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Abstract

An extensive literature has documented the negative effect of global warming on TFP,

but we know little about the micro origins of this relationship. This paper examines a novel

channel: the impact of temperature extremes on capital misallocation. Using global firm-

level microdata from 32 countries, we provide causal evidence that a day with extreme heat

(>30°C) increases the dispersion of marginal revenue products of capital (MRPK) by 0.31

log points, implying a 0.11% annual aggregate TFP loss for an average region-sector. No-

tably, this effect is more pronounced in hotter and more economically developed regions.

Our estimates, taking future adaptation and development into account, suggest a global

aggregate TFP loss of 35.4% from the misallocation channel at the end of the century un-

der the SSP3-4.5 scenario. In light of these findings, we develop a firm dynamics model

with varying sensitivity to temperature across firms to examine the mechanisms behind

temperature-induced misallocation. The model reveals that greater temperature forecast-

ing errors and increased productivity volatility from extreme climates both exacerbate the

dispersion in MRPK. Our results uncover the critical role of the misallocation channel and

the necessity of considering firm heterogeneity in climate policies. In addition to mitiga-

tion policies, we also highlight improving mid-range weather forecast accuracy as a key

adaptation policy to improve investment efficiency.
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1 Introduction

Rising temperatures due to climate change have been estimated to cause sizable aggregate

economic losses. A natural question then is, what are the underlying drivers of these large

economic losses from temperature? Research on this question has largely focused on how

temperature worsens technology, often interpreted as damages on physical productivity. At

the micro level, empirical work has shown that extreme temperature conditions can affect

within-firm productivity, especially labor productivity (e.g. Zhang et al. 2018; Somanathan

et al. 2021). At the macro level, a mix of structural and empirical work prioritizes aggregate

productivity damage as the primary effect of climate change (e.g. Barrage and Nordhaus 2023;

Cruz and Rossi-Hansberg 2023; Nath 2023). These work benchmark their results in models of

efficient economies, with little to no role of micro-level distortions.

Our paper adopts a different approach, in the spirit of the seminal work by Hsieh and

Klenow (2009). Instead of focusing on the physical productivity losses in production due to

rising temperature, we study how climate change results in aggregate TFP losses by increasing

capital misallocation across firms. The misallocation channel should come as no surprise. For

instance, consider a regional economy consisting of firms with varying degrees of heat sen-

sitivity: some are heat-loving, while others are heat-sensitive. Although all firms endure the

same regional heat shocks, the impact might vary significantly. Heat-loving firms tend to be

less affected and remain more productive compared to heat-sensitive firms. Given that cap-

ital is generally hard to adjust in the short term, a heat shock affecting all firms would lead

to dispersion in capital returns across firms, with heat-loving firms having higher marginal

revenue products of capital (MRPK) than heat-sensitive ones. This is a clear case of climate-

induced misallocation: aggregate productivity and output could increase if more capital was

reallocated from heat-averse firms to heat-loving ones that have higher marginal products.

Therefore, the across-firm misallocation channel of climate change could result in depressed

aggregate TFP. The misallocation channel has direct implications for adaptation policy: poli-

cies should aim not only to mitigate average damage but also to work towards reducing the

disparity in adaptability to climate change across firms.

Our goals in this paper are threefold: first, to causally identify the misallocation channel

using temperature shocks and assess its quantitative impact in future climate change scenar-

ios; second, to understand the drivers of climate-induced misallocation from a firm dynamics

perspective; and third, to uncover the novel implications for climate mitigation and adaptation

policies suggested by the misallocation channel.

We begin by developing a climate-TFP accounting framework inspired by Hsieh and Klenow

(2009). Our model features heterogeneous firms with climate-driven input distortions that can

unevenly affect the marginal products of factors across firms. This framework allows us to

decompose the region-sector level aggregate TFP into a set of firm-level sufficient statistics,

which measures the efficient frontier (i.e., technology) and losses from capital misallocation.

Specifically, the cost of capital misallocation can be measured with the variance of (log) MRPK

across firms in a given year at the region-sector level. We can, therefore, exploit panel varia-

tions in across-firm MRPK dispersion from exogenous temperature shocks to causally identify
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the extent of misallocation stemming from temperature-related distortions.

To measure the dispersion in the marginal products within individual sectors in each sub-

national region each year, we use firm-level data from 30 European countries extracted from

the BvD Orbis dataset, as well as data from China and India obtained from government-

conducted surveys. We construct historical climate variables and temperature forecasts for

each region with the ERA5-Land gridded daily temperature data from the European Centre for

Medium-Range Weather Forecasts (ECMWF). Our sample covers regions with a wide range of

economic and climatic conditions. Our estimation reveals a U-shaped pattern: both extreme

heat and cold temperatures increase measured capital misallocation. Notably, an extra hot day

with a temperature above 30°C (86°F) relative to a day in the 5-10°C (41-50°F) range within

a year will increase MRPK dispersion by about 0.31 log points, which translates to a 0.11%

annual aggregate TFP loss. Importantly, we also estimate the heterogeneous effects of tem-

perature on misallocation across long-run regional climates and income levels. We find the

effect of heat shocks on capital misallocation is worse in hotter and more economically de-

veloped regions, suggesting limited potential for market adaptation to mitigate the aggregate

misallocation losses with the economic development and warming climates over the long run.

What do our estimates imply for the misallocation cost of future climate change? We project

the impact of global warming on misallocation-induced TFP loss by the end of the century us-

ing our estimates of the heterogeneous temperature-misallocation effect. Coupled with the cli-

mate projections from the CMIP6 model and income projections from the OECD Env-Growth

model under the SSP3-4.5 scenario, our estimates indicate that, compared to the current income

and climate levels, the global cost of climate-induced misallocation will amount to 35.4% of ag-

gregate TFP by the end of the century. Empirically, the projected loss can be decomposed into

three channels: a 3.60% contribution from the shifted daily temperature distribution, 18.74%

from the income effect of projected economic development, and 13.06% from the level effect of

the long-run average temperature increase. The projected losses are large and growing over

time as more regions are transitioning into richer and hotter economies, and with more ex-

treme temperature realizations. Remarkably, the magnitude of these estimates is comparable

to the projected impact reported by Burke, Hsiang, and Miguel (2015) and Bilal and Känzig

(2024).

The second goal of our paper is to understand the drivers of the identified climate-induced

misallocation. To explain why both the shock distributions and levels of temperature are rele-

vant for the dispersion in capital returns, we develop a firm dynamics model featuring time-

to-build capital and rich temperature-productivity interactions. Specifically, we allow firms’

productivity to be heterogeneous in their persistent and idiosyncratic sensitivities to temper-

ature. The persistent sensitivity reflects a firm’s specific characteristics and whether a firm is

heat-loving or heat-averse by nature of its production (or demand). The persistent sensitivity

is assumed to be known by the firm and to affect its capital investment decisions. For example,

when anticipating future heat, a heat-averse firm will invest less than an average firm due to

its relatively lower expected productivity. The idiosyncratic sensitivity, on the other hand, is

randomly assigned to each firm at each period. It reflects the increased likelihood of severe

disruptions at the firm level, such as plant-level fire hazards, equipment failures, or opera-
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tional shutdowns, associated with temperature extremes. As the idiosyncratic sensitivity is

unknown to the firm ex-ante, it does not affect the firm’s capital investment decisions (to the

first order). However, it does generate unexpected productivity shocks and, consequently,

affects the firm’s MRPK upon realization, particularly in cases of temperature extremes.

The heterogeneity in persistent and idiosyncratic sensitivities across firms shapes two chan-

nels through which temperature affects misallocation. First, any shifts in the level of temper-

ature (towards extreme heat or cold), operating through idiosyncratic sensitivities, would in-

crease the probability of extreme events across all firms. Therefore, a region that deviates

from the ’optimal level’ of temperature, whether too hot or too cold, would experience higher

temperature-induced damage volatility across firms and, consequently, greater capital misallo-

cation. Secondly, any unexpected shocks in temperature will impact investment returns differ-

entially among firms based on their persistent sensitivities. For example, an unexpected heat

shock reduces the relative MRPK for heat-averse firms but raises it for heat-loving ones. From

an ex-post perspective, heat-averse firms, anticipating higher productivity than realized, over-

invested in capital. Therefore, greater forecast accuracy of future temperatures could lead to

more efficient capital allocation across firms and raise aggregate TFP. Overall, these two chan-

nels closely explain our reduced-form results: the level effect of temperature, through damage

volatility, explains why a region-sector’s geographical location and long-run climates matter

for capital misallocation; while the shock effect of temperature, stemming from temperature

forecast errors, explains why larger weather shocks lead to increased misallocation.

We then empirically test the mechanisms of our model by exploiting variations at both the

firm and the region-sector levels. We first examine the link between heterogeneous sensitiv-

ities and differential MRPK responses to temperature shocks using firm-level panel data. As

the firm-specific sensitivities are hard to measure directly, we use firm size and AC installa-

tion as proxies. This approach allows us to test how firms’ MRPKs respond heterogeneously

to identical heat shocks within a region-sector. Our estimates reveal that heat shocks signif-

icantly lower the MRPK for smaller firms and firms without AC, but have minimal impact

on the MRPK for larger firms and AC-installed firms, as they are less sensitive to tempera-

ture. Additionally, the role of firm size as a determinant of heterogeneous sensitivities helps

rationalize the income effect identified in our reduced-form regression. We find that regions

with higher levels of economic development exhibit a greater dispersion of firm sizes, which

leads to greater differences in the adaptability to shocks among firms. This, in turn, results in

a higher dispersion of persistent sensitivity across firms, and thus, an increased susceptibility

to misallocation due to temperature shocks at the aggregate level.

Next, we estimate and evaluate the quantitative implications of the level and forecast error

effects using model-implied regressions. We empirically test the level effect by estimating how

temperature levels non-linearly affect TFP volatility and MRPK dispersion across firms at the

region-sector level. Our findings confirm the model’s predictions that temperature extremes

increase damage volatility: TFP volatility exhibits a U-shaped relationship with temperature.

We identify an optimal temperature of around 13°C, at which point TFP volatility reaches the

lowest level, thereby imposing the least burden on allocative efficiency and aggregate TFP

through the level effect of misallocation. We also provide direct evidence of the forecast er-
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ror effect using forecast data from the monthly long-range temperature forecasts released by

ECMWF (Copernicus Climate Change Service and Climate Data Store 2018). By aggregating

these monthly long-run temperature forecast errors at the region-year level, the model-induced

regression shows that conditional on the realized temperature, a 1°C error in temperature fore-

cast for all months would lead to at least a 1.6 log point increase in MRPK dispersion. Such

an increase in capital misallocation is equivalent to an approximate 0.58% annual aggregate

TFP loss when compared to the perfect information counterfactual. Our findings suggest that

temperature forecast errors are costly: unexpected temperature shocks lead to dispersion in

investment mistakes among firms due to their varying sensitivity to heat. Therefore, in our

context, the aggregate importance of temperature forecasts is highlighted through a new chan-

nel: accurate forecasting increases the allocative efficiency of capital.

Using the model parameters identified in the model-induced regression, we quantitatively

examine the contributions of the level and forecast error effects of temperature to misallocation

in our sample period. We find that, on average, the level effect of temperature accounts for

8.4 log points of MRPK dispersion, equivalent to a TFP loss of 3%. However, the forecast

error effect contributes approximately 0.023 log points to MRPK dispersion, implying a TFP

loss of 0.81%. The magnitude of the level effect exceeds that of the forecast error effect by

more than three times. Broadly consistent with our reduced-form projections, these estimates

suggest that the level effect of global warming might play a more significant role through the

misallocation channel, as rising temperatures are likely to lead to increased damage volatility

in firms’ productivity and make efficient investment more difficult.

Lastly, we discuss how our findings shed new light on the design and effects of climate

mitigation and adaptation policies. Specifically, we discuss three types of policies that could

potentially reduce the cost of climate-induced misallocation. First, we consider the mitigation

policy that reduces the end-of-century temperature rise from 4°C to 2°C. Our results project

an avoidable TFP loss of 22% globally under RCP 2.6 compared to RCP 7.0. Compared to

the benefits of avoided misallocation losses, the estimated cost of optimal mitigation policy

from DICE-2016R is very moderate and largely outweighed by the benefits by 2100. Second,

we evaluate the potential of mid-range weather forecast accuracy improvement as an adapta-

tion policy. We predict future regional weather forecast accuracy by extrapolating from past

technological progress and assuming that poorer regions will gradually invest more in climate

information services as they become richer. The predicted forecast accuracy implies an aver-

age reduction of 0.7 in annual mean squared forecast errors by the end of the century, which

could result in an aggregate TFP gain of 0.41% due to increased investment efficiency (i.e., a

reduction in return dispersion). Therefore, our results suggest that continuously improving

mid-range weather forecast accuracy is an essential and potentially cost-effective adaptation

policy. Finally, from a micro perspective, our results broadly suggest that any policies that re-

duce the “climate inequality” of impact sensitivity among firms could reduce the misallocation

loss from extreme climate events. Policies should be targeted to identify and subsidize firms

that are productive but lack the resources to defend against heat. Our results also highlight

that there need not be an equity-efficiency trade-off in the context of heterogeneous firms. If

more firms become more “equal” in their sensitivity to temperature, the aggregate economy
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will also feature higher allocative efficiency.

We conclude that capital misallocation is a quantitatively important channel for how cli-

mate change affects the aggregate economy. Climate-induced misallocation stems from sub-

stantial cross-sectional firm-level heterogeneity in temperature sensitivity. The estimated loss

due to misallocation across firms is considerable, indicating that the average effect of firm-

level productivity loss alone is insufficient to capture the aggregate cost of climate change in

the economy. Our results suggest that climate policies that solely target the average effect,

while overlooking firm heterogeneity, may have limited efficacy.

