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Abstract

Previous studies decomposing the growth of household income inequality based on educational

assortative matching (AM), assume that income distribution conditional on marriage type is indepen-

dent of sorting patterns. Using a frictionless matching model with imperfectly transferable utility, we

relax this assumption and account for the general equilibrium effects between the return to education

(RE) and AM. The model separates AM into transferable and non-transferable components, showing

that, controlling for secular RE trends, the transferable component increases inequality, while the

non-transferable component reduces it. Estimation of the model using CPS data demonstrates that

the rise in AM in the U.S. from 1962 to 2023 stems primarily from its non-transferable component.

Consequently, after controlling for RE, AM has reduced cross-sectional income inequality. Further-

more, market returns to education are the dominant driver of inequality, explaining approximately

40% of the Gini coefficient’s increase during this period. Since the tendency to invest in children’s

human capital is reflected in non-transferable AM, the findings suggest that highly educated cou-

ples may be so willing to spend time on their children that it reduces cross-sectional inequality but

potentially intensifies long-term inequality.

JEL classifications: I24, I26, J12

Keywords: return to education, marriage market, inequality, imperfectly transferable utility

1 Introduction

Over the past century, income inequality has risen across various regions, prompting extensive research

into the role of human capital investment in shaping this trend. In particular, the expansion of education

has been identified as a prominent factor (e.g. Goldin and Katz, 2009; Autor, 2014). Beyond its impact

on labor market outcomes, education also yields returns in the marriage market, influencing individuals’

matching behavior. Evidence highlights that educational assortative matching (henceforth AM) is a key

feature of marriage markets. Since the trend in AM is influenced by the return to education (henceforth
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RE), in assessing the effect of AM on income inequality, RE serves as a confounding factor. This paper

aims to address this challenge by decomposing changes in inequality into two independent components:

one arising from secular trends in RE and another driven by variations in preference for AM in the

marriage market.

Starting from Becker (1973, 1974), a branch of the literature investigates the role of marriage market,

particularly the impact of AM on raising income inequality. A big challenge in such analysis is the

measurement of sorting. Many proposed AM indices in the past literature are sensitive to changes in the

marginal distribution of the population, which can dramatically change over time and unevenly across

genders. Consequently, these indices often capture a combination of sorting and population trends rather

than preferences for AM (Chiappori, Costa Dias, and Meghir, 2021). Recent studies in this field (e.g.

Eika, Mogstad, and Zafar, 2019; Chiappori, Costa-Dias, Crossman, and Meghir, 2020; Dupuy and Weber,

2022) address this problem by employing AM indices that are independent of the marginal distribution

of the population. This approach allows them to let the education distributions evolve according to their

actual trends while fixing AM at a benchmark year. By doing so, they can estimate the contribution of

changes in AM to the growth of income inequality.

To estimate the share of AM in rising inequality, these studies adopt the standard inequality de-

composition framework (Fortin, Lemieux, and Firpo, 2011). This approach relies on the assumption of

conditional independence, which posits that the conditional income distribution for each type of couple

remains fixed when the sorting pattern changes in the counterfactual scenario. In other words, it as-

sumes that while any gains from marriage in terms of household income remain at their current levels,

households marry and sort according to the pattern observed in the base year. However, this assumption

disregards the general equilibrium effects of trends in RE on marriage market outcomes. For instance,

as macroeconomic factors change RE, the gains associated with different marriages may experience dis-

proportionate shifts across educational groups, thereby altering the incentive structure for marriage and

marital sorting by education.

In this paper, we employ a matching model to relax the conditional independence assumption used

in previous studies. This allows us to disentangle the effects of secular trends in RE when estimating the

contribution of AM to household income inequality, and vice versa. The model is a frictionless matching

framework with imperfectly transferable utility, as developed by Galichon, Kominers, and Weber (2019)

(hereafter GKW). This approach links household formation to the allocation of power within households,

both of which are jointly determined in the marriage market equilibrium.

The main result of the theoretical model is that marriage market outcomes, including marriage rates

and AM, depend on the population of singles and the marriage surplus. The marriage surplus is defined as

the joint gain from marriage minus the sum of the gains each individual would achieve if they remained

single. This surplus comprises two components: one derived from non-transferable gains, which are

independent of income, and another from transferable gains that are linked to income through individual’s
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consumption. While the non-transferable component arises from unobservable factors in the marriage

(e.g., children, love), the sources of transferable component are one’s own income and his/her spouse’s

income. Both components can be identified using contingency tables of population and average income,

combined with an assumption about the income-sharing rule within each couple type and the degree of

utility transferability.

Based on the model, any change in AM arises from the supermodularity of either the non-transferable

or transferable components of the marriage surplus. Furthermore, in line with approaches that separate

AM from population marginals, we define RE indices corresponding to the secular trends in non-pecuniary

and pecuniary gains of education. These indices are constructed to be orthogonal to changes in the two

components of AM. They capture the expected per capita non-pecuniary and pecuniary gains associated

with different educational levels at a given time which can be reasonably assumed to be independent of

matching patterns. By adopting this framework, we can isolate the impact of AM on income inequality

while controlling for the mechanical effects of RE changes on inequality.

The theory demonstrates that, controlling for RE, changes in AM driven by its transferable component

generally increase household income inequality. In contrast, an increase in the non-transferable component

of AM, holding other factors constant, tends to reduce cross-sectional inequality. This latter finding

contrasts with the conventional notion that increased AM widens the household income distribution by

concentrating more high-earning or low-earning partners in the same households. The intuition behind

this finding is as follows: Suppose individuals’ utility is the sum of a non-transferable component (e.g.,

affinity, children) and a concave function of a transferable good (income), and the total expected gains

from education in the economy are fixed, regardless of the matching pattern. In this setting, if preferences

for sorting arise from the non-transferable component rather than income, increased AM redistributes a

larger share of total income to couples where both partners are less educated, reducing income inequality.

Conversely, if sorting preferences are driven by the transferable component of utility, higher AM results

in a greater share of income for couples where both partners are highly educated, thereby increasing

household income inequality.

We estimate counterfactual income inequality for the United States using Current Population Survey

(CPS) data from 1962 to 2023. Consistent with the existing literature, we observe an upward trend in AM

over this period. However, nearly all of this increase is attributable to the non-transferable component

of AM, with its transferable term remaining almost randomly matched throughout the years. When

controlling for RE, our counterfactual analysis reveals a significant increase in the Gini coefficient in

2023 if AM components are fixed at their 1962 levels, consistent with our theoretical predictions. This

finding is robust across different assumptions about the degree of transferability and the income-sharing

rule. Additionally, we find a substantial reduction in income inequality when the pecuniary component

of RE is fixed at its 1962 levels. Under this scenario, the Gini coefficient decreases by 4 points for both

married couples and all households, accounting for approximately 40 percent of the overall rise in income
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inequality between 1962 and 2023.

This paper contributes to the literature on inequality from a household economics perspective. Since

Becker (1973, 1974), AM has been a central focus in studies examining household income inequality within

the marriage market. Although significant increases in AM have been documented in many countries,

empirical studies decomposing cross-sectional household inequality have often found its impact to be

negligible (Greenwood, Guner, Kocharkov, and Santos, 2015; Eika et al., 2019; Chiappori et al., 2020;

Ciscato and Weber, 2020; Dupuy and Weber, 2022). A critical limitation of these analyses is their failure

to account for the general equilibrium effects between AM and RE when assessing the relationship between

AM and inequality, despite theoretical arguments suggesting that AM is positively correlated with the

market return to human capital (Fernandez, Guner, and Knowles, 2005; Chiappori, Salanié, and Weiss,

2017). Standard decomposition methods typically impose an identification constraint that assumes the

income distribution, conditional on education, remains independent of changes in AM in counterfactual

scenarios (Fortin et al., 2011). This paper relaxes that assumption by “opening the black box” of AM

and decomposing it into non-transferable and transferable components.

A further methodological contribution of this paper is to endogenize the decision to marry by linking

it to RE. In most previous studies, singles are either excluded from the decomposition or included in the

model with trends assumed to be exogenous to educational dynamics. By addressing this limitation, this

paper provides a more comprehensive framework for analyzing the role of the marriage market in shaping

income inequality.

Our study challenges the conventional notion that when individuals match assortatively, their com-

bined earnings diverge more, thereby increasing cross-sectional income inequality compared to random

matching. Due to the concavity of pecuniary gains from education, the model implies that when AM

arises because of non-transferable factors, household income by marital type adjusts in a way that reduces

household income inequality. This finding suggests that marriage can play a role in mitigating current

household income inequality, although its effect on persistent inequality can be in the opposite direction.

This is because other mechanisms, such as investments in children and intergenerational wealth transfers,

are not captured in cross-sectional inequality measures.

To clarify, the analysis in this paper focuses on inequality within a cross-section of the population

rather than across generations. From a static perspective, AM directly influences inequality across house-

holds. Contrary to the conventional view, this paper argues that the direct effect of AM on inequality

can be decreasing when RE is controlled for, a prediction supported by the U.S. data. From a dynamic

perspective, however, AM has long-term implications for intergenerational mobility, as educated couples

tend to invest more in their children’s human capital. While this paper does not explicitly model this

mechanism, it acknowledges its importance, particularly as children are a key element of non-transferable

marital gains.

The empirical finding of the significant rise in non-transferable AM in the U.S. highlights the growing
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importance of the production of children’s human capital, which requires input from both parents. As

Chiappori et al. (2017) argue, when the return to human capital investment increases, high-income couples

devote more resources—particularly time—to their children, reinforcing AM. In our model, this trend is

reflected in the non-transferable component of AM. Thus, our findings are consistent with this mechanism

and further suggest that the tendency for investing in children may be so substantial that it leads to a

reduction in cross-sectional household income inequality.

The rest of the paper is organized as follows: Next section provides a simple example showing how

relaxing conditional independence assumption might change the effect of AM on inequality. Section 3

outlines the measurement of AM based on the association of row and columns of matching tables and

reviews the standard inequality decomposition method. Section 4 develops the matching model and

discusses its identification. Section 5 analyzes the relationship between RE, AM, and inequality and

describes the procedures to build various counterfactual scenarios. Section 6 describes the data, overall

trends, and estimated parameters and section 7 presents the counterfactual trends of the U.S. income

inequality. Finally, section 8 concludes.

2 An Illustrative Example

Consider a marriage market with an equal population of men and women, where individuals are classified

based on their level of human capital, and all participants are matched with a partner. Let i and j denote

the indices of education level for men and women, respectively. Define Nij as the population, Yij as the

household income, and λij and 1− λij as the share of income consumed by male and female partners of

couple type ij, respectively. Assume that the aggregate income
∑

i

∑
j NijYij = C, which equals total

household consumption expenditure, is determined exogenously by factors outside the marriage market

and remains independent of the matching pattern.

Within this framework, we define the secular trends of RE as the expected total consumption expendi-

ture of individuals based on their education level, irrespective of their matching type. Let Ni+ =
∑

i Nij

and N+j =
∑

j Nij represent the total population of men with education i and women with education

j, respectively. Similarly, let Ci+ =
∑

i NijλijYij and C+j =
∑

j Nij(1 − λij)Yij be total consumption

expenditure by men with education i and women with education j. Then, we define RE indices for men

with education i and women with education j by Ci+/Ni+ and C+j/N+j , respectively. These indices

capture the expected pecuniary returns to education, combining income from one’s own labor market

outcomes and potential gains from a spouse’s income in marriage. In other words, they measure the

total expected pecuniary gains from education, encompassing both labor market and marriage market

outcomes.

To simplify the analysis in the rest of this section, we assume there are two levels of education

i = {1, 2}, j = {1, 2} and ∀i, j : Ni+ = N+j = 2, λij = 0.5. Moreover, C1+ = C+1 = C1 and
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C2+ = C+2 = C2. Our aim is to compare income inequality under two matching scenarios:

• Assortative matching: N11 = N22 = 2 and N12 = N21 = 0,

• Random matching: N11 = N12 = N21 = N22 = 1,

based on two assumptions about households’ income:

(i) Yij is independent of who marries whom.

