4 This

is the essence of the mechanism we explore in this paper.

A critical part of our analysis is to clarify the feedback effects of such policy interven-

tions on equilibrium prices and the default option. It is essential to note that the proposed

financial market intervention does not equate to altering the penalties for defaulting, which

remain constant throughout our discussion. Instead, the reallocation is achieved by tighten-

ing borrowing limits to levels lower than the loosest self-enforcing ones.

In our model, where debt is fully unsecured, a laissez-faire equilibrium—with maximal

debt limits—necessarily features a zero interest rate. One may be tempted to attribute the

inefficiencies we discovered to low interest rates. We argue that this conjecture is false by

demonstrating that Pareto improvement is robust to more stringent default punishments

that give rise to laissez-faire equilibria with positive interest rate.

Specifically, we extend our policy experiment to a setting where default triggers not only

exclusion from credit, but also deadweight losses to endowment.5 To single out a symmet-

ric Markovian laissez-faire equilibrium in this modified setting poses additional challenges

that we overcome by providing a novel and intuitive decomposition of not-too-tight debt

limits into a fundamental and a bubble component.6 This characterization is particularly

useful for our analysis. It significantly streamlines the computation of laissez-faire equilibria,

eliminating the complexities of determining the fixed-point debt limits.

4Debt constraints at periods t < τ remain the loosest compatible with repayment incentives. However,

repayment incentives might be stronger in these periods due to increased bond prices (and the associated

fall in the default value) at time τ . This, in turn, can increase the amount of available liquidity at t < τ and

support more risk-sharing.

5In the context of consumer and corporate defaults, they represent legal repercussions such as recourse

and seized collateral.

6The fundamental component equates to the present value of endowment losses and the bubble com-

ponent stands for the amount of credit that agents can perpetually rollover. Although this decomposition

parallels the characterization result of Hellwig and Lorenzoni (2009) in our modified setting, our result is not

a straightforward extension of their work. It relies on novel insights with no counterparts in models without

output losses.
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We find that irrespective of the magnitude of endowment loss, the laissez-faire equili-

brium consistently features positive interest rates. We demonstrate that subject to the same

policy intervention—namely, tightening the debt limits at a specific period—the resulting

new equilibrium still yields a consumption allocation that Pareto dominates the laissez-faire

allocation. This confirms that inefficiencies in markets for unsecured credit are not inherently

tied to low interest rates.

Related Literature. The study of competitive credit markets with limited commitment

dates back to Kehoe and Levine (1993) and Kocherlakota (1996). When there are multi-

ple commodities and default does not preclude agents from participating in spot markets,

constrained efficiency may not be achieved due to the inability of private contracts to ac-

count for their impact on relative prices and the default option. The logic there parallels

the discussions in economies with incomplete markets, where the redistribution of asset

holdings—via induced price changes—alters the spanning properties of the limited assets

(Hart 1975, Stiglitz 1982, Geanakoplos and Polemarchakis 1986). Similar conclusions have

been drawn in contexts where contracting is subject to private information (Greenwald and

Stiglitz 1986).

However, the single-commodity model we examine lacks both spot markets and private

information, so this mechanism is absent. Furthermore, studies by Alvarez and Jermann

(2000), Bloise and Reichlin (2011), Bloise et al. (2013) and Bloise (2020) show that laissez-

faire equilibria are finite-time efficient when default leads to autarky. Our analysis diverges

by establishing that finite-time inefficiency can arise in single-commodity economies when

debt enforcement is based on a weaker form of exclusion (i.e., one-sided exclusion) from

financial markets. Changes in the severity of credit restrictions induce price changes in

bond markets. These price changes, in turn, affect the value of default and, therefore, the

extent of risk sharing, potentially improving efficiency. This source of inefficiency is absent

in the model by Alvarez and Jermann (2000) since the default’s value remains unaffected by

changes in bond prices.

Our work is related to a well-developed literature studying the emergence of pecuniary
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externalities in production economies with collateral constraints. Gromb and Vayanos (2002)

show that both distributive and collateral externalities can emerge due to market segmen-

tation. Lorenzoni (2008), Bianchi (2011), Bianchi and Mendoza (2011) and Jeanne and

Korinek (2019) show how optimal borrowing decisions at the individual level can lead to

overborrowing at the social level and potentially cause fire sales, asset prices to decline, and

the economy’s borrowing capacity to shrink. Dávila and Korinek (2018) explore pecuniary

externalities in dynamic environments subject to reduced-form, price-dependent collateral

constraints. They distinguish between distributive and collateral externalities and show that

these two types can be quantified using sufficient intuitive statistics. In all of these studies, a

change in the level of investment induces resource reallocation through capital accumulation.

A planner can mitigate this market failure by reducing aggregate investment ex-ante and,

therefore, the size of the asset sales during downturns. In contrast, this channel is absent in

our pure exchange framework as aggregate resources are fixed, and only their distribution is

subject to change. As our findings suggest, within our model’s context, the planner selects

from among all feasible self-enforcing equilibria, utilizing the adjustment of debt constraints

as the exclusive mean for reallocating resources.

Our paper also relates to the work of Gottardi and Kubler (2015), which studies the

effects of unexpected mandatory savings in an economy where agents can only take long

positions on contingent trees, the work of Guerrieri and Lorenzoni (2017), which studies the

effects of unexpected credit contractions in a heterogeneous-agent incomplete-market model

with exogenous borrowing limits, and the work of Aguiar et al. (2023), which studies Pareto-

improving fiscal policies in this environment when the interest rate on the government bond is

below the growth rate. Our research distinguishes itself from these works by placing limited

commitment and the endogenous nature of borrowing limits as key drivers of inefficiencies

in debt markets.

The plan of the paper is as follows. Section 2 introduces the model environment and

defines self-enforcing and not-too-tight debt limits. Section 3 defines finite-time efficiency,

identifies necessary optimality conditions, and shows that Pareto superior allocations can

be implemented as self-enforcing competitive equilibria. Section 4 applies the results of
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Section 3 to a baseline economy. Section 5 incorporates endowment losses upon default and

establishes that our findings regarding market inefficiencies do not depend on the premise

of interest rates being lower than growth rates. Section 6 concludes. The online appendix

provides detailed proofs, technical arguments, and additional discussions.

2 General Model

Consider an infinite-horizon endowment economy with a single nonstorable consumption

good at each date. Time and uncertainty are both discrete. We use an event tree Σ to

describe the revelation of information over an infinite horizon. There is a unique initial

date-0 event s0 ∈ Σ, and for each date t ∈ {0, 1, 2, . . .}, there is a finite set St ⊆ Σ of date-t

events st. Each st has a unique predecessor σ(st) in St−1 and a finite number of successors

st+1 in St+1 for which σ(st+1) = st. The notation st+1 ≻ st specifies that st+1 is a successor

of st. The event st+τ is said to follow event st, also denoted st+τ ≻ st, if σ(τ)(st+τ ) = st.7

The set St+τ (st) := {st+τ ∈ St+τ : st+τ ≻ st} denotes the collection of all date-(t+τ) events

following st. Abusing notation, we let St(st) := {st}. The subtree starting at event st is

then given by:

Σ(st) :=
⋃
τ⩾0

St+τ (st).

We use the notation sτ ⪰ st when sτ ≻ st or sτ = st. In particular, we have Σ(st) = {sτ ∈

Σ : sτ ⪰ st}.

There is a finite set I of household types, each consisting of a unit measure of identical,

infinitely lived agents who consume a single perishable good. Preferences over (nonnega-

tive) consumption processes c = (c(st))st⪰s0 are represented by the lifetime expected and

discounted utility:

U(c) :=
∑
t⩾0

βt
∑
st∈St

π(st)u(c(st)),

7Formally, σ is a mapping from Σ \ {s0} to Σ such that σ(St+1) = St for every t ⩾ 0. We pose σ(1) := σ

and σ(τ+1) := σ ◦ σ(τ) for every τ ⩾ 1.
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where β ∈ (0, 1) is the discount factor, π(st) is the agent’s subjective belief of state st, and

u : [0,∞) → R ∪ {−∞} is a utility function that is strictly increasing, strictly concave,

continuously differentiable on (0,∞), and satisfies Inada’s condition limε→0[u(ε)−u(0)]/ε =

∞. Given an event st, we denote by U(c|st) the lifetime continuation utility conditional

on st, as defined by:

U(c|st) := u(c(st)) +
∑
τ⩾1

βτ
∑

st+τ≻st

π(st+τ |st)u(c(st+τ )),

where π(st+τ |st) := π(st+τ )/π(st) is the conditional probability of st+τ given st. Agents’

endowments are subject to random shocks. We denote by yi = (yi(st))st⪰s0 the process of

positive endowments yi(st) > 0 of a representative agent of type i. For notational conve-

nience, we have written the primitives as if agents’ preferences and beliefs are homogeneous.

However, our arguments remain valid when agents have heterogeneous preferences and be-

liefs, and the only necessary change is to replace (u, β, π) with (ui, βi, πi).

2.1 Asset Markets with Self-Enforcing Debt Constraints

At any event st, agents can issue and trade state-contingent one-period bonds, each

one promising to pay one unit of the consumption good contingent on the realization of a

successor event st+1 ≻ st. Let q(st+1) > 0 represent the price, at event st, of the bond

contingent on event st+1.8 Agent i’s bond holdings are ai = (ai(st))st⪰s0 , where a
i(st) ⩽ 0 is

a liability, and ai(st) ⩾ 0 is a claim. Each agent’s debt is observable and subject to certain

(state-contingent, finite and) nonnegative debt limits Di = (Di(st))st⪰s0 .
9 Given an initial

bond holding ai(s0) and debt limits Di, we denote by Bi(Di, ai(s0)|s0) the budget set of an

agent who never defaults. It consists of all pairs (ci, ai) of consumption and bond holdings

8More precisely, for each successor event st+1 ≻ st, the yield of the bond traded at event st is given by

the reciprocal of its price, i.e., 1/q(st+1).

9In this paper, we focus on nonnegative debt limits, thereby refraining from imposing mandatory savings

that would compel individuals to accumulate assets.
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satisfying the following budget flows and debt constraints: for all st ⪰ s0,

ci(st) +
∑

st+1≻st

q(st+1)ai(st+1) ⩽ yi(st) + ai(st), (2.1)

and

ai(st+1) ⩾ −Di(st+1), for all st+1 ≻ st. (2.2)

We naturally restrict attention to allocations where the initial asset holdings clear the mar-

ket, i.e.,
∑

i∈I a
i(s0) = 0, and satisfy the debt constraints, i.e., ai(s0) ⩾ −Di(s0) for each i.

Similarly, contingent on an event sτ , we let Bi(Di, x|sτ ) be the set of all plans (ci, ai) satisfy-

ing restrictions (2.1) and (2.2) at every successor node st ⪰ sτ with initial claim ai(sτ ) = x.

Denote the contingent value function at event sτ , when agent i starts with financial wealth

x, by V i(Di, x|sτ ). It is defined as the largest continuation utility U(ci|sτ ) among all budget

feasible plans (ci, ai) ∈ Bi(Di, x|sτ ). When x = ai(sτ ), this will be the equilibrium value,

i.e., the payoff to each agent i along the equilibrium path following any event sτ .

So far, debt limits are arbitrary. We next move to the endogenous determination of the

debt limits, which are a critical determinant of equilibrium allocations and payoffs. Debt

limits represent the maximal amount of debt that borrowers can issue. In general equilibrium,

they also represent the maximal amount of liquidity (or storage of value) that savers can

access. We follow Alvarez and Jermann (2000) and provide a microfoundation for the level of

debt limits by assuming that agents have limited commitment. We consider an environment

where agents cannot commit to their financial contracts and may opt for default. We denote

by V i
def(q|st) agent i’s value of the default option at event st, and we impose that the debt

limits reflect the fact that repayment is always individually rational.10 Specifically, we say

that debt limits Di are self-enforcing if debtors prefer to repay even the maximum debt

allowed, i.e.,

V i(Di,−Di(st)|st) ⩾ V i
def(q|st), for all st ⪰ s0. (2.3)

10The continuation value V i(Di, x|st) is affected by the process of asset prices (q(sτ ))sτ≻st , although,

for simplicity, we do not specifically outline this connection. On the other hand, for the default value, we

explicitly highlight its dependence on asset prices due to its pivotal role in identifying “feasible” actions for

a social planner. For further elaboration, please refer to Section 3.
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We say that Di are not too tight if (2.3) always holds with equality, i.e., borrowers are

indifferent between repaying and defaulting:

V i(Di,−Di(st)|st) = V i
def(q|st), for all st ⪰ s0. (2.4)

Given future debt limits (Di(sτ ))sτ≻st , the level Di(st) satisfying (2.4) is the largest self-

enforcing debt limit contingent on event st. We say that Di are too tight if they are self-

enforcing and (2.3) holds with strict inequality at some event st ≻ s0.

Definition 2.1. Given a family of default value functions (V i
def)i∈I , we call a self-enforcing

equilibrium (q, (ci, ai, Di)i∈I) a collection of state-contingent bond prices q, a consumption

allocation (ci)i∈I , a bond holdings allocation (ai)i∈I , and a family of debt limits (Di)i∈I such

that:

(a) the plan (ci, ai) of agent i is optimal among budget feasible plans in Bi(Di, ai(s0)|s0);

(b) the debt limits Di of agent i satisfy the self-enforcing condition (2.3);

(c) markets clear:
∑

i∈I c
i =

∑
i∈I y

i and
∑

i∈I a
i = 0.

When the debt limits of all agents satisfy condition (2.4), we use the term not-too-tight

equilibrium. It is reasonable to expect that in a competitive market, competition among

lenders should naturally lead them to offer as much credit as possible without violating

borrowers’ incentive to repay. Hence, we will also use the term laissez-faire equilibrium as a

synonym for not-too-tight equilibrium. Similarly, when the debt limits are too tight, we use

the term too-tight equilibrium.