Contributions to the Literature. This paper relates to a large literature on measuring the

economic damages from temperature shocks and climate change. One canonical approach

is to directly estimate the effect of temperature shocks on aggregate region-sector, country,

or global level outcomes (See Dell, Jones, and Olken 2012; Burke, Hsiang, and Miguel 2015;

Lemoine 2018; Carleton et al. 2022; Nath, Ramey, and Klenow 2023; Bilal and Känzig 2024,

among many others). Another strand of work estimates the average firm- or worker-level pro-

ductivity damages from climate change and explores the underlying micro-level mechanisms

(Somanathan et al. 2021; Acharya, Bhardwaj, and Tomunen 2023; Ponticelli, Xu, and Zeume

2023). Most studies interpret their findings as physical productivity losses resulting from cli-

mate shocks. This paper contributes to this literature by taking a conceptually different ap-

proach: we focus on how climate change could drive down aggregate productivity by causing

the across-firm misallocation of capital. We show that a sizable portion of aggregate climate

impact is allocative rather than purely physical. Our approach estimates a large causal effect

of the misallocation channel from climate shocks and projects a substantial TFP loss across

all future climate change scenarios. Quantitatively, we uncover novel heterogeneity of the

climate-induced misallocation losses across regions with different levels of development and

climates.

Second, on the macroeconomic modeling of climate change, the existing studies have incor-

porated climate change into workhorse macro and trade models of efficient economies (Nath

2023; Cruz and Rossi-Hansberg 2023; Bakkensen and Barrage 2021; Casey, Fried, and Gibson

2022; Rudik et al. 2021). Naturally, these models remain silent on the causes and effects of

how climate change would drive distortions and misallocation of productive factors in the

economy. This paper provides a static general equilibrium framework to measure the costs of

the temperature-induced misallocation channel using an easy-to-implement sufficient statis-

tics approach. We also build a firm dynamics model to better understand the endogenous

mechanisms behind climate-induced misallocation, which stem from firm-level heterogeneity, a

previously overlooked but quantitatively significant dimension in the climate-macro literature.

Very few studies have explored the allocative effect of climate change. Perhaps the closest to

our paper is the contemporaneous work by Caggese et al. (2023). They project how the fu-

ture geographical distribution of temperature shocks in Italy might lead to differential factor

productivity of firms across micro-regions under future global warming, and thus allocative

efficiency losses could be predicted. By contrast, our paper provides a direct causal estimate

of climate on within-region marginal product dispersion across firms using historical regional
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climate variations and firm-level data in 32 countries globally. It is a direct measure of misallo-

cation (as in (Hsieh and Klenow 2009) and (Sraer and Thesmar 2023)) and captures all channels

of climate-induced misallocation, not just those stemming from the geographical distribution

of temperature.

Third, our research contributes to the burgeoning literature on the impacts and economic

value of weather forecasts. Recent work evaluates the market internalization of weather fore-

casts (Schlenker and Taylor 2021), agents updating beliefs in responses to forecasts (Shrader

2023; Kala 2017), and the economics values of reducing mortality with more accurate forecasts

(Shrader, Bakkensen, and Lemoine 2023). We show evidence of how inaccuracies in forecasts

result in more frequent investment mistakes in the cross-section of firms and thus reduce ag-

gregate productivity. Our research supports micro-level findings at the macro level and em-

phasizes the vital role of accurate weather forecasting in reducing economic disruptions and

boosting productivity.

Finally, we contribute to the literature on misallocation. Since the seminal contributions

by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), a large body of work has

been studying the aggregate (e.g. Gopinath et al. 2017, David and Zeke 2021) and firm-level

(e.g. Asker, Collard-Wexler, and Loecker 2014, David and Venkateswaran 2019, Baqaee and

Farhi 2019) drivers of misallocation. Our paper adds to this literature by demonstrating that

environmental factors, such as temperature variations and climate change, are also sources of

misallocation and might become increasingly important in the future as global warming wors-

ens. Additionally, our paper connects to a small but growing body of literature that studies the

causal identification of the drivers of misallocation using (quasi-)natural experiments (Sraer

and Thesmar 2023, Bau and Matray 2023, among others). These studies employ exogenous

shocks to explore the causes and consequences of misallocation. We expand on this litera-

ture by using exogenous temperature variations to examine the impacts of climate change as a

driver of misallocation.

The structure of the paper is organized as follows. In Section 2, we develop our climate

growth accounting framework. Our data sources and methodology for constructing variables

are detailed in Section 3. Section 4 presents our empirical identification strategy and reduced-

form results. Section 5 presents the firm dynamics model to explain the underlying mecha-

nisms. Evidence at the firm level, which tests the proposed channels, is provided in Section

6. Section 7 offers evidence at the aggregate level. We discuss implications on mitigation and

adaptation policies in Section 8. And we conclude with Section 9.

2 A Framework for Climate TFP Accounting

In this section, we develop a framework for TFP accounting in the presence of climate condi-

tions to illustrate the effect of climate-induced misallocation on aggregate productivity. The

economic structure follows the seminal work by Hsieh and Klenow (2009), a closed economy

model featuring heterogeneous firms that face various input and output distortions. Addi-

tionally, we allow firm-specific productivities, demand shifters, and distortions to respond

endogenously to climate conditions in a flexible manner. We show how climate conditions
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might affect aggregate productivity through two distinct channels in a distorted economy:

micro-level productivity (technology) and the dispersion in distortions (misallocation). We

also derive measurable sufficient statistics for the misallocation channel that will guide our

empirical strategy in Section 4. Our framework will focus on the measurement of the misallo-

cation channel in a general set-up, without taking a stand on the specific mechanisms. We will

study and quantify the potential mechanisms in Section 5, 6, and 7.

2.1 Model Preliminaries

Consider an economy comprised of R regions indexed by r, and S sectors indexed by s. We

use n = (r, s) to denote a region-sector pair and there are N = R · S region-sector pairs. We

focus on the aggregation of firm-level economic activities within a region-sector pair. We allow

all fundamentals of firm i in market n = (r, s) to be arbitrary functions of a general array of

(current and past) regional climate conditions, T̃rt, the aggregate state of the economy, X̃nt, and

the idiosyncratic state of firm i, Z̃nit.

For concreteness, one can think of current climate conditions, Trt, as realizations of daily

temperature, precipitation, and other types of extreme weather events. Xnt and Znit can be

interpreted as other aggregate and firm-specific productivity or demand shocks that are unre-

lated to temperature. We use the tilde notation, (T̃rt, X̃nt, Z̃nit), to denote the history of realiza-

tions up to date t.

2.2 Aggregation Model with Micro Effects of Climate Conditions

We now describe the aggregation model and how we incorporate the micro effects of climate

conditions into the model.

Industry Production. Industry output Ynt for region-sector n is given by a constant elasticity

of substitution (CES) production function of differentiated products of measure Jn
1:

Ynt =

(∫ Jn

0
B

1
σn
nitY

σn−1
σn

nit di

) σn
σn−1

, (1)

where Bnit is a good-specific preference shifter, Ynit denotes the output of firm i and σn > 1 is

the elasticity of substitution between products within region-sector n. Profit maximization of

industrial output producers leads to the inverse demand function for the output of each firm,

Ynit:

Ynit = BnitYnt

[
Pnit

Pnt

]−σn

, (2)

where Pnt =
(∫ Jn

0 BnitP
1−σn
nit di

) 1
1−σn is the price index of the region-sector. The demand shifter

Bnit := Bni(T̃rt, X̃nt, Z̃nit) is a firm-specific function of climate and economic conditions to

capture the possibility that some goods and services might be less preferable in hotter climates,

1. In theory, we could allow Jn to be time-varying as well to account for the effect of potential entry-exit. How-
ever, accurately measuring these dynamics within a granular region-sector pair is challenging given the data limi-
tations. Therefore, the model does not address this aspect.
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even in the same region and sector. 2

Firm-level Production. Each product is produced by a unique firm. The production function

for each firm is given by a Cobb-Douglas function of capital and labor:

Ynit = AnitK
αKn
nit LαLn

nit , (3)

where Anit is physical productivity,3 Knit is capital stock and Lnit is labor input employed by

firm i. The production function exhibits constant returns to scale, with αKn + αLn = 1. The

physical productivity of firm i is modeled as a firm-specific function, Anit := Ani(T̃rt, X̃nt, Z̃nit),

to capture the different sensitivity to heat (or cold) among different types of firms within and

across various region-sectors. The heterogeneity of productivity damage across firms has been

well documented in the literature, and can be potentially attributed to the distinct nature of

production processes across firms and varying levels of adaptability to climate conditions.4

Such heterogeneity is present even within the same region-sector. For example, in agriculture,

rainfed farms often suffer more than irrigated farms when facing heat (Piao et al. 2010). In

manufacturing, the productivity of a firm with AC installation is less susceptible to heat shocks

than those without ACs (Somanathan et al. 2021).

Distortions. Each firm faces a variety of distortions, represented as an output wedge on rev-

enue τY and a set of wedges on all inputs τF . Subject to the inverse demand and wedges, each

firm i engages in monopolistic competition and optimally chooses its quantity of inputs and

price to maximize profits:

max
Pnit,Knit,Lnit

(
1− τYnit

)
PnitAnitK

αKn
nit LαLn

nit︸ ︷︷ ︸
Ynit

−
(
1 + τKnit

)
RntKnit −

(
1 + τLnit

)
WntLnit (4)

subject to : Ynit = BnitYnt

[
Pnit

Pnt

]−σn

, (5)

where Rnt is the user cost of capital, Wnt denotes the wage and PM
nt denotes the price for

the intermediate input bundles. τYnit is the firm-specific wedge that distorts output, and τFnit
denotes the input-specific wedge on factor F ∈ {K,L}. For example, τKnit denotes capital

distortion that raises the marginal cost of capital relative to the market rental rate Rnt. We

assume all firms take these wedges as exogenous for now and turn to model the endogenous

nature of these frictions and their relationship with climate change in Section 5.

These wedges are reduced-form representations of all the frictions in the economy that

2. This is more evident in service industries where climate variations directly affect consumer behavior more
saliently. For instance, Zivin and Neidell (2014) found that Americans are more likely to shift to indoor recreational
activities from outdoor ones (such as recreational fishing (Dundas and Haefen 2020)) when exposed to heat shocks.

3. It is a measure of quantity-based total factor productivity (TFPQ), reflecting the overall efficiency with which
the firm uses its inputs to produce units of physical output (Bils, Klenow, and Ruane 2021).TFPQ cannot be di-
rectly measured in the absence of price or quantity data, barring any additional structural assumptions. In a Cobb-
Douglas production function, the notion of physical productivity (TFPQ) nests the effect of factor-specific produc-
tivity.

4. For the cross-country heterogeneity in productivity damage due to adaptation, see Nath (2023).
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prevent the optimal allocation of inputs in our static ex-post accounting exercise,5 including

climate-related frictions. Thus, similar to demand shifters and productivity, we assume them

to be firm-specific functions of climate as well as the states of the region-sector and the firm

itself.

Specifically, the output wedge τYnit := τYni(T̃rt, X̃nt, Z̃nit) captures the distortions (or exoge-

nous markups) the firm faces on prices or quantities relative to the Dixit-Stigliz benchmark.6

These distortions can arise from policy interventions or market imperfections. For example,

some firms might have relatively higher markups as temperature shocks increase the local

industry concentration Ponticelli, Xu, and Zeume (2023), which is not captured by the Dixit-

Stigliz markup. Similarly, input wedges denoted as τFnit = τFni(T̃rt, X̃nt, Z̃nit), disincentivize

firms from using input F ∈ {K,L} as if they were effectively paying a higher factor price.7 Any

channels through which climate conditions prevent the optimal allocation of inputs would be

captured by the function τFni, such as weather-induced capital depreciation (Hsiang and Jina

2015; Bilal and Rossi-Hansberg 2023). Importantly, in the context of dynamic input choices

such as capital, the wedge function τKni (T̃rt, ·) would capture the different degrees of invest-

ment mistakes induced by unexpected temperature shocks (e.g. when a heat-averse firm in-

vested too much capital before a heat shock hits).

Factor Supply. The total productive factors in the region-sector n follows that Knt =
∑Jn

i=1Knit,

Lnt =
∑Jn

i=1 Lnit. The total factor supply is treated as exogenously given every period.8

Equilibrium. The equilibrium allocations in a region-sector depend on the set of fundamen-

tals (Bnit, Anit, τ
Y
nit, τ

F
nit), ∀i and ∀F ∈ {K,L}. Given preference shifter Bnit, physical produc-

tivity Anit, output distortions τYnit < 1, factor distortions τFnit > −1 for all firms i, and total fac-

tor supply of Knt and Lnt, a general equilibrium consisting of goods prices Pnit, factor prices,

and equilibrium factor allocation Fnit is defined where all markets clear. We call the equilib-

rium defined by (Bnit, Anit, τ
Y
nit, τ

F
nit) the distorted equilibrium and the equilibrium defined by

(Bnit, Anit, 0, 0) the efficient equilibrium9 to denote the first best outcome in this economy with-

out distortions.

Distortions and Misallocation. We now examine how climate-related input frictions could

shape the differences in marginal products in the cross-section of firms. For any input F ∈
{K,L}, the firm’s optimality condition with respect to Fit will yield that the marginal revenue

product of factor F (MRPF) equals to the factor price PF
nt times the weather-affected wedges

5. “Ex-post” is in a sense that we use the set of wedges to rationalize the firm’s behavior in the static accounting
framework after the input and production has taken place.

6. τY
nit also represent price distortions that reflect potential heterogeneity in revenue taxes, markups, or prices

across firms not captured by the constant Dixit-Stiglitz markup.
7. For a firm to be (boundedly) productive, it is necessary that all prices are positive, which requires 1− τY

nit > 0
and 1 + τF

nit > 0.
8. We could also model the total factor supply to be region-sector specific functions of the form: Lnt :=

Ln(T̃rt, ·),Knt := Kn(T̃rt, ·), but this plays little role in our analysis.
9. In the accounting framework, efficiency is defined in a static and unconstrained sense (similar to Carrillo et

al. 2023).
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1+τFni(T̃rt,·)

1−τYni(T̃rt,·)
:

MRPFnit = αFn

σn − 1

σn

PnitYnit
Fnit

=
1 + τFni(T̃rt, ·)
1− τYni(T̃rt, ·)

PF
nt. (6)

Equation 6 states that any shift in climate conditions would affect the input (and output)

wedges and thus MRPF. Moreover, any heterogeneity in the way wedges respond to tem-

perature would result in unequal marginal revenue return to factors among firms in the cross-

section. Such dispersion of marginal revenue return to factors is often referred to as ”misal-

location”, indicating there are potential gains from reallocating the factor from firms with a

low marginal product to the ones with a high marginal product. We can explicitly link these

distortions to equilibrium (mis-)allocation of factors as follows.