(ii) Yij depends on matching patterns, but RE indices 1
2Ci+ and 1

2C+j are independent of that.

We further assume that income is increasing in education such that under any matching scenario and

either of the above assumptions, we have Y11 ≤ {Y12, Y21} ≤ Y22. To measure household inequality, we

compute the total income transfer T required from above average households to below average ones in

order to have perfect equality such that ∀i, j : Yij = Ȳ .

In this setting, under assumption (i), assortative matching always leads to higher household income

inequality as shown in Figure 1. Under assumption (ii), Ȳ = 1
2 (C1+C2) and, while assortative matching

leads to Y11 = C1 and Y22 = C2, random matching results in

Y12 = Y21 = 2C1 − Y11, Y22 = 2(C2 − C1) + Y11

Thus, under random matching the income distribution depends on the level of Y11 (any other element of

income table can be the benchmark too). In this case the difference in inequality of the two scenarios

become

TRM − TAM =
1

2
(C2 − 3C1) + Y11

In this setting, assortative matching generates higher inequality only when 0 ≤ Y11 < 1
2 (3C1 − C2), and

when C2 > 3C1 or Y11 > 1
2 (3C1 − C2), inequality is higher in the random matching case.

This example illustrates how the relationship between AM and inequality depends on the assumption

regarding the independence of income by type from the matching pattern. In the subsequent sections,

we employ a matching model to establish a link between the income table and the population table,

while assuming that RE indices, similar to those defined above, are exogenously given. Before delving

into the model, we first describe the issues related to the proper measurement of sorting and decom-

position methods for income inequality, which are essential prerequisites for constructing counterfactual

experiments.

3 Inequality Decomposition by Educational Sorting

In this section, we first set out the measurement of AM such that it is independent to changes in

marginal distribution of population. We then describe the standard decomposition practice to assess the

contribution of AM and its underlying assumptions.
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Y11 Ȳ Y22

assortative matching with exogenous Yij

T = Y22 − Y11

Y11 Y12 Ȳ Y21 Y22

random matching with exogenous Yij

T = 1
2
(Y22 + Y21 − Y12 − Y11)

C1 Ȳ C2

assortative matching with endogenous Yij

T = C2 − C1

C1Y11 Ȳ2C1−Y11 C2 2(C2 − C1)+Y11

random matching with endogenous Yij

T = 3
2
C2 − 5

2
C1 + Y11

Figure 1: Income distribution under two matching scenario and two assumptions on independence of
household income and matching patterns.

Given I educational categories for men and J for women, a matching table is a (I+1)×(J+1) two-way

contingency table for the population. The rows correspond to men with education levels i ∈ {1, . . . , I},

and the columns correspond to women with education levels j ∈ {1, . . . , J}. The table also includes the

single population, with a dummy partner index of 0. In this context, N00 = ∅, Ni0 (N0j) represents

the population of single men (women), and for all i, j > 0, Nij denotes the population of couples in

which the man has education level i and the woman has education level j. For simplicity, we use ⊕ and

+ in the subscript to denote summation starting from 0 and 1, respectively. Thus, Ni+ represents the

population of married men with education level i, and Ni⊕ = Ni0 +Ni+ represents the total population

of men with education level i. Similarly, N+j and N⊕j represent the populations of married women and

all women with education level j, respectively. In the rest of the paper, we use normal font for elements

(e.g. Nij , Ni0, Ni+, Ni⊕) and bold fonts for vectors and matrices (e.g. N ,N•0,N•+,N•⊕).

Using this notation, we define marriage rates for men with education i and women with education j

as µi = Ni+/Ni⊕ and ωj = N+j/N⊕j , respectively. These two indices are extensive margin measures that

capture participation in the marriage market by education and gender. In the next section, we define a

measure for AM, which is an intensive margin index capturing spouse quality by education, conditional

on marriage.

3.1 Measurement of educational assortative matching

Measuring sorting is challenging and there are a variety of indices to measure assortativeness in the

marriage market in the literature. Chiappori et al. (2021) examine the properties of the different sorting
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indices for a 2× 2 contingency table and among them the log odds ratio (ln N11N22

N12N21
) is preferable for two

reasons: First, it is independent to changes in the marginal distribution of the populations; second, it has

a useful structural interpretation from the frictionless marriage market models of Choo and Siow (2006).

For 2×2 tables, a single odds ratio can summarize the association, but for bigger tables, it is not possible

to summarize association by a single number with no loss of information. Therefore, assortativeness

should primarily treated as a local property and its global indices can be locally invalid.

In general, a I × J matrix has
(
I
2

)
×
(
J
2

)
odds ratios, among which (I − 1)×(J − 1) can be chosen as

independent. The set of independent odds ratios for a table is not unique, and different basic sets may be

chosen based on the application. Two popular sets are the nominal odds ratios, measured with respect

to either the first or last group, and the local log odds ratios, measured for two adjacent groups.1

nominal (first):
N11 Nij

N1j Ni1
, nominal (last):

Nij NIJ

NiJ NIj
, local:

Ni−1,j−1 Ni,j

Ni−1,j Ni,j−1
, i, j > 1

Any of these sets comprises (I − 1)×(J − 1) elements that can be directly computed from the elements

of another set. Here, to better illustrate AM, we present the set of log odds ratios benchmarked with the

geometric average of the population, defined as

ρij = ln
Nij N̄××

N̄i× N̄×j
(1)

where N̄i× =
∏J

j=1 N
1/J
ij , N̄×j =

∏I
i=1 N

1/I
ij and N̄×× =

∏I
i=1

∏J
j=1 N

1/(IJ)
ij are the geometric means

within j, i, and both, respectively. Note that this definition has a nice feature for illustration because∑I
i=1 ρij =

∑J
j=1 ρij = 0. In other words, when computed for all i, j > 0, there is a redundant element

in each row and column of the matrix ρij such that the sum of all elements of a row or a column is zero.

3.1.1 Aggregating AM indices

The above analysis show that AM is local properties, and for a I × J table, at least (I − 1)×(J − 1)

odds ratios are needed for full characterization of AM. In this regard, any aggregation of AM elements

involves information loss and is sensitive to the method. An important consideration in aggregation is

the preservation of the attractive property of independence from marginal distribution that odds ratios

possess. In this regard, a fixed weight must be applied across different points in time or space to achieve

a marginal-free aggregate index (Hoseini, 2023).

A well-known aggregator of odds ratios for two-way tables is the metric of association proposed by

Altham (1970) which is defined as:

1

IJ

√√√√ I∑
i=1

J∑
j=1

I∑
k=1

J∑
l=1

(
ln

Nij Nkl

Nil Nkj

)2
(2)

1See section 2.2.5 of Kateri (2014) for other common sets of odds ratios used in contingency table analysis.
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Altham’s metric computes the root sum of squares of all
(
I
2

)
×
(
J
2

)
log odds ratios of a contingency table,

with its value reflecting the degree of association between rows and columns. In the case of random

matching, Altham’s metric is zero, and higher values for a given table size indicate a greater distance

from random matching. However, Altham’s metric focuses on the absolute value of association and does

not indicate whether the association is positive or negative. To address this limitation, we compute

aggregate indices using the weighted average of the sets of odds ratios defined in (1):

ρ =

I∑
i=1

J∑
j=1

ρij

T∑
t=1

N t
ij N̄ t

i× N̄ t
×j

T
∑

k

∑
l N

t
kl N̄

t
k× N̄ t

×l

(3)

To maintain the marginal-free property for the aggregate index, necessary for trend analysis over time,

we weight ρij by the average of weights over all years. Since the AM property mainly manifests itself on

diagonal elements, one can also compute the weighted and unweighted averages of diagonal elements as

two additional aggregate indices. Various other aggregate indices exist in the literature (for a summary,

see Figure 5 of Eika et al. (2019)), but they are not independent of changes in marginal distributions over

time, so we do not consider them here.

3.2 Building matching table by population vectors, marriage rates, and AM

matrix

The below proposition shows that a marriage contingency table can be characterized by AM matrix,

marriage rates, and the marginal distribution vectors of the population. Here, we utilize an old statistical

literature that demonstrates the representation of any matrix as two vectors of marginal distributions

for rows and columns, along with a matrix of odds ratios indicating the association between rows and

columns. Intuitively, given that in one-to-one matching
∑

i Ni+ =
∑

j N+j , the marriage rate combined

with marginal distributions provide I + J − 1 independent equations. To determine the population of

each couple type, we require (I − 1)(J − 1) additional equations in the form of odds ratios. Proposition

1 affirms that a solution for such a system of equations always exists. This type of table decomposition

serves as a valuable tool for disentangling the association between rows and columns from the marginal

distribution of rows and columns. In our application, this implies the ability to separate the change in

overall educational composition (measured by its marginal distribution by gender) from the marriage

rates and the assortative matching between the two populations (measured by a basic set of odds ratios).

Proposition 1. An (I+1)× (J+1) marriage contingency table is characterized by these components and

vice versa

• educational distribution vectors N•⊕ and N⊕•,

• marriage rate vectors µ and ω, such that
∑I

i=1 µiNi⊕ =
∑J

j=1 ωjN⊕j, and

• educational assortative matching matrix ρ or any other basic set of odds ratios.
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The proof is based on Sinkhorn’s theorem that asserts the existence and uniqueness of a contingency

table based on its odds ratio set and its marginal sums. While decomposing the table to its components

is straightforward, the characterization of a table from the component involves solving an system of

non-linear equations at a size equal to the unknown elements of the contingency table. The common

algorithm to find the elements is Iterative Proportional Fitting (IPF) that dates back to Stephan (1942).

Proposition 1 provides a great tool to investigate marriage market outcomes independent of changes in

population supplies. It asserts that one can build a marriage table with elements from marginal population

vectors, marriage rate vectors, and the AM matrix. This means that we can make counterfactual exercise

by fixing any of these component at a benchmark year and find the equilibrium matching table.

3.3 Decomposition of income inequality

DiNardo, Fortin, and Lemieux (1996) introduce the standard decomposition method to assess the con-

tribution of different factors in income inequality. Let FY|X (y|x, t) represent the conditional distribution

of income by population group x. From the law of total probability, the income distribution at time t

becomes:

FY(y| t) =
∫

FY|X (y|x, t) dFX (x| t)

In a scenario in which the distribution of population is as in tx, DiNardo et al. (1996) build the counter-

factual income distribution as

F̂Y(y| t) =
∫

FY|X (y|x, t)Ψ(x|t, tx)dFX (x| t), Ψ
(
x| t, tx

)
=

dF̂X (x| tx)
dFX (x| t)

where Ψ
(
x|, t, tx

)
is the reweighing function of the samples.

In our application, the population distribution Nij is characterized by the components described

in Proposition 1. Following the approach proposed by DiNardo et al. (1996), we can construct the

counterfactual inequality at time t when the educational distribution, marriage rate, and AM are at the

levels of tN , tM and tA, respectively, as:

F̂Y(y| t) =
I∑

i=1

J∑
j=1

FY|I,J (y| i, j, t) N̂ij

(
tN , tM , tA

)

Here, FY|I,J (y| i, j, t) is the conditional income distribution for couples with education i and j, and

N̂ij

(
tN , tM , tA

)
is the counterfactual population when marginal population vectors are measured at al-

ternative times. In the decomposition practice, usually one factor is benchmarked at the base year, while

others vary over time. Then the change in the trend of inequality reflects the contribution of that factor

in overall changes in inequality.

The decomposition method outlined above is applied in several studies (Eika et al., 2019; Chiappori

et al., 2020; Ciscato and Weber, 2020; Dupuy and Weber, 2022) for different countries. Despite different
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measures of AM suggesting an increasing trend, the counterfactual trend for constant AM is found to

have a negligible difference with the actual inequality trend. One reason for this result could be the

assumption of invariant conditional distribution of income over time which assumes FY|X (y|x, t) is fixed

in the original and counterfactual scenarios.

As argued by Fortin et al. (2011), the conditional independence (or ignorability) assumption neglects

the broader impacts arising from long-term trends in income table on AM. Essentially, it supposes that,

while the gains of marriages, which generally depends on RE, is changing over time, households sort in

the same pattern as the base year. However, during periods when economic factors significantly influence

income by education, the economic gains of marrying a partner with different human capital undergo

uneven changes. Consequently, the absence of a connection between average income by couple type and

AM fails to capture variations in the incentive structure for marital sorting resulting from exogenous

economic factors.