The default value is the key object determining the not-too-tight debt limits. We consider

a framework where all assets are seized upon default, and debtors lose access to credit while

retaining the ability to save (by purchasing other people’s debt). Consequently, the value of

default for any agent i at any event st is given by:

V i
def(q|st) = V i(0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi(0, 0|st)}. (2.5)
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The condition (2.4) then reads as follows:

V i(Di,−Di(st)|st) = V i(0, 0|st), for all st ⪰ s0. (2.6)

The assumption that agents can save after default follows Bulow and Rogoff (1989) and

Hellwig and Lorenzoni (2009) but contrasts with Alvarez and Jermann (2000) who assume

that defaulting agents can neither borrow nor save. This weaker form of punishment captures

the idea that it is much easier for market participants to coordinate on not purchasing the

claims issued by a borrower with a “bad reputation” than to enforce an outright ban from

financial markets. Most importantly, Krueger and Uhlig (2006) provided microfoundations

for this default punishment by analyzing dynamic equilibrium risk-sharing contracts between

profit-maximizing intermediaries and agents facing income uncertainty. They showed that

our default value coincides with the endogenously determined outside option in the model

they study.

2.2 Optimality Conditions

For a given (strictly positive) consumption allocation c = (ci)i∈I , we define the marginal

rate of substitution for agent i at event st, denoted as qi(ci|st), by

qi(ci|st) := βπ(st|σ(st)) u′(ci(st))

u′(ci(σ(st)))
.

The price q⋆(c) implied by the allocation c = (ci)i∈I is defined as the highest marginal rate

of substitution across all agents:

q⋆(c|st) := max
i∈I

qi(ci|st).

Consider a self-enforcing equilibrium (q, (ci, ai, Di)i∈I). The Principle of Optimality implies

that U(ci|st) = V i(Di, ai(st)|st). As debt limits are self-enforcing, we deduce that the

consumption process ci satisfies the participation constraints:

U(ci|st) ⩾ V i
def(q|st), for every st ⪰ s0.
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Euler equations imply that q(st) ⩾ qi(ci|st) with equality if the debt constraint is not binding:

ai(st) > −Di(st), or, equivalently, U(ci|st) > V i(Di,−Di(st)|st). This implies that q(st) ⩾

q⋆(c|st). If all agents face binding debt constraints at event st, then it follows that ai(st) =

Di(st) = 0 for each agent i.11 This condition leads to V i(Di, 0|st) = V i(0, 0|st), implying

that Di(sτ ) = 0 for all successor events sτ ⪰ st, and effectively implementing autarky within

the subtree Σ(st) and setting V i
def(q|sτ ) = U(yi|sτ ) for every subsequent event sτ ⪰ st. Under

these circumstances, for any sτ ≻ st, the price q(sτ ) may be replaced by the autarkic price

q⋆(y|sτ ) = q⋆(c|sτ ) when defining the default value contingent on event st.12 Given that debt

constraints persist across the subtree Σ(st), the pair (ci, ai) maintains its optimality even

when substituting q with q⋆(c). The following proposition encapsulates these findings:

Proposition 2.1. Given a self-enforcing equilibrium (q, (ci, ai, Di)i∈I), the default value

V i
def(q|st) equals V i

def(q
⋆(c)|st), the participation constraint U(ci|st) ⩾ V i

def(q
⋆(c)|st) holds

true, and the adjusted family (q⋆(c), (ci, ai, Di)i∈I) remains a self-enforcing equilibrium. Ad-

ditionally, if debt limits are not-too-tight, we have qi(ci|st) = q⋆(c|st) when agent i’s partici-

pation constraint is not binding.

Given this result, we can assume (without loss of generality) that the equilibrium prices

take the form q⋆(c), where c represents the implemented consumption allocation.

2.3 Weak and Exact Rollover

Hellwig and Lorenzoni (2009) proved that not-too-tight debt limits necessarily form a

bubble that captures the possibility of exactly rolling over debt indefinitely. Formally, a

process Di of debt limits is not too tight (for the default punishment described by (2.5)) if,

11Given market clearing, the equality 0 =
∑

i∈I a
i(st) = −

∑
i∈I D

i(st) holds. As Di(st) ⩾ 0, we conclude

Di(st) = 0.

12It’s important to notice that only the prices q(sτ ) at strict successor events sτ ≻ st are relevant for

determining V i
def(q|st).
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and only if:

Di(st) =
∑

st+1≻st

q(st+1)Di(st+1), for all st ≻ s0. (2.7)

It is straightforward to verify that if there is a strict inequality in (2.7), then debt limits

are self-enforcing and too tight.

Proposition 2.2. Fix an event sτ ∈ Σ and assume that:

Di(st) ⩽
∑

st+1≻st

q(st+1)Di(st+1), for all st ⪰ sτ (2.8)

with a strict inequality in at least one successor event st ⪰ sτ . Then V i(Di,−Di(sτ )|sτ ) >

V i(0, 0|sτ ).

The characterization of not-too-tight and too-tight debt limits, framed in terms of the

exact or weak rollover, facilitates the computation of equilibria. It sidesteps the typical

complexities associated with the fixed-point process of identifying self-enforcing debt limits:

as the default values depend on prices (given that defaulting agents retain the ability to save),

they are influenced by equilibrium allocations and, consequently, the debt limits themselves.

The usefulness will become clear when we conduct our policy intervention experiment in

Section 4.

3 Pareto Criteria and Efficiency

In models where financial frictions stem from limited commitment, the prevailing view

is that borrowing should adhere to the most lenient debt constraints that align with the fi-

nancial friction. Not-too-tight debt limits should emerge organically in a competitive credit

market, where competition among lenders would allow borrowers to take on the maximum

debt that still aligns with repayment incentives. This perspective is bolstered by the no-

tion that such debt limits facilitate optimal risk-sharing. While this may hold in a partial

equilibrium context with static prices, its validity becomes dubious in general equilibrium

scenarios where prices and debt limits are endogenously determined.
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Hellwig and Lorenzoni (2009) demonstrated that in a laissez-faire equlibrium, not-too-

tight debt limits must be bubbly. Our research investigates potential equilibrium alternatives

to the conventional laissez-faire paradigm. We question whether it’s possible to move beyond

bubbly equilibria and identify an equilibrium characterized by too-tight debt limits that

Pareto outperforms the laissez-faire equilibrium.

To motivate our investigation, we first introduce welfare metrics by considering different

types of Pareto improvements available to a social planner who faces the same self-enforcing

participation constraints as the markets due to the lack of commitment. We shall start by

defining feasibility in our context. We formulate a social planner’s problem that mimics the

“primal approach” to optimal policy analysis: the planner chooses consumption allocations

(ci)i∈I subject to:

(a) resource constraint:
∑

i∈I c
i(st) =

∑
i∈I y

i(st) for all st ⪰ s0;

(b) participation constraints: U(ci|st) ⩾ V i
def(q|st) for all st ⪰ s0;

(c) implementability constraints: q(st) = q⋆(c|st) for all st ≻ s0.

A consumption allocation is feasible when it satisfies properties (a), (b), and (c).13

Since asset prices remain market determined, the private agents’ Euler equations for assets

enter the social planner’s problem as an implementablity constraint. Thus, the planner does

not set asset prices. Still, it does internalize how saving/borrowing decisions (indirectly

determined by consumption choices) affect asset prices, the default value, and participation

constraints.

The most commonly utilized metric for evaluating the welfare attributes of a specific

feasible allocation is the Pareto criterion: it stipulates that every agent’s expected utility

at time zero, discounted over time, weakly increases, with at least one agent experiencing

a strict improvement. A given feasible allocation (ci)i∈I is deemed (constrained) efficient if

the social planner cannot identify another feasible allocation (c̃i)i∈I that Pareto dominates

13Proposition 2.1 shows that consumption allocations supported by a self-enforcing competitive equili-

brium are feasible.
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(ci)i∈I .
14 Efficiency is a demanding welfare criterion as it presupposes that the planner can

enhance welfare through a balanced redistribution extended across the infinite horizon of the

economy. Competitive markets with sequential trading fail to enforce sufficient constraints to

avert welfare-improving adjustments in the distant future unless there are specific limitations

on the long-term behavior of prices.15 A weaker Pareto criterion consists in restricting

the social planner’s redistributions to a limited number of periods. Specifically, a feasible

allocation (ci)i∈I is considered finite-time efficient if there is no finite horizon T ⩾ 1 for

which there exists an alternative feasible allocation (c̃i)i∈I that Pareto dominates (ci)i∈I ,

while respecting c̃i(st) = ci(st) for all st when t > T . The impossibility of achieving Pareto

improvements within a finite horizon represents a milder constraint. Thus, demonstrating

the finite-time inefficiency of a feasible allocation signifies a stronger assertion than merely

showing it is not Pareto efficient.

In Alvarez and Jermann (2000), where autarky is the default punishment, consumption

allocations implemented by laissez-faire equilibria are finite-time efficient.16 The important

contribution of this paper is to analyze whether this efficiency result remains valid in the

environment where saving is allowed upon default. We start by recalling the standard con-

nection between efficiency and social planner programs.

Lemma 3.1. If a feasible allocation c = (ci)i∈I is finite-time efficient, then the pair (q⋆(c), c)

solves the social planner program that maximizes welfare
∑

i∈I U(c̃
i|s0) among all pairs

(q̃, (c̃i)i∈I) that satisfy the Pareto constraint U(c̃i|s0) ⩾ U(ci|s0) in addition to feasibility

constraints (a), (b), and (c), and c and c̃ only differ for finitely many periods.

From the above result, we can derive the necessary optimality conditions for weak effi-

ciency. For every event st, let I⋆(st) = {i ∈ I : q⋆(c|st) = qi(ci|st)} denote the set of agents

having the largest marginal rate of substitution at event st given the allocation (ci)i∈I . Fix

14Meaning that U(c̃i|s0) ⩾ U i(ci|s0) for all agents i, with a strict improvement for at least one agent.

15In scenarios where the default punishment is autarky, Bloise and Reichlin (2011) demonstrated that a

laissez-faire equilibrium could be inefficient if interest rates remain sufficiently low indefinitely.

16See Bloise et al. (2013) and Bloise (2020).
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some arbitrary finite horizon T ⩾ 1 and ε > 0. Denote by P(T, ε) the set of pairs (q̃, (c̃i)i∈I)

satisfying conditions (a) and (b), together with, for every event st and successors st+1 ≻ st,

(i) if t > T , then c̃i(st) = ci(st) and q̃(st+1) = q⋆(c|st+1);

(ii) if t ⩽ T , then |c̃i(st)− ci(st)| < ε and |q̃(st+1)− q⋆(c|st+1)| < ε;

(iii) q̃(st) = qi(c̃i|st) for every i ∈ I⋆(st).

By construction, (q⋆(c), c) belongs to P(T, ε). Choosing ε > 0 small enough, we can verify

that all pairs (q̃, c̃) in P(T, ε) also satisfy the feasibility constraint (c).17 Utilizing Lemma 3.1,

we infer that the pair (q⋆(c), c) constitutes a solution to the social planner’s program aimed

at maximizing the aggregate social welfare
∑

i∈I U(c̃
i|s0) carried out over all pairs (q̃, (c̃i)i∈I)

within the set P(T, ε) that satisfy the Pareto constraints U(c̃i|s0) ⩾ U(ci|s0).18 Consequently,

this leads to the establishment of the following optimality conditions.

Corollary 3.1 (Optimality Conditions). Finite-time efficiency of a feasible allocation c =

(ci)i∈I yields the following optimality conditions:19

µ(st) = βtπ(st)u′(ci(st))
[
λi + ξi(s0) + . . .+ ξi(st)

]
+ A(ci(st))

[
χi(st)q(st)−

∑
st+1≻st

χi(st+1)q(st+1)

]
, (3.1)

and20 ∑
i∈I

χi(st) =
∑
i∈I

t∑
r=0

βrπ(sr)ξi(sr)
∂V i

def(·|sr)
∂q(st)

(q); (3.2)

17Indeed, fix an event st and an agent i. If i ∈ I⋆(st), then q̃(st) = qi(c̃i|st). If q⋆(c|st) > qi(ci|st),

then for ε > 0 small enough, we also have q̃(st) > qi(c̃i|st) due to the continuity of u′. This proves that

q̃(st) = q⋆(c̃|st).
18Incorporating the Pareto constraints U(c̃i|s0) ⩾ U(ci|s0) alongside the feasibility constraints renders

the selection of positive welfare weights νi > 0 in defining the social welfare function
∑

i∈I ν
iU(c̃i|s0) non-

essential. For the sake of clarity in presentation, we set νi = 1 for each agent i.

19For any x > 0, we let A(x) := −u′′(x)/u′(x) denote the Arrow–Pratt measure of risk-aversion at the

consumption level x.

20By convention, we pose ξi(sT+1) = 0 for every sT+1 ∈ ST+1.
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where (λi)i∈I is a vector of nonnegative welfare weights, µ(st) is the Lagrange multiplier for

the market clearing condition (a), ξi(st) ⩾ 0 the Lagrange multiplier for the participation

constraint (b), and χi(st) the Lagrange multiplier for the implementability constraint (c).21

Moreover, Lagrange multipliers are not all equal to zero and satisfy: ξi(st) = 0 if U(ci|st) >

V i
def(q|st), and χi(st) = 0 if qi(ci|st) < q⋆(c|st).22

If a feasible consumption allocation fails to satisfy conditions (3.1) and (3.2), the social

planner can make a feasible redistribution in finite time that is Pareto improving. If the

initial consumption is implemented by a laissez-faire equilibrium with strictly positive debt

limits, then the alternative Pareto superior allocation can be chosen among those supported

by a self-enforcing competitive equilibrium (with nonnegative debt limits).