Proposition 1 Equilibrium (Mis)Allocation. The distorted equilibrium allocation of capital, labor,

and material inputs must satisfy that for any factor F ∈ {K,L},

log(
Fnit

F ∗
nit

) =− log(1 + τFnit(T̃rt, ·))

+ σn log(1− τYnit(T̃rt, ·))− (σn − 1)
∑

F ′={K,L}

αF ′

n
log(1 + τF

′

ni (T̃rt, ·))

+ log(CFnt(T̃rt, ·)),

(7)

where CFnt is a region-sector-year specific constant and F ∗
nit is the efficient equilibrium allocation of

factors that are entirely determined by preference shifter and physical productivity within the region-

sector:

F ∗
nit =

Bni(T̃rt, ·)Ani(T̃rt, ·)σn−1

∫ Jn
0 Bnj(T̃rt, ·)Anj(T̃rt, ·)σn−1dj

Fnt (8)

Proof. See Appendix A.2.

The relative gap log(Fnit)−log(F ∗
nit) decreases with factor-specific wedges log(1+τFni(T̃rt, ·))

due to increased effective cost of the factor. The second line of 7 captures how other wedges

affect the input usage Fnit in the distorted equilibrium by reducing the size of the firm. A firm

with a higher output wedge and overall lower input wedges has greater price incentives and

faces lower unit costs in production. Thus, more input Fnit will be used in production. The

aggregate constant CFnt(T̃rt, ·) captures how distorted factor F is in the aggregate economy.

Holding the firm-level distortion τFni constant, if the aggregate distortion is larger, then firm i

would hire more of factor F since it is less distorted compared to the aggregate.

Equation 8 reveals that in an efficient economy free of distortions, climate only affects pref-

erences and physical productivity, leading to a resource allocation favoring firms whose prod-

ucts are preferred by customers and those with higher physical productivity. On the other

hand, in a distorted equilibrium with temperature-sensitive wedges, less factors are allocated

to firms with higher input distortions (i.e. higher factor prices), even if they are more pro-

ductive. This results in a state of misallocation of Fnit compared to its efficient counterpart,

F ∗
nit.

In the context of temperature effects, if firm A’s capital wedge increases with the current

temperature (a variable in T̃rt), while firm B’s decreases, a temperature shock would raise the
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effective price of capital for firm A. As a result, firm A would allocate less capital than is effi-

cient for its production compared to firm B, thereby creating a misallocation of resources. We

will remain agnostic on the endogenous mechanism for now and leave the detailed discussion

and identification of mechanisms driving these climate-induced distortions in Section 5, 6, and

7.

A Remark on Climate Conditions and Firm-level Fundamentals. Recall that we have as-

sumed that all firm-level fundamentals
{
Bnit, Anit, τ

Y
nit, τ

F
nit

}
to be firm-specific and smooth

functions based on the realized histories of three key factors, including climate conditions

(T̃rt), aggregate economic conditions (X̃nt), and firm-level states (Z̃nit):

Anit = Ani(T̃rt, X̃nt, Z̃nit), Bnit = Bni(T̃rt, X̃nt, Z̃nit),

τYnit = τYni(T̃rt, X̃nt, Z̃nit), τFnit = τFni(T̃rt, X̃nt, Z̃nit), ∀F ∈ {K,L}.

Allowing these relationships to be firm-specific is essential as it implies that the same re-

gional climate conditions T̃rt could have heterogeneous effect on physical productivity Anit,

demand Bnit, and input distortions τYnit and τFnit, across different firms. This heterogeneous

impact leaves room for differential response of marginal products to climate variations, which

will be the key mechanisms to be inspected in this paper.

2.3 Aggregation, TFP Decomposition and Misallocation

We proceed to perform aggregation in this accounting framework. We adopt a widely-used

assumption in the misallocation literature (see Hsieh and Klenow (2009) and Sraer and Thes-

mar (2023)) that productivity and all associated wedges follow a joint log-normal distribution

across firms in any region-sector-year pair, which holds very well in the data. More formally,

we assume that for any given set of arguments
(
T̃rt, X̃nt,

{
Z̃nit

}
i

)
, the joint distribution of

the realized values of the sets of functions, Snit = (Bnit, Anit, 1 + τYnit, 1 + τKnit, 1 + τLnit), can be

characterized as follows:

log(Snit(T̃rt, X̃nt, Z̃nit)) ∼ N

(
µ
(n)
s (T̃rt, X̃nt),Σ

(n)
ss (T̃rt, X̃nt)

)
. (9)

Here, µ
(n)
s represents the mean vector of firm-level fundamentals, while Σ

(n)
ss is the covariance

matrix of these fundamentals across firms. Each element of these are smooth functions of their

respective arguments.10 For tractability, we adopt the aggregation notation of Krusell and

Smith (1998) that the distribution of firm-level fundamentals Z̃nit (over i) can be summarized

by a finite set of moments and stacked into the aggregate states of the economy X̃nt. The log-

normality assumption allows us to transparently show how micro-level wedges are translated

into losses in aggregate productivity:

Proposition 2 Aggregation and TFP Decomposition. Under the log-normality assumption, each

10. This smoothness follows the principle that population moments are smooth functions of the variables Snit.
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region-sector n admits an aggregate production function of the form

Ynt = TFPntK
αKn
nt LαLn

nt , (10)

where the region-sectoral aggregate Total Factor Productivity TFPnt := TFPn

(
T̃rt, X̃nt

)
can be de-

composed as follows:

logTFPn(T̃rt, ·) =
1

σn − 1
log

[
JnEi

[
Bni(T̃rt, ·)

(
Ani(T̃rt, ·)

)σn−1
]]

︸ ︷︷ ︸
Technology(log TFPE

n )

− σn
2

varlog(1−τYni)
(T̃rt, ·)

︸ ︷︷ ︸
Output Wedge Dispersion

−
∑

F∈{K,L}

αFn + α2
Fn(σn − 1)

2
varlog(1+τFni)

(T̃rt, ·)

︸ ︷︷ ︸
Factor Wedge Dispersion

+ σn
∑

F∈{K,L}

αFn covlog(1−τYni),log(1+τFni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Output-Factor Mixed Distortion

− (σn − 1)αKnαLn covlog(1+τKni),log(1+τLni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Factor Mixed Distortion

.

(11)

Proof. See Appendix A.3.

All the variance and covariance terms are elements in the variance matrix Σ
(n)
ss (T̃rt, X̃nt) in

Equation 9. Each of them is a region-sector-specific function of weather conditions and other

economic fundamentals. They describe how these conditions would alter the distribution of

wedges over the cross-section of firms.

The efficient TFP level is given by logTFPE
n = 1

σn−1 log

[
JnEi

[
Bni(T̃rt, ·)

(
Ani(T̃rt, ·)

)σn−1
]]

in the absence of distortions, which is determined by the variety, preference shifter and love-

for-variety-adjusted physical productivity of the firm. This represents the production possibil-

ity frontier of the economy. We call this technology in the spirit of Basu and Fernald (2002) and

Baqaee and Farhi (2019). The rest of the terms represent the costs of distortions in the economy,

referred to as misallocation loss. Dispersion in output wedges varlog(1−τYni)
and factor input

wedges varlog(1+τFni)
will both lead to dispersion in the marginal revenue product of factors,

creating more misallocation of factors and lowering sectoral TFP.

The impact of factor wedge dispersion on TFP is determined by two key parameters: σn

and αFn . A greater σn implies higher product substitutability and, consequently, larger gains

from reallocation. αFn indicates the factor’s importance in production. For a factor F , a higher

αFn renders the dispersion of factor wedges more costly. Furthermore, the interactions of

wedges also impact productivity. All else being equal, greater productivity losses occur when

firms with lower markups are also likely to endure higher input distortions (covlog(1−τYni),log(1+τFni)
< 0). Similarly, misallocation costs tend to be higher in cases where firms experiencing capital

distortions are also more likely to face higher labor distortions (cov
log(1+τFni),log(1+τF

′

ni )
> 0).

These interactions are often referred to as ”mixed” distortions.
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2.4 Decomposing the Impact of Climate Change on TFP

Our decomposition framework shows that aggregate TFP depends on moments concerning

technology and misallocation, which are endogenous to climate conditions. Since we have

assumed that all moments are smooth functions of climate conditions T̃rt, we can decompose

the first-order impact of climate change on TFP via a set of causal elasticities for each relevant

moment. We formalize this in a case when only capital wedges are present.

Benchmark case: only capital wedges are present. An economy with only capital wedges

is also considered in Asker, Collard-Wexler, and Loecker (2014), David and Venkateswaran

(2019), and Sraer and Thesmar (2023), and with a view that capital is more of a dynamic input

than labor or material. The dispersion of capital distortions is also measured to be larger than

that of labor (Gorodnichenko et al. 2018) as they cannot be adjusted easily in the short run.

Therefore, how capital misallocation is affected by climate conditions will be the main focus of

empirical analysis throughout the paper.

When the capital wedge is the only source of distortions in the economy within region-

sector n, the MRPK of each firm i satisfies that:

MRPKnit = αKn
σn − 1

σn

PitYit
Kit

∝ (1 + τKnit)Rnt.

The dispersion of capital is therefore given by the variance of log(MRPK) across firms

var(log(1 + τnit)) = var(mrpknit) = var

(
log

(
PitYit
Kit

))
, (12)

where we define mrpk = log(MRPK). Equation 12 shows that the cross-sectional variance of

(log) capital distortions across firms is identical to the dispersion of (log) MRPK, which can be

computed via the variance of log sales over capital stock given the Cobb-Douglas technologies.

Now, the effect of climate conditions on aggregate TFP can be written as:

∂ log TFPn(T̃rt, ·)
∂T̃rt

=
∂Technologynt

∂T̃rt

− ∂ Misallocation Lossnt

∂T̃rt

=
1

σn − 1

∂ logEi

[
Bni(T̃rt, ·)

(
Ani(T̃rt, ·)

)σn−1
]

∂T̃rt

− αKn + α2
Kn(σn − 1)

2

∂ varmrpk,n(T̃rt, ·)
∂T̃rt︸ ︷︷ ︸

The Misallocation Channel

,

(13)

such that the (first-order) cost of climate-induced misallocation would be reduced to the esti-

mation of elasticity
∂ varmrpkn (T̃rt,·)

∂T̃rt
, i.e. ”the misallocation channel”. The decomposition shows

that the first-order effect of climate conditions on aggregate TFP can be captured entirely

through the effect on technology and the effect on inefficiency losses through capital misal-

location. This proposition also provides practical guidance on the reduced-form identification

in Section 4.4, which will be dedicated to causally estimate
∂ varmrpkn (T̃rt,·)

∂T̃rt
.
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In theory, the derivatives of our structural objects with respect to climate conditions are

globally well-defined and could vary with various histories of climate and economic condi-

tions. However, in practice, it is preferable to think of them as ”reduced form,” which means

that they can only be well estimated with respect to observed equilibrium allocations and are

not necessarily invariant to the evolving climate conditions in the long run. For example, these

marginal (first-order) effects could increase with worsening global warming or decrease with

gradual adaptation. We will address this explicitly in Section 4.3 to capture the heterogeneous

effect related to long-run climate conditions and economic development.

3 Data

3.1 Global Firm-level Microdata

We compile a global sample of firm-level microdata from both developed and developing

economies that include 30 European countries, China and India, which covers 38.6% of world

GDP. The firm-level panels for the 30 European countries are from Bureau van Dijk’s (BvD)

Orbis database, and the data for China and India are obtained from government-conducted

surveys, China National Bureau of Statistics (NBS), and India ASI. The datasets contain finan-

cial accounting information such as revenue, fixed assets, wage bills, and employment. The

three datasets have been widely employed in the literature and could be regarded as nationally

representative.

Table B.1 provides a comprehensive list of countries, year coverage, and data sources for

the three datasets. For all datasets, we harmonize the sectoral classifications of all firms into

eight major divisions according to the U.S. Standard Industrial Classification (USSIC) code.11

Regions are defined to be the NUTS 3 regions in Europe, prefectures in China, and districts in

India. The size of these regions is close to the size of a county in the US.

Our key economic variables of interest are the sufficient statistics of firm-level activities

that map directly into aggregate TFP at the region-sector-year level, in particular, the variance

of marginal revenue product of capital across firms. Thus, for all datasets we use, we restrict

ourselves to work with firm-year observations that report data on both revenue and capital

stock. We measure revenue PitYit with the reported operating revenue in both Orbis and China

NBS data, and the reported total sales in India ASI. We use the book value of gross fixed assets

as a measure of firm-level capital stock Kit.
12 For each country, we trim the observations of

extreme values of MRPK and TFPR at 0.1%.

For all reduced-form analysis using region-sector-year level sufficient statistics, we restrict

our sample to the region-sector-year pairs with more than 30 firm-year observations of rev-

enue and capital stock data, to minimize the noises in the variance measures and preserve

log-normality in the data. To make sure variations in these sufficient statistics are not due

to changes in data collection patterns and measurement errors, we also drop the observa-

11. The industries included are agriculture, mining, construction, manufacturing, transportation & utilities,
wholesale trade, retail trade, finance, insurance, and real estate(FIRE) and Services. We choose the SIC classifica-
tion mainly due to its availability in the Orbis Data.

12. Only exception is India ASI, which reports the book value of net fixed assets in a much more consistent
manner while the gross values are reported with a major amount of missing values.
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tions after which there are sudden jumps in the number of firms and aggregate sales in the

region-sector. The final region-sector sample is an unbalanced sample consisting 124,567 of

region-sector-year observations, covering 76,826,956 firm-year observations. For the firm-level

analysis in Section 6, we include all firm-year observations in the raw data after trimming the

0.1% extreme values of all firm-level dependent variables and covariates. Below, we provide a

brief overview of each of the datasets.