Hence, we seek to to relax the assumption of exogenous conditional income distribution to changes

in population distribution by allowing for the adjustment in the conditional income distribution in our

counterfactual experiments. Formally, for a couple (m,w) in the household survey belonging to education

groups (i, j), we assume that the counterfactual income becomes

ŷmw =
Ŷij

Yij
ymw (4)

where Ŷij is the adjusted average income of couples in educational groups ij after accounting for the

impact of population changes, secular trends in RE, and the AM pattern. We can then compute a

counterfactual inequality index like Gini coefficient by rewighting the sample multiplier for household

(m,w) using N̂ij/Nij and considering ŷmw as their income.

To establish a connection between changes in AM and variations in the conditional income, in addition

to estimate the population matrix with elements N̂ij , we need to construct income matrix with elements

Ŷij representing the predicted average income within each matched group in the counterfactual scenario.

These parameters are the outcome of equilibrium in the marriage market, and to find them we need

a matching model that accounts for both pecuniary and non-pecuniary gains of marriage. In the next

section, we provide a frictionless matching model with imperfectly transferable utility to characterize the

average income table based on return to education and the marriage market outcomes.

4 Matching Model

In this section, we present the theoretical framework that we later use for building counterfactual exper-

iments. Since our goal is to characterize the relationship between the return to education and marriage

market equilibrium, our model must account for both the matching decisions and the intrahousehold al-
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location of resources. To do so, we apply the matching framework with imperfectly transferable utility, as

developed by GKW, which provides a proper tool for addressing such problems. This approach allows us

to internalize the effect of education, which influences both labor income and marital gains, on matching

decisions. At the household level, non-pecuniary gains from marriage are exogenous to household income

and non-transferable. In contrast, pecuniary gains depend on the state of the economy, particularly the

market return to human capital, and these gains are imperfectly transferable between partners through

consumption.

The main result of the model is that marriage market outcomes, including marriage rates and AM, are

functions of the population of singles and the marriage surplus, defined as the joint gain from marriage

minus the sum of gains when both individuals remain single. Furthermore, the surplus consists of two

components: one related to non-transferable gains and the other to transferable gains from marriage.

Both components can be identified using the contingency tables of population and average income, along

with an assumption about the transferability parameter and the sharing rule within each couple type.

4.1 Imperfectly transferable utility

Suppose the population is comprised from men and women, indexed by m and f , that may match and

form couples. At the individual level, a matching is a dummy variable νmf which is one if m and f are

matched and zero otherwise. We consider one-to-one matching such that each individual can match with

at most one partner. This means that
∑

f νmf ≤ 1 and
∑

m νmf ≤ 1. Each matching ν generates payoffs

um and vf for man m and woman f , respectively. These payoffs determine feasibility and stability of the

matching.

To characterize equilibrium matching when the utility is imperfectly transferable between the partners,

GKW define Bmf as a proper bargaining set of feasible utilities (um, vf ) for m and f if it has three

features: closed and nonempty, lower comprehensive, and bounded above.2 A proper bargaining set has

a corresponding distance-to-frontier function defined by

Dmf (u, v) = min
{
z ∈ R : (u− z, v − z) ∈ Bmf

}
(5)

A matching is feasible when Dmf (u, v) ≤ 0. Moreover, let um0 and v0f be the utilities of single men and

women, respectively, then, a matching is stable if

• ∀m, f : Dmf (um, vf ) ≥ 0 with equality when νmf = 1,

• um ≥ um0 with equality if
∑

f νmf = 0 and vf ≥ v0f with equality if
∑

m νmf = 0.

If Dmf (um, vf ) < 0 for a pair m and f , they would be better off by leaving their current status, matching

together and sharing the extra attainable payoff.

2When utility is perfectly transferable, the set is the area below a line with slope -1.
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4.2 Matching by categories

Suppose the population of men and women belong to a small number of categories and let i ∈ {1, . . . , I}

and j ∈ {1, . . . , J} denote the types of men and women, respectively. For single individuals, we consider

a dummy partner and denote it with a null category 0.

Assumption 1. There exists families of non-vanishing distribution functions Fαj and Fβi such that

• if m ∈ i and f ∈ j are matched, for a proper bargaining set Bij, there exist (Um, Vf ) ∈ Bij, such

that um = Um + αi
m and vf = Vf + βj

f ,

• if m and f remain single, their utilities are Ui0 + α0
m and V0j + β0

f , respectively.

where ∀i ∈ {0, . . . , I}, j ∈ {0, . . . , J}, αj
m and βi

f are random i.i.d vectors from Fαj and Fβi , respectively.

This assumption generalizes the concept of separability of unobservable heterogeneity in joint surplus,

which is a key assumption in the literature on matching under transferable utility since Choo and Siow

(2006). The non-vanishing property of the distribution in Assumption 1 ensures that all matches in the

marriage contingency table have positive populations, preventing any zero cells. A slight modification

in Assumption 1, compared to GKW, is the inclusion of systematic utilities for singles based on their

category. In GKW and previous literature, Ui0 and V0j are benchmarked at zero, primarily because the

discrete choice model can only identify differences in deterministic utilities within a type, requiring one

category to be normalized. However, in what follows, we adopt a collective model where the utility of

singles depends on their income, and thus we specify these systematic utilities as separate terms.

Under Assumption 1, the deterministic utilities Um and Vf , which act as transfers, are allowed to vary

within a type. However, GKW show that, with finite utilities,3 this leads to an aggregate equilibrium

where transfers depend only on the types of the match, meaning Um = Uij and Vf = Vij . The next

proposition presents a simplified version of this result.

Proposition 2. Under Assumptions 1 with bounded utilities, in a stable matching, there exists 2× I ×J

numbers as Uij and Vij such that

• Dij(Uij , Vij) = 0, where Dij(u, v) is the distance-to-frontier function of the bargaining set Bij,

• If m ∈ i is matched with f ∈ j, their utilities are um = Uij + αj
m and vf = Vij + βi

f .

A well-known assumption in discrete choice models that can substantially simplify the analysis is the

use of the standard Gumbel distribution for all unobservable terms.

Assumption 2. ∀i, j Fαj (·) and Fβi(·) are standard Gumbel (type-I extreme value) distribution.

3The technical assumption in GKW is that the maximum utility any individual can obtain from matching with a partner
of a given type is either always finite or always infinite.
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Proposition 3. Under Assumptions 1 and 2:

Uij − Ui0 = ln
Nij

Ni0
, Vij − V0j = ln

Nij

N0j
, lnNij = −Dij(Ui0 − lnNi0, U0j − lnN0j)

Thus, when the utilities are additively separable and the unobserved heterogeneity has Gumbel distribu-

tion, number of matches in a couple type depends on the single’s population and utilities in the respective

categories.

For couple type ij, we define marriage surplus as the average surplus from marriage per partner

Sij :=
1

2

(
Uij + Vij − Ui0 − V0j

)
Proposition 3 implies that under Assumptions 1 to 2, the marriage surplus for couple ij is computed as

Sij =
1

2
ln

N2
ij

Ni0N0j
= −Dij(Ui0 −

1

2
ln

Ni0

N0j
, V0j +

1

2
ln

Ni0

N0j
) (6)

The marriage surplus is a key factor in determining equilibrium in the marriage market. The following

proposition illustrates the relationship between the marriage surplus and the marriage market indices.

Proposition 4. Under Assumptions 1 and 2,

ρij = Sij −
1

I

I∑
i=1

Sij −
1

J

J∑
j=1

Sij +
1

IJ

I∑
i=1

J∑
j=1

Sij

µi =
1

Ni⊕

J∑
j=1

exp(Sij)
√

N0jNi0

ωj =
1

N⊕j

I∑
i=1

exp(Sij)
√

Ni0N0j

This proposition illustrates the link between marriage surplus and the outcomes of the marriage

market. From (6), we see that the surplus is determined by the distance-to-frontier function, characterized

by intra-household decisions, and the utilities of singles and their population ratios. In general, the

distance function does not have a closed-form representation, making the analysis complex. Therefore,

in the following sections, we introduce additional structure to the household decision-making process to

derive an analytical expression for the surplus.

4.3 Collective model for household decision

To model household behavior we employ a collective approach (Chiappori, 1992) in which the decisions

are at the Pareto frontier. Let ui = U(ci) and vj = V(cj) be the utilities of a representative man in

a category i and a woman in categories j as a function of their private consumption ci and cj . The

budget constraint takes the form ci + cj ≤ Yij , where Yij is the representative household income for
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private consumption which is observable in the data. Assuming that the utility functions are invertible,

the budget constraint is a proper bargaining set by GKW’s definition as follows

Bij =
{
(u, v) ∈ R2, U−1

i (u) + V−1
j (v) ≤ Yij

}

with a distance-to-frontier function defined by (5) as Dij(u, v).

In the collective framework, household solves

max λij ui + (1− λij) vj s.t. Dij(u, v) ≤ 0

where λij is the Pareto weight associated with partner i which summarizes the allocation of power

within the household (see Browning, Chiappori, and Weiss (2014), section 3.5). GKW show that when

the bargaining set is smooth and convex, the Pareto weight is the derivative of the distance-to-frontier

function with respect to its first argument

λij = ∂uDij(u, v) (7)

This property integrates the allocation of power within the household with the matching process in the

marriage market. This is particularly important for our analysis, as it allows us to model the impact

of changes in the return to education on marriage market outcomes, both at the matching stage and

through household decisions.

In the framework described above, since Dij(·, , ·) specifies the Pareto frontier for households, it is

generally a function of the total household income Yij . To characterize the distance-to-frontier function,

we assume that, given a level of household income, Dij(·, ·) takes on a parametric form that is a scaled

version of a known distance-to-frontier function.

Assumption 3.

Dij(u, v) = γij d(
u− aij
γij

,
v − bij
γij

, Yij)

where d(·, · , y) is a known distance-to-frontier function which is decreasing in y.

Here, aij and bij align the means and γij adjusts for the scale of the utilities.4 Few classes of

bargaining sets, including the ones explored in GKW, have closed-form distance functions. The most

common form to model household decision in the previous literature, is the transferable utility (TU) with

a distance function independent of income, such that d(u, v) = 1
2 (u+v). Under TU, the distance function

is Dij(u, v) =
1
2 (u + v − zij), where zij = aij + bij represents the joint gain from matching that can be

freely transferred between spouses. This framework simplifies surplus estimation, as it requires only the

identification of the joint gain zij , which can be determined from population observations in a single

4We need to multiply γij to keep this property of distance-to-frontier function D(x+ u, x+ v) = x+D(u, v)
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market. However, in our application, where we intend to link matching decisions with household income,

TU is not the convenient model. In fact, TU assumes there is a (composite) good that serves as a constant

exchange rate for transferring utility between partners. Equivalently, it imposes that the utility of both

partners are linear with the same coefficient for the exchange good (see Chiappori and Gugl (2020) for

more details), which is not a convenient assumption when transfer is made via private consumption while

marriage creates other gains that cannot necessarily be cardinalized as private consumption.

4.4 Exponentially transferable utility

An alternative to TU for modeling household decision with imperfect transfer is the Exponentially Trans-

ferable Utility (ETU) as defined by GKW with

d(u, v; y) = ln
exp(u) + exp(v)

y

Under Assumption 3, the distance-to-frontier function of ETU is

Dij(u, v) = γij ln

exp(
u− aij
γij

) + exp(
v − bij
γij

)

Yij
(8)

and the collective household model that yields (8) is

Uij = aij + γij ln ci, Vij = bij + γij ln cj , ci + cj = Yij (9)

Here, aij and bij represent the non-transferable marital gains for men and women, respectively. These

terms include both public goods such as children and non-economic gains from marriage such as love and

companionship. The parameter γij determines the curvature of consumption in the utility function and,

since utility transfers are made via private consumption, it also affects the curvature of the bargaining

frontier. An interesting property of this model is that γij reflects the degree of transferability: as

γij approaches +∞, utility becomes perfectly transferable, whereas as γij approaches zero, the model

approximates a non-transferable utility (NTU) framework. We assume γij = γ̄ + ϵij , where ϵij has a

mean of zero and finite variance conditional on γ̄, such that as γ̄ approaches zero or +∞, the model

transitions to the NTU and TU frameworks, respectively, for all types ij.