Theorem 3.1 (Implementation). Consider a laissez-faire equilibrium (q, (ci, ai, Di)i∈I) with

strictly positive debt limits. If the optimality conditions (3.1) and (3.2) cannot be satisfied

for some Lagrange multipliers, then there exists a self-enforcing equilibrium (q̃, (c̃i, ãi, D̃i)i∈I)

with nonnegative debt limits such that c̃ Pareto dominates c. Moreover, c̃ can be chosen as

close as desired to c and such that it differs from c for finitely many periods only.

Consider a consumption allocation c = (ci)i∈I implemented by a self-enforcing competi-

tive equilibrium (q, (ci, ai, Di)i∈I). Following Proposition 2.1, we can assume that q = q⋆(c).

It is straightforward to construct Lagrange multipliers such that

µ(st) = βtπ(st)u′(ci(st))
[
λi + ξi(s0) + . . .+ ξi(st)

]
. (3.3)

Indeed, pose µ(s0) := 1 and define recursively µ(st) := q⋆(c|st)µ(σ(st)) for every st ≻ s0. We

let λi := 1/u′(ci(s0)) and ξi(s0) := 0. Define ξi(st) recursively as follows

ξi(st) :=
q⋆(c|st)− qi(ci|st)

qi(ci|st)
[λi + ξi(s0) + . . .+ ξi(σ(st))].

We have ξi(st) ⩾ 0. Moreover, if debt limits are not-too-tight, then q⋆(c|st) = qi(ci|st)

when the participation constraint is slack. This implies that the constructed ξi satisfies the

21We can set χi(st) := 0 for every i ̸∈ I⋆(q) (i.e., when qi(ci|st) < q⋆(c|st)).
22As the right-hand side of (3.2) is nonpositive, we must have

∑
i∈I χ

i(st) ⩽ 0.
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complementary slackness condition ξi(st)[U(ci|st)−V i
def(q|st)] = 0 of Corollary 3.1. However,

in the optimality condition (3.1), we encounter the additional pecuniary term

χi(st)q(st)−
∑

st+1≻st

χi(st+1)q(st+1),

which captures the impact of saving and borrowing decisions on the default values. Given

the relation in (3.2), it’s plausible that this term does not vanish, especially when the default

value is sensitive to asset prices. In the forthcoming section, we underscore the relevance of

Corollary 3.1 and Theorem 3.1 by exploring a baseline economy and providing specific con-

ditions on primitives (risk aversion, impatience, and dispersion of endowments) under which

this pecuniary term is significant. Specifically, we show that the optimality conditions (3.1)

and (3.2) are unattainable at a laissez-faire equilibrium of this economy.

4 Tightening Debt Constraints

We show that a policy intervention to tighten debt constraints can lead to Pareto im-

provements over the laissez-faire allocation. We interpret these interventions as a streamlined

representation of regulatory or prudential policies crafted to curtail financial leverage.

What is the intuition for our (constrained) inefficiency result? As the value of default

depends on market prices, there is a pecuniary externality that agents do not internalize

in a competitive environment. In particular, we show that constraining agents’ borrowing

capacity at a period τ reduces the credit volume, increases bond prices, or, equivalently,

lowers the implied interest rates. This adjustment in market prices exerts a negative feedback

on the attractiveness of defaulting in periods t ⩽ τ , as it now becomes more expensive to

smooth consumption over time by saving only. Debt constraints at the previous periods t < τ

remain the loosest compatible with repayment incentives. Nevertheless, the increase in bond

prices (and the associated fall in the value of default) at τ can make debt repayment a more

appealing option, potentially increasing liquidity at these earlier times. This increment in

liquidity can support more risk-sharing before period τ . A Pareto improvement is attainable

when this enhanced risk-sharing at t < τ sufficiently offsets the diminished risk-sharing at
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period τ , leading to an overall net gain in welfare.

To illustrate this intuition most straightforwardly, we focus on a baseline economy. There

are two agents facing uncertainty only during the initial period. The economy is thereafter

deterministic, in which every other period, agents’ endowments switch from a high value to a

low value. Within this setting, we perform the following exercise. We first construct a Markov

laissez-faire equilibrium (q, (ci, ai, Di)i∈I), in which after the realization of uncertainty, the

economy settles in a cyclical and symmetric steady-state equilibrium where debt limits are

not too tight. Second, we identify sufficient conditions on primitives such that the laissez-faire

equilibrium cannot be the solution to the planner’s problem. Third, we construct an explicit

intervention implementing another competitive equilibrium (q̃, (c̃i, ãi, D̃i)i∈i), supported by

the same allocation of initial financial claims, but with debt constraints being too tight at

a single period τ . We then show that the consumption allocation (c̃i)i∈I Pareto dominates

the consumption allocation (ci)i∈I of the laissez-faire equilibrium.

4.1 Baseline Economy

There are two agents I = {a, b} who enter the market with an identical endowment

y0 > 0 and no financial claims (i.e., aa(s0) = ab(s0) = 0). There is uncertainty only at the

initial period t = 0, described by two possible states za ̸= zb. After realizing the state zi,

the economy becomes deterministic where agents’ endowments switch between a high value

yh and a low value yl with yh > yl. Realizing state zi means that the agent i starts with

the high endowment at t = 1. The beliefs are homogeneous, with each agent assigning the

probability πh = 1/2 (πl := 1 − πh) of getting the high (low, respectively) endowment at

t = 1. Since there is uncertainty only at the initial period, we simplify notation by writing

a generic process (x(st))st⪰s0 as follows: x(s0) = x0 and x(st) = xt(z) if st ⪰ (s0, z) with

z ∈ {za, zb}.23 The representation of the event tree is as in Figure 4.1 below.

23The event tree Σ can be formally defined as follows: S0 := {s0} and for every t ⩾ 1, St = {(za, t), (zb, t)}.

The binary relation ≻ is defined as follows: (z, 1) ≻ s0 and (z, τ) ≻ (ζ, t) when z = ζ and τ > t. Let st = (z, t)

for some t ⩾ 1. Agent i’s beliefs are defined by πi(st) = πh if yi(z, 1) = yh and πi(st) = πl if yi(z, 1) = yl.
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y(s0) = (y0, y0)

y1(z
a) = (yh, yl) (za, 1)

y2(z
a) = (yl, yh) (za, 2)

π(za) = (πh, πl)

y1(z
b) = (yl, yh)(zb, 1)

y2(z
b) = (yh, yl)(zb, 2)

π(zb) = (πl, πh)

Figure 4.1: Event tree and endowments.

For future reference, we point out that the symmetric first-best allocation of this economy

obtains when both agents consume their endowment at t = 0 and the perfect risk-sharing

consumption level cfb := (yh + yl)/2 at every period t ⩾ 1.

4.2 Laissez-Faire Equilibrium

For this baseline economy we single out a symmetric Markov equilibrium as follows: at

period t = 0, both agents borrow up to the debt limit dlf against their high-income state and

save contingent on their low-income state. After resolving the uncertainty at period t = 1,

the economy settles in a cyclical steady-state where the low-income agent borrows up to the

not-too-tight debt limit dlf while the high-income agent saves.

Proposition 4.1. Assume interest rates at autarky are negative, i.e., βu′(yl) > u′(yh).

Then, there exists an equilibrium (q, (ci, ai, Di)i∈I) with not-too-tight debt limits where for

each z ∈ {za, zb} and every i ∈ I:

(i) debt limits equal Di
t(z) = dlf , for t ⩾ 1;

(ii) consumption is: ci0 = y0 at t = 0, cit(z) = clfh if yit(z) = yh, and c
i
t(z) = clfl if yit(z) = yl,

for t ⩾ 1;

(iii) net asset positions are ait(z) = −dlf (i.e., the debt limit binds) if yit(z) = yh, and

ait(z) = dlf if yit(z) = yl, for t ⩾ 1;

22



(iv) prices are given by q1(z) = βπlu
′(clfl )/u

′(y0) and qt+1(z) = qlf = 1, for t ⩾ 1.

The proof of the proposition is standard (and, therefore, omitted). Debt limits are

trivially not-too-tight as dlf = qlfdlf . The equilibrium net trade xlf := (1 + qlf)dlf = 2dlf is

determined by the first order condition:

1 = qlf = β
u′(clfl )

u′(clfh)
= β

u′(yl + xlf)

u′(yh − xlf)
.

At t = 1, the continuation utilities are U lf
h = [u(yh−xlf)+βu(yl+xlf)]/(1−β2) for the high-

income agent and U lf
l = [u(yl+x

lf)+βu(yh−xlf)]/(1−β2). As the equilibrium is symmetric,

both agents share the same time 0 expected utility U lf
0 := u(y0) + (β/2)(U lf

h + U lf
l ).

We conclude by introducing some notation that will be useful in the following sections.

To this end, we let Ah := −u′′(clfh)/u′(clfh) and Al := −u′′(clfl )/u′(clfl ) denote the Arrow–

Pratt measure of risk-aversion at the laissez-faire consumption levels clfh and clfl , respectively.

When u is the CRRA utility function with risk-aversion coefficient γ > 0, the contingent

consumption and the net trade values satisfy:

clfh = αh(yh + yl), clfl = αl(yh + yl) and xlf = αlyh − αhyl

where the coefficients αh and αl are given by:

αh =
β−1/γ

1 + β−1/γ
and αl =

1

1 + β−1/γ
.

Letting ζ := yh/yl denote the income dispersion, we also deduce that:

Ahx
lf = γ

β1/γζ − 1

ζ + 1
and Alx

lf = γ
ζ − β−1/γ

ζ + 1
.

Finally, observe that interest rates at autarky are negative if, and only if, β1/γζ > 1.

4.3 Inefficiency

In what follows, we demonstrate that the allocations and asset prices of the laissez-faire

equilibrium are incompatible with the planner’s optimality conditions. To this purpose, we

assume that the laissez-faire consumption allocation and asset prices are indeed the solutions
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of the system of conditions (3.1)–(3.2) for some Lagrange multipliers. We then argue that

those Lagrange multipliers supporting the implied optimality conditions must be equal to

zero for a large set of parameters. The main challenge in this construction is the computation

of Lagrange multipliers χt(z) :=
∑

i∈I χ
i(zt) associated with the asset price choice. This is

because their characterization relates to the derivative of the default value. We refer to

Appendix D for the detailed arguments that lead to the following characterization.

Proposition 4.2. For any event st = (t, z), the Lagrange multiplier χt(z) in (3.2) satisfies:

χt(z) =


0, if t = 1;

−βt−1πhu
′(clfh)x

lf
∑n−1

k=0 ξ
h2k+1

2k+1 (z), if t = 2n ⩾ 2 is even;

−βt−1πlu
′(clfh)x

lf
∑n

k=1 ξ
h2k
2k (z), if t = 2n+ 1 ⩾ 3 is odd,

(4.1)

where hr is the agent with high income at event (r, z), and ξhr
r (z) is the Lagrange multiplier

of the participation constraint at event (r, z).

We subsequently use the expressions of χt(z) from (4.1) to write down a simpler version of

the social planner’s optimality conditions (3.1). To establish our contradiction, it is sufficient

we analyze the FOCs of the first four periods t ∈ {0, 1, 2, 3}.

At t = 0. The Lagrange multiplier χi
0 does not exist. Recall that

q1(z) = q1 := βπl
u′(clfl )

u′(y0)
, for every z ∈ {za, zb}.

As yi1(z
i) = yh, this implies that χi

1(z
i) = 0 and χi

1(z
j) = χ1(z) for j ̸= i. The participation

constraint at t = 0 is slack. This implies that ξi0 = 0 for each i.

The optimality conditions corresponding to the choice of ci0 then reads:

u′(y0)λ
i − A0χ1(z

j)q1(z
j) = µ0,

where A0 := −u′′(y0)/u′(y0). Since χ1(z) = 0 for all z ∈
{
za, zb

}
, we deduce that:

u′(y0)λ
i = µ0. (4.2)
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This implies that agents must be treated symmetrically, i.e., λi = λj =: λ. Multiplying all

Lagrange multipliers by a strictly positive number if necessary, we can assume, without any

loss of generality, that λ = µ0/u
′(y0) ∈ {0, 1}.

At t = 1. Fix an agent i and consider the event at t = 1 corresponding to the realization

of shock zi, i.e., agent i has high income. As agent i’s participation constraint is binding,

condition (3.1) reads as follows:

βπhu
′(clfh)

[
λ+ ξi1(z

i)
]
− Ahχ2(z

i)qlf = µ1(z
i),

where we use the fact that χi
2(z

i) = χ2(z
i) and χi

1(z
i) = 0.

For agent j (the low-income agent), the participation is not binding, i.e., ξj1(z
i) = 0, so

condition (3.1) reads as follows:

βπlu
′(clfl )λ+ Alχ1(z

i)qlf = µ1(z
i),

where we use the fact that χj
2(z

i) = 0 and χj
1(z

i) = χ1(z
i).

From Proposition (4.1), we infer that χ1(z
i) = 0 and:

χ2(z
i) = −πhβu′(clfh)xlfξi1(zi).

Setting ξ1 := (ξa1(z
a) + ξb1(z

b))/2 produces:

βπhu
′(clfh)[λ+ ξ1] + βπhu

′(clfh)Ahx
lfξ1q

lf = βπlu
′(clfl )λ.

Rearranging terms and using the fact that βu′(clfl ) = u′(clfh), we get:

πhβ(Ahx
lf + 1)ξ1 = (πl − βπh)λ. (4.3)

At t ∈ {2, 3}. Following similar arguments, we can show that the analogous equalities for

periods t = 2 and t = 3 are, respectively,

πh(Alx
lf − 1)ξ1 + πlβ(Ahx

lf + 1)ξ2 = (πh − βπl)λ, (4.4)

πhβ(Ahx
lf + 1)(ξ1 + ξ3) + πl(Alx

lf − 1)ξ2 = (πl − βπh)λ. (4.5)
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If Alx
lf − 1 > 0, then direct inspection of (4.3)–(4.5) implies that ξ2 = ξ3 = 0. So taking

into account condition (4.4), the optimality conditions collapse to the following equations:

πhβ(Ahx
lf + 1)ξ1 = (πl − βπh)λ and πh(Alx

lf − 1)ξ1 = (πh − βπl)λ.