BvD Orbis. The firm-level data for the 30 European countries are drawn from Orbis, a database

maintained by Bureau van Dijk (BvD). Orbis originates from administrative records collected

at the firm level, primarily by each country’s local Chambers of Commerce. A significant ad-

vantage of focusing on European countries with Orbis is that company reporting is regulatory,

even for small private firms. It covers firms from all sectors and approximately 99 percent of

the companies included are private entities.

To organize and clean the Orbis dataset, we follow the approach in Kalemli- Özcan et

al. (2024), Gopinath et al. (2017), and Nath (2023). A notable departure from the papers cited

earlier lies in our method for expanding MRPK’s coverage. We include firms that have com-

plete data on revenue and capital (fixed assets) while allowing for variability in the extent of

coverage for other variables such as material costs, wage bills, and employee numbers.13 Each

firm in the Orbis data has its associated USSIC sector code, and its various address information

can be matched with a NUTS3 region in Europe. Different countries in Orbis have different

years of data coverage, detailed in Table B.1. We use the sample period of 1998-2018.

China NBS. The annual firm-level data for China is derived from surveys conducted by the

National Bureau of Statistics (NBS) in China. These surveys encompass all industrial firms

with annual sales exceeding nominal CNY 5 million (approximately USD 0.61 million) from

1998 to 2007. Such firms are commonly referred to as “above-scale” industrial firms.14 The

NBS data includes sectors such as mining, manufacturing, and utilities, with manufacturing

constituting more than 90% of the total observations in the dataset. In processing the NBS

data, we follow the methodology outlined in Zhang et al. (2018). Each firm in the dataset is

categorized using a four-digit Chinese Industry Classification (CIC) code and is harmonized to

the USSIC division level. Each firm’s reported location can be mapped into a prefecture-level

division. We only use the sample period of 1998-2007 due to inconsistent reporting after 2008

as discussed in Brandt, Van Biesebroeck, and Zhang (2014) and Nath (2023).

India ASI. Our data for India are drawn from India’s Annual Survey of Industries (ASI).

ASI is a census of large plants employing more than 100 workers and a random sample of

about one-fifth of smaller plants that are registered under the Indian Factories Act.15 The

13. Nath (2023) keeps the firms with complete revenue and labor data, while Gopinath et al. (2017) use a more
restrictive sample that only preserves observations having all production-related information in south European
countries.

14. Brandt, Van Biesebroeck, and Zhang (2014) shows that when comparing to the 2004 NBS census of industrial
firms that covers all industrial plants in China, these above-scale firms in the sample account for over 90.7% of the
total output.

15. As noted by Allcott, Collard-Wexler, and O’Connell (2016), large plants in the census scheme are defined as
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sampling procedure assures representativeness at the state and industry levels. Almost all

plants included in the ASI data are in the manufacturing sector. We match the plants to the

Indian districts following the approach of Somanathan et al. (2021). From 2001 to 2014, ASI

also collects whether the plant is AC equipped which we will utilize as a proxy variable for a

firm’s adaptability. We use the sample period of 1998 to 2018.

3.2 Weather and Forecast Data

Climate. For climate data, we use the land component of the European ReAnalysis, known

as ERA5-Land (Sabater 2019), produced by the European Centre for Medium-Range Weather

Forecasts (ECMWF). ERA5-Land is a reanalysis dataset that combines historical observations

with models to create a consistent time series of various climate variables. A main advantage

of ERA5-Land is its enhanced temporal and horizontal resolution. It provides hourly data on

surface variables at a spatial resolution of 0.1°longitude × 0.1°latitude (approximately 9 km),

covering the entire world. Such high resolution allows for a clearer depiction of the spatial

patterns of surface temperature between neighboring locations.

Our analysis uses variables of air temperature at 2 meters above the land surface. We ag-

gregate daily average temperatures16 up to the annual level. Specifically, in our main specifi-

cation, we bin daily temperature every 5°C from -5°C to 30°C. Each temperature bin counts the

number of days in a year when the daily average temperature falls within specific temperature

ranges. This is calculated for every region in each year.

Figure 1a plots the difference of the number of hot days above 25°C in a year between

periods of our sample firm coverage, 1999-2008 and 2009-2018, and the baseline periods, from

1951 to 1980. The dark red color represents an increase of more than 13.2 days in a year with

temperatures above 25°C. Figure 1b depicts the daily temperature distributions in baseline

periods, sample periods, and the projection year of 2100. The global warming trend reveals

that the number of days above 25 has increased, and the number of days below 10 has reduced

in each country in the past decades. The temperature distribution shifts rightward when we

compare across and within countries, as climates grow warmer.

The use of temperature bins in our analysis better conceptualizes climate. Because cli-

mate change represents a long-term shift in weather patterns, the year-to-year variation in the

whole temperature distribution offers a more accurate depiction of climate change than merely

examining year-to-year variations in mean temperature. A key feature of climate change is the

increased frequency of extreme heat events (Oudin Åström et al. 2013; Christidis, Mitchell,

and Stott 2023), therefore the increase in the number of extreme hot bins, indicative of a right-

ward shift in the tail of the weather distribution, captures the idea of global warming more

accurately.

factories with 100 or more workers in all years except 1997-2003 when it included only factories with 200 or more
workers. The sampling scheme for smaller registered plants included one-third of factories until 2004 and one-fifth
since then.

16. The daily average temperature is the simple geometric average of the maximum and minimum temperatures.
The daily maximum temperature is identified by the highest value among the hourly temperatures, and the daily
minimum temperature is the lowest recorded value.
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Projection and Forecast. We collect global projection data computed by the sixth phase of

the Coupled Model Intercomparison Project (CMIP6).17 We use the SSP3-4.5 experiment in

our main analysis, which is based on the SSP3 scenario that involves high mitigation and

adaptation challenges, along with the RCP4.5 pathway with a radiative forcing of 4.5 W/m2

in the year 2100. The SSP3-4.5 scenario represents the intermediate greenhouse gas emissions

level with modest mitigation policy and is described as a more likely path (O’Neill et al. 2016).

We use SSP3-4.5 projection in the main analysis and present results from other scenarios in

Appendix C.4.

For weather forecast data, we collect the long-range (seasonal) forecast from ECMWF (Coper-

nicus Climate Change Service and Climate Data Store 2018), which provides information about

atmospheric and oceanic conditions up to seven months into the future. The forecast data have

a spatial resolution of 1°longitude by 1°latitude.18 We collect forecast daily maximum and

minimum 2m temperature from the first day of each month from January to December with

forecasts up to 30 days measured in 724 lead-hours.

3.3 Other Data

Regional GDP. We collect regional-level global GDP data from DOSE (Wenz et al. 2023). We

then clean and map global GDP data to our firm and weather datasets using spatial coordi-

nates. This involves aligning different geographical units with administrative divisions like

NUTS, prefectures, and districts.

Income Projection Projections of national income per capita are collected from the SSP Database,

using the OECD EnvGrowth model (Dellink et al. 2017) hosted by the International Institute

for Applied Systems Analysis.

4 Estimating the Misallocation Effect of Climate Change

4.1 Identification of the Causal Elasticities on Misallocation

We now estimate the first-order causal elasticities on capital misallocation
∂ varmrpkni

(T̃rt,·)

∂T̃rt
.

Note that for each region-sector n = (r, s), a Taylor expansion around the observed steady-

state (varmrpk(s,r)i , T̃r, X̃s,r) can be written as

varmrpk(s,r)i(T̃r,t, X̃s,r,t) = varmrpk(s,r)i + λ
s,r
σ2
mrpk

· (T̃r,t − T̃r) + δ
s,r
σ2
mrpk

· (X̃s,r,t − X̃s,r) +H.O.T.

≈ λ
s,r
σ2
mrpk

· T̃r,t + δ
s,r
σ2
mrpk

· X̃s,r,t + ηs,r,

(14)

where ηs,r is a sector-region specific constant. For our benchmark exercise, we first estimate

the average causal elasticity λσ2
mrpk

= E[λs,r
σ2
mrpk

] across all climates and sectors. We will revisit

the nature of heterogeneity across climates and sectors in Section 4.3.

17. We use the GFDL-ESM4 model with a 1-degree nominal horizontal resolution produced by the National
Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (NOAA-GFDL).

18. From 1981 to 2016, the forecast values were hindcasts generated with a 25-member ensemble. Starting in 2017,
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Figure 1: Climates of our sample regions

(a) Number of Hot Days Deviation Relative to 1951-1980 (b) Average Daily Temperature Distribution

Notes: Figure 1a plots the difference of average number of days above 25°C between sample periods and baseline
periods. The baseline period is from 1950 to 1980. The sample periods consist of two parts, 1999 to 2008, and 2009
to 2018. We calculate the 10-year average number of days above 25°C and deduct the 30-year baseline average
number of days to obtain the difference. Figure 1b plots the average daily temperature distributions for baseline
periods 1950-1980, two sample periods, and the projection year of 2100 under the SSP3-7.0 scenario.
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We define current climate conditions, Tr,t, in terms of temperature bins, following the ap-

proach by Carleton et al. (2022), Deschênes and Greenstone (2011), and Nath (2023). These

bins, spanning the vector space Tr,t =
{

Tbin<−5◦C
r,t ,Tbin−5∼0◦C

r,t ,Tbin0∼5◦C
r,t ,Tbin5∼10◦C

r,t ,

Tbin10∼15◦C
r,t ,Tbin15∼20◦C

r,t ,Tbin20∼25◦C
r,t ,Tbin25∼30◦C

r,t ,Tbin>30◦C
r,t

}
, capture the number of days

within specific temperature ranges for region r in year t. Structured in 5-degree Celsius incre-

ments, these bins cover a broad spectrum of temperature variations, including extreme heat

and cold. Thus, as noted in Deschênes and Greenstone (2011), using daily temperature data

enables us to capture weather’s nonlinear effects using linear regression models.

To estimate the causal effect of temperature on MRPK dispersion (i.e., misallocation), we

exploit the inter-annual variation in the distribution of daily temperatures through the follow-

ing panel regression:

varmrpk(s,r),t =
∑

b∈B/(5∼10◦C)

λb
σ2
mrpk

× Tbinb
r,t + δσ2

mrpk
Xs,r,t + αc(r),t + ηs,r + εr,s,t, (15)

where ηs,r is the region-sector fixed effects, accounting for the unvarying attributes of MRPK

dispersion specific to each region-sector pair over time, consistent with the formulation in

Equation 14. αc(r),t is the country-by-year fixed effects, capturing the aggregate shocks to the

country c that region r resides in. Standard errors are clustered at the region level to account

for both serial and spatial correlations between all sectors across all years within each region

(NUTS 3 in Europe, province in China, first-level administrative divisions in India).

λb
σ2
mrpk

are coefficients measuring the causal effect of one additional day in temperature bin

b on contemporaneous MRPK dispersion. Each Tbinb
r,t indicates the number of days whose

average temperature falls within a specific range b ∈ B, where B is the set of ranges defined

in 5-degree Celsius increments. We use the temperature bin ranging from 0◦C to 5◦C as the

reference category, meaning that the coefficient for this category is normalized to zero.

Xs,r,t is a vector of logged control variables at the region-sector-year level, including the

total number of observed firms, average firm-level sales, and average MRPK.19 The first two

control for the observed sample size and region-sector-level business cycle fluctuations, re-

spectively. By controlling for the average (log)MRPK across firms at the region-sector-year

level, we aim to demonstrate that the observed dispersion in MRPK is not primarily driven by

the mechanisms through which temperature influences the average MRPK.20

4.2 Average Effects of Temperature on Capital Misallocation

The baseline estimates and inferred TFP loss are reported in Table 1 columns (1) and (5) and

visualized in Figure 2. Figure 2 plots our baseline estimates of the effects of heat exposure on

annual MRPK dispersion and the implied TFP loss. Specifically, the values on the left Y-axis

they are forecasts produced monthly with a 51-member ensemble. These ensembles are run on the first day of each
month, providing forecasts for up to seven months ahead.

19. We exclude these controls in our preferred specification as they may block a potential pathway for affecting
dispersion, although adding these controls have very little effect on our estimates.

20. This control allows us to isolate the specific impact of temperature on MRPK dispersion, independent of its
effects on the average level of MRPK. Controlling for average MRPK also reflects the average financial constraints
across firms.
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represent the regression coefficients, denoted as λ̂b
σ2
mrpk

, for each bin b. Each λ̂b
σ2
mrpk

quantifies

the estimated impact of an additional day in temperature bin b on MRPK dispersion, com-

pared to a day within the 5°C - 10°C range. To facilitate interpretation, we translate the es-

timates λ̂b
σ2
mrpk

into the marginal effect on aggregate TFP through the misallocation channel

using −αKn+α2
Kn(σn−1)
2 λ̂b

σ2
mrpk

from Equation 13 under the choice of a well-established conser-

vative choice of αKn = 0.35 and σn = 4 across all n.21 The right Y-axis corresponds to the

values of the implied TFP loss.

Figure 2: Estimated impact of daily temperature shocks on annual MRPK dispersion and im-
plied TFP loss
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Notes: This figure shows the aggregate impact linking annual MRPK dispersion and TFP loss to average daily

temperatures. The formula for computing TFP loss from misallocation is −
αKn+α2

Kn(σn−1)

2
λ̂b
σ2

mrpk

. The estimation

is normalized by setting the range of 5°C - 10°C as the reference category. Therefore, each λb
σ2

mrpk

represents the

estimated effect of an additional day in temperature bin b on annual MRPK dispersion or TFP loss, relative to a
day with temperatures between 5°C - 10°C. The figure also includes the 90% confidence interval for these
estimates where standard errors are clustered at the region level.

The estimated coefficients reveal that MRPK dispersion and the inferred TFP loss from

temperature-induced misallocation peak at the most extreme temperatures, both coldest and

hottest. This observed U-shape pattern between MRPK dispersion and temperature can also

be translated into an inverted U-shape pattern between TFP and temperature, which is well

known in the climate econometrics literature (Burke, Hsiang, and Miguel 2015; Nath 2023).