For singles, the utility function does not include the marital gain terms aij and bij . Instead, it is a

logarithmic function of their consumption, which equals their own income. Instead of assuming separate

scaling parameters γi0 and γ0j for single individuals, we assume that when deciding to match with a

partner of a specific type, individuals use the same degree of transferability for their singlehood utilities

as they do for their consumption when matched with a potential mate. In other words, the singlehood

utilities that a man with education i and a woman with education j consider when deciding whether to
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match with each other are

Ui0 = γij lnYi0, V0j = γij lnY0j (10)

In this setting, from (7), the Pareto weight of ETU model becomes

λij =
exp(

Uij−aij

γij
)

exp(
Uij−aij

γij
) + exp(

Vij−bij
γij

)
=

1

1 +
Y0j

Yi0

(Ni0 exp aij
N0j exp bij

) 1
γij

(11)

According to Browning et al. (2014), Pareto weight is a distribution factor in the collective model,

characterized by elements beyond preferences and budget constraints. The ETU framework allows us to

endogenize this important parameter into the model. Specifically, in the marriage market equilibrium,

the relative power of a man with education i when matched with a woman with education j is determined

by three factors:

• The income ratio if single (Yi0/Y0j), which reflects the reservation utilities of singlehood and serves

as a bargaining factor.

• The inverse of the population ratio of singles in their respective types (N0j/Ni0), which indicates

the availability of potential mates of the same type in the marriage market.

• The difference between non-transferable marital gains (bij−aij), where the partner with lower non-

transferable gains from marriage is compensated by receiving a greater Pareto weight in equilibrium.

In addition, we can compute the marriage surplus in the above model as

Sij = γij lnYij − γij ln
(
Yi0

(N0j

Ni0

) 1
2γij exp(−aij

γij
) + Y0j

(Ni0

N0j

) 1
2γij exp(− bij

γij
)
)

(12)

which suggests that the surplus increases with non-transferable gains as well as household income Yij ,

while it decreases with income if remaining single Yi0 and Y0j . However, the impact of single population

ratio Ni0/N0j can go in either way. Using (11), we can also find the surplus as a function of Pareto weight

as

Sij =
1

2
(aij + bij)︸ ︷︷ ︸

non-transferable
component

+ γij ln
(
Yij

√
λij(1− λij)

Yi0Y0j

)
︸ ︷︷ ︸

transferable component

(13)

Therefore, for given values of average non-transferable gains and income by type, the surplus is maximized

when an even Pareto weight is applied within households. Furthermore, one can show that ci = λijYij

and cj = (1− λij)Yij . Thus, the Pareto weight is also the private consumption sharing rule in the model

which is not directly affect the non-transferable component of utilities. Another implication of equation

(13) is the decomposition of the marriage surplus into two components: a non-transferable component,

which is independent of income, and a transferable component, which is determined by the market return

to education and sharing rule. Later, we will use this decomposition in our counterfactual exercises.
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4.5 Parameter identification

The above model has three parameter sets to identify for each couple type: a, b, and γ. To identify

martial gains, note that ETU model leads to this matching function for each couple type

Nij =

(
Yi0

Yij

(
Ni0e

aij
) −1

γij +
Y0j

Yij

(
N0je

bij
) −1

γij

)−γij

(14)

and by combining (11) and (14), we obtain

aij = γij ln
Yi0

λijYij
+ ln

Nij

Ni0
, bij = γij ln

Y0j

(1− λij)Yij
+ ln

Nij

N0j
(15)

Thus, upon having information on sharing rule λ, marital gain parameters can be readily identified from

(15), given the table of γ. Still, we can identify the below lower-bounds for the marital gains

aij ≥ γij ln
Yi0

Yij
+ ln

Nij

Ni0
, bij ≥ γij ln

Y0j

Yij
+ ln

Nij

N0j
(16)

Theorem 5 of GKW shows that point-identification of the parameters aij and bij requires information

on transfers between couples. Without this information, only set-identification of these parameters is

possible for a given level of γij . Thus, when information on these transfer are unavailable, one would

need additional assumptions to identify these parameters.

From (11), for any level of γij , we have

λij ∈


(λ∗

ij , 1] if Ni0 exp(aij) < N0j exp(bij)

λ∗
ij if Ni0 exp(aij) = N0j exp(bij)

[0, λ∗
ij) if Ni0 exp(aij) > N0j exp(bij)

where λ∗
ij =

Yi0

Yi0 + Y0j
(17)

Under the non-transferable utility (NTU) case, where γij → 0, the Pareto weight can be 0, λ∗
ij , or 1,

depending on the comparison between Ni0 exp(aij) and N0j exp(bij). In the TU case, where γij → +∞,

λ∗
ij is the only possible Pareto weight, regardless of the direction of the inequality in the condition.

Therefore, a reasonable choice for the Pareto weight in absence of external data and regardless of γij ,

is λ∗
ij . When λij = λ∗

ij , couples allocate their household income based on their potential income if

they remained single. Then, in equilibrium, the population ratio of singles will reflect the ratio of the

non-pecuniary gains that are not transferable. Under this scenario, we also obtain

Sij =
1

2
(aij + bij) + γij ln

Yij

Yi0 + Y0j
(18)

which suggests that the transferable part of the surplus is equal to the log of the ratio of couple income
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to the sum of single’s income.5

According to Theorem 5 of GKW, identification of γij requires information on transfer across multiple

markets. In case of data limitations on multi-market transfers, one might calibrate γij by leveraging the

homoskedasticity of random terms in utilities such that the transferable component of the household

utility also becomes homoskedastic. According to Proposition 2 and Assumption 2, the stochastic part

of the surplus is 1
2 (α

j
m − α0

m + βi
f − β0

f ) which is the average of two standard logistic random variables.

Assuming log-normal distribution for the income of each couple type, one can choose γij such that the

variance of the transferable term of the surplus in (18) when λij = λ∗
ij equals π2/3 which is the variance

of a standard logistic random variables. This yields

γij =
π√

3Var(lnYij − lnYi0 − lnY0j)
(19)

5 Marriage Market and Inequality

In this section, we describe how our matching model can be used to analyze the relationship between

marriage market outcomes and overall income inequality. We begin by defining the secular trends of RE in

a way that ensures its evolution is independent of matching patterns, similar to the marginal distribution

of the population in Proposition 1. Next, we demonstrate how the model allows us to decompose AM

into its non-transferable and transferable components. To provide theoretical insights, we then examine

a simplified case with two education levels, analyzing the impact of various factors on overall inequality.

Finally, we outline the algorithm used to compute equilibrium in the general framework.

5.1 Pecuniary and non-pecuniary secular trends of RE

Education generates returns in both the labor and marriage markets. While labor market returns are

solely pecuniary, marriage market returns include both pecuniary and non-pecuniary components. The

pecuniary benefits in marriage arise from higher consumption enabled by spousal income, whereas the

non-pecuniary benefits includes factors such as love, companionship, and children. Consequently, the

source of non-pecuniary return to education is only the marriage market, but the pecuniary return are

derived from both labor and marriage markets. For instance, in a household where the husband works

and the wife is a homemaker, if income is evenly shared, the overall pecuniary return to education is

the same for both partners, even though the husband is the primary earner. In this case, the pecuniary

return to education is determined by the household’s sharing rule rather than by which partner earns the

income.

5Note that the use of λ∗
ij and the equality of eaNi0 = ebN0j is only for the finding of aij and bij in each year and it

does not mean that in building counterfactual scenarios λij is constant. In estimations, we try to use alternative levels of
λij to identify model parameters as robustness analysis.
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Therefore, given the sharing rule for each couple type, we can define

Ci⊕ = Ni0Yi0 +

J∑
j=1

NijλijYij , C⊕j = N0jY0j +

I∑
i=1

Nij(1− λij)Yij (20)

where Ci⊕ and C⊕j represent the total consumption expenditure by men with education level i and

women with education level j, respectively, in the entire economy. Importantly, the source of income

is irrelevant in this context and these variables capture the total household spending associated with

individuals of specific gender and education levels. The crucial factor here is the decision-making power

within the household, not which partner generates the income.

Similar to how the vectors N•⊕ and N⊕• reflect the marginal distributions of population, the vectors

C•⊕ and C⊕• represent the marginal distributions of total household expenditure attributable to indi-

viduals of specific gender and education levels, independent of the matching patterns in the marriage

market. A variety of factors outside the marriage market shape these expenditure distribution vectors

C•⊕ and C⊕•. In additions to economic variables such as population supplies, labor demand, and labor

productivity by human capital, these vectors are determined by non-economic factors such as social norms

regarding gender roles, legal frameworks for marriage, and the balancing effect of higher education on

gender parity.

In this context, we define the pecuniary RE index by gender as

ϕm
i =

Ci⊕

Ni⊕
, ϕf

j =
C⊕j

N⊕j
(21)

which is determined by the secular trends in population and household expenditure, independent of the

marriage market. This definition of return to education includes both economic gains from one’s own

labor income and also his/her spousal income, effectively combining the labor return and the economic

component of the marriage return to education. Another advantage of this definition is its monetary unit

which is the unit of the single’s income. In addition, we can simply measure relative return by computing

the ratios. For instance, male’s pecuniary return to education i relative to i′ is ϕm
i /ϕm

i′ .

In contrast, education creates non-pecuniary return through marriage which is reflected in parameters

a and b in the above model. To measure this return in the unit of pecuniary returns, we let

Di⊕ = Ni0 +

J∑
j=1

Nij exp(
aij
γij

), D⊕j = N0j +

I∑
i=1

Nij exp(
bij
γij

) (22)

and define non-pecuniary RE index by gender as6

φm
i =

Di⊕

Ni⊕
, φf

j =
D⊕j

N⊕j
(23)

6Note that from (22), we must have Di⊕ ≥ Ni+ and D⊕j ≥ N+j .
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φm
i (φf

j ) show the expected non-pecuniary gain from marriage for men (women) with education i (j)

measured in the unit of private consumption. Similar to above, the relative non-pecuniary return for

each gender can be defined as φm
i /φm

i′ and φf
j /φ

f
j′ , too.

These definitions allow us to decompose the contribution of AM and marriage rates on income in-

equality, while controlling for the effect of RE as defined by the expected gain of an individual with a

given level of education in the unit of single’s income.

5.2 Transferable and non-transferable components of AM

Similar to return to education, AM can be decomposed into transferable and non-transferable components.

Let ∆(·) be the demean operator defined as ∆(xij) = xij − 1
J xi+ − 1

I x+j +
1
IJ x++. Then, according

to Proposition 4, AM measured by ρij is the demean of surplus. Because ∆(·) is a linear operator, by

defining

ρaij = ∆(aij), ρbij = ∆(bij), ρYij = ∆
(
γij ln

(
Yij

√
λij(1− λij)

Yi0Y0j

))
(24)

from (13), we obtain ρij =
1
2 (ρ

a
ij + ρbij) + ρYij .

Therefore, AM can be decomposed into non-transferable and transferable components, defined by

1
2 (ρ

a
ij + ρbij) and ρYij , respectively. The non-transferable component is the average of the demeaned non-

pecuniary gains of the two partners. Moreover, from the model, cmij = λijYij and cfij = (1 − λij)Yij are

the consumption expenditure of the husband and wife, respectively, in a couple of type ij, respectively.

Then, if ∀i, j : γij = γ,

ρYij =
γ

2
∆
(
ln

cmij c
f
ij

ci0c0j

)
=

γ

2

(
ln

cmij c̄m××
c̄mi× c̄m×j

+ ln
cfij c̄f××

c̄fi× c̄f×j

)
(25)

which means that the transferable component of AM is the average of assortative matching in private

consumption expenditure of men and women.