We cannot have λ = 0; otherwise, all Lagrange multipliers are equal to zero. Therefore, we

must have λ = 1. As we assume πl = πh and β ∈ (0, 1), the above system has no solution

when Alx
lf−1 ̸= β(Ahx

lf+1). Applying Corollary 3.1 and Theorem 3.1, we get the following

result.

Theorem 4.1. Assume that

0 < Alx
lf − 1 and Alx

lf − 1 ̸= β(Ahx
lf + 1), (4.6)

then the laissez-faire equilibrium outcome is finite-time inefficient and, therefore, can be

Pareto dominated by another equilibrium with self-enforcing and nonnegative debt limits.

In particular, for the CRRA utility function characterized by a risk-aversion coefficient

γ > 0, the sufficient condition (4.6) can be rewritten as:

g(β|ζ) < γ and γ ̸= h(β|ζ), (4.7)

where g(β|ζ) is the value of γ that solves ζ + 1 = γ(ζ − β−1/γ) and h(β|ζ) the value of γ

that solves γ(ζ − β−1/γ)(1− β1+1/γ) = (ζ + 1)(1 + β).

In Figure 4.2, we plot the functions f(·|ζ), g(·|ζ), and h(·|ζ) when income dispersion

is ζ = 2.24 The green region represents the primitive values (β, γ) satisfying (4.7). The

red region represents the set of primitive values (β, γ) where a laissez-faire equilibrium with

trade does not exist.25

24When the discount factor is β = 0.9 and the risk-aversion coefficient satisfies γ ⩾ 4, then the laissez-faire

equilibrium is not a solution to any social planner problem.

25Recall that a necessary (and sufficient) condition for the existence of a laissez-faire equilibrium is that

interest at autarky is negative. This occurs when γ ⩽ f(β|ζ).
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Figure 4.2: Laissez-faire equilibrium is finite-time inefficient.

4.4 Pareto-Improving Policy Intervention

In the previous section, we demonstrated that alternative equilibria, characterized by

nonnegative, self-enforcing debt limits, can Pareto dominate laissez-faire equilibria. Our

approach was based on a non-constructive proof method, employing a contradiction to il-

lustrate that the optimality conditions necessary for finite-time efficiency are not met. This

section provides fresh analytical insights on how superior economic efficiency is obtained in

economies with unsecured debt markets by constructing a specific equilibrium with too-tight

debt limits that Pareto dominates the laissez-faire outcome.

For clarity, we focus on an equilibrium where agents borrow up to their debt limits

contingent on high income, denoted by dt, and save contingent on low income. Such equilibria

are uniquely determined by the sequence (qt+1, dt)t⩾1, where qt+1 is the asset price at date t.
26

Here, net trade is given by xt := dt + qt+1dt+1. Consumption for the high-income agent is

given by ch,t = yh − xt, while for the low-income agent, it is cl,t = yl + xt. At t = 0, both

agents consume their endowment y0, and the two contingent bonds share the same price q1.

26The debt limit contingent on low income need not be specified since our focus is on equilibria where

agents save to hedge against the low-income shock.
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The conditions ensuring the optimality of individual choices are, at t = 0,

q1 = βπl
u′(yl + x1)

u′(y0)
⩾ βπh

u′(yh − x1)

u′(y0)
; (4.8)

and, for any t > 1,27

qt+1 = β
u′(yl + xt+1)

u′(yh − xt)
⩾ β

u′(yh − xt+1)

u′(yl + xt)
. (4.9)

We propose a targeted policy intervention that tightens debt constraints for a single

period τ , thereby achieving an equilibrium allocation that is Pareto superior to the laissez-

faire allocation. Specifically, we set τ = 2 and construct an equilibrium where the low-income

agent faces a too-tight debt limit d3 at date t = τ . Formally, the equilibrium has the following

features:

(a) For periods t ∈ {0, 1}, there is no intervention, and the debt limit dt+1 is not too tight;

(b) At period t = 2, a policy intervention imposes a debt limit d3 := (1− ε)q4d
lf ;

(c) At period t = 3, the high-income agent starts with the too-tight debt level d3. Since the

intervention is over, the debt limit reverts to its laissez-faire level dlf , which is not too

tight given future debt limits;28

(d) For t ⩾ 4, the laissez-faire equilibrium prevails: dt = dlf and qt+1 = qlf .

By construction, all debt limits are self-enforcing. In particular, Proposition 2.2 assures that

d3 is too tight when ε > 0.

We refer to the above as an equilibrium with ε-tight debt constraints, and we use the

notation (qt+1(ε), dt(ε)) to emphasize the dependence on the tightening coefficient ε. Our

contribution amounts to identifying a set of parameter values in which such equilibria exist

and feature a consumption allocation that is Pareto superior to the laissez-faire allocation.

We summarize our main result below.

27To ensure that consumption is positive, we also need that −yl < xt < yh for every t ⩾ 1.

28The not-too-tight debt limits d1 and d2 though may differ from dlf as d3 is too-tight.
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Theorem 4.2. If the interest rate at autarky is negative (i.e., βu′(yl) > u′(yh)), then, for

sufficiently small ε > 0, there exists an equilibrium with ε-tight debt constraints at τ = 2 that

Pareto dominates the laissez-faire equilibrium provided that the following condition holds:

0 < Alx
lf − 1 < β(Ahx

lf + 1). (4.10)

It is worth noting that the thresholds Alx
lf − 1 and β(Ahx

lf + 1) are exactly those

that already appear in the statement of Theorem 4.1. In particular, for the CRRA utility

function characterized by a risk-aversion coefficient γ > 0, the sufficient condition (4.10) can

be rewritten as:

g(β|ζ) < γ < h(β|ζ), (4.11)

where g(β|ζ) is the value of γ that solves ζ + 1 = γ(ζ − β−1/γ) and h(β|ζ) the value of γ

that solves γ(ζ − β−1/γ)(1− β1+1/γ) = (ζ + 1)(1 + β).

In Figure 4.3(a), we plot the functions f(·|ζ), g(·|ζ), and h(·|ζ) when income dispersion is

ζ = 2. The orange region represents the set of primitive values (β, γ) where the intervention

is Pareto-improving.29

Denote by U0(ε) the common expected and discounted utility at t = 0.30 We let ce(ε) be

the certainty equivalent of the expected continuation utility at t = 1. This consumption level

is determined by the equation U0(ε) = u(y0) + βu(ce(ε)). Figure 4.3(b) offers an alternative

illustration when β̄ = 0.9 by plotting the difference of the certainty equivalent consumption,

ε 7→ ce(ε)− ce(0). Pareto improvement obtains if, and only if, ce(ε)− ce(0) > 0.

29The red region represents the set of primitive values (β, γ) where a laissez-faire equilibrium with trade

does not exist.

30It is formally defined as U0(ε) = u(y0) +
1
2

∑
t⩾1 β

t [u(yl + xt) + u(yh − xt)] .
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(a) Set of primitive values (β, γ) (b) ce(ε)− ce(0)

Figure 4.3: Tightening Debt Constraints at τ = 2 is Pareto-improving.

In the following sections, we elucidate the intuition and furnish the analytical under-

pinnings for Theorem 4.2. In the equilibrium scenario with ε-tight debt constraints, the

economy undergoes a transitional phase before reverting to the laissez-faire regime at pe-

riod t = 4. A crucial step in this analysis is determining the not-too-tight debt limits d1 and

d2 that prevail during the transition. This task is particularly challenging since the powerful

characterization result of Hellwig and Lorenzoni (2009) does not apply. Specifically, it is

not true that d1 and d2, despite being not too tight, permit the exact rollover of debt. This

would be the case if all future debt limits were set to be not too tight, a situation that our

policy experiment rules out. Therefore, their determination cannot be solely based on the

equilibrium price specifications.

To overcome this issue, it becomes necessary to compute the value functions for periods

t ∈ {1, 2} that correspond to both equilibrium and out-of-equilibrium paths. The debt limits

d1 and d2 then emerge as nontrivial solutions to the not-too-tight condition, as expressed in

Equation (2.6).
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4.5 Equilibrium Construction

To streamline the exposition, we break down the construction of the equilibrium into

several steps. We begin by identifying the equilibrium variables for period t = 3 and then

proceed backward to ascertain the corresponding variables for periods t ∈ {2, 1}. At t = 4,

the economy settles down at the laissez-faire equilibrium described in Proposition 4.2.

The intervention forces the high-income agent to start at period t = 3 with a level of

debt:

d3(ε) = (1− ε)q4(ε)d
lf . (4.12)

To support the laissez-faire steady state next period, this agent must save dlf while the low-

income agent must find it optimal to borrow the same amount. In this case, the net trade

and equilibrium price at period = 3 are jointly determined by the following two equations:

q4(ε) = β
u′(yl + xlf)

u′(yh − x3(ε))
and x3(ε) = (2− ε)q4(ε)d

lf . (4.13)

The first equation is the FOC of the high-income agent, while the second equation is obtained

by substituting d3(ε) in x3(ε) = d3(ε) + q4(ε)d
lf that stands for net trade.

It follows from a straightforward application of the Implicit Function Theorem that there

exists ε > 0 and continuously differentiable functions q4 : [0, ε̄] → (0,∞) and x3 : [0, ε̄] →

(0,∞) satisfying (4.13) and such that q4(0) = qlf = 1 and x3(0) = xlf . To be optimal for the

low-income agent to issue the maximum debt level dlf , we must have that:

q4(ε) ⩾ β
u′(clfh)

u′(yl + x3(ε))
. (4.14)

As x3(0) = xlf and q4(0) = 1 > βu′(clfh)/u
′(clfl ), we can reduce ε̄ > 0 so that (4.14) is also

satisfied for every ε ∈ [0, ε̄]. Differentiating the FOC in (4.13) at ε = 0, we get that:

q′4(0) =
Ahx

lf

2(Ahxlf + 1)
> 0 and x′3(0) = − 1

Ah

q′4(0) < 0.

Figure 4.4 plots the functions ε 7→ q4(ε) and ε 7→ x3(ε) for CRRA utility with different

values of γ. The income dispersion coefficient and discount factor values are set to ζ = 2

and β̄ = 0.9. Observe that the higher the tightening coefficient ε, the lower the consumption

31



smoothing (i.e., the function ε 7→ x3(ε) is decreasing), and the higher is the asset price q4(ε)

(or, equivalently, the lower is the implied interest rate). The contraction of net trade reflects

the lower debt ceiling as ε increases. Indeed, d3(0) = dlf and d′3(0) = (q′4(0)− 1)dlf < 0.

(a) Price q4(ε) (b) Net Trade x3(ε)

Figure 4.4: Equilibrium variables at t = 3 as functions of the tightening coefficient ε.

Tightening debt constraints at period t = 2 reduces net trade at t = 3. This reduction

proves, at first instance, to be disadvantageous when viewed from an ex-ante standpoint.

Specifically, the time 0 expected utility is given by:

U0(ε) := u(y0) +
1

2

∑
t⩾1

βtφ(xt(ε)) where φ(x) := u(yh − x) + u(yl + x).

When xt < xfb, it holds that φ′(xt) > 0. However, these changes produce secondary effects

through their feedback on the equilibrium variables of previous periods. In particular, as

we illustrate below, these changes alter the default value in periods t ∈ {1, 2}, affecting the

not-too-tight debt limits d1 and d2. If default values reduce, d1 and d2 might exceed the

laissez-faire limit dlf . This might lift net trade over the laissez-faire value xlf , increasing

ex-ante utility. There is scope for Pareto improvement when the reduction in utility due to

the contraction of net trade at period t = 3 is offset by the increase in utility due to the

expansion of net trade in periods t ∈ {1, 2}.
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4.5.1 Computing the Not-Too-Tight Debt Limit at t = 2

We now examine the equilibrium variables for the period t = 2. Specifically, we focus

on determining the not-too-tight debt limit d2. This is equivalent to determining the net

trade x2.

The high-income agent starts with debt d2(ε) and saves the amount d3(ε). This position

is accommodated by the low-income agent who borrows the same amount. Net trade at this

period therefore equals x2(ε) = d2(ε) + q3(ε)d3(ε). The FOC associated with these saving

and borrowing decisions are, respectively,

q3(ε) = β
u′(yl + x3(ε))

u′(yh − x2(ε))
and q3(ε) ⩾ β

u′(yh − x3(ε))

u′(yl + x2(ε))
. (4.15)

Since we require the debt limit d2(ε) to be not too tight, condition (2.4) reads as follows:

u(yh − x2(ε)) + βu(yl + x3(ε)) + β2U lf
h = V def

h,2 (ε), (4.16)

where U lf
h is the continuation utility of the high-income agent in the laissez-faire equilibrium,

and V def
2,h (ε) is the out-of-equilibrium value function of the high-income agent at t = 2.

The existence and behavior of functions ε 7→ x2(ε) and ε 7→ q3(ε) compatible with (4.15)

and (4.16) depend on the behavior of the default value function ε 7→ V def
2,h (ε). The latter is

affected by the equilibrium prices. Therefore, its determination relies on an educated guess

about the out-of-equilibrium path. We postulate the following default value function:

V def
h,2 (ε) = u(yh − q3(ε)θ3(ε)) + βu(yl + θ3(ε)) + β2U lf

h , (4.17)

that is derived by assuming that the defaulting agent only saves when income is high. In

particular, the agent with high income at period t = 2 will not save at period t = 3 when

income becomes low, and the out-of-equilibrium continuation value at period t = 4 will then

coincide with the laissez-faire continuation utility U lf
h . This is because dlf is not-too-tight

so that V def
h,4 (ε) = U lf

h . The necessary and sufficient FOCs to support the out-of-equilibrium

guess are

q3(ε) = β
u′(yl + θ3(ε))

u′(yh − q3(ε)θ3(ε))
and q4(ε) ⩾ β

u′(clfh)

u′(yl + θ3(ε))
. (4.18)
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Replacing the expression of the default option from (4.17) in the not-too-tight condition

(4.16) gives:

u(yh − x2(ε)) + βu(yl + x3(ε)) = u(yh − q3(ε)θ3(ε)) + βu(yl + θ3(ε))︸ ︷︷ ︸
=: ψ2(ε)

. (4.19)

Reducing ε̄ > 0 if necessary, it follows from the Implicit Function Theorem that there

exist continuously differentiable functions q3, x2, θ3 : [0, ε̄] → (0,∞) satisfying the equations

in (4.15) and (4.18) as well as equation (4.19). Moreover, we have q3(0) = q4(0) = 1, x2(0) =

x3(0) = xlf and θ3(0) = xlf . Therefore, for ε = 0, the weak inequalities in (4.15) and (4.18)

read as q3(0) = q4(0) = 1 > βu′(clfh)/u
′(clfl ), so they are both satisfied for ε small enough.