For temperatures above 25◦C and below -5◦C, the effects on MRPK dispersion are both

economically and statistically significant at 1% level. Specifically, the point estimates indicate

that substituting a day in the 5-10°C range with a day exceeding 30°C results in an increase

of 0.31 log points in MRPK dispersion, translating to a decrease of 0.11% in annual aggregate

TFP due to capital misallocation. On the cold end, we find that an additional day colder than

-5°C in a year leads to an approximate 0.26 log points increase in annual MRPK dispersion and

21. For the elasticity of substitution, we choose σn = 4 as in Bils, Klenow, and Ruane (2021). For capital share, we
pick a common value of αKn = 0.35.
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0.09% loss in annual TFP.

Robustness. Table 1 columns (2)-(4) present results with different specifications of fixed ef-

fects, inclusions of control variables, and weighting method. We introduce country-sector-

year fixed effects instead of country-year fixed effects in column (2), absorbing all unobserved

country and year-specific, region-invariant factors affecting MRPK dispersion in each sector.

Column (3) adds control variables, including total number of observed firms, average firm-

level sales, and average level of MRPK across firms in a region-sector-year, all in logarithmic

form. Column (4) reports the results of the weighted OLS using the 1995 region-sector value-

added as the regression weight. The objective is to assess whether assigning greater influence

to region-sector observations with a larger size would affect our analysis. Our results, in par-

ticular the “U-shaped” pattern, remain robust under various specifications.

4.3 Heterogeneous Effect by Climate and Development

Our benchmark specification in Equation 15 captures the average effect of temperature on cap-

ital misallocation E[λs,r
σ2
mrpk

]. We now try to estimate the heterogeneous impact of temperature

shocks across regions with different long-run climate and development levels.

It is not immediately clear if a hot day would consistently cause more or less misalloca-

tion in regions that are already warm or economically thriving. The ambiguity arises from

two potentially counteracting factors. For simplicity, consider a case where the mass of firms

can be divided into two groups: heat-loving and heat-averse. On the one hand, heat-averse

firms in warmer climates might already adapt to high temperatures and thus experience less

damage. However, it’s also possible that in warmer regions, heat-averse businesses might still

face greater damages with any additional heat shocks due to their limited adaptability (e.g.,

Moscona and Sastry 2023) and the damage convexity due to cumulative exposure of heat, as

found by the observed non-linear effects in Burke, Hsiang, and Miguel (2015). Similarly, in

regions with higher income levels, while firms may possess greater resources for adaptation

to heat shocks, these economies often have highly specialized productions and exhibit larger

dispersion in firm sizes (e.g., Chen (2022) and Poschke (2018)), which leads to more heteroge-

neous responses to climate conditions, as later shown in Section 6 that differences in firm sizes

contributes to the MRPK divergence when facing heat shocks.

Therefore, to more precisely account for the heterogeneous impact stemming from different

long-run climate and development levels across regions, we follow the approach of Carleton

et al. (2022) and Nath (2023) by interacting a time-invariant measure of climate (i.e., long-run

average temperature) and GDP per capita with each temperature bin. This approach allows us

to capture how climate and income jointly influence the effects of temperature variations on

capital misallocation. The modified regression model is formulated as follows:

σ2
mrpks,r,t =

∑

b∈B/(5∼10◦C)

λb × Tbinb
r,t +

∑

b∈B/(5∼10◦C)

λb
T̄ × Tbinb

r,t × T r

+
∑

b∈B/(5∼10◦C)

λb
GDPpc

× Tbinb
r,t × lnGDPpcr

+ δX̃s,r,t + αc,t + ηs,r + εs,r,t,
(16)

22



Table 1: Effects of daily mean temperature bins on MRPK dispersion and TFP loss

(1) σ2
mrpk (2) σ2

mrpk (3) σ2
mrpk (4) σ2

mrpk (5) Implied TFP Loss

< −5°C 0.0026∗∗∗ 0.0025∗∗∗ 0.0028∗∗∗ 0.0012 0.0935∗∗∗

(0.0010) (0.0009) (0.0009) (0.0023) (0.0342)

−5 ∼ 0°C 0.0015∗∗ 0.0013∗∗ 0.0016∗∗∗ 0.0006 0.0526∗∗

(0.0006) (0.0006) (0.0006) (0.0013) (0.0212)

0 ∼ 5°C 0.0004 0.0002 0.0005 -0.0019∗∗ 0.0131
(0.0004) (0.0004) (0.0004) (0.0009) (0.0146)

10 ∼ 15°C 0.0009∗∗ 0.0008∗∗ 0.0008∗∗ 0.0036∗∗∗ 0.0308∗∗

(0.0004) (0.0004) (0.0004) (0.0010) (0.0137)

15 ∼ 20°C 0.0013∗∗ 0.0012∗∗ 0.0014∗∗∗ 0.0045∗∗∗ 0.0471∗∗

(0.0005) (0.0005) (0.0005) (0.0013) (0.0190)

20 ∼ 25°C 0.0015∗∗ 0.0015∗∗ 0.0015∗∗ 0.0080∗∗∗ 0.0546∗∗

(0.0007) (0.0007) (0.0007) (0.0020) (0.0259)

25 ∼ 30°C 0.0028∗∗∗ 0.0027∗∗∗ 0.0027∗∗∗ 0.0095∗∗∗ 0.1008∗∗∗

(0.0009) (0.0009) (0.0009) (0.0021) (0.0331)

> 30°C 0.0031∗∗∗ 0.0030∗∗∗ 0.0030∗∗∗ 0.0090∗∗∗ 0.1112∗∗∗

(0.0011) (0.0011) (0.0011) (0.0021) (0.0401)

Controls No No Yes No No

Region-Sector FE Yes Yes Yes Yes Yes

Country-Year FE Yes No Yes Yes Yes

Country-Sector-Year FE No Yes No No No

1995 VA Weighted No No No Yes No

Observations 124,065 123,518 124,065 123,847 124,065
R2 0.876 0.903 0.878 0.897 0.876

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for European
countries, prefecture level for China, and district level for India). Dependent variables in columns (1) to (4) represent
the variance of log MRPK. Results from estimating Equation 15 are displayed in columns (1) to (4), with controls
in column (3) and weighted OLS regression in column (4). Column (5) is the implied TFP loss calculated using

the formula, −
αKn+α2

Kn(σn−1)

2
λ̂b
σ2

mrpk

, and the regression estimates. Countries included are China, India, and 30

European countries.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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where T r represents the long-run annual average temperature for region r and lnGDPpcr
is

the log of long-run average GDP per capita in region r.22 Both long-run temperature and

GDP per capita are computed as sample averages from 1997-2018. The coefficients λb
T̄

and

λb
GDPpc

quantify how the impact of daily temperature shocks on MRPK dispersion varies across

regions with different income levels and climates.23

Figure 3 presents the results from estimating Equation 16. We predict the impact of temper-

ature shocks on MRPK dispersion and its equivalent TFP loss across three levels of income and

long-run climate. The left Y-axis indicates the projected effects of temperature shocks on MRPK

dispersion, while the right Y-axis shows the implied TFP loss suggested by the estimates.

Figure 3: MRPK Dispersion and TFP Loss Across Climates and Income
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Notes: The graphs plot the predicted effect of exposure to daily mean temperature bins on MRPK dispersion and
TFP loss at varying levels of income and climates. These predicted effects are derived from the interacted panel
regression specified in Equation 16. The graphs include 90% confidence intervals, and standard errors are
clustered at the regional level. The left y-axis indicates changes in MRPK dispersion, and the right y-axis shows
the calculated TFP loss. The reference temperature is at 5∼10°C.

Level Effect: Hotter regions suffer more from the misallocation channel. Figure 3 shows

that an extremely hot day (above 30°C) would result in greater MRPK dispersion in regions

with a hotter average level of temperature. In regions of comparable wealth, the adverse ef-

fects of extreme heat on misallocation intensify as the regional climate becomes warmer, as

observed when moving from the left column to the right for each income level. For regions

22. The sub-national level (PPP-adjusted) GDP per capita data is from DOSE. It is important to use sub-national
level data as countries like India and China admit large income heterogeneity across the districts or prefectures.
The GDP per capita data is in 2017 International Dollars.

23. Interacting temperature bins with the region’s long-term average temperature allows us to analyze how an
additional hot day has differential effects across areas with varying baseline climates. Similarly, by interacting tem-
perature bins with a country’s annual per capita income, we evaluate how the same heat shock impacts developed
and developing economies differently.
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with a high average temperature of 25°C, experiencing an additional day over 30°C leads to a

notable TFP loss (ranging from 0.3% to 0.58%) due to misallocation, regardless of income lev-

els. In contrast, in colder climates (e.g., where T r ≈ 5°C), heat shocks appear to have negligible

or even reducing effects on MRPK dispersion, thereby decreasing TFP loss. Interestingly, even

a cold shock, such as an additional day below 0°C, tends to increase misallocation more signifi-

cantly in hotter regions than colder ones. In general, compared to the reference level, the effect

of a cold shock (<0°C) is always economically less significant than a heat shock (>30°C), with

the notable exception being hot and low-income regions like India (GDP=$5000, T = 25°C).

The quantitative implications can be best understood by comparing two regions with the

same income level but different climates. For example, Arizona (US) and Norway have similar

average per capita income across the sample period, around $60000, while their annual average

temperature largely differs: 14.84°C in Arizona but only 1.97°C in Norway. Extrapolating

using our estimates, an additional day with a temperature above 30°C compared to a 5-10°C

day in Norway will lead to a 0.29 log points decrease in MRPK dispersion, which translates

to a 0.1% increase in TFP, whereas in Arizona, the same heat shock leads to 0.8 log points

increase in MRPK dispersion and a 0.3% decrease in TFP. In Section 5, we will explore how the

divergent results across climates in our reduced-form regressions can be explained by regions’

deviations from the optimal “’bliss-point’ temperature for production, estimated to be around

13°C.

Income Effect: Richer economies suffer more from the misallocation Channel. A second

key finding is that wealthier economies are more adversely affected by the misallocation chan-

nel due to extreme heat; we call this the Income Effect. This can be better understood by com-

paring countries across different income levels within similar climates. As presented in Figure

3, in each column with fixed long-run temperature, moving from the bottom (low income)

to the top (high income) would increase the misallocation effect of the same heat shocks and

make the response function more and more U-shaped. As a more concrete example, France

and Turkey have similar average temperatures of around 10.5°C, while the income per capita

of France ($45922) is over 1.5 times higher than that of Turkey ($28150). Our estimates suggest

that the effect of an additional hot day >30°C would lead to a 0.08% TFP loss for Turkey and

a 0.14% TFP loss for France. To explain the income effect, in Section 6, we will show that firm

size dispersion increases with the region’s economic development, resulting in greater MRPK

divergence in response to the same heat shocks.

To sum up, the heterogeneous effect shows that the nature of the misallocation channel of

climate change might be significantly different from other channels, such as labor productivity

(Nath 2023) and mortality risk (Carleton et al. 2022). Previous empirical analysis showed that

richer economies and hotter regions suffer much less from heat shocks regarding labor produc-

tivity and mortality, suggesting that some effects of climate change are somewhat adaptable.24

However, the cost of climate shocks through the misallocation channel reveals an opposite pat-

24. For example, the estimates in Nath (2023) show that as a region becomes consistently hotter, workers are
more adapted to the hotter climate and would not find a heat shock damaging to its productivity. Secondly, as an
economy grows richer, workers suffer less from the temperature extremes. Both channels suggest that the cost of
climate change might be lower in developed economies.
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tern25 by incurring a larger loss in hotter and richer countries, suggesting that market-based

adaptation might have limited effect. Interestingly, the average effect of temperature on MRPK

also exhibits similar heterogeneity. Estimates can be found in Figure C.1. As an economy

develops to be more sophisticated in its techniques of production among firms (along with

rising incomes), it might become more vulnerable in the sense that achieving efficient resource

allocations becomes more challenging.

4.4 End-of-the-century Projection of the Misallocation Channel

In this subsection, we utilize the empirical estimates from Section 4.3 to project the effect of

climate-induced misallocation on aggregate TFP loss by the end of the 21st century (2081-2100)

for 4,881 regions in 172 countries around the world.26

Such projections require detailed region-level daily temperature projections, average levels

of temperature, and GDP per capita at the end of the century. We use near-surface air temper-

ature projection in RCP4.5 from the sixth phase of the Coupled Model Intercomparison Project

(CMIP6) (Copernicus Climate Change Service 2021). The RCP 4.5 scenario features modest

mitigation efforts. To project the daily temperature distribution, we calculate the average num-

ber of days in each temperature bin as defined in Section 4.1 and the average temperature from

2081-2100. We use the 20-year average for all variables to avoid inaccurate representations due

to year-to-year fluctuations in climate model predictions. We follow Carleton et al. (2022) and

use projections of national income per capita derived from the SSP3 scenarios, using the OECD

EnvGrowth model (Dellink et al. 2017) projections. For an average region in the sample, the

annual mean temperature is projected to increase by about 1.78°C by the end of the century

(from 2081 to 2100), compared to a baseline period from 2000 to 2014, and the average GDP

per capita is projected to increase by about $20748 (in 2017 International Dollar) compared to

2019. A detailed illustration of the current and projected evolution of income and average

temperature can be found in Figure C.2.

Our goal is to compute the following: compared to baseline climate conditions, how much

more will global warming contribute to aggregate TFP loss through misallocation by the end

of the 21st century (EOC)? To make transparent the forces at play here, we decompose the total

25. In Section 6, we identify some potential mechanisms that could help explain why hotter and richer regions
suffer more from heat shocks. Specifically, we find that a positive temperature shock in hotter regions would in-
crease TFP volatility, making firms more prone to input mistakes, while a hot temperature shock in cold regions
might enjoy a slight decrease in TFP volatility. Moreover, a firm’s adaptability to heat and cold shocks depends
heavily on size. On the firm level, we show that smaller firms’ MRPK is more sensitive to extreme temperatures
than larger firms. Across region-sector pairs, we find that economies with larger size dispersion suffer more misal-
location, which is consistent with the firm-level evidence. We find those region-sectors with large size dispersion
are also those with higher incomes (i.e., more developed), consistent with Poschke (2018).