This decomposition of AM is a crucial element of our counterfactual analysis. In the following section,

we demonstrate that the two components have opposing effects on income inequality. Specifically, the

prevailing intuition in the literature, which attributes an inequality-increasing effect to AM, is primarily

a feature of its transferable component, not its non-transferable counterpart. Furthermore, analogous to

the decomposition of the population table into AM and population vectors, one can derive the income

and sharing rule tables by combining the components of AM with the pecuniary and non-pecuniary RE

vectors.

5.3 A marriage market with two education levels

To get more insight about how each component of AM and RE affect inequality, we explore a simple

matching table with two education levels in which AM can be characterized by a single log odds ratio.
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For simplicity, we assume γij = 1. Then, in a 2× 2 table for married couples, we obtain

ρ11 = ρ22 = −ρ12 = −ρ21 =
1

4
ln

N11N22

N12N21
(26)

ρa11 = ρa22 = −ρa12 = −ρa21 =
1

4
(a11 + a22 − a12 − a21) (27)

ρb11 = ρb22 = −ρb12 = −ρb21 =
1

4
(b11 + b22 − b12 − b21) (28)

ρY11 = ρY22 = −ρY12 = −ρY21 =
1

4
ln

Y11Y22

Y12Y21

√
λ11λ22

λ12λ21

(1− λ11)(1− λ22)

(1− λ12)(1− λ21)
(29)

We characterize equilibrium given the population marginals, marriage rates and the components of RE

and AM. From proposition 1, we can compute population table using Ni⊕, N⊕j , µi, ωj , and ρij =
1
2 (ρ

a
ij +

ρbij) + ρYij . Furthermore, we have Di⊕ = φm
i Ni⊕, D⊕j = φf

jN⊕j , Ci⊕ = ϕm
i Ni⊕, and C⊕j = ϕf

jN⊕j .

Then, the equilibrium income and sharing rule tables can be found by solving the system of equations

including (26) to (29) and the below equations

N10 +N11 exp(a11) +N12 exp(a12) = D1⊕, N01 +N11 exp(b11) +N21 exp(b21) = D⊕1

N20 +N21 exp(a21) +N22 exp(a22) = D2⊕, N02 +N12 exp(b12) +N22 exp(b22) = D⊕2

N10Y10 +N11λ11Y11 +N12λ12Y12 = C1⊕, N01Y01 +N11(1− λ11)Y11 +N21(1− λ21)Y21 = C⊕1

N20Y20 +N21λ12Y12 +N22λ22Y22 = C2⊕, N02Y02 +N12(1− λ12)Y12 +N22(1− λ22)Y22 = C⊕2

ρij =
1

2
(ρaij + ρbij) + ρYij λij =

Yi0N0je
bij

Yi0N0jebij + Y0jNi0eaij
Yij = Nij

( Yi0

Ni0
e−aij +

Y0j

N0j
e−bij

)

The above system does not always have a solution. For example, since N10 + N11 + N12 = N1⊕, if

D1⊕ < N1⊕ − N10, no real solution for a11 and a12 exist. When the inputs of the model are such that

we have an equilibrium, the average consumption expenditure by individual is

Ȳ =
C1⊕ + C⊕1 + C2⊕ + C⊕2

N1⊕ +N⊕1 +N2⊕ +N⊕2
(30)

and we measure inequality at individual level by total required transfer to reach perfect equality for

individual consumption

T =

2∑
i=1

Ni01
(
Yi0 > Ȳ

)(
Yi0 − Ȳ

)
+

2∑
j=1

N0j1
(
Y0j > Ȳ

)(
Y0j − Ȳ

)
+

2∑
i=1

2∑
j=1

Nij

(
1
(
λijYij > Ȳ

)(
λijYij − Ȳ

)
+ 1

(
(1− λij)Yij > Ȳ

)(
(1− λij)Yij − Ȳ

))
(31)

We can also compute inequality at household level for married couples as

Ȳh =

∑I
i=1

∑J
j=1 NijYij∑I

i=1

∑J
j=1 Nij

T =

2∑
i=1

2∑
j=1

Nij1
(
Yij > Ȳh

)(
Yij − Ȳh

)
(32)
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Since a general analytical solution to the above system is not available, we use simulations to assess

the impact of various factors on income inequality. Appendix A.2 provides a detailed explanation of the

solution process and the simplifications applied when the market is symmetric. Here, we summarize how

income inequality responds to changes in the components of AM and RE.

Figure 2 illustrates the effect of the two components of AM on inequality, measured either by con-

sumption expenditure or married household income, under different levels of pecuniary RE. For clarity,

the inequality index is normalized to its value at the maximum level of the x-axis variable, ensuring

all indices converge to one at the terminal value. In these simulations, we assume constant population,

marriage rates, and non-pecuniary RE, along with symmetric pecuniary RE values, calibrated to align

with real-world data.

We illustrate the curves for the AM components changing between 0 (random matching) and 3, which

is the max of diagonal elements of AM in the US data. The left-side graphs show that an increase in the

non-transferable component of AM consistently decreases inequality, regardless of whether it is measured

at the household or individual level. In contrast, the right-side graphs illustrate that the relationship

between the transferable component of AM and inequality is generally non-monotonic. For small values of

ρY , inequality indices initially rise but for bigger values, the relationship reverses after a certain threshold

at lower levels of pecuniary RE and inequality begins to decline. Thus, while both inequality measures

always rise when ρY is around zero, their eventual behavior depends on the level of pecuniary RE.

Figure 3 illustrates the effect of changes in the relative non-pecuniary return to education (φ2

φ1
) on

inequality across various levels of the average non-pecuniary RE index. The simulations assume constant

population, marriage rates, and symmetric pecuniary RE. The simulate the relationship for values of φ2

φ1

range between [0, 2], but as the figure shows, the system has no real solution for a significant portion of

values below 1. As the average non-pecuniary RE index increases, the system converge to a solution over

a wider domain below 1.

The trends reveal that inequality reaches its minimum when low- and high-education groups yield

equal non-pecuniary RE. Specifically, inequality decreases as the ratio of non-pecuniary RE shifts in favor

of the low-educated group but increases when it favors the high-educated group. This indicates that any

imbalance in non-pecuniary RE between the two education groups, regardless of direction, contributes to

greater income inequality at equilibrium.

Figure 4 illustrates the impact of the pecuniary component of RE on inequality. The simulations

assume consistent population, marriage rates, and non-pecuniary RE, along with symmetric pecuniary

RE, calibrated to reflect real data. Unlike the non-pecuniary return, the average pecuniary return to

education does not influence income inequality and the graphs remain unchanged for different values of

ϕ̄.

Since higher education generally yields greater pecuniary returns—a pattern supported by real data—we
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Figure 2: The relationship between two components of AM and inequality. Inequality is measured
by total required transfer to reach perfect equality and is normalized to its value at the max level of
AM variable. The inequality for all individuals is computed based on their share of total income as in
(31) and for married households based on household income as in (32). The calibrated parameters are
Di⊕ = D⊕j = Ni⊕ = N⊕j = 8, µi = ωj = 0.7, Ci⊕ = C⊕i and C1⊕ + C2⊕ = 1000. For illustrating the
trend of non-transferable AM, the value of transferable component is considered 1 and vice-versa.

focus on simulations for ϕ2

ϕ1
≥ 1.7 The results suggest a positive relationship between the ratio of pecu-

niary RE and income inequality. This finding aligns with the non-pecuniary RE pattern when it favors

more educated individuals. However, a key distinction observed in the data is that while the pecuniary

return consistently favors more educated individuals (ϕ2 > ϕ1), the non-pecuniary return may favor ei-

ther education group. In summary, the findings of this section highlight the importance of distinguishing

between the two components of AM when analyzing its impact of on income inequality. Specifically, the

non-transferable component of AM monotonically decreases inequality, while the transferable component

increases it. Furthermore, the effect of changes in relative non-pecuniary RE on inequality depends on its

initial level—it can either increase or decrease inequality. In contrast, the pecuniary RE, which increases

with education, has a monotonic and always increasing effect on inequality.

5.4 Finding equilibrium in general setting

As discussed in Section 3.3, constructing counterfactual measures of inequality requires estimating popu-

lation and income tables under various scenarios. To do this, it is essential to establish the timing of the

model’s components. Since our focus is on decomposing income inequality through the evolution of AM,

we must determine how equilibrium outcomes respond to changes in AM. As outlined in Section 5.2, AM

7For 0 ≤ ϕ2
ϕ1

≤ 1, simulations yield results similar to Figure 3, with minimum inequality occurring at ϕ2
ϕ1

= 1.
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Figure 3: The relationship between the non-pecuniary RE and inequality. Inequality is measured by
total required transfer to reach perfect equality and is normalized to its value at the max level of the
return variable. Here, we assume ρa11 = ρb11 = 1, ρY11 = 0, C2⊕/C1⊕ = C⊕2/C⊕1 = 2 and µi = ωj = 0.7.

Different curves correspond to different levels of average non-pecuniary RE φ̄ = D1⊕+D2⊕
N1⊕+N2⊕

. Inequality for

all individuals is computed based on their share of total income as in (31) and for married households
based on household income as in (32).
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Figure 4: The relationship between pecuniary RE and inequality. Inequality is measured by total required
transfer to reach perfect equality and is normalized to its value at the max level of the RE variable. Here,
we assume ρa11 = ρb11 = 1, ρY11 = 0 and µi = ωj = 0.7. The inequality index for all individuals is computed
based on their share of total income as in (31) and for married households based on household income as
in (32). In contrast to Figure 3, the average of pecuniary RE does not affect income inequality and the
graphs for different ϕ̄ are the same.

comprises two elements: a non-transferable component, 1
2 (ρ

a
ij + ρbij), and a transferable component, ρYij .

To replicate the AM of a benchmark year, all elements of these two components must match their values

from that year.

Other inputs of the model to find equilibrium are N⊕•,N•⊕,µ,ω, and either ϕm,ϕf ,φm,φf or

C⊕•,C•⊕,D⊕•,D•⊕. Then, from Proposition 1, we can build population table using AM components

ρa,ρb,ρY , marriage rates (µ,ω), and marginal populations (N⊕•,N•⊕). To find income table, let x̄i· =

1
J xi+, x̄·j =

1
I x+j , x̄·· =

1
IJ x++, and

Zij = ln

(
Yij

√
λij(1− λij)

Yi0Y0j

)γij

Then, the following relationships must hold at the equilibrium

Ni0 +

J∑
j=1

Nij exp(
aij
γij

) = Di⊕, N0j +

I∑
i=1

Nij exp(
bij
γij

) = D⊕j (33)

Ni0Yi0 +

J∑
j=1

NijλijYij = Ci⊕, N0jY0j +

I∑
i=1

Nij(1− λij)Yij = C⊕j (34)

S̄i· =
1

2
(āi· + b̄i·) + Z̄i·, S̄·j =

1

2
(ā·j + b̄·j) + Z̄·j (35)

It is important to note that a solution to the equilibrium of system does not always exist, meaning that
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some counterfactual scenarios, where one of the model’s inputs is replaced with its benchmark year value,

may be unattainable.

When a solution does exist, equilibrium can be computed using an optimization algorithm similar to

the 2 × 2 case detailed in Appendix A.2. This process involves expressing income and sharing rules as

functions of āi·, ā·j , b̄i·, b̄·j and then minimizing the sum of squared residuals from equations as (33) and

(35). However, because the derivative of the objective function cannot be derived analytically, in models

with multiple categories, selecting appropriate initial values to ensure convergence becomes a significant

computational challenge. To address this, we propose an alternative algorithm described in Appendix

A.3, which offers a more efficient approach for initializing and solving the system. In short, we first

compute two pairs of functions from the above system

1. āi·(ā·1, . . . , ā·J-1, b̄1·, . . . , b̄I-1·) and b̄·j(ā·1, . . . , ā·J-1, b̄1·, . . . , b̄I-1·)

2. ā·j(ā1·, . . . , āI-1·, b̄1·, . . . , b̄I-1·) and b̄i·(ā1·, . . . , āI-1·, b̄1·, . . . , b̄I-1·)

Then, we follow the below iterative procedure to find equilibrium a, b and using them compute income

and sharing rule tables.