The not-too-tight debt limit d2(ε) is then obtained as the difference x2(ε)− q3(ε)d3(ε).

A closer inspection of (4.19) reveals that a necessary condition for net trade x2(ε) to

be increasing in ε is that the value of the default option ψ2(ε) is itself decreasing in ε.

Nevertheless, a decreasing default option is still compatible with x2(ε) decreasing since net

trade x3(ε) decreases unambiguously with ε. Differentiating the equation in (4.15) and the

not-too-tight condition (4.19) at ε = 0 produces:

q′3(0) = −(x′2(0)Ah + x′3(0)Al) and x′2(0) = x′3(0) + q′3(0)x
lf . (4.20)

Solving the above system, we deduce that

q′3(0) = −x′3(0)
Al + Ah

Ahxlf + 1
> 0 and x′2(0) = −x′3(0)

Alx
lf − 1

Ahxlf + 1
. (4.21)

Given that u′(clfh) = βu′(clfl ), a similar exercise yields ψ′
2(0) = −q′3(0)u′(clfh)xlf < 0.

Our optimality conditions analysis reveals that, for ε small enough, the asset price q3(ε)

increases. The higher price at t = 2 reduces the value of the default option ψ2(ε). As

d2(ε) is required to be not-too-tight, the left-hand side of the not-too-tight condition (4.19)

has to adjust accordingly. The adjustment occurs by the unambiguous fall of net trade

x3(ε) at period t = 3. However, when parameters are such that Alx
lf > 1, the decrease of

x3(ε) is insufficient to compensate for the decrease of the default option.31 This, in turn,

31The restriction corresponds to the first inequality of condition (4.10) in Theorem 4.2.
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(a) Price q3(ε) (b) Net Trade x2(ε)

Figure 4.5: Equilibrium variables at t = 2 as functions of the tightening coefficient ε.

forces the net trade x2(ε) that prevails at period t = 2 to increase. The expansion of net

trade reflects that d2(ε) exceeds the laissez-faire level dlf . Indeed, we have d2(0) = dlf and

d′2(0) = (q′4(0) + q′3(0))d
lf > 0.

Figure 4.5 plots the functions ε 7→ q3(ε) and ε 7→ x2(ε) for CRRA utility with different

values of γ. The income dispersion and the discount factor equal ζ = 2 and β = 0.9. For

γ = 3, we have Alx
lf < 1 and ε → x2(ε) is decreasing. For γ ∈ {4, 5}, we have Alx

lf > 1

and ε→ x2(ε) is increasing.

4.5.2 Computing the Not-Too-Tight Debt Limit at t = 1

Determining the equilibrium variables at period t = 1 follows similar reasoning, so we

only discuss the key differences with respect to period t = 2.

The high-income agent starts the period with liabilities d1(ε) and saves the amount d2(ε).

The FOC determines the equilibrium price:

q2(ε) = β
u′(yl + x2(ε))

u′(yh − x1(ε))
. (4.22)

As the debt level d1(ε) is required to be not-too-tight, the participation constraint reads as
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follows:

u(yh − x1(ε)) + βu(yl + x2(ε)) + β2u(yh − x3(ε)) + β3U lf
l =

u(yh − q2(ε)θ2(ε)) + βu(yl + θ2(ε)) + β2u(yh − q4(ε)θ4(ε)) + β3u(yl + θ4(ε)) + β4U lf
h .

(4.23)

The right-hand side stands for the value of the default option V def
h,1 (ε) obtained by guessing

that out-of-equilibrium there is saving only when income is high. The variables θ2(ε) and

θ4(ε) correspond to the optimal saving decisions at t = 1 and t = 3 and are determined by

the following FOCs:

q2(ε) = β
u′(yl + θ2(ε))

u′(yh − q2(ε)θ2(ε))
and q4(ε) = β

u′(yl + θ4(ε))

u′(yh − q4(ε)θ4(ε))
. (4.24)

The corresponding marginal price at ε = 0 is q′2(0) = −(x′1(0)Ah + x′2(0)Al). Differentiating

the not-too-tight condition (4.23) at ε = 0, we obtain:

−x′1(0) + x′2(0)− β2x′3(0) = −q′2(0)xlf − β2q′4(0)x
lf .

Using the expressions for q′4(0) and q
′
2(0), we deduce that:

x′1(0)(Ahx
lf + 1) = −x′2(0)(Alx

lf − 1)− β2x′3(0)(Ahx
lf + 1).

As x′2(0) = −x′3(0)(Alx
lf−1)/(Ahx

lf+1), we get that x′1(0) > 0 if, and only if, β(Ahx
lf+1) >

(Alx
lf − 1).32 To illustrate this possibility, we plot in Figure 4.6 the functions ε 7→ q2(ε)

and ε 7→ x1(ε) for CRRA utility with different values of γ, setting the values of the income

dispersion and discount factor equal to ζ = 2 and β = 0.9.

4.6 Pareto Improvement

Since the equilibrium is symmetric, for each agent i ∈ I, the ex-ante (expected and

discounted) utility satisfies U i(ci,ε|s0) = U0(ε) where:
33

U0(ε) = u(y0) +
1

2

∑
t⩾1

βtφ(xt(ε)), with φ(x) = u(yh − x) + u(yl + x).

32The restriction corresponds to the second inequality of condition (4.10) in Theorem 4.2.

33We recall that πl = πh = 1/2.
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(a) Price q2(ε) (b) Net Trade x1(ε)

Figure 4.6: Equilibrium variables at t = 1 as functions of the tightening coefficient ε.

It is straightforward to verify that if ε = 0, then we recover the laissez-faire equilibrium with

not-too-tight debt limits, that is (q0, (ci,0, ai,0, Di,0)i∈I) = (q, (ci, ai, Di)i∈I) and we deduce

that:

U i(ci|s0) = U0(0) = u(y0) +
1

2

∑
t⩾1

βtφ(xlf).

Therefore, to show that the consumption allocation (ci,ε)i∈I Pareto dominates the laiseez-

faire consumption allocation (ci)i∈I , it is sufficient to show that U ′
0(0) > 0. The variation of

the ex-ante utility is given by:

U0(ε)− U0(0) =
β

2
[φ(x1) + βφ(x2) + β2φ(x3)]−

β

2
[φ(xlf) + βφ(xlf) + β2φ(xlf)]

As φ′(xlf) = (1− β)u′(clfl ), we deduce that:

2U ′
0(0)

β(1− β)u′(clfl )
= x′1(0) + βx′2(0) + β2x′3(0)

= −x′2(0)
Alx

lf − 1

Ahxlf + 1
− β2x′3(0) + βx′2(0) + β2x′3(0)

=
x′2(0)

Ahxlf + 1

[
β(Ahx

lf + 1)− (Alx
lf − 1)

]
=

−x′3(0)
Ahxlf + 1

(Alx
lf − 1)

[
β(Ahx

lf + 1)− (Alx
lf − 1)

]
.

As a direct consequence of the above arguments, we deduce that there is Pareto improvement

for ε sufficiently small if the two inequalities in (4.10) of Theorem 4.2 are satisfied.
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Remark 4.1 (Stationary Markovian Intervention). In the simple economy discussed in this

section, our baseline scenario is a laissez-faire equilibrium that is symmetric and stationary

Markovian. In contrast, our proposed Pareto-improving intervention does not support a

stationary Markovian equilibrium. This distinction is crucial since Pareto improvement

reflects an intertemporal compromise: the intervention boosts expected utility in periods

t ∈ {1, 2} at the expense of reduced utility at t = 3. This raises the question: can we obtain

Pareto improvement through an intervention supporting a symmetric, stationary Markovian

equilibrium? We address this issue in the appendix, Section E.2, and demonstrate that such

an approach is infeasible.

The above analysis focused on an intervention tightening the financial constraint at τ = 2.

Alternatively, we could analyze whether an intervention at τ = 1 could be Pareto-improving.

There is no need to solve for a new equilibrium. Indeed, if we denote by (x̃1, x̃2, q̃2, q̃3, d̃1, d̃2)

the variables describing the new equilibrium, then we can set:

(x̃1, x̃2, q̃2, q̃3, d̃1, d̃2) = (x2, x3, q3, q4, d2, d3).

Denote by Ũ0(ε) the discounted and expected utility at t = 0 of the new equilibrium with

intervention at τ = 1. There is Pareto improvement for ε > 0 small enough when:

0 < Ũ0(ε) =
β

2
[φ(x̃1(ε)) + βφ(x̃2(ε))]−

β

2

[
φ(xlf) + βφ(x̃2(ε))

]
.

This occurs when Ũ ′
0(0) > 0. Observe that:

2Ũ ′
0(0)

β(1− β)u′(clfl )
= x̃′1(0) + βx̃′2(0)

= x̃′2(0)

[
−Alx

lf − 1

Ahxlf + 1
+ β

]
.

As

x̃2(0) = − 1

Ah

q̃′2(0) = − xlf

2(Ahxlf + 1)
< 0,

we deduce the following result.
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Theorem 4.3. If the interest rate at autarky is negative (i.e., βu′(yl) > u′(yh)), then, for

sufficiently small ε > 0, there exists an equilibrium with ε-tight debt constraints at τ = 1 that

Pareto dominates the laissez-faire equilibrium provided that the following condition holds:

Alx
lf − 1 > β(Ahx

lf + 1). (4.25)

For the CRRA utility function characterized by a risk-aversion coefficient γ > 0, the

sufficient condition (4.25) is equivalent to:

h(β|ζ) < γ.

The blue region depicted in Figure 4.7(a) illustrates the set of primitive parameters (β, γ)

for which an intervention at τ = 1 leads to a Pareto improvement. To facilitate a clearer

comparison, we reiterate in Figure 4.7(b) the domain of primitive parameters wherein we have

implicitly demonstrated the existence of an intervention that Pareto dominates the laissez-

faire allocation. It is noteworthy that the two proposed simple interventions (represented

by the blue and yellow regions) encompass all the primitive parameters that are consistent

with Pareto improvements, as inferred from the optimality conditions (FOCs) of the social

planner’s problem.

(a) Explicit Interventions (b) Implicit Interventions

Figure 4.7: Laissez-faire can be Pareto improved.
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5 High Interest Rates

In the policy experiment discussed in Section 4, the laissez-faire equilibrium and the

equilibrium with ε-tight debt constraints feature low interest rates—specifically, rates that

are either zero or negative.34 This comes as no surprise since we know from Bulow and

Rogoff (1989) and Hellwig and Lorenzoni (2009) that, in complete markets, unsecured debt

is not sustainable at high interest rates.

However, one might wonder whether there is room for Pareto improvement in scenarios

where debt remains sustainable despite high interest rates. To address this question, the

logical first step is to conduct our policy experiment in a relevant environment that closely

resembles the one discussed in previous sections. To this end, we align with the extensive

quantitative literature and assume that default results in deadweight endowment losses in

addition to credit exclusion.35 These losses could manifest as output contraction in the case

of sovereign default or as seized collateral and legal recourse in the context of consumer and

corporate default.

The key modification from the model outlined in Section 2 is the treatment of default.

Specifically, if an agent i defaults at sτ , her endowments for all future events st ⪰ sτ will

be reduced to yi(st) − ℓi(st), where ℓi(st) is an exogenously given value within the range

[0, yi(st)]. Given that this agent is also barred from the credit markets, her outside option

is now defined as:

V i
def(s

t) = V i
ℓi(0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi

ℓi(0, 0|st)}, (5.1)

where Bi
ℓi(0, 0|st) denotes the budget set for any agent i who has zero liabilities, is unable

to borrow, and has resources equal to yi − ℓi. The condition analogous to the not-too-tight

34Formally, qlf = 1 and qt(ε) > 1 for t ∈ {3, 4, . . .}.
35In consumer credit contexts, endowment loss serves as a simplified proxy for the legal consequences of

default, as elaborated in works such as Chatterjee et al. 2007, Livshits et al. 2007, Livshits 2015. In the

realm of sovereign debt, it encapsulates the negative impact of default on domestic production (e.g., Eaton

and Gersovitz 1981, Bulow and Rogoff 1989, Cole and Kehoe 2000, Aguiar and Gopinath 2006, Arellano

2008).
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condition (2.4) is then articulated as:

V i(Di,−Di(st)|st) = V i
ℓi(0, 0|st), for all st ⪰ s0.

To conduct a policy experiment akin to the one in Section 4, the first step involves extend-

ing the characterization of not-too-tight debt limits as presented by Hellwig and Lorenzoni

(2009). This extension is not merely a procedural necessity; it significantly simplifies the com-

putation of the laissez-faire equilibrium and the equilibrium with ε-tight debt constraints.36

Moreover, this extended characterization has implications for the restrictions on the

model’s primitives—in our case, the properties of the endowment loss—that can sustain

equilibria with high interest rates pre-and post-intervention.