26. Regions in our 32-country sample is defined as in Section 3, while the regions in all other countries are defined
as GADM1-level region from the GADM dataset.
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effect of climate-induced misallocation into three components:

∆Loss lnTFPr︸ ︷︷ ︸
Total Effectr

=
αKn + α2

Kn(σn − 1)

2

[∑

b

(
λb + λb

GDPpc
lnGDPpc,r,base + λb

T̄ T̄r,base

)
×∆Tbinb

r

︸ ︷︷ ︸
Shock Effectr

+
∑

b

λb,T̄Tbinb
r,EOC ×∆Tr

︸ ︷︷ ︸
Level Effectr

+
∑

b

λb
GDPpc

Tbinb
r,EOC ×∆ lnGDPpc,r

︸ ︷︷ ︸
Income Effectr

]
,

(17)

where we use ∆ to denote the change in a variable between its end-of-century (EOC) value

and its baseline value. The shock effect refers to the change in TFP losses due to shifts in daily

temperature distributions ∆Tbinb
r, conditional on the baseline income computed in 2019 and

baseline long-run temperature from 2000 to 2014; the level effect refers to the change in TFP

losses due to the change in long-run temperature ∆Tr; and the income effect reflects the cost of

the region’s increasing misallocation due to the shift in economic development, measured by

the change in (log) GDP per capita, ∆ lnGDPpc,r. To make the quantitative results more inter-

pretable, we aggregate all measures of regional TFP loss to the country level by performing a

weighted sum using the projected regional GDP share in each country under SSP3.27

Figure 4 plots each country’s projected TFP loss from the capital misallocation channel in

percentage terms. While the overwhelming majority of countries will experience a significant

TFP loss, the projected TFP losses exhibit large heterogeneity across countries. The country-

level TFP loss projections from other emission scenarios are presented in Figure C.4 and C.5.

In countries most severely affected, such as Tanzania, Malaysia, Honduras, and India, TFP

losses are as high as above 40% compared to today. India, for instance, with a current average

temperature of 23.29°C and an income per capita of $6608.62, the number of days above 30°C

is projected to rise from 76.24 to 99.78 by the end of the century together with a large rise in

average temperature to 25.00°C and income to $14615.39. Together, these forces result in a TFP

loss of about 48.38%. These projections stem from the results that for countries like India that

are already warm (tropical/subtropical) but relatively under-developed, the effect of extreme

heat becomes more severe as they get hotter and more developed, as implied by the third

column in Figure 3, showing the country moving from the bottom cell to the top right.

Less affected countries, such as the United States, Argentina, and Spain, will see a TFP

loss between 20% and 30%. For example, in the United States, the projected change in the

TFP losses due to global warming is about 20.99% at the end of the century. On average, in

the US, income per capita is expected to rise from $62478.25 to $95800.89, while the annual

temperature is expected to rise from 10.07°C to 12.45°C with the number of days above 30°C

being projected to increase from 3.97 to 8.94. Countries with more mild damage, like France,

the United Kingdom, Russia, and Canada, will see TFP losses below 15%. For example, in the

27. We use the grid-level projected SSP3 GDP are from Wang and Sun (2022) to obtain the projected GDP share.
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United Kingdom, the national average temperature is predicted to rise from 9.15°C to 10.16°C,

the number of days above 25°C is expected to increase from 0.03 to 0.37 days, and income per

capita is projected to rise from $47362.27 to $85615.36. Together, the TFP losses in the UK are

projected to be 7.25% due to misallocation. For developed countries in temperate and mar-

itime climates, climate change might shift up the average temperature, but the extreme heat

exposure is still quite limited. Therefore, while large in terms of absolute value, the increase in

climate-induced misallocation is still more moderate compared to tropical countries.

Figure 4: End-of-century Projected TFP Loss Due to the Misallocation Channel

Notes: Figure shows the projected TFP losses from capital misallocation under SSP3-4.5 scenarios. The estimation

follows Equation 17 where we estimate the total effect in MRPK dispersion and compute the equivalent value of

TFP losses.

Figure 5: Projected Global TFP Loss and Its Decomposition: 2030-2100

(a) Total TFP Loss from the Misallocation Channel (b) TFP Loss Decomposition

Notes: Figure 5a plots the total TFP loss across years. The dark red line plots the estimates and the shaded area is

90% confidence intervals from the parameter uncertainty. Figure 5b plots the three effects contributing to total TFP

loss. All computations are under the SSP3-4.5 scenario and the percentage loss is compared to the baseline level.
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Finally, using each country’s projected GDP share,28 we compute the global average TFP

loss due to climate-induced misallocation can be computed as:

∆Loss lnTFP︸ ︷︷ ︸
Total Effect=35.40%

= Shock Effect︸ ︷︷ ︸
3.60%

+Level Effect︸ ︷︷ ︸
13.06%

+ Income Effect︸ ︷︷ ︸
18.74%

,

where we project that relative to today, the global cost of climate-induced misallocation to

be 35.4% of aggregate TFP (GDP), with the shock effect from daily temperature distribution

contributing to 3.60%, income effect contributing to 18.74% and the level effect of average tem-

perature increase takes 13.06%. We present the evolution of TFP losses from the misallocation

channel in Figure 5a, along with the 90% confidence interval that account for parameter un-

certainty. This graph shows a projected increase in TFP losses from 8.30% in 2030 to 35.40%

by 2100. Additionally, Figure 5b breaks down the projected TFP losses into three components

over time and indicates that the income effect and the level effect are the primary drivers of

the increasing TFP losses from the misallocation channel over the years.

The size of these estimates is large and is comparable to the overall projected impact by

Burke, Hsiang, and Miguel (2015) and more recently by Bilal and Känzig (2024). Much of the

projected total effect comes from the sharp rise in the semi-elasticities of daily temperature

shocks due to the projected rise in temperature and income. These, of course, are subject

to a range of caveats, including out-of-sample extrapolation, as the income and temperature

levels by the end of the century are unprecedentedly high compared to the records in the past.

However, even if we only account for the projected daily temperature variations and keep

the first-order semi-elasticities of temperature shocks constant as the ones estimated today, we

still project a global aggregate TFP loss of 3.60% coming from the misallocation channel, which

should serve as a lower bound for our estimate.29 Country-level misallocation loss projections

under other climate change scenarios are provided in .

5 A Firm Dynamics Model of Temperature Shocks and MRPK Dis-

persion

In the previous section, we empirically demonstrated how temperature shocks lead to in-

creased misallocation, particularly in countries with hotter long-run climates and more de-

veloped economies. We now explore why both temperature shocks and their levels can gen-

erate dispersion in capital returns within a standard dynamic investment model. Given the

time-to-build nature of capital inputs, a natural explanation is that temperature influences the

dispersion of expectation errors in capital returns across firms. We present two mechanisms in

the model: (i) firms do not have perfect foresight of the future temperature and are heteroge-

neous in temperature sensitivity, and (ii) firms do not have perfect foresight of their sensitivity

to temperature so that temperature extremes could lead to unexpected extreme losses in the

28. The TFP losses from this weighting scheme would exactly correspond to a model-implied aggregate TFP loss
where the total global output is defined as a Cobb-Douglas aggregator of country-level value-added output and
can be viewed as a first-order approximation for the TFP loss under any other constant returns to scale aggregator
for global output.

29. A detailed breakdown of each effect on the country level is presented in Figure C.3.
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firm level. These two mechanisms imply that misallocation depends on both the “level” and

the “shock” of temperature. We will generate regression equations with model interpretations

to test them empirically in Section 6 and Section 7.

5.1 Setup

Similar to the accounting framework in Section 2, our model describes the action of firms and

the aggregate economy within a region-sector n = (r, s). We suppress the region-sector label

to avoid notation burdens. Our model follows a partial equilibrium set-up similar to that of

David and Zeke (2021).

Production and Demand. We begin by describing the production side of the economy. Each

firm i produces a differentiated product of quantity Yit with Cobb-Douglas technology:

Yit = ÃitK
α̃K
it N α̃N

it , α̃K + α̃N = 1, (18)

where Ãit is the physical productivity, Kit is the capital input (which is dynamic) and Nit

represents labor. The firm’s product faces a constant elasticity downward-sloping demand

curve with demand shifter Bit:

Yit = BitP
−σ
it .

Combing production and demand functions, we obtain the equilibrium revenue function of

the form:

PitYit = ÂitK
αK
it NαN

it (19)

where αF = (1 − 1
σ )α̃F , ∀F ∈ {K,N} and Âit = B

1
σ
it

(
Ãit

)(1− 1
σ
)

is the revenue-based produc-

tivity (TFPR). We will be referring to this simply as productivity.

Productivity and Heterogeneity in Temperature Sensitivity. We now introduce how firms’

productivity is heterogeneously impacted by temperature. For parsimony, we allow the annual

temperature to be a sufficient statistic for climate conditions in the structural model (as in Dell,

Jones, and Olken (2012) and Cruz and Rossi-Hansberg (2023)). We assume that firms’ (log)

productivity, âit ≡ ln(Âit), is determined by:

âit = β̂it(Tt − T ∗) + ẑit, (20)

where Tt is the realized temperature at year t, and T ∗ is the optimal temperature for firms’ pro-

duction. We assume that each firm i’s (log) productivity changes linearly with temperature’s

deviation from optimum, Tt − T ∗, subject to the sensitivity β̂it.
30 ẑit denotes the firm-specific

idiosyncratic productivity, which captures all the variations apart from the effect of tempera-

ture.

We allow a firm i’s temperature sensitivity β̂it, to be firm-specific and time-varying. There

30. The heterogeneity of β̂it reflects the composite effect of how both physical productivity and demand shifter
are impacted by temperature across firms.
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are two sources of heterogeneity in a firm’s sensitivity to temperature:

β̂it = β̂i︸︷︷︸
Persistent
sensitivity

+ ξ̂it︸︷︷︸
Idiosyncratic
sensitivity

+ Ot

(1) The persistent sensitivity to temperature, β̂i, is assumed to be observable and known to

firms (e.g., a ski resort’s β̂i might be negative, and the owner knows about it). We assume that

β̂i is distributed as β̂i ∼ N

(
β̂, σ2

β̂

)
across firms, where σ2

β̂
measures the dispersion of persistent

sensitivity within a region-sector. A higher σ2
β̂

implies a more dispersion sensitivity across

firms.

(2) The idiosyncratic sensitivity, ξ̂it, is i.i.d. across firm and time and cannot be predicted.

It follows a normal distribution, ξ̂it ∼ N

(
0, σ2

ξ̂

)
, where σ2

ξ̂
measures the damage uncertainty

within a region-sector. The impact of idiosyncratic sensitivity on TFP scales with Tt − T ∗ to

capture the increased damage uncertainty associated with extreme temperature (e.g. plant-

level fire hazards are more likely to happen during heat waves).

Ot denotes the adjustment to offset the Jensen’s inequality terms when aggregating across

firms such that the aggregate productivity is log-linear in temperature in the absence of marginal

product dispersion. Since Ot is common across all firms, it plays no role in our analysis of mis-

allocation across firms.

Jointly, we model β̂it to capture the idea that a firm would react to (realized and expected)

temperature conditions according to their known knowledge of the firm’s characteristics. How-

ever, with the presence of dynamic inputs that take time to build, firms could not act optimally

as there is always some unknown damage sensitivity to temperature every period.

Law of Motion for Productivity and Temperature. We assume (agents perceive that) tem-

perature and (log) idiosyncratic productivity ẑit = log Ẑit
31 follow an AR(p) process, with per-

sistence ρT and ρz , respectively:

(Tt+1 − T̄ ) =

p∑

h=1

ρT,h(Tt+1−h − T̄ ) + ηTt+1,

ẑit+1 = ρz ẑit + ε̂it+1,

(21)

where we assume that temperature oscillates around a local average T̄ . ηTt+1 ∼ N
(
0, σ2

η

)
is the

temperature shock. The idiosyncratic productivity shocks ε̂it+1 ∼ N
(
0, σ2

ε̂

)
are independent

across firms and time.

At the firm level, uncertainty arises from three sources: 1) idiosyncratic damage sensitivity

ξ̂it, normally distributed with variance σ2
ξ̂
; 2) aggregate temperature uncertainty with variance

σ2
η ; and 3) idiosyncratic uncertainty, with variance σ2

ε̂ . We assume firms have full information

regarding all realized shocks and hold rational expectations regarding the future states of the

economy. We refer to the cross-sectional variance of unexpected firm-level TFP shocks as TFP

Volatility, following Asker, Collard-Wexler, and Loecker (2014).32TFP volatility in the model

31. We use lower case to denote variables in logs, except for temperature Tt.
32. This can also be viewed as a theoretical counterpart to the cross-sectional measures of uncertainty as in Bloom
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depends endogenously on temperature levels Tt and the temperature shocks ηTt :

Lemma 1 TFP Volatility, Var(âit − Et−1[âit]), and can be written as:

Var(âit − Et−1[âit]) = (Tt − T ∗)2σ2
ξ̂
+ η̂Tt

2σ2
β̂
+ σ2

ε̂ . (22)

TFP Volatility reaches its minimum when the temperature reaches its optimum Tt = T ∗, and when

there is no unexpected change in temperature, ηTt = 0.

This lemma illustrates that TFP volatility is dependent on the regional climate. Suppose a

region is too hot or cold compared to T ∗. In that case, firm-level productivity is too volatile

due to the damage uncertainty σ2
ξ̂
. We will test this empirically in Section 7.1.

Temperature and wages. Firms hire a composite of flexible inputs, “labor”, on a period-by-

period basis at a competitive wage, Wt. For simplicity in modeling the temperature-related

supply- and demand-side frictions in the labor market (e.g., temperature-related disutility of

work or temperature-induced loss of labor productivity), we assume the equilibrium wage is

given by:

Wt = W exp (χ(Tt − T ∗)),

where the wage is a function of temperature (deviation from T ∗) with constant elasticity χ,

indicating the sensitivity of which wages respond to temperature.33.