• start with vectors (ā
(0)
·1 , . . . , ā

(0)
·J-1) and (b̄

(0)
1· , . . . , b̄

(0)
I-1·), then at iteration k ≥ 1

• compute ā
(2k-1)
i·

(
ā
(2k-2)
·1 , . . . , ā

(2k-2)
·J-1 , b̄

(2k-2)
1· , . . . , b̄

(2k-2)
I-1·

)
and b̄

(2k-1)
·j

(
ā
(2k-2)
·1 , . . . , ā

(2k-2)
·J-1 , b̄

(2k-2)
1· , . . . , b̄

(2k-2)
I-1·

)
• compute ā

(2k)
·j

(
ā
(2k-1)
1· , . . . , ā

(2k-1)
I-1· , b̄

(2k-1)
·j , . . . , b̄

(2k-1)
·J-1

)
and b̄

(2k)
i·

(
ā
(2k-1)
1· , . . . , ā

(2k-1)
I-1· , b̄

(2k-1)
·j , . . . , b̄

(2k-1)
·J-1

)
The advantage of this algorithm to direct optimization is that the derivative of the above function can

be computed analytically which leads to faster convergence.

In summary, building a counterfactual experiment using the above model requires the choice for the

timing of the following factors

• tX : non-transferable AM (ρa,ρb)

• tY : transferable AM (ρY )

• tφ: non-pecuniary RE (φm,φf )

• tϕ: pecuniary RE (ϕm,ϕf )

• tM : marriage rates (µ,ω)

• tN : marginal population vectors (N⊕•,N•⊕)

However, it is possible that the system does not have a solution for a choice of inputs.
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6 Data, Overall Trends, and Parameter Estimations

We use the US Current Population Survey (CPS) for 1962-2023 which is the common dataset to study

income inequality in the US. We consider marriage as a monogamous relationship, meaning there is an

equal number of men and women matched with a partner at each point in time. Each year, the sample

is restricted to either single individuals aged 26 to 60, excluding widowed individuals,8 or married and

cohabiting couples where at least one partner is between 26 and 60 years old. Information on cohabitation

is unavailable in the CPS prior to 1995, so for those earlier years, we cannot distinguish cohabiting couples

from singles. As a result, there is a slight jump in the number of couples observed in the CPS starting

in 1995. Still, because cohabitation was rare in 1960s lack of cohabitation data is not a big concern for

our counterfactual exercises. We exclude all single individuals and couples with missing data on age,

education, or income.

Regarding educational classification, we assign individuals into five categories:

1. Dropouts (D): those who have less than 12 years of education or have no high school qualification

2. High school (HS): those who finished high school

3. Some college (SC): those who attend 1 to 3 years of college, including associate’s degree

4. Bachelor’s (BA): those who have bachelor’s degree

5. Graduate (G): those who have higher education than bachelor’s degree

We begin by examining the trends in the distribution of education by gender. Figure 5 shows the

changes in educational attainment across genders. Between 1960 and 1990, there is a significant decline

in the proportion of individuals who did not complete high school, accompanied by an increase in the

share of those with college degrees or higher, for both men and women. After 2000, these population

shares remained relatively stable.

The second factor to consider is the average income of all individuals in their respective groups.

Figure 6 illustrates the trend of average income by gender and education in 1999 dollars by considering

zero income for non-participants. The dashed lines show the average trend across all groups and the

other lines show the trend among different educational groups. Concerning the average income level,

we observe a slight increasing trend with cycles for men and a more pronounced upward trend without

cycles for women. This gender heterogeneity can be attributed primarily to the increasing trend of

participation among women, while men exhibited consistently high labor force participation during this

period. Regarding the gap between different education levels, we observe a clear divergence for men over

time. The divergence also exists for women to a lesser extent, and among those with education above

high school level, the gap exhibits a U-shaped pattern.

8We exclude widowed individuals because their single status is unintentional. However, including them has a negligible
impact on our main findings and mainly affects marriage rates, particularly for women, who are more likely to be widowed.
This is also the case if we exclude divorced and separated individuals from the sample of singles.
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Figure 5: Trend of total population by education and gender in US. Data source: CPS, individuals
between 26 and 60 years old.
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Figure 6: Trend of log average income by education for men and women in the US. For taking average,
the income of non-participants are considered as zero. The dashed line show the average across the whole
population. Income is adjusted by the 1999 price index. Data source: CPS, individuals between 26 and
60 years old.
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Figure 7: Trend of marriage rate by education for men and women in the US. Data source: CPS,
individuals between 26 and 60 years old.

Figure 7 illustrates the trend in marriage rates by gender and education. We observe a sharp decline

in marriage rates for both men and women over the study period. For men, the rates are similar across

education levels at the start, but the subsequent decline is inversely related to education level, with those

holding graduate degrees having the highest marriage rates in recent years. A similar trend is seen for

women, except for those with graduate education, who initially had significantly lower marriage rates,

followed by an upward trend over time.

Figure 8 illustrates the trend of AM pattern, defined as ρij in (1), overtime. We observe that the

average levels are consistent with positive assortative matching, where the diagonal elements are signifi-

cantly positive and the anti-diagonal elements are significantly negative. Furthermore, the trends of the

elements indicate a movement toward increased AM over time, as evidenced by the majority of cases

where the absolute values are rising. Appendix Figure 18 depicts the value of the log odds ratios of

population at ten-year intervals from 1962 to 2022. This pattern also suggests a prevailing increase in

assortative matching by education over time.

Figure 9 illustrates the trends of different aggregate measures of AM. In the top right, Altham’s metric

shows an increasing trend between 1960 and 1980, leveling out thereafter. In the top left, the weighted

average index, as defined in 3, indicates that AM is rising over the period of study. The bottom right

and bottom left graphs show the unweighted and weighted average of the diagonal elements in (3), both

of which display an increasing trend of AM.9 Hence, we can conclude an increasing trend of AM in the

US marriage market in the period of study.

9Note that the unweighted average of log odds ratios (1) is zero.
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Figure 9: Different aggregate measures of assortativeness using log odds ratios.

6.1 Parameter estimations

As discussed above, γij and λij are the two structural parameters of the model that cannot be point

identified without data on transfer within household and we calibrate them as described in section 4.5.

To estimate γij from (19), since couple types with low sample sizes exhibit fluctuations in average

income and its variance over time (Appendix Figure 19), we use the smoothed version of Var(lnYij)

through non-parametric LOESS regression. The top plot of Figure 10, shows our estimation for γij varies

between 0.8 and 1.5 across different groups. Moreover, we observe a decreasing trend over time in almost

all couple types, suggesting higher income variance within each group in recent years. In the following, in

addition the time varying values of γij , we repeat the counterfactual estimations using alternative values

of γij for each couple overtime.

We illustrate the trend of λ∗
ij in bottom plot of Figure 10. The numbers indicate that the sharing rule

favors men in the lower-left region and favors women in the upper-right region. Thus, higher education

is associated with greater bargaining power within the family. Along the diagonal, we observe a slightly

higher income share for men. In estimations, to identify non-pecuniary gains, we use λij = λ∗
ij and as

robustness test, we repeat estimation using the average of λij and 1
2 as the sharing rule.

Figure 11, illustrates the estimation of the non-pecuniary parameters aij and bij using (15) and

compares them with the average surplus Sij = lnNij − 1
2 ln(Ni0N0j). We observe that the estimated
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Figure 10: The estimated levels of γij and λ∗
ij .
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values of non-pecuniary gains generally align with the average surplus. The diagonal elements, where

couples assortatively match by education, have high surplus levels. Conversely, the values are negative

for anti-diagonal elements, indicating that matches between partners with different education levels tend

to be less desirable on average. Additionally, in most cases, the higher-educated partner receives more

non-pecuniary gain compared to the lower-educated partner.

Figure 12 shows the trend of the two RE indices estimated as (21) and (23). The top graphs show

that non-pecuniary RE has been decreasing overtime in almost all groups. Moreover, in the 1960s, non-

pecuniary RE is decreasing in education level with a large gap between different groups, but over time

the gap disappears. In the recent year, the non-pecuniary return of graduate education has the highest

value for men and the second highest for women. In the bottom graphs, we observe a close relationship

between the pecuniary RE index and average income for men (Figure 6), but for women we observe that

the lower average income is largely compensated by higher expenditure share. In addition, the trends

suggests that the pecuniary RE index is increasing in education is all years and all education levels.

Figure 13 shows the trend of non-transferable and transferable components of AM overtime aggregated

as (3). It can clearly seen that the main driver of AM and its change over time is its non-transferable com-

ponent and the transferable component revolves around zero. Between 1962 and 2023, both aggregate

measures suggest about 25% increase in non-transferable AM. The aggregate transferable component,

starts from zero in 1962, then becomes slightly negatively assortative in 1970s, and afterwards fluctuates

near zero. In the Appendix Figure 20, we separately depict the trend of the non-transferable and transfer-

able components for each element of them and observe that unlike the non-transferable component, there

is no clear pattern across diagonal or non-diagonal elements of transferable gains. Thus, these trends

highlight an important fact in the US marriage market in the past 60 years: Assortative matching and

its growth overtime has been mainly due to non-transferable gains of marriage and not its transferable

gains.

7 Counterfactual Experiments

In this section, we conduct counterfactual experiments to examine the contributions of two components

of AM and RE on income inequality in the US over the period 1962-2003. To measure income inequality,

we use the Gini coefficient for these samples:

• sample of married couples,

• sample of all individuals where we divide the household income of married couples of each type

between the partners, according to their average sharing rule λij .

The estimated trend of Gini coefficient, illustrated by thick lines in the subsequent graphs, suggest that,

on average, inequality is higher when measured at the individual level, particularly in the earlier years of
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Figure 12: The trends of pecuniary and non-pecuniary components of return to education in the US.
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the data. In particular, the Gini index is 0.328 and 0.365 at 1962 and 0.421 and 0.442 at 2023, for the

sample of married couples and individuals, respectively.

7.1 The US income inequality with constant AM

The top and bottom graphs of Figure 14 show the estimated actual and counterfactual inequality for the

samples of married households and all individuals under different scenarios for AM. The thick lines shows

the actual levels of Gini coefficient, and the others illustrate the outcome inequality in three counterfactual

exercises regarding the components of AM for each sample: when either non-transferable or transferable

AM and when both of them are at their 1962 levels.

Fixing only the non-transferable component of AM to its 1962 level leads to an increase in inequality,

that in 2023 its numbers are approximately 10 and 14 Gini points growth, for the sample of married

couples and all individuals, respectively. In contrast, fixing only the transferable component of AM to

its 1962 level either does not have a solution or it merely changes income inequality. As the main driver

of AM is its non-transferable component (Figure 9), when both components of AM are at their 1962

level, the counterfactual inequality is close to its value when only its non-transferable component is at

the benchmark year.

These two counterfactual outcomes are consistent with the relationship of their respective component

with inequality as depicted in Figure 2. Figure 9 shows that while AM due to non-transferable gain has

significantly increased, transferable AM is nearly zero and its change overtime is insignificant. According

to section 5.3, the rise of non-transferable AM is associated with less inequality, so when its pattern for

recent years (higher AM) is substituted by 1962 pattern (lower AM), inequality rises. In comparison,

while the impact of transferable AM on inequality is mostly increasing, its low level and low variation

does not change inequality.

To examine the robustness of these finding, we repeat them with alternative levels of γij and λij

for the estimation of non-transferable gains aij , bij and marginals Di⊕, D⊕j , Ci⊕, C⊕j . Figure 17 shows

the impact of different levels of transferibility parameters on the finding. Here, we consider the same

level of γij for all types and years and change this level to observe how the counterfactual inequality

with fixed AM of 1962 behave based on transerability of the utilities between households. We observe

that when the model approches to TU (γij → +∞) the counterfactual inequality approches to its actual

level. In contrast, approaching to an NTU model widens the gap between actual and counterfactual Gini

coefficients. This outcome stems from the fact that γij is the parameter to determine the weight of the two

components of AM. When it approach zero, AM is fully determined by its non-transferable component

(ρ ≈ ρa+ρb

2 ) and when it approach +∞, ρ ≈ ρY . Since changes in AM is due to its non-transferable

component and its transferable component remains near zero, by increasing transferibility the share of

low-variation component of AM rises and we obtain lower change in the counterfactual inequality. In

further sensitivity analysis, Appendix Figure 21, instead of λ∗
ij , uses the average of λ∗

ij and 1
2 as the
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Figure 14: Counter-factual inequality under different scenarios of AM components. The top graph is at
household level and in the bottom graph married couples of each type are counted as two individual with
income according to the sharing rule λij .
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Figure 15: Counterfactual income inequality with AM as in 1962 and different level of transferibility
parameter γij . The thick line is the actual trend and the others are counterfactual trends. When the
model approaches TU (large γij) inequality does not change by AM, but with NTU (γ → 0) inequality
increases more in the counterfactual scenario.

sharing rule, and suggest no significant change in the findings.