5.1 Characterization of Not-Too-Tight Debt Limits

The following result is the counterpart to the characterization provided by Hellwig and

Lorenzoni (2009), adapted for our modified context. It posits that not-too-tight debt limits

can be broken down into two components: a fundamental component and a credit bubble

component. The latter encapsulates the potential for indefinitely rolling over a portion of

the debt. The proof of this result is relegated to the online Appendix.

Theorem 5.1. A process Di of debt limits is not too tight (for the default punishment

described by (5.1)) if, and only if:

Di(st) = ℓi(st) +
∑

st+1≻st

q(st+1)Di(st+1), for all st ≻ s0. (5.2)

36The extension eliminates the typical complexities associated with the fixed-point process of determining

not-too-tight debt limits. In this process, the default value is contingent on prices (since defaulting agents

can still save), which depend on equilibrium allocations and, consequently, on the debt limits. It’s worth

noting that this extension is of independent interest. Although it serves as the direct analog of Hellwig and

Lorenzoni (2009)’s result in an augmented setting, the proof cannot be derived through a simple adaptation

of their arguments. Instead, it relies on novel insights with no counterparts in scenarios without output

losses.
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It is straightforward that a process of debt limits Di satisfies property (5.2) if, and only

if, it can be decomposed into a fundamental and a bubble component:

Di(st) = PV(ℓi|st)︸ ︷︷ ︸
fundamental

+M i(st)︸ ︷︷ ︸
bubble

, for all st ⪰ s0. (5.3)

Here, the fundamental component is simply the present value of endowment losses:

PV(ℓi|st) := 1

p(st)

∑
sτ⪰st

p(sτ )ℓi(sτ ),

where p(st) is the date-0 price of consumption at event st.37 The bubble component of Di is

a nonnegative process satisfying the following exact rollover property:

M i(st) =
∑

st+1≻st

q(st+1)M i(st+1), for all st ≻ s0.

Intuitively, the bubble component reflects that credit beyond the fundamental component is

sustainable only if agents can roll over their debt.

How can we support equilibria with high interest rates? The following result shows that

this is the case when the aggregate losses amount to a nonnegligible fraction of aggregate

resources. Indeed, since the present value of endowment losses is always finite at equilibrium,

under this restriction, we necessarily have that interest rates are high.

Proposition 5.1. If endowment losses are a nonnegligible fraction of aggregate resources,

in the sense that there exists ε > 0 such that:∑
i∈I

ℓi(st) ⩾ ε
∑
i∈I

yi(st), for all st ≻ s0, (5.4)

then in any equilibrium with not-too-tight debt limits, the bubble component is necessarily

zero. As a consequence, Di = PV(ℓi) for every agent i.

5.2 Laissez-Faire Equilibrium

Consider the same simplified economy as in Section 4, and assume that the endowment

loss upon default is time-invariant and identical for both agents, i.e., ℓi(st) = ℓ for all agent i

and event st.

37Formally, p(st) is defined recursively by p(s0) = 1 and p(st+1) = q(st+1)p(st) for all st+1 ≻ st.
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The (symmetric Markov) laissez-faire equilibrium is characterized by the asset price qlf(ℓ)

and the not-too-tight debt level dlf(ℓ). Our characterization result (Theorem 5.1) implies

that dlf(ℓ) = ℓ+ qlf(ℓ)dlf(ℓ), or, equivalently,

dlf(ℓ)(1− qlf(ℓ)) = ℓ.

When ℓ > 0, we must have qlf(ℓ) < 1, which is consistent with Proposition 5.1. The net

trade defined by xlf(ℓ) = dlf(ℓ) + qlf(ℓ)dlf(ℓ), and the asset price qlf(ℓ) are determined by the

following equations:38

xlf(ℓ) = ℓ× 1 + qlf(ℓ)

1− qlf(ℓ)
and qlf(ℓ) = β

u′(yl + xlf(ℓ))

u′(yh − xlf(ℓ))
. (5.5)

Risk aversion implies that the asset price must decrease with ℓ, and the net trade must

increase. Indeed, as the mapping q 7→ (1 + q)/(1 − q) is increasing, if ℓ 7→ qlf(ℓ) where

increasing, then ℓ 7→ xlf(ℓ) would also be increasing by the first equation in (5.5). However,

this would contradict the second equation in (5.5) as the mapping x 7→ u′(yl+x)/u′(yh−x)

is decreasing by concavity of u. Therefore, the mapping ℓ 7→ qlf(ℓ) must decrease, and the

mapping ℓ 7→ xlf(ℓ) must increase. This is confirmed in Figure 5.1 that plots the equilibrium

variables as functions of the endowment loss ℓ for CRRA utility for different values of γ

when the income dispersion and the discount factor equal to ζ = 2 and β̄ = 0.9. We denote

by ℓfb the level of endowment loss that implements perfect risk-sharing, i.e., xlf(ℓfb) = xfb.

This level is given by ℓfb = xfb(1− β)/(1 + β).

38The first equation corresponds to our characterization of not-too-tight debt limits. The second equation

is the FOC of the high-income agent’s saving decision.
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(a) Asset Price qlf(ℓ) (b) Net Trade xlf(ℓ)

Figure 5.1: Laissez-faire equilibrium variables as functions of the endowment loss ℓ.

5.3 Tightening Debt Constraints

For any arbitrary ℓ ∈ (0, ℓfb), the laissez-faire interest rate is positive. We perform

the same policy experiment: we tighten the high-income borrowing constraint at t = 2 by

imposing the too-tight debt limit:

d3(ε) := (1− ε)[ℓ+ q4(ε)d
lf(ℓ)].

All the arguments of Section 4 remain qualitatively valid. To illustrate our policy interven-

tion, we set the following arbitrary value ℓ⋆ = ℓfb/2 for the endowment loss, and plot the

equilibrium prices for each period.
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(a) Price q4(ε) (b) Price q3(ε)

(c) Price q2(ε) (d) ce(ε)− ce(0)

Figure 5.2: Equilibrium variables as functions of the tightening coefficient ε when the en-

dowment loss is ℓ⋆ = ℓfb/2.

6 Conclusion

This paper revisits the welfare implications of competitive credit markets with endoge-

nously determined debt limits arising from limited commitment. We demonstrate that the

nature of default punishments significantly influences market equilibria’s efficiency and wel-

fare outcomes. Our analysis reveals that laissez-faire debt limits, although beneficial for

risk-sharing for given interest rates, may not always lead to optimal welfare. This suggests

that judiciously designed credit rationing could improve welfare by impacting the default
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option’s value and altering consumption and saving decisions.

Building upon the concepts introduced in this paper, several avenues for future explo-

ration could further improve our understanding of credit markets under limited commitment.

First, subsequent research could analyze optimal macroprudential policy interventions, for

example, by applying the two-period analysis in Dávila and Korinek (2018) to our infinite-

horizon environment. Second, it could be valuable to apply our analysis to study the con-

strained efficiency of an environment with collateralized debts (Gottardi and Kubler 2015).

Third, considering our assumption of planner commitment, future investigations could ex-

amine scenarios where the planner cannot commit, focusing on time-consistent policies, fol-

lowing Bianchi and Mendoza (2018)’s analysis of optimal time-consistent macroprudential

interventions. Finally, while our study provides a qualitative framework, subsequent research

could quantify the extent of constrained inefficiency, offering a more detailed understanding

of its impacts and how these might vary across different market conditions or consumer be-

haviors, following the consumer credit quantitative analyses in Livshits et al. (2007, 2010)

and Livshits (2015). We believe these explorations could help shed light on the challenges

in regulating credit markets.
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Online Appendix to

Credit Rationing in Unsecured Debt Markets

This appendix provides detailed proofs and technical arguments omitted from the main

text. Section E provides additional commentary on self-enforcing equilibria in the simple

baseline economy presented in Section 4.

A Proof of Proposition 2.2

Fix an event sτ ∈ Σ and assume that

Di(st) ⩽
∑

st+1≻st

q(st+1)Di(st+1), for all st ⪰ sτ

with a strict inequality in at least one successor event st ⪰ sτ . We shall prove that

V i(Di,−Di(sτ )|sτ ) > V i(0, 0|sτ ). Denote by (c̄i, āi) agent i’s optimal choice in the budget

set Bi(0, 0|sτ ). Observe that V i(0, 0|sτ ) = U(c̄i|sτ ). Let ai := āi−Di and, for every st ⪰ sτ ,

define δi(st) := −Di(st)+
∑

st+1≻st q(s
t+1)Di(st+1). As āi ⩾ 0, the pair (ci, ai) belongs to the

budget set Bi(Di,−Di(sτ )|sτ ) where the new consumption plan is defined by ci := c̄i + δi.

This implies that V i(Di,−Di(sτ )|sτ ) ⩾ U(ci|sτ ) > U(c̄i|sτ ), where the strict inequality fol-

lows from the assumption that δi(st) > 0 for some st ⪰ sτ . As U(c̄i|sτ ) = V i(0, 0|sτ ), we get

the desired result.

B Proof of Corollary 3.1

Consider a feasible allocation c = (ci)i∈I that is finite-time efficient. Pose q := q⋆(c) and,

for each agent i, qi := qi(ci). Fix some arbitrary finite horizon T ⩾ 1 and ε > 0. Recall that

P(T, ε) is the set of pairs (q̃, (c̃i)i∈I) satisfying for every st and st+1 ≻ st:

(1) if t > T , then c̃i(st) = ci(st) and q̃(st+1) = q(c|st+1);
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(2) if t ⩽ T , then |c̃i(st)− ci(st)| < ε and |q̃(st+1)− q(st+1)| < ε;

(3)
∑

i∈I [y
i(st)− c̃i(st)] = 0 for all st with t ⩽ T ;

(4) U(c̃i|st) ⩾ V i
def(q̃|st) for all i ∈ I and every st with t ⩽ T ;

(5) the price-determination constraint is satisfied, i.e.,

q̃i(ci|st) = q̃(st), for all i ∈ I⋆(st), (B.1)

where I⋆(st) := {i ∈ I : q(st) = qi(st)} is the set of agents that determine the price q(st);

(6) and the Pareto constraint

U(c̃i|s0) ⩾ U(ci|s0), for all i ∈ I. (B.2)

By construction, (q, c) belongs to P(T, ε). Choosing ε > 0 small enough, we can verify that

all pairs (q̃, c̃) in P(T, ε) satisfy the feasible constraints (a), (b), and (c).1

Fix an arbitrary family (νi)i∈I of strictly positive welfare weights. We must have∑
i∈I

νiU(c̃i|s0) ⩽
∑
i∈I

νiU(ci|s0), (B.3)

for any pair (q̃, c̃) in P(T, ε). Indeed, if (B.3) were not satisfied, then (B.2) would be satisfied

with a strict inequality for at least one agent i. This would contradict the assumption that

c is weakly constrained efficient.

We have thus proved that (q, c) maximizes the social welfare function
∑

i∈I ν
iU(c̃i|s0)

among all pairs (q̃, c̃) satisfying the constraints (1)–(6). We can write the Fritz John con-

ditions.2 There exist Lagrange multipliers: α0 ⩾ 0 for the objective function, µ(st) ∈ R for

the market clearing condition (3); ξi(st) ⩾ 0 for the participation constraint (4); χi(st) ⩾ 0

1We only have to verify the implementability condition (c). Fix an event st and an agent i. If i ∈ I⋆(st),

then q̃(st) = q̃i(ci|st). If q(st) = q⋆(c|st) > q̃i(ci|st) = q̃i(st), then for ε > 0 small enough, we also have

q̃(st) > q̃i(ci|st) due to the continuity of u′. This proves that q̃(st) = q⋆(c|st).
2See Theorem 9.1 in Clarke (2013).
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for the price-determination constraint (5), and αi ⩾ 0 for the Pareto constraint (6), not all

equal to zero, such that ∇L(q, c) = 0 for the corresponding Lagrangian

L(q̃, c̃) :=
T∑
t=0

L(q̃, c̃|st)

where

L(q̃, c̃|st) :=
∑
i∈I

βtπ(st)
{
(α0θ

i + αi)u(c̃i(st)) + ξi(st)[U(c̃i|st)− V i
def(q̃|st)]

}
+

∑
i∈I⋆(st)

χi(st)[q̃(st)− q̃i(st)] + µ(st)
∑
i∈I

[
yi(st)− c̃i(st)

]
. (B.4)

For every i ̸∈ I⋆(st), we pose χi(st) := 0. We also let λi := α0λ̃
i + αi. Observe that λi ⩾ 0

for every i.

Equation (3.1) reflects the first-order condition associated with the choice c̃i(st), and

Equation (3.2) reflects he first-order condition associated with the choice q̃(st). By con-

struction, if q(st) > qi(st), then χi(st) = 0. We derive from the complementary slackness

conditions that ξi(st) = 0 when U(ci|st) > V i
def(q|st).

C Proof of Theorem 3.1

Fix a laissez-faire equilibrium (q, (ci, ai, Di)i∈I) in which debt limits are strictly positive.

Without any loss of generality, we have q = q⋆(c).3 Assume that the optimality conditions

of Corollary 3.1 are not satisfied. This implies that there exists a finite horizon T ⩾ 1 such

that for every ε > 0 small enough, there exists a pair (qε, cε) in P(T, ε) such that cε = (ciε)i∈I

Pareto dominates c = (ci)i∈I . Recall that qε = q⋆(cε). To simplify the presentation, we let

qiε := qi(ciε), for each i ∈ I. Value functions computed with the price qε are denoted by V i
ε ,

while those computed with the laissez-faire price q are denoted by V i.

3Recall that I⋆(st) denotes the set of agents i ∈ I that determine the asset price at event st, i.e.,

q⋆(c|st) = qi(ci|st).
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We shall construct asset positions (aiε)i∈I and debt limits (Di
ε)i∈I such that the family

(qε, (c
i
ε, a

i
ε, D

i
ε)i∈I) forms a competitive equilibrium with self-enforcing and nonnegative debt

limits.

For every t > T , we pose aiε(s
t) := ai(st) and Di

ε(s
t) := Di(st).