Flexible Input Choice and Profits. Optimal choice of flexible inputs is made after capital

inputs are allocated and all shocks are realized. The static input choice solves

max
Nit

exp
(
β̂it (Tt − T ∗)

)
ẐitK

αK
it NαN

it −WtNit,

and results in the operating profits Πit, calculated as revenue minus labor costs, expressed as

Πit = GAitK
α
it := G exp (βit(Tt − T ∗) + zit)K

α
it, (23)

where G := W
−

αN
1−αN α

αN
1−αN
N (1− αN ), zit = 1

1−αN
ẑit, and α = αK

1−αN
. We define capital prof-

itability as Ait := exp (βit(Tt − T ∗) + zit), where βit =
β̂it−χαN
1−αN

is the sensitivity of capital prof-

itability to temperature, transformed from the firm’s productivity’s temperature sensitivity,

β̂it, and the wage’s temperature sensitivity, χ. α is the curvature of the profit function.

Dynamic Capital Investment. Capital is a dynamic input that takes time to build. It needs to

be invested one period ahead before all shocks (including temperature) are realized. Naturally,

(2009).
33. This assumption is commonly used in business cycle analysis. See Blanchard and Galı́ (2010), Alves et

al. (2020), and Flynn and Sastry (2023).
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the investment problem of a firm i can be formulated into the Bellman equation of the form:

V (Tt, Zit,Kit) = max
Kit+1

G exp (βit(Tt − T ∗) + zit)K
α
it −Kit+1 + (1− δ)Kit

+
1

1 + r
Et [V (Tt+1, Zit+1,Kit+1)] ,

where 1
1+r is the discount factor. Firms are risk-neutral and face no adjustment costs in the

model.34. The optimal investment Kit+1 solves the Euler equation:

1 =
1

1 + r︸ ︷︷ ︸
Discount Factor


αGKα−1

it+1Et [exp (zit+1 + βit+1(Tt+1 − T ∗))]︸ ︷︷ ︸
Expected Value of Marginal Profits of Capital

+ (1− δ)︸ ︷︷ ︸
Value of

Undepreciated Capital


 . (24)

Equation 24 shows that capital investment is increasing in the forecast of capital profitability,

which in turn depends on the expectation of profitability-based idiosyncratic productivity zit+1

and temperature sensitivity βit+1, as well as temperature Tt+1.

Solving the Euler Equation yields the firm’s optimal investment policy as a function of

expectations in logs (while suppressing some higher-order “risk-adjusted” terms):

kit+1 ≈
1

1− α
Et[ait+1] + k0

=
1

1− α

(
1

1− αN
Et[âit+1]−

αN

1− αN
Et[wt+1 − w]

)
+ k0

=
1

1− α

(
1

1− αN

(
Et[ẑit+1] + Et[β̂it+1(Tt+1 − T ∗)]

)
− αNχ

1− αN
Et[Tt+1 − T ∗]

)
+ k0,

(25)

where k0 =
1

1−α

(
log
[
αG
r+δ

])
and lowercase denotes logs. The derivations illustrate the follow-

ing logic: investment is proportional to the expected profitability of capital, which is increasing

in expected (revenue) productivity and decreasing in expected wages. These are, in turn, de-

pendent on the firm’s expectation of future temperature sensitivity and future temperature.

The size of persistent temperature sensitivity β̂i will determine how a firm’s investment

decision responds to expected temperature. Firm i’s investment, relative to the average firm

in the economy at date t, would be:

kit+1 − kit+1 =
1

1− α

(
Et[ẑit+1] +

(β̂i − β̂i)

1− αN
Et[(Tt+1 − T ∗)]

)
. (26)

Specifically, for a heat-averse firm with β̂i < β̂i (say, a ski resort), a higher temperature forecast

34. Our benchmark model abstracts from the presence of adjustment costs in capital investment. If we introduce
an adjustment cost of the form −

κ
2
( Iit
Kit

− δ)2 at the time of investment, then the MRPK dispersion in the economy
would take the form:

σ
2
mrpk,(r,s),t =

(

1

1− αN

)2
[

(Tr,t − T
∗)2σ2

ξ,(r,s) + η
T
r,t

2
σ
2
β,(r,s) + σ

2
ε,(r,s)

]

+ (α− 1)2φ2
Aσ

2
k,t−1 + Adj. Cost Channel

(r,s),t
,

for some constant φA. The Adj. Cost Channel
(r,s),t

captures how adjustment costs interact with past and present
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Et[Tt+1] will lead to a relatively lower level of expected productivity and consequently lower

investment compared to an average firm with β̂i. In contrast, a heat-loving firm with β̂i > β̂i

(say, a water park), would invest more than an average firm due to the relatively positive

productivity effect from higher expected heat.

MRPK. Upon the realization of idiosyncratic productivity and temperature conditions, firms’

labor choice is made and production takes place. From Equation 23, realized marginal revenue

product of capital (MPRKit ∝ αK
PitYit
Kit

)35 of firm i can be derived as (in logs):

mrpkit = ait + (α− 1)kit + log(αKḠ)36 (27)

Plugging in the policy function kit as a function of past expectation, we write down find how

mrpkit depends on the realization of shocks in the next proposition.

Proposition 3 A firm with higher unexpected change in productivity exhibit a higher MRPK relative

to the average level:

mrpkit −mrpkit =
1

1− αN

{
(β̂i − β̂i)η

T
t︸ ︷︷ ︸

Unexpected
Temperature Shock

on Productivity

+ ξ̂it(Tt − T ∗)︸ ︷︷ ︸
Unexpected

Damage
Sensitivity

+ε̂it

}
,

(28)

where the relative MRPK of heat-averse firms (β̂i < β̂i) will decrease with a positive temperature shock

ηTt ; while the relative MRPK of heat-loving firms (β̂i > β̂i) will increase with a positive temperature

shock.

Proof. See Appendix.

First, notice that Equation 28 suggests that mrpkit would be the same across all firms when

productivity is perfectly known at the time of investment. Otherwise, the MRPK would in-

crease with forecast error of (revenue) productivity in the cross-section.

This reveals the key mechanism in the model. All firm’s MRPK would change with (1) the

unexpected temperature shock ηTt due to their temperature sensitivity β̂i and (2) with the level

of temperature Tt − T ∗ since part of their damage sensitivity ξ̂it was unknown to them at the

time of investment. In a region-sector with an unexpected heat shock, ηTt > 0, the firms with

relatively low MRPKs in the cross-section are those that are (1) heat-averse (β̂i < β̂i) such that

the productivity suffers unexpectedly more than an average firm, (2) unexpectedly damaged

with heat sensitivity ξ̂it(Tt − T ∗) < 0. Judging from the ex-post, these firms invested too much

capital due to their erroneous expectation of higher-than-realized productivity, and the capital

climate conditions. It includes terms that are linear in ηT
r,t, as well as the interactions of past temperature conditions

with ηT
r,t. The interaction between adjustment costs and climate conditions operates separately from our main

mechanisms. It is unlikely to affect the identification of the damage volatility channel and climate volatility channel
in the data when additional controls are added.

35. Note that the marginal revenue product of capital and the marginal profitability of capital are the same up to
a transformation, which implies that their cross-sectional log dispersion should be the same.

36. G = W
−

αN
1−αN α

αN
1−αN

N is the constant associated with the revenue function PitYit = GAitKit.
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in those firms cannot be used as productively as those firms that are heat-loving (β̂i > β̂i) or

those experiencing unexpectedly less productivity damages (ξ̂it(Tt − T ∗) > 0).

The large heterogeneity of firm-level sensitivity implies that temperature conditions could

change the dispersion in capital return and thus capital misallocation across firms, summa-

rized by the following proposition, where we add back the notation for a region-sector pair

n = (r, s):

Proposition 4 Within a region-sector pair n = (r, s), the mrpk dispersion across firms is increasing

in TFP Volatility, Var(ânit − Et−1[ânit]), and can be decomposed into:

σ2
mrpk,(r,s),t =

(
1

1− αN

)2

Var(ânit − Et−1[ânit])

=

(
1

1− αN

)2
[
(Tr,t − T ∗)2σ2

ξ̂,(r,s)︸ ︷︷ ︸
Damage Volatility

(Level Effect)

+ ηTr,t
2
σ2
β̂,(r,s)︸ ︷︷ ︸

Climate Uncertainty
(forecast error Effect)

+σ2
ε̂,(r,s)

]
(29)

Within n = (r, s), mrpk dispersion is increasing in:

(1) squared deviation from optimal temperature, (Tr,t − T ∗)2,

(2) squared (unexpected) temperature shocks ηTr,t
2
.

As the cross-sectional MRPK differences depend solely on the unexpected shocks on pro-

ductivity in the model, it follows naturally that MRPK dispersion scales with the dispersion in

the unexpected shocks on productivity among firms. The higher the TFP volatility, the larger

the dispersion of the input mistakes that would take place. Using our decomposition of TFP

Volatility in Equation 51, we find temperature variations contribute to misallocation through

two channels: level effect (due to damage volatility) and forecast error effect (due to climate

uncertainty).

(1) Level Effect. The level of temperature affects misallocation through the change in damage

volatility. As the temperature deviates more from the “bliss point” T ∗, firms who receive ex-

treme realizations of the idiosyncratic damage sensitivity ξ̂it will get larger unexpected damage

(e.g., a larger fraction of firms will experience severe factory fire). Therefore, the productivity

becomes harder to forecast, and more investment mistakes are made. The economy will thus

suffer from more misallocation as (Tr,t+1 − T ∗)2 rises.

(2) Forecast Error Effect. The magnitude of the climate uncertainty channel relies on the size

of unexpected temperature shocks. As different firms have heterogeneous sensitivity to these

shocks, larger unexpected temperature shocks, say a heat shock, will make the return to in-

vestment of heat-averse firms unexpectedly low and the heat-loving firms unexpectedly high.

The opposite is true for an unexpected cold shock. Therefore, we will see an increasing level

of capital misallocation with a more considerable unexpected temperature shock ηTr,t
2
.

These two effects help explain how a region-sector’s geographical locations and long-run

climate might matter for capital misallocation, as we have identified in Figure 3 in Section 4.
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Regions experiencing extreme temperatures - either too hot or too cold - or those subject to

uncertain temperature conditions are prone to higher levels of capital misallocation. In Section

7, we will try to gauge the quantitative importance of how the level effect and the forecast error

effect contribute to climate-induced capital misallocation through the lens of model-induced

regressions.

Equation 29 also has predictions across region-sectors on how the average degree of mis-

allocation in the region-sector depends on the average climate conditions and the distribution

of the firm’s weather-related characteristics. For example, when given the same climate condi-

tions, a region-sector with higher dispersion in persistent sensitivity σ2
β̂,(s,r)

or larger damage

uncertainty σ2
ξ̂,(s,r)

will suffer more climate-induced misallocation.

Paired with the model’s implication that the average level of temperature sensitivity β̂(s,r)

in a region-sector does not matter for the degree of misallocation, we can try to rationalize

why developed countries suffer more from temperature shocks via the misallocation chan-

nel. Although developed countries might feature a higher level of “heat preparedness” β̂(s,r),

but might have a larger dispersion σ2
β̂,(s,r)

due to the larger scope of specialized production

and more extensive variety. More developed countries also have a larger dispersion of firm

sizes (Poschke 2018), which would naturally matter for dispersion of temperature sensitiv-

ity as larger firms have more resources and working capital to defend against sudden climate

shocks. Although we do not model this explicitly in the benchmark model, we will empirically

test how firm sizes might proxy for temperature sensitivity in Section 6.

TFP Loss from Misallocation. Finally, we formalize how temperature-induced misallocation

affects region-sector aggregate TFP in the model. In the Appendix, we show that under a CES

aggregator,37 the economy admits an aggregate production function of the form:

ynt = ant + α̃Kknt + α̃Nnnt,

where the cost of misallocation can be expressed as the deviation from the level of TFP, a∗nt
when MRPKs are equalized across firms:

ant − a∗nt =− α̃K + α̃2
K(σ − 1)

2
σ2
mrpk,nt

(30)

This formula is reminiscent of Equation 9 in the accounting framework and shows that the

intuitions behind the cost of misallocation are similar in the firm dynamics model.

6 Firm-level Evidence: Heterogeneous Sensitivity, Temperature Shocks,

and MRPK Divergence

We now provide direct evidence from firm-level data on how temperature shocks could lead

to heterogeneous responses in the MRPK among firms with differing levels of persistent tem-

37. Following Midrigan and Xu (2014), in a partial equilibrium context, one can define aggregate production and
misallocation by considering the problem of a planner with a CES aggregator and faces no restrictions on how to
reallocate inputs across firms.
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perature sensitivity,38 β̂i. Since directly measuring β̂i for each firm is challenging, we instead

explore two possible major factors contributing to this heterogeneity: firm size and adaptabil-

ity, particularly regarding the installation of air conditioning (AC) facilities. We investigate

whether firms of different sizes and levels of adaptability (those equipped with AC versus

those without) exhibit distinct responses to identical temperature shocks in their MRPKs.

The choice to use firm size and AC installation as proxies for temperature sensitivity is

grounded in the empirical literature. Regarding size, studies have shown that larger firms are

less sensitive to temperature shocks and better equipped to cope with extreme heat compared

to smaller firms (Ponticelli, Xu, and Zeume 2023), leading to a higher level of β̂i in the model.

As for the importance of AC, Somanathan et al. (2021) demonstrates that hot days significantly

suppress output for plants without climate control, whereas plants with climate control facili-

ties are unaffected.

We test the key prediction by the model from Equation 28 (reproduced below). In the same

region-sector pair, a more heat-averse firm (i.e. lower β̂i) would have a lower MRPK from an

unexpected positive temperature shock compared to the average. As the temperature shock

was not expected at the time of investment decisions, a more heat-averse firm would be seen

to have made a bigger “investment mistake” as the return on the capital can be lower.

mrpkit −mrpkit =
1

1− αN

{
(β̂i − β̂i)η

T
t︸ ︷︷ ︸

Unexpected
Temperature Shock

on Productivity

+ ξ̂it(Tt − T ∗)︸ ︷︷ ︸
Unexpected

Damage
Sensitivity

+ε̂it

}
,

β̂i and MRPK: Empirical Approach We run the following regression as the empirical coun-

terpart of the Equation 28 to explore whether the two heat-sensitivity proxy variables: firm

sizes and AC installation, lead to different responses of MRPK to temperature shocks:

log(MRPKr,s,i,t) =
∑

b∈B/{5−10◦C}

λb × Tbinb
r,t

+
∑

b∈B/{5−10◦C}

λb,β̂-proxy × Tbinr,t × β̂-proxyr,s
it + δXi,t

+ δi + αs,c(r),t + εs,c(r),i,t, β̂-proxy ∈ {Relative Size,AC}.