7.2 The US income inequality with constant RE

Our second set of exercises examines the contribution of the two RE indices on inequality. Figure 16 shows

the outcomes of the three exercises. We observe that fixing non-pecuniary RE at the 1962 levels result

in higher income inequality in all following years that a solution exists given the inputs of the system.

This finding is consistent with the trends in top graphs of Figure 12 and the relationship depicted in

Figure 3. The ranking of the φm
i , φf

j in 1962 is such that the lower education has higher return and

we are at the decreasing segment of Figure 3 when the relative return is smaller than one. In 1970s

and 80s, there is a gradual decrease in the return and after 1990 there is no clear ranking by education

level, which corresponds to interval near one in Figure 3. Therefore, fixing non-pecuniary RE at the year

which is substantially in favor of lower education, leads to higher counterfactual inequality in years that

non-pecuniary return is originally equal across education groups.

Regarding the counterfactual exercise in which the pecuniary RE index is at 1962 level, we find a

slightly higher Gini coefficient before 1980s, but afterward return to education significantly contributes

in explaining the rise in income inequality. Specifically, based on this counterfactual, controlling for

pecuniary RE accounts for 34%, 39%, and 40%, of the overall increase in income inequality between 1962

and 2023 for the sample of all household, married couples, and individuals, respectively. Fixing both

RE indices at their 1962 level gives the net effect of the two components and leads to higher income
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inequality, but at lower levels than when only non-pecuniary RE is at benchmark year.

8 Conclusion

This paper investigates the relationship between educational sorting in the marriage market and cross-

sectional income inequality, focusing on the role of return to education in shaping both. A frictionless

matching model with imperfectly transferable utility is developed to decompose assortative matching into

transferable and non-transferable components. While the transferable component, primarily reflecting

income-driven sorting preferences, tends to increase inequality, the non-transferable component, encom-

passing non-pecuniary factors such as affinity and children, mitigates inequality. This result challenges

the common belief that assortative matching inevitably exacerbates income inequality.

Using U.S. Current Population Survey (CPS) data from 1962 to 2023, the study empirically demon-

strates that the rise in assortative matching primarily stems from its non-transferable component, im-

plying that, after accounting for return to education, marriage market sorting has actually reduced

cross-sectional income inequality. The findings also highlight the dominant role of market return to ed-

ucation in driving inequality, accounting for approximately 40% of the increase in the Gini coefficient

between 1962 and 2023.

The significant contribution of the non-transferable component of assortative matching suggests that

the incentive of highly educated couples to invest in their children’s human capital, may inadvertently play

a role in reducing cross-sectional income inequality. However, this tendency could potentially intensify

long-term inequality as it translates into greater inequality in next generations. These findings underscore

the complex relationship between marriage market dynamics and income inequality and ask for further

research to investigate the dynamic relationship between education, martial sorting, and income inequality

across generations.
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A Appendix

A.1 Proofs

Proposition 1. Sinkhorn (1967)’s theorem states that if A is an I×J matrix with positive elements,

given two positive vectors R and C of size I and J , such that
∑I

1 ri =
∑J

1 cj , there exists a unique matrix

B of the form D1AD2 such that D1 and D2 are I × I and J × J diagonal matrices, and the row and

column sums of B are the elements of R and C.

Note that, because bij = d1iaijd2j in this theorem, the odds ratios in A and B are equal. Using this

theorem, we can show that given the vectors Ni+ = µiNi⊕, N+j = ωjN⊕j , we can determine Nij , i, j > 0

using a basic set of assortative matching terms. For instance, let ρ1ij = ln
N11 Nij

N1j Ni1
be the nominal first set

and consider A as an I×J matrix that its first row and column are ones and the remaining (I−1)×(J−1)

submatrix contains exp(ρ1ij), i, j > 1. Let R and C the vectors of Ni+ and N+j , respectively. Then,

according to Sinkhorn’s theorem, the unique matrix B will include Nij , i, j > 0. Because, any basic sets

of odds ratios are convertible to another, this proposition applies to all such basic sets.

Proposition 2. Since Bij is a proper bargaining set, it has a distance-to-frontier function Dij(u, v).

Using Dij(·, ·), we can reformulate the stability conditions based on Assumption 1 as

• ∀m ∈ i, and f ∈ j : Dij(um − αj
m, vf − βi

f ) ≥ 0 with equality when νmf = 1

• ∀m ∈ i : um ≥ Ui0 + αj
m with equality if

∑
f νmf = 0 and ∀f ∈ j : vf ≥ V0j + βi

f with equality if∑
m νmf = 0.

Consider m,m′ ∈ i and f, f ′ ∈ j such that under stable matching m and m′ respectively match with

f and f ′. From stability condition, we have

Dij(um − αj
m, vf − βi

f ) = 0 Dij(um′ − αj
m′ , vf ′ − βi

f ′) = 0

Dij(um′ − αj
m′ , vf − βi

f ) ≥ 0 Dij(um − αj
m, vf ′ − βi

f ′) ≥ 0

and consequently,

Dij(um − αj
m, vf − βi

f ) ≤ Dij(um′ − αj
m′ , vf − βi

f ) (36)

Dij(um′ − αj
m′ , vf ′ − βi

f ′) ≤ Dij(um − αj
m, vf ′ − βi

f ′) (37)

Based on Lemma 1 of GKW, Dij(u, v) is isotone in the sense that (u, v) ≤ (u′, v′) implies Dij(u, v) ≤

Dij(u
′, v′) and vice-versa. Based on this property of Dij(·, ·), from (36), we get um − αj

m ≤ um′ − αj
m′

and from (37), we obtain um − αj
m ≥ um′ − αj

m′ . Thus, we must have

um − αj
m = um′ − αj

m′ = Uij ⇒ um = Uij + αj
m
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By the same token, vf = Vij + βi
w. It then follows that Dij(Uij , Vij) = 0.

Proposition 3. Given the structure for utilities in Proposition 2, individuals m ∈ i and f ∈ j solve

the below discrete choice problems

um = max
j∈{0,...,J}

Uij + αj
m, vf = max

i∈{0,...,I}
Vij + βi

w

In addition, given the distribution functions Fα(·) and Fβ(·) and their corresponding density functions

fα(·) and fβ(·), we can identify the difference between systematic parts of the utilities from the empirical

matching probabilities, by solving the system of equations

Pr{m ∈ i, j = argmaxuk
m} = Pr{∀k, αk

m ≤ Uij − Uik + αj
m}

=

∫ +∞

−∞

∏
j ̸=k

Fαk(Uij − Uik + αj
m) fαj (αj

m) dαj
m =

Nij

Ni⊕
(38)

Pr{f ∈ j, i = argmax vkf} = Pr{∀k, βk
f ≤ Vij − Vkj + βi

f}

=

∫ +∞

−∞

∏
i ̸=k

Fβk(Vij − Vkj + βi
f ) fβi(βi

f ) dβ
i
f =

Nij

N⊕j
(39)

With Gumbel distribution for αj
m and βi

f , the above equations become

exp(Uij)∑J
k=0 exp(Uik)

=
Nij

Ni⊕
and

exp(Vij)∑I
k=0 exp(Vkj)

=
Nij

N⊕j
(40)

and we then obtain

Uij − Ui0 = ln
Nij

Ni0
, Vij − V0j = ln

Nij

N0j
(41)

From Lemma 1 of GKW, the distance-to-frontier function has the following property

Dij(a+ u, a+ v) = a+Dij(u, v)

Moreover, from Proposition 2, Dij(Uij , Vij) = 0, which together with (41) leads to

Dij(Ui0 + lnNij − lnNi0 , V0j + lnNij − lnN0j) = 0 ⇒ lnNij = −Dij(Ui0 − lnNi0 , V0j − lnN0j)
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Proposition 4. From (6)

Sij−
1

J
Si+ − 1

I
S+j +

1

IJ
S++ = Sij −

1

I

I∑
i=1

Sij −
1

J

J∑
j=1

Sij +
1

IJ

I∑
i=1

J∑
j=1

Sij

=
1

2
ln

N2
ij

Ni0N0j
− 1

2J

J∑
l=1

ln
N2

il

Ni0N0l
− 1

2I

I∑
k=1

ln
N2

kj

Nk0N0j
+

1

2IJ

I∑
k=1

J∑
l=1

ln
N2

kl

Nk0N0l

= ln
Nij

∏I
k=1

∏J
l=1 N

1
IJ

kl∏J
l=1 N

1
J

il

∏I
k=1 N

1
I

kj

= ln
NijN××

Ni×N×j
= ρij

For marriage rates, from Proposition 3, we have

Ni+ =

J∑
j=1

Nij =

J∑
j=1

exp(lnNij) =

J∑
j=1

exp
(
−Dij(Ui0 − lnNi0, V0j − lnN0j)

)
=

J∑
j=1

exp(Sij)
√
Ni0N0j

Thus, we obtain

µi =
Ni+

Ni⊕
=

1

Ni⊕
ln

J∑
j=1

exp(Sij)
√

Ni0N0j ωj =
N+j

N⊕j
=

1

N⊕j
ln

I∑
i=1

exp(Sij)
√

Ni0N0j

A.2 Finding equilibrium of the 2× 2 Model

To solve the system of equations, we define an objective function with arguments āi·, ā·j , b̄i·, b̄·j that if con-

verges to zero the system have a solution. The inputs are ρa11, ρ
b
11, ρ11 (or ρ

Y
11), Ni⊕, N⊕j ,Di⊕, D⊕j , Ci⊕, C⊕j ,

µi, ωj . Since the matrix is 2×2, AM matrix is identified by one element, we drop the sub-indices from the

AM elements in the rest of this section. In the first step, using AM indices, marriage rates, and marginal

population, we compute population table. Then, we have

a11 = ρa + ā1· + ā·1 − ā··, a12 = −ρa + ā1· + ā·2 − ā··, a21 = −ρa + ā2· + ā·1 − ā··, a22 = ρa + ā2· + ā·2 − ā··

b11 = ρb + b̄1· + b̄·1 − b̄··, b12 = −ρb + b̄1· + b̄·2 − b̄··, b21 = −ρb + b̄2· + b̄·1 − b̄··, b22 = ρb + b̄2· + b̄·2 − b̄··

Y10 =
C1⊕

N10

(
1 + (N11

N10
)2e−a11 + (N12

N10
)2e−a12

) , Y01 =
C⊕1

N01

(
1 + (N11

N01
)2e−b11 + (N21

N01
)2e−b21

)
Y20 =

C2⊕

N20

(
1 + (N21

N20
)2e−a21 + (N22

N20
)2e−a22

) , Y02
C⊕2

N02

(
1 + (N12

N02
)2e−b12 + (N22

N02
)2e−b22

)
λij =

Yi0N0je
bij

Yi0N0jebij + Y0jNi0eaij
, Yij = Nij

( Yi0

Ni0
e−aij +

Y0j

N0j
e−bij

)
, Zij = ln

(
Yij

√
λij(1− λij)