Fix an event sT at date T . We set aiε(s
T ) to be the beginning-of-period contingent

claim that implements the consumption ciε(s
T ), given asset prices and claims contingent to

successor events, i.e.,

aiε(s
T ) := −yi(sT ) + ci(sT ) +

∑
sT+1≻sT

qε(s
T+1)aiε(s

T+1).

To define the debt limits, we analyze two cases.

1. If qε(s
T ) > qiε(s

T ), we pose Di
ε(s

T ) := −aiε(s
T ). Because of condition (iii) in the

definition of P(T, ε), we must have q(sT ) > qi(sT ) at the laissez-faire equilibrium,

implying that ai(sT ) = −Di(ST ). Therefore, Di
ε(s

t) can be made as close to Di(sT )

as desired, by choosing ε > 0 small enough. Since we assume debt limits Di are

positive, we necessarily get Di
ε(s

T ) ⩾ 0. Moreover, as qε(s
T ) ⩾ qiε(s

T ), we have

V i
ε (D

i
ε,−Di(sT )|sT ) = U(ciε|sT ), and we deduce that Di(sT ) is self-enforcing (given

the successor debt limits).

2. If qε(s
T ) = qiε(s

T ), then V i
ε (D

i
ε, a

i
ε(s

T )|sT ) = U(ciε|sT ) ⩾ V i
def(qε|sT ). Applying the

Intermediate Value Theorem, we deduce the existence of Di
ε(s

T ) satisfying:

V i
ε (D

i
ε,−Di

ε(s
T )|sT ) = V i

def(qε|sT ). (C.1)

As V i
ε (D

i
ε, a

i
ε(s

T )|sT ) ⩾ V i
def(qε|sT ), we must have −Di

ε(s
T ) ⩽ ai(sT ). As Di

ε(s
t) ⩾ 0

for every successor event st ≻ sT , we deduce that

V i
ε (0,−Di

ε(s
T )|sT ) ⩽ V i

ε (D
i
ε,−Di

ε(s
T )|sT ) = V i

def(qε|sT ) = V i
ε (0, 0|ST ).

This implies Di
ε(s

T ) ⩾ 0.

All the equilibrium variables at each event sT have been defined by backward induction

from the equilibrium variables at all strict successor events. We can continue this backward
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induction argument to construct recursively all the equilibrium variables (aiε(s
t), Di

ε(s
t)) at

every event st predecessor to sT . The constructed self-enforcing debt limits Di
ε(s

t) are all

nonnegative if we choose ε > 0 small enough. This is possible because we have finitely many

debt levels to determine.

D Proof of Proposition 4.2

Fix a state z ∈ {za, zb} and two time periods t ⩾ τ ⩾ 1. Denote by hτ ∈ {a, b} the agent

with high income at event (τ, z). To identify χt(z), we should compute the marginal impact

on the value of default at period τ of a marginal change of the asset price in date t,4

∂V hτ
def (·|(τ, z))
∂qt(z)

(q).

Our guess for the out-of-equilibrium decision is that the high-income agent saves when income

is high and does not save when his income is low. The expected discounted utility of this

strategy is

V hτ
def (q|(τ, z)) = u(yh − qτ+1(z)θ(qτ+1(z))) + βu(yl + θ(qτ+1(z))) + β2V hτ

def (q|(τ + 2, z)).

The level of saving θ(qτ+1(z)) at date τ is optimal when

qτ+1(z) = β
u′(yl + θ(qτ+1(z)))

u′(yh − qτ+1(z)θ(qτ+1(z)))
.

As qτ+1(z) = qlf = 1, we deduce that θ(1) = clfl − yl = yh − clfh = xlf . The decision not to

save at date τ + 1 is optimal when

qτ+2(z) ⩾ β
u′(yh − qτ+3(z)θ(qτ+3(z)))

u′(yl + θ(qτ+1(z)))
.

As qτ+2(z) = qτ+3(z) = 1, the above inequality is satisfied with a strict inequality. Denote

by Wh : q 7→ Wh(q) the function defined on a neighborhood of qlf = 1 by

Wh(q) := u(yh − qθ(q)) + βu(yl + θ(q))

4If h is such that yhτ (z) = yl, then ξhτ (z) = 0 and we do not need to compute the marginal value of

default to get an expression of χt(z).
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where θ(q) solves

q = β
u′(yl + θ(q))

u′(yh − qθ(q))
.

Given these derivations, we can compute χt(z).
5 The analysis depends on whether t is odd

or even.

Assume t ⩾ 3 is odd. We have t = 2n + 1 for some n ∈ {1, . . .}. If τ is also odd, say

τ = 2k + 1 with k ⩽ n, then

V hτ
def (·|s

τ ) = V h
def(q|(2k + 1, z))

= Wh(q2k+2(z)) + β2V h
def(q|(2k + 3, z))

=
∞∑

ℓ=k+1

β2(ℓ−k−1)Wh(q2ℓ(z)).

We deduce that
∂V hτ

def (·|sτ )
∂q(st)

(q) =
∂V hτ

def (·|(2k + 1, z))

∂q2n+1(z)
(q) = 0

as the price q(st) = q2n+1(z) does not marginally affect the value of the default option

V h
def(q|sτ ). If τ is even, say τ = 2k with k ⩽ n, then

V hτ
def (·|s

τ ) = V hτ
def (q|(2k, z))

= Wh(q2k+1(z)) + β2V h
def(q|(2k + 2, z))

=
∞∑
ℓ=k

β2(ℓ−k)Wh(q2ℓ+1(z)).

We deduce that

∂V hτ
def (·|sτ )
∂q(st)

(q) =
∂V hτ

def (·|(2k, z))
∂q2n+1(z)

(q) = β2(n−k)W ′
h(1) = −u′(clfh)x

lfβ2(n−k).

It follows that if t = 2n+ 1 with n ∈ {1, . . .}, then

χt(z) = πl

n∑
k=1

ξh2k
2k (z)(−u′(clfh)x

lf)β2n = −βt−1πlu
′(clfh)x

lf

n∑
k=1

ξh2k
2k (z) (D.1)

where h2k is the agent with high income at event (2k, z).6

5Observe that W ′
h(q) = −u′(yh − qθ(q))θ(q).

6Agent h2k has low income at event (1, z) and therefore πh2k(2k, z) = πh2k(1, z) = πl.
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Assume t ⩾ 2 is even. We have t = 2n for some n ∈ {1, 2, . . .}. If τ is odd, say τ = 2k+1

with k ⩽ n, then

∂V hτ
def (·|sτ )
∂q(st)

(q) =
∂V hτ

def (·|(2k + 1, z))

∂q2n(z)
(q) = β2(n−k−1)W ′

h(1) = −u′(clfh)x
lfβ2(n−k−1).

If τ is even, say τ = 2k with k ⩽ n, then

∂V hτ
def (·|sτ )
∂q(st)

(q) =
∂V hτ

def (·|(2k, z))
∂q2n(z)

(q) = 0.

It follows that if t = 2n with n ∈ {0, 1, . . .}, then

χt(z) = πh

n−1∑
k=0

ξ
h2k+1

2k+1 (z)(−u′(clfh)x
lf)β2(n−k−1) = −βt−1πhu

′(clfh)x
lf

n−1∑
k=0

ξ̃
h2k+1

2k+1 (z) (D.2)

where h2k+1 is the agent with high income at event (2k + 1, z).7

E Additional Results on Section 4

This section provides additional interesting results regarding the equilibrium solutions of

the baseline economy analyzed in Section 4.

E.1 Self-Enforcing Debt Limits Need Not Satisfy Weak Rollover

In the laissez-faire equilibrium, dlf serves as the debt limit for borrowing against the

high and low income regimes. In our policy experiment the low-income agent at period

t = 2 issues debt d3(ε) against the next period’s high-income realization. However, we have

not addressed how much debt, denoted d̃3(ε), can be issued at t = 2 by the high-income

agent against the next period’s low-income realization. This omission is intentional, as its

level is irrelevant in the equilibrium under study—agents save against their low income.

Consequently, without loss of generality, we can set d̃3(ε) equal to its not-too-tight level,

given the future debt limits—all of which are dlf for t > 3. The characterization result of

Hellwig and Lorenzoni (2009) then applies, so that d̃3(ε) = q4(ε)d
lf .

7Agent h2k+1 has high income at event (1, z) and therefore πh2k+1(2k + 1, z) = πh2k+1(1, z) = πh.
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The low-income agent at period t = 1 borrows up to the not-too-tight limit d2(ε) against

next period’s high-income realization. Since this agent will have high income at t = 2, from

her perspective, borrowing capacity is constrained by the sequence of not-too-tight debt

limits (d2(ε), d̃3(ε), d
lf , . . . , dlf , . . .). Again, Hellwig and Lorenzoni (2009) applies, so that

d2(ε) = q3(ε)d̃3(ε) = q3(ε)q4(ε)d
lf .

Figure E.1(a) plots the functions ε 7→ d2(ε) and ε 7→ q3(ε)d̃3(ε) to demonstrate their equiv-

alence. We also plot in Figure E.1(b) the function ε 7→ d3(ε) and ε 7→ q4(ε)d
lf to illustrate

that d3(ε) is too tight.

(a) High-income Agent’s Debt at t = 2 (b) High-income Agent’s Debt at t = 3

Figure E.1: Debt Limits and Weak Rollover

Let d̃2(ε) denote the debt limit restricting how much debt the high-income agent at period

t = 1 can issue against next period’s low-income realization. Following the same reasoning

as before, we can set d̃2(ε) to its not-too-tight level. Notice that we cannot appeal to Hellwig

and Lorenzoni (2009) to determine its level as we did with d̃3(ε) since, at period t = 2, this

agent is constrained by d3(ε) that is too-tight. To compute d̃2(ε), we have to solve for the

low-income agent’s continuation utility when she starts at t = 2 with asset holdings equal to

−d̃2(ε). Our educated guess is: at t = 2 she borrows up to her debt limit d3(ε) contingent

to next period’s high-income realization. Her continuation utility is then

u(yl − d̃2(ε) + q3(ε)d3(ε)) + βu(yh − x3(ε)) + β2u(yl + xlf) + β3U lf
h .
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This educated guess is correct if, and only if, the first order condition at t = 2 is valid, i.e.,

q3(ε) ⩾ β
u′(yh − x3(ε))

u′(yl − d̃2(ε) + q3(ε)d3(ε))
.

The above inequality is satisfied for ε > 0 small enough as it is satisfied with a strict inequality

when ε = 0. To compute the default value V2,l(ε) of low-income agent at t = 2, we make

the educated guess that V2,l(ε) = u(yl) + V3,h(ε), where V3,h(ε) is the default value of the

hign-income agent at t = 3.8 This educated guess is correct if, and only if, the following

FOC is satisfied

q3(ε) ⩾ β
u′(yh − q4(ε)θ4(ε))

u′(yl)
.

Again, the above inequality is satisfied for ε > 0 small enough as it is satisfied with a strict

inequality when ε = 0.

As dlf is not-too-tight, we have U lf
h = V lf

h . This implies that the not-too-tight debt level

d̃2(ε) is determined by the equation

u(yl − d̃2(ε) + q3(ε)d3(ε)) + βu(yh − x3(ε)) + β2u(yl + xlf) =

u(yl) + βu(yh − q4(ε)θ4(ε)) + β2u(yl + θ4(ε)), (E.1)

where we recall that θ4(ε) ⩾ 0 is the optimal saving decision out of equilibrium of the

high-income agent at date t = 4. It is characterized by the following FOC

q4(ε) = β
u′(yl + θ4(ε))

u′(yh − q4(ε)θ4(ε))
and qlf ⩾ β

u′(yh − xlf)

u′(yl + θ4(ε))
.

To illustrate that not-too-tight limits cannot necessarily be rolled over, we plot in Fig-

ure E.2(a) the functions ε 7→ d̃2(ε) and ε 7→ q3(ε)d3(ε). To reinforce this feature, Fig-

ure E.2(b) plots the functions ε 7→ d1(ε) and ε 7→ q2(ε)d̃2(ε), showing that they do not

coincide. The interesting implication is that the converse of Proposition 2.2 is not necessar-

ily true: self-enforcing debt limits need not satisfy weak rollover.

8Recall that V3,h(ε) = u(yh − q4(ε)θ4(ε)) + βu(yl + θ4(ε)) + β2V lf
H .
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(a) Low-income Agent’s Debt at t = 2 (b) High-income Agent’s Debt at t = 1

Figure E.2: Debt Limits and Weak Rollover

E.2 Stationary Policy Intervention

This section analyzes possible government interventions–tightening of debt constraints–

that implement a symmetric stationary Markovian equilibrium. The associated consumption

allocation is parameterized by the stationary net-trade x ∈ [0, yh − yl] as follows: ci0 = y0

and cit(z) = ch(z) := yh − x if yit(z) = yh, and cit(z) = cl(z) := yl + x if yit(z) = yl. We

should identify the set of net-trade values x that implement a feasible pair. We numerically

compute the value of the default option at the initial date t = 0 and any t ⩾ 1 using

the following parametrization: the income dispersion coefficient, discount factor, and risk-

aversion coefficient values are set to ζ = 1.3, β = 0.9, and γ = 4.9

The implied common price of the two contingent assets traded at t = 0 is

q1(x) := βmax{πhu
′(ch(x)), πlu

′(cl(x))}/u′(y0),

and the implied price of the risk-free asset traded at every t ⩾ 1 is10

q(x) := βmax{u′(ch(x))/u
′(cl(x)), u

′(cl(x))/u
′(ch(x))}.

9See Figure E.3(b) for the stationary consumption levels.

10See Figure E.3(a).
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(a) Riskless Asset Price and MRS (b) Consumption Levels

Figure E.3: Stationary equilibrium variables as functions of the net-trade x.

We start by analyzing the self-enforcing constraints at any date t ⩾ 1. Denote by V def
h (x)

and V def
l (x) the default option value of the high and low-income agents, respectively. Their

determination relies on an educated guess about the out-of-equilibrium path. We postulate

the following default value functions:

V def
h (x) = u(yh − q(x)θ(x)) + βu(yl + θ(x)) + β2V def

h (x), (E.2)

and

V def
l (x) = u(yl) + βV def

h (x), (E.3)

that are derived by assuming that the defaulting agent only saves when income is high. The

level of saving θ(x) is determined by the FOC of the high-income agent:

q(x) = β
u′(yl + θ(x))

u′(yh − q(x)θ(x))
.

To simplify the presentation, we use the following notations: cdefh (x) := yh − q(x)θ(x) and

cdefl (x) = yl + θ(x). The low-income agent optimally decides not to save if, and only if, the

following FOC are satisfied

q(x) ⩾ β
u′(cdefh (x))

u′(cdefl (x))
and q(x) ⩾ β

u′(cdefh (x))

u′(yl)
.

The second inequality is satisfied if the first one also is. We see in Figure E.4(b), that both

conditions are satisfied.
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(a) Out-of-equilibrium Saving Decision (b) Validity of the Low-Income FOC

Figure E.4: Optimality of the out-of-equilibrium educated guess.

We see in Figure E.5(a) that the participation constraint, Vl(x) ⩾ V def
l (x), of the low-

income agent is satisfied for any the net-trade value x. However, the participation constraint,

Vh(x) ⩾ V def
h (x), of the high-income agent is satisfied for x ∈ [0, xlf ]∪[x, x] where xfb < x < x.

We still have to verify the participation constraint at t = 0. As both agents are ex-ante

identical, there is a single participation constraint

u(y0) + β[πhVh(x) + πlVl(x)] =: V0(x) ⩾ V def
0 (x)

where V def
0 (x) is the value of the default option at t = 0.11 Our educated guess is that agents

optimally decide to save only against high income. This leads to the following value function

V def
0 (x) := u(y0 − q1(x)θ1,l(x)) + βπhV

def
H (x) + βπl[u(yl + θ1,l(x)) + βV def

h (x)].

The level θ1,l(x) of savings contingent to low income is determined by the FOC

q1(x) = βπl
u′(yl + θ1,l(x))

u′(y0 − q1(x)θ1.l(x))
.

11Agents do not start t = 0 with debt. However, for x > xfb, the government intervention imposes

mandatory savings above the laissez-faire level. Agents may refuse to follow the government policy and

default.

xii



(a) Low-Income Participation Constraint (b) High-Income Participation Constraint

Figure E.5: Participation constraints at t ⩾ 1

At t = 0, the decision to save only against low income is optimal if, and only if, the following

FOC is satisfied

q1(x) ⩾ βπh
u′(cdefh (x))

u′(cdef0 (x))

where cdef0 (x) := y0 − q1(x)θ1,l(x)) is the consumption level at t = 0 along the out-of-

equilibrium path. Along this out-of-equilibrium started at t = 0, the low-income agent

optimally decides not to save at t = 1 if, and only if

q(x) ⩾ β
u′(cdefh (x))

u′(cdef1,l (x))

where cdef1,l (x) := yl+ θdef1,l (x). Figure E.6 shows numerically that our the two above FOC are

satisfied and that our educated guess is indeed optimal.12

Figure E.7(a) illustrates that the participation constraint at t = 0 is satisfied for all

net-trade values x ∈ (0, yh − yl). We deduce that the stationary allocation parametrized by

the net-trade level x implements a socially feasible pair for any x ∈ (0, xlf) ∪ [x, x]. For this

set of net-trade levels, Figure E.7(b) shows that such a simple intervention does not lead to

a Pareto improvement.

12We set the time 0 income at the average income level, i.e., y0 = (yl + yh)/2.
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(a) Out-of-equilibrium FOC at t = 0 (b) Out-of-equilibrium FOC at t = 1

Figure E.6: Optimality of the out-of-equilibrium educated guess for default at t = 0.

(a) Participation Constraint at t = 0 (b) No Pareto Improvement

Figure E.7: Equilibrium Values at t = 0
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F Omitted Proofs of Section 5

To simplify the exposition of the theoretical results, we assume in this section that u is

bounded. This restriction ensures that the lifetime utility U is continuous (for the product

topology) and the demand set is nonempty. The characterization of debt limits can be

extended, and our results in this section continue to hold even when u is unbounded. A

general treatment of unbounded utility functions requires additional technical assumptions

on endowment processes and a suitable modification of the utility function u outside a specific

interval so that the equilibrium outcomes remain unaffected. For a detailed discussion, see

Martins-da-Rocha and Santos (2019).

F.1 Proof of Theorem 5.1

The proof of Theorem 5.1 exploits two intermediate results. The first and crucial obser-

vation, which has no analog in the absence of output contraction, is to show that the present

value of foregone endowment imposes a lower bound on not-too-tight debt limits. A direct

implication of this property is that the process PV(ℓi) is finite. This is summarized in the

following lemma.

Lemma F.1. Not-too-tight debt limits are at least as large as the present value of endowment

losses, i.e., for each agent i, Di(st) ⩾ PV(ℓi|st) at any event st.

A natural approach to prove this result is to show that Di(st) ⩾ ℓi(st) + D̃i(st), where

D̃i(st) :=
∑

st+1≻st q(s
t+1)Di(st+1) is the present value of next period’s debt limits, and then

use a standard iteration argument. Because, in equilibrium, debt limits are not too tight,

this is equivalent to proving that agent i does not have the incentive to default when her net

asset position is ℓi(st) + D̃i(st), i.e.,

V i(Di,−ℓi(st)− D̃i(st)|st) ⩾ V i
ℓi(0, 0|st). (F.1)

By definition, the value function V i
ℓi satisfies:

V i
ℓi(0, 0|st) ⩾ u(yi(st)− ℓi(st)) + β

∑
st+1≻st

π(st+1|st)V i
ℓi(0, 0|st+1). (F.2)
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If we had an equality in (F.2), then inequality (F.1) would be straightforward. Indeed,

consuming yi(st)−ℓi(st) and borrowing up to each debt limit Di(st+1) at event st leads to the

right-hand side continuation utility in (F.2) and satisfies the solvency constraint at event st in

the budget set defining the left-hand side of (F.1). Unfortunately, in our environment where

agents can save upon default condition (F.2) may not hold as an equality.13 Overcoming

this problem is the technical challenge in the proof of Lemma F.1. The formal argument is

presented below.

The second observation is that the process PV(ℓi) of present values of endowment losses,

when it is finite, is itself not too tight. The following lemma provides the formal statement.

The proof follows from a simple translation invariance of the flow budget constraints.

Lemma F.2. If PV(ℓi|s0) is finite, then the process PV(ℓi) is not too tight, i.e.,

V i(PV(ℓi),−PV(ℓi|st)|st) = V i
ℓi(0, 0|st), ∀st ⪰ s0.

Equipped with Lemma F.1 and Lemma F.2, we can now provide a simple proof of The-

orem 5.1.

Proof of Theorem 5.1. Fix a process Di of not-too-tight debt limits. Lemma F.1 implies that

PV(ℓi|s0) is finite. From Lemma F.2, we also deduce that the process Di := PV(ℓi) is not

too tight. Martins-da-Rocha and Santos (2019) show that the difference between any two

processes of not-too-tight debt limits must be an exact rollover process. Therefore, a process

M i exists satisfying the exact rollover property such that Di = Di + M i. By Lemma F.1,

Di ⩾ Di, in which case the process M i must be nonnegative.

F.1.1 Proof of Lemma F.1

Since we are exclusively concerned with the single-agent problem, we simplify notation

by dropping the superscript i. Let D be a process of not-too-tight limits. We first show that

13In the simpler environment where, upon default, saving is not possible (as it is the case in Alvarez and

Jermann 2000) condition (F.2) always hold as an equality.
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there exists a nonnegative process D satisfying

D(st) = ℓ(st) +
∑

st+1≻st

q(st+1)min{D(st+1), D(st+1)}, for all st ⪰ s0. (F.3)

Indeed, let Φ be the mapping B ∈ RΣ 7−→ ΦB ∈ RΣ defined by

(ΦB)(st) := ℓ(st) +
∑

st+1≻st

q(st+1)min{D(st+1), B(st+1)}, for all st ⪰ s0.

Denote by [0, D̄] the set of all processes B ∈ RΣ satisfying 0 ⩽ B ⩽ D̄ where

D̄(st) := ℓ(st) +
∑

st+1≻st

q(st+1)D(st+1), for all st ⪰ s0.

The mapping Φ is continuous (for the product topology), and we have Φ[0, D̄] ⊆ [0, D̄].

Since [0, D̄] is convex and compact (for the product topology), it follows that Φ admits a

fixed point D in [0, D̄].

Claim F.1. The process D is tighter than the process D, i.e., D ⩽ D.

Proof of Claim F.1. Fix a node st. Since Vℓ(0, 0|st) = V (D,−D(st)|st) and V (D, ·|st) is

strictly increasing, it is sufficient to show that V (D,−D(st)|st) ⩾ Vℓ(0, 0|st). Denote by

(c, ã) the optimal consumption and bond holdings in the budget set Bℓ(0, 0|st) for some

arbitrary event st.14 We let D̂ be the process defined by D̂(st) := min{D(st), D(st)} for

all st. Observe that

y(st)−D(st) = y(st)− ℓ(st)−
∑

st+1≻st

q(st+1)D̂(st+1)

= c(st) +
∑

st+1≻st

q(st+1)[ã(st+1)− D̂(st+1)]

= c(st) +
∑

st+1≻st

q(st+1)a(st+1)

where a(st+1) := ã(st+1) − D̂(st+1). Since D̂ ⩽ D, we have a(st+1) ⩾ −D(st+1). At any

14That is, the process ã supports consumption c such that U(c|st) := Vℓ(0, 0|st).
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successor event st+1 ≻ st, we have

y(st+1) + a(st+1) = y(st+1) + ã(st+1)− D̂(st+1)

⩾ y(st+1) + ã(st+1)−D(st+1)

⩾ y(st+1)− ℓ(st+1) + ã(st+1)−
∑

st+2≻st+1

q(st+2)D̂(st+2)

⩾ c(st+2) +
∑

st+2≻st+1

q(st+2)[ã(st+2)− D̂(st+2)]

⩾ c(st+2) +
∑

st+2≻st+1

q(st+2)a(st+2)

where a(st+2) := ã(st+2)− D̂(st+2).15 Observe that a(st+2) ⩾ −D(st+2) as D̂ ⩽ D).

Defining a(sτ ) := ã(sτ ) − D̂(sτ ) for any successor sτ ≻ st and iterating the above argu-

ment, we can show that (c, a) belongs to the budget set B(D,−D(st)|st). It follows that

V (D,−D(st)|st) ⩾ U(c|st) = Vℓ(0, 0|st)

implying the desired result: D(st) ⩽ D(st).

It follows from Claim F.1 that D satisfies

D(st) = ℓ(st) +
∑

st+1≻st

q(st+1)D(st+1), for all st ⪰ s0. (F.4)

Applying equation (F.4) recursively, we get

p(st)D(st) = p(st)ℓ(st) +
∑

st+1∈St+1(st)

p(st+1)ℓ(st+1) + . . .

. . .+
∑

sT∈ST (st)

p(sT )ℓ(sT ) +
∑

sT+1∈ST+1(st)

p(sT+1)D(sT+1)

for any T > t. Since D is nonnegative, it follows that

p(st)D(st) ⩾
T∑

τ=t

∑
sτ∈Sτ (st)

p(sτ )ℓ(sτ ).

Passing to the limit when T goes to infinity, we get that PV(ℓ|st) is finite for any event st

(in particular for s0). Recalling that D ⩾ D, we also get that D(st) ⩾ PV(ℓ|st).

15To get the second weak inequality, we use equation (F.3).
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F.1.2 Proof of Lemma F.2

Denote by (c, ã) the optimal consumption and bond holdings in the budget set Bℓ(0, 0|st)

for some arbitrary event st. We pose D := PV(ℓ) and observe that

D(st) = ℓ(st) +
∑

st+1≻st

q(st+1)D(st+1).

It is easy to show that (c, a) is optimal in the budget set B(D,−D(s0)|st) where a := ã−D.

We then deduce that V i(D,−D(st)|st) = Vℓ(0, 0|st), so proving the claim.

F.2 Proof of Proposition 5.1

Let (q, (ci, ai, Di)i∈I) be an equilibrium with limited pledgeability. Since pledgeable in-

come is nonnegligible, we must have∑
i∈I

PV(yi|s0) ⩽ 1

ε

∑
i∈I

PV(ℓi|s0).

By the decomposition property property (5.3) , we have that PV(ℓi|s0) < ∞ for each agent i,

so we deduce that the aggregate wealth of the economy
∑

i∈I PV(y
i|s0) must be finite. Since

consumption markets clear, we obtain that the present value of optimal consumption is

finite for all agents. In addition, due to the Inada’s condition, the optimal consumption is

strictly positive.16 Lemma A.1 in Martins-da-Rocha and Vailakis (2017) then implies that

the market transversality condition holds true:17

lim
t→∞

∑
st∈St

p(st)[ai(st) +Di(st)] = 0. (F.5)

The decomposition property property (5.3) implies that, for each i, there exists a nonnegative

discounted martingale process M i such that Di = PV(ℓi) +M i. Condition F.5 can then be

16See the supplemental material of Martins-da-Rocha and Santos (2019) for detailed proof.

17The market transversality condition differs from the individual transversality condition. Indeed, due

to the lack of commitment, agent i’s debt limits may bind, in which case we do not necessarily have that

p(st) = βtπ(st)u′(ci(st))/u′(ci(s0)).

xix



rewritten as follows:

lim
t→∞

∑
st∈St

p(st)ai(st) = −p(s0)M i(s0).

Since bond markets clear, we deduce that
∑

i∈I M
i(s0) = 0, proving the desired result:

M i = 0 for each i.

xx
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