Yi0Y0j

)
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Then, we build and objective function that consist of the sum of squares of the below equation as a

function of āi·, ā·j , b̄i·, b̄·j

N10 +N11 exp(a11) +N12 exp(a12) = D1⊕, N01 +N11 exp(b11) +N21 exp(b21) = D⊕1

N20 +N21 exp(a21) +N22 exp(a22) = D2⊕, N02 +N12 exp(b12) +N22 exp(b22) = D⊕2

S̄i· =
1

2
(āi· + b̄i·) + Z̄i· S̄·j =

1

2
(ā·j + b̄·j) + Z̄·j

In a special case, when Ni⊕ = N⊕j = N⊕, Di⊕ = D⊕i = Di, Ci⊕ = C⊕i = Ci, µi = ωj , the market

becomes symmetric and at equilibrium, we have

N10 = N01 = N20 = N02, N12 = N21, N11 = N22, a11 = b11, a22 = b22, a12 = b21, a21 = b12

Y10 = Y01, Y20 = Y02, Y12 = Y21, λ11 = λ22 =
1

2
, λ12 = 1− λ21

Still, the analytic solution of the equilibrium is hard to obtain. If we further assume D1 = D2 = D,

we obtain a12 = a21, b12 = b21 and ρa = ρb. Then, by letting D0 = D − N10, the equilibrium level of

variables based on the inputs are

ea11 =
D0

N11

1

1 + e−2(ρY
11+2ρa

11)
ea12 =

D0

N12

1

1 + e−2(ρY
12+2ρa

12)

Y10 =
N0D0

N2
0D0 +N3

11(1 + e−2(ρY
11+2ρa

11)) +N3
12(1 + e−2(ρY

12+2ρa
12))

C1, Y20 = Y10
C2

C1

Y11 = 2
N11Y10

N0
e−a11 , Y22 =

C2

C1
Y11, Y12 = (1 +

C2

C1
)
N11Y10

N0
e−a11e−2ρY

11

λ11 = λ22 =
1

2
, λ12 =

C1

C1 + C2
, λ21 =

C2

C1 + C2

λ11Y11 =
N11e

−a11

N0
Y10 λ12Y12 =

N11e
−a11

N0
e2(ρ

a
11−ρ11)Y10

λ22Y22 =
N11e

−a11

N0
Y10

C2

C1
λ21Y21 =

N11e
−a11

N0
e2(ρ

a
11−ρ11)Y10

C2

C1

A.3 Iterative Algorithm for Computing Equilibrium

At an equilibrium, we must determine population and income tables that each of theminclude (I+1)(J+

1)−1 elements and the sharing rule table with IJ elements. There are 3(I−1)(J−1) equations from the

AM’s components, I+J equations as Ni0+Ni+ = Ni⊕ and N0j +N+j = N⊕j , I+J equations as Ni+ =

µiNi⊕ and N+j = ωjN⊕j , and 3(I + J) equations as (33) to (35). Since
∑

i Ni+ =
∑

j N+j ,
∑

i āi· =∑
j ā·j ,

∑
i b̄i· =

∑
j b̄·j , the total number of independent equations is equal to unknown parameters

3IJ + 2(I + J).

From

aij = ρaij + āi· + ā·j − ā·· bij = ρbij + b̄i· + b̄·j − b̄·· (42)
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we first solve (33) with two I − 1 and J − 1 vectors by minimizing the sum of squares of

Gi =
1

Di⊕

(
Ni0 +

J∑
j=1

Nij exp
(aij
γij

))
− 1 Gj =

1

D⊕j

(
N0j +

I∑
i=1

Nij exp
( bij
γij

))
− 1 (43)

using a numerical optimization methods. When the function’s arguments are ā·j and ∀1 ≤ i ≤ I−1 : āi·

are given, ā·J =
∑I

i=1 āi· −
∑J−1

j=1 ā·j and we obtain

aij = ρaij + āi· + ā·j −
1

I

I∑
i′=1

āi′·, aiJ = ρaij + āi· +

J−1∑
j=1

ā·j + (1− 1

I
)

I∑
i′=1

āi′·

G =

I∑
i=1

G2
i ,

∂G

∂āi·
= 2

I∑
i=1

Gi
∂Gi

∂āi·
,

∂Gi

∂āi′·
=

1

Di⊕

J∑
j=1

Nij

γij
exp

(
aij
γij

)
∂aij
∂āi′·

∂aij
∂āi·

= (i = i′) + (j = J)− 1

I

The solution gives āi· as a function of ā.1, . . . , ā·J-1. Similarly, solving Gi, when the function’s arguments

are āi· and ∀1 ≤ j ≤ J−1, ā·j are given yields

aij = ρaij + āi· + ā·j −
1

J

J∑
j′=1

ā·j′ , aIj = ρaij + āi· +

I−1∑
i=1

āi· + (1− 1

J
)

J∑
j′=1

ā·j′

G =

I∑
i=1

G2
i ,

∂G

∂ā·j
= 2

I∑
i=1

Gi
∂Gi

∂ā·j
,

∂Gi

∂ā·j′
=

1

Di⊕

J∑
j=1

Nij

γij
exp

(
aij
γij

)
∂aij
∂ā·j′

∂aij
∂ā·j′

= (j = j′) + (i = I)− 1

J

and we can compute ā·j as a function of ā1., . . . , āI-1·. To find similar functions for b̄i· and b̄·j , we solve

Gj in the same way.

bij = ρbij + b̄i· + b̄·j −
1

I

I∑
i′=1

b̄i′·, biJ = ρbij + b̄i· +

J−1∑
j=1

b̄·j + (1− 1

I
)

I∑
i′=1

b̄i′·

G =

J∑
j=1

G2
j ,

∂G

∂b̄i·
= 2

J∑
j=1

Gj
∂Gj

∂b̄i·
,

∂Gj

∂b̄i′·
=

1

D⊕j

I∑
i=1

Nij

γij
exp

(
bij
γij

)
∂bij
∂b̄i′·

∂bij
∂b̄i′·

= (i = i′) + (j = J)− 1

I

bij = ρbij + b̄i· + b̄·j −
1

J

J∑
j′=1

b̄·j′ , bIj = ρbij + b̄i· +

I−1∑
i=1

b̄i· + (1− 1

J
)

J∑
j′=1

b̄·j′

G =

J∑
j=1

G2
j ,

∂G

∂ā·j
= 2

J∑
j=1

Gj
∂Gj

∂ā·j
,

∂Gj

∂ā·j′
=

1

D⊕j

I∑
i=1

Nij

γij
exp

(
aij
γij

)
∂aij
∂ā·j′

∂aij
∂ā·j′

= (j = j′) + (i = I)− 1

J

Using the these functions, we follow this iterative algorithm by choosing initial values for ā
(0)
.1 , . . . , ā

(0)
·J-1
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and b̄1., . . . , b̄
(0)
I-1· such that at iteration k ≥ 1

1. From (33), find ā
(2k-2)
i· as a function of ā

(2k-2)
.1 , . . . , ā

(2k-2)
·J-1 and b̄

(2k-2)
·j as a function of b̄

(2k-2)
1. , . . . , b̄

(2k-2)
I-1·

2. compute

a
(2k-2)
ij = ρaij + ā

(2k-2)
i· + ā

(2k-2)
·j − 1

I

I∑
i′=1

ā
(2k-2)
i′· and b

(2k-2)
ij = ρbij + b̄

(2k-2)
i· + b̄

(2k-2)
·j − 1

J

J∑
j′=1

b̄
(2k-2)
·j′

3. compute

Y
(2k-2)
i0 =

Ci⊕

Ni0

(
1 +

∑J
j=1(

Nij

Ni0
)

γij+1

γij exp
(
− a

(2k-2)
ij

γij

))
Y

(2k-2)
0j =

C⊕j

N0j

(
1 +

∑I
i=1(

Nij

N0j
)

γij+1

γij exp
(
− b

(2k-2)
ij

γij

))
4. compute λ(2k-2) from (11), and couples income from

Y
(2k-2)
ij = N

1/γij

ij

(Y (2k-2)
i0

N
1/γij

i0

exp(−
a
(2k-2)
ij

γij
) +

Y
(2k-2)
0j

N
1/γij

0j

exp(−
b
(2k-2)
ij

γij
)
)

(44)

5. compute Z
(2k-2)
ij = γij ln

(
Y

(2k-2)
ij

√√√√λ
(2k-2)
ij (1− λ

(2k-2)
ij )

Y
(2k-2)
i0 Y

(2k-2)
0j

)
6. find

ā
(2k-1)
i.

(
ā
(2k-2)
.1 , . . . , ā

(2k-2)
·J-1 , b̄

(2k-2)
1. , . . . , b̄

(2k-2)
I-1·

)
= 2S̄i· − 2Z̄

(2k-2)
i· − b̄

(2k-2)
i·

b̄
(2k-1)
·j

(
ā
(2k-2)
.1 , . . . , ā

(2k-2)
·J-1 , b̄

(2k-2)
1. , . . . , b̄

(2k-2)
I-1·

)
= 2S̄·j − 2Z̄

(2k-2)
·j − ā

(2k-2)
·j

7. From (33), find ā
(2k-1)
·j as a function of ā

(2k-1)
1· , . . . , ā

(2k-1)
I-1· and b̄

(2k-1)
i· as a function of b̄

(2k-1)
.1 , . . . , b̄

(2k-1)
·J-1 ,

8. compute a(2k-1), b(2k-1),Y
(2k-1)

•0 ,Y
(2k-1)
0• ,λ(2k-1),Y (2k-1)

•• and Z(2k-1) similar to steps 2 to 5.

9. find

ā
(2k)
.j

(
ā
(2k-1)
1· , . . . , ā

(2k-1)
I-1· , b̄

(2k-1)
·1 , . . . , b̄

(2k-1)
·J-1

)
= 2S̄·j − 2Z̄

(2k-1)
·j − b̄

(2k-1)
·j

b̄
(2k)
i·

(
ā
(2k-1)
1· , . . . , ā

(2k-1)
I-1· , b̄

(2k-1)
·1 , . . . , b̄

(2k-1)
·J-1

)
= 2S̄i· − 2Z̄

(2k-2)
i· − ā

(2k-2)
i·

A.4 More data details

CPS is the proper data to assess inequality (of bottom 99%), compared to ACS and other data because

it provides adjustment for top codings of income. We use the variables in Annual Social & Economic

Supplement (ASEC) of CPS data. In addition to key variables (SERIAL, ASECWTH, ASECWT, YEAR,

AGE, SEX, MARST, CPI99), the exact CPS variables are

• RELATE: Relationship to household head, available 1962-2023.

– From 1995 forward, the “unmarried partner” code is available. Beginning in the 2019 ASEC,

codes for same-sex spouses and same-sex unmarried partners are added.
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Figure 18: AM in population measured by geometric mean of log odds ratios. The size of the boxes in the
figure is proportional to the product of all four elements of the corresponding odds ratio in (1). Notably,
in all years, the values of diagonal elements are positive, while the values of anti-diagonal elements are
negative. Furthermore, over time, the values of the former are consistently increasing, whereas the values
of the latter generally exhibit a decreasing trend. This pattern suggests a prevailing increase in assortative
matching by education over time.

• EDUC: Educational attainment recode, available 1962-2023.

– below high school: EDUC < 72

– high school diploma: EDUC ∈ [72, 73]

– some college: EDUC ∈ [80, 81, 90, 91, 92, 100]

– B.A. degree: EDUC ∈ [111, 120, 110]

– Graduate degree: EDUC ≥ 121

• INCTOT: Total personal income, available 1962-2023.

– indicates each respondent’s total pre-tax personal income or losses from all sources for the

previous calendar year. The Census Bureau applies different disclosure avoidance measures

across time for individuals with high income in this variable and has provides adjustments of

top income coding: https://cps.ipums.org/cps/topcodes_tables.shtml.

– In CPS 1962, income is not reported for persons who were in rotation groups 4 or 8. Thus,

to estimate aggregate income for this year a multiplier proportional to the weight of other

rotation groups is used (variable ROTATE reports the rotation group in CPS 1962-1967).
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Figure 19: Average income and its LOESS estimation
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Figure 20: The trends of non-pecuniary (ρ
a+ρb

2 ) and pecuniary (ρY ) components of AM as defined in
(24). For better illustration, only the trend of pecuniary component is depicted in the bottom graph.
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Figure 21: Counter-factual inequality with λij = 0.25 + 0.5λ∗
ij . The top graph is at household level and

in the bottom graph married couple of each type are counted as two individual with income according to
the sharing rule λij .
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