(31)

r represents the region, s the sector, i the firm, and t the year. β̂-proxys,r
it is a firm-level proxy for

β̂i, defined either as Relative Sizesrit or ACsr
it in our two settings. ηi indicates firm fixed effects,

which remove time-invariant, unobserved firm-level heterogeneity that could otherwise bias

the estimates. αs,c(r),t are country-sector-year fixed effects that control for unobserved charac-

teristics specific to each region-sector pair annually, such as country-sector level business cycle

fluctuations. Standard errors are clustered at the region level to address serial and spatial cor-

relation within all firm-year observations in a region. The coefficients of interest, λb,β̂-proxy, are

identified by comparing firms within the same country-sector exposed to identical tempera-

ture shocks but show differential response in (log) MRPK. A λb,β̂-proxy > 0 indicates a higher

38. This also serves to identify climate-induced misallocation directly using firm-level microdata without the log-
normality assumption.
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MRPK for heat-tolerant firms compared to heat-averse ones under similar temperature shocks.

Heterogeneous Effect of Temperature Shocks from Firm Size. Following the approach of

Bau and Matray (2023), we characterize a firm’s size based on the value of its capital stock, as

larger firms are typically more financially flexible in adjusting to unexpected heat shocks. For

the analysis of firm size, β̂-proxys,r
it is defined as a continuous variable equal to Relative Sizes,rit .

We measure a firm’s relative size using Relative Sizer,sit := logKs,r
it − logKit

s,r
, which compares

a firm’s (log) capital stock, logKs,r
it , to the cross-sectional average of firms within the same

region-sector-year, logKit
s,r

. We also standardize Relative Sizer,sit over the entire sample in

the regression. This approach allows us to exploit variations across firms within each region-

sector-year, aligning with the level of variations used in our reduced-form analysis, where

var(mrpk) is calculated.

Figure 6a illustrates the effect of temperature shocks on MRPK across firms of varying

sizes, λb,Relative Size, for each temperature bin b. The analysis reveals that firms of different sizes

respond differently to identical weather shocks. Specifically, larger firms tend to experience

a relatively higher MRPK in response to temperature extremes compared to smaller firms.

For instance, an additional day with temperatures above 30°C or below -5°C, compared to a

day with temperatures ranging from 10-15°C, increases the MRPK difference by around 0.1%

between two firms whose sizes differ by one standard deviation. Detailed results of the esti-

mation are presented in Table D.2. The results here validate our hypothesis that the difference

in firm sizes is a source of β̂i heterogeneity, and larger firms are more heat-tolerant.

Figure 6: Effects of daily temperature shocks on log MRPK for firms of different sizes and
adaptability

(a) Heterogeneous Effect from Firm Size
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(b) Heterogeneous Effect from Firm Adaptability (AC)
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Notes: Graph plots the effects of daily mean temperature bins on firm-level log MRPK. Figure 6a plots the
interaction terms of relative firm size and temperature bins. Each point measures the estimated effect on a large
firm relative to a firm that is 1 SD smaller. We include firm and country-sector-year fixed effects. Figure 6b plots
the estimated effect on firms with and without AC separately. We include firm and sector-year fixed effects (since
AC data only covers the India ASI sample). Standard errors are clustered at the regional level. Shaded areas
indicate a 90% confidence interval.

More interestingly, drawing back to our empirical findings on the heterogeneous impacts

of extreme heat across different income levels, we find that wealthier economies suffer more

from capital misallocation under extreme heat. This could be driven by the higher dispersion

in firm sizes in more developed economies, as documented by Poschke (2018) and observed in

our data in Figure 7.
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Figure 7: Firm Size Dispersion and GDP per capita
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Notes: The graph presents the bin-scatter plots illustrating the relationship between firm size dispersion (measured
as the variance of log fixed assets across firms) and annual GDP per capita at the region-sector-year level.

Heterogeneous Effect of Temperature Shocks from Adaptability. Another source of het-

erogeneity in β̂i could be the varying adaptability to temperature extremes among firms. We

expect that firms with greater adaptation measures will be more resilient to heat shocks and

thus have a higher β̂i. We measure adaptability by the installation of computerized air condi-

tioning (AC) systems, a variable collected annually in the Indian Annual Survey of Industries

(ASI) since 2001. Therefore, our analysis for this part focuses on the sample from the Indian

ASI.

We implement Equation 31 where β̂-proxys,r
it := ACs,r

it is defined as a dummy variable – it

equals 1 for firms equipped with AC and 0 for those without.39 Figure 6b shows the estimated

effects on MRPK for AC-equipped firms compared to those without AC. The impact of tem-

perature shocks on MRPK for AC-equipped firms relative to non-AC firms, λb,AC-equipped, is

depicted by the red line for each temperature bin b. Our findings reveal that cold temperature

shocks have a negligible difference in MRPK between AC-equipped and non-AC firms. How-

ever, heat shocks significantly increase the MRPK difference for AC-equipped firms compared

to non-AC firms. For example, an additional day with temperatures above 30°C, compared

to a day in the 15-20°C range, leads to a relative increase of about 0.2% in MRPK between

AC-equipped and non-AC firms, after controlling for firm capital stock. Detailed results are

presented in Table D.3.40

39. A firm is defined as AC-equipped if it has reported the installation of AC at least once during the sample
period.

40. Our baseline specification in Column 3 analyzes the within-firm variation on the effect of AC installation by
including firm fixed effects δi and sector-year fixed effects θs,t, and we include the AC indicator variable ACs,r

it and
capital stock lnKit as controls. However, installing air conditioning is a common adaptation strategy for firms to
cope with extreme heat, but it also makes them subject to costs of adaptive investment (e.g. Somanathan et al. 2021),
which means the investment of AC itself could change the firm’s MRPK as well. Following the approach of Asker,
Collard-Wexler, and Loecker (2014), we address this in our alternative specification in Column (3) by conditioning
on current capital stock to make sure that we are comparing two firms making the same capital decision, but one
firm has AC while the other does not. We include sector-year fixed effects in all specifications, such that λb and λb,AC

are identified based on the comparison of across-firm differences caused by AC installation within each sector-year.
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7 Estimating the Mechanisms of Climate-Induced Misallocation

In this section, we empirically estimate the two effects driving climate-driven misallocation:

(1) the level effect due to damage volatility, and (2) the forecast error effect stemming from

climate uncertainty, as suggested by the model in Equation 29, which is reproduced below:

σ2
mrpk,(r,s),t =

(
1

1− αN

)2

Var(ânit − Et−1[ânit])

=

(
1

1− αN

)2
[
(Tr,t − T ∗)2σ2

ξ,(r,s)︸ ︷︷ ︸
Damage Volatility

(Level Effect)

+ ηTr,t
2
σ2
β,(r,s)︸ ︷︷ ︸

Climate Uncertainty
(Forecast Error Effect)

+σ2
ε,(r,s)

]

We first test the level effect by empirically estimating how the level of temperature non-linearly

shifts the TFP volatility and MRPK dispersion in the cross-section of firms. From this exercise,

we can also identify an optimal temperature of around 13◦C, which is consistent with Burke,

Hsiang, and Miguel (2015). Next, we provide direct evidence of the forecast error effect by

showing climate uncertainty, measured by the mean squared forecast errors of monthly tem-

perature, contributes to MRPK dispersion. Based on these estimates, we then quantify the

relative contributions of level effect and forecast error effect to climate-induced misallocation.

7.1 Level Effect: Temperature and TFP Damage Volatility

Our theory suggests that MRPK dispersion is proportional to TFP volatility, which in turn is

non-linearly dependent on the level of temperature Tr,t. As the temperature deviates from

the optimal level T ∗, becoming either too hot or too cold, the likelihood of extreme firm-level

events increases. Therefore, temperature’s deviation from T ∗ leads to greater volatility in TFP

across different firms. We now test this relationship directly in the data and try to estimate the

optimal temperature T ∗.

As it is hard to directly measure unexpected TFP shocks (ânit − Et−1[ânit]) due to possible

mis-specifications of the law of motion and agents’ information set, we adopt the approach

of Asker, Collard-Wexler, and Loecker (2014), and use the variance of ’first-differenced’ TFP

shocks41, Var(r,s)t(âit − âit−1)to approximate42 the TFP volatility43 in region-sector (r, s). In-

spired by Equation 51, we identify the nonlinear impact of temperature on TFP volatility from

the following reduced-form specification:

Var(r,s),t(âit − âit−1) = α+ βf(Tr,t) + ηs,r + δc(r),t + εs,r,t, (32)

41. Measuring firm-specific productivity shocks is challenging and sensitive to mis-specifications for the TFPR
process. This is particularly true in our model, where firm-level productivity responds heterogeneously to tem-
perature shocks. To address this, we adopt the approach of Asker, Collard-Wexler, and Loecker (2014), calcu-
lating a proxy of TFP shocks as the difference in firm-level TFP over time, represented as âit − âit−1. In line
with the methodology of David and Venkateswaran (2019), we use the model-implied TFP in our specification:
âit = log(PitYit)− α logKit.

42. This approximation would be exact if (all components of) productivity were to follow a random walk pattern.
43. TFP can alternatively be derived as the conventional Solow residuals including labor. However, as noted

in David and Venkateswaran (2019), footnote 22, TFP calculated from the Solow residual approach can no longer
be directly tied to capital profitability in the presence of labor distortions, while the model-based measure of TFP
remains a valid proxy for capital profitability.
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where f(Tr,t) is a polynomial of annual average temperature. ηs,r and δc(r),t denote region-

sector and country-year fixed effects, respectively. We include region-sector-year observations

with at least 15 recurrent firms in the estimation.44 The estimation results are reported in Table

2, columns (1)-(3).

Table 2: TFP Volatility and Temperature Levels

(1) 1st Order (2) 2nd Order (3) 3rd Order (4) Model-Induced

Tr,t -0.005319 -0.023121∗∗∗ -0.012380
(0.004573) (0.007536) (0.008537)

T 2
r,t 0.000841∗∗∗ -0.000447

(0.000303) (0.000679)

T 3
r,t 0.000040∗∗

(0.000018)

(T 2
r,t + T 2

r,t−1) -0.021556∗∗∗

(0.005682)

(Tr,t + Tr,t−1) 0.000882∗∗∗

(0.000216)

(∆Tr,t)
2 -0.003604

(0.002233)

Estimated T ∗ 13.75 ◦C 14.64◦C 12.22◦C
(3.067678) (2.173182) (2.216646)

Region-Sector FE Yes Yes Yes Yes

Country-Year FE Yes Yes Yes Yes

Observations 113,765 113,765 113,765 113,765
R2 0.754 0.754 0.754 0.754

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for
European countries, prefecture-level for China, and district-level administrative divisions for India).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Column (1) reports the estimate of the linear effects of temperature, which is negative but

not statistically significant. However, including second- and third-order terms reveals a re-

markable nonlinear U-shaped pattern, aligning with our theoretical model. Column (2) shows

that the quadratic temperature term is statistically significant and economically meaningful: a

1 °C increase in the annual average temperature in a location with an average of 5°C will lead

to a decrease of 2.9 log points in TFP volatility; however, the same 1 °C increase in a place with

an average temperature of 20°C will increase the TFP volatility by 2.5 log points. These effects

are quantitatively large, especially in the context of global warming projections.45 The cubic

specification in column (3) indicates some asymmetry of the effect around the critical point T ∗.

Loosely speaking, the same 1°C increase brings more damage in hotter climates than benefits

44. This is to reduce measurement errors from the observations that aggregate statistics with only a few numbers
of firms. The measured TFP volatility is winsorized at the top 1 percent level to avoid outliers.

45. To illustrate, let us consider a simple back-of-the-envelope calculation using parameters from our model.
Take, for example, a permanent increase from 16 ◦C to 20 ◦C, which aligns with an RCP 8.5 climate scenario pro-
jected for Southern Spain (World Bank Climate Change Knowledge Portal 2023). According to our model’s damage un-
certainty mechanism, this 4 ◦C increase would increase TFP Volatility by 4.24 log points. This increment translates
into a 12.31 log points increase in MRPK dispersion using Equation 29. Subsequently, under standard elasticity as-
sumptions, this dispersion translates into a 7.6% loss in TFP.
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in cooler climates. The U-shaped temperature-volatility relationships from both specifications

are plotted in Figure 8.

Figure 8: TFP Volatility and Annual Average Temperature

(a) Second Order Estimation
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(b) Third Order Estimation
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Notes: Graph plots the effects of temperature shocks on TFP volatility, based on a 3-rd order polynomial estimation
derived from Equation 32.

Interpreting these estimates through our model, a positive temperature shock in a colder

environment will move the economy closer to the optimal temperature T ∗, reducing the harm-

ful dispersion of extreme events caused by idiosyncratic temperature sensitivity ξ̂it. In con-

trast, the same positive shock in a hotter climate drives the economy further away from T ∗,

increasing the damage volatility. This temperature-volatility relationship, as depicted in our

reduced-form estimate in Figure 8, also clarifies why the same hot temperature shock in cooler

climates leads to a decrease in MRPK dispersion while producing an opposite effect in hotter

climates as estimated in Equation 16 and depicted in Figure 3. Next, we will identify T ∗.

Identifying the Optimal Temperature T ∗. Although easily interpretable, the reduced-form

model does not account for how the lagged temperatures might affect the lagged TFP âit−1. To

address this issue, we derive the exact expression for the “first-differenced” volatility:

Vart(âit − âit−1) = σ2
ξ̂
(T 2

t + T 2
t−1)− 2σ2

ξ̂
T ∗(Tt + Tt−1) + 2σ2

ξ̂
T ∗2 + σ2

β̂
(∆Tt)

2 + σ2
∆z,

and estimate the model-induced specification:

Var(s,r),t(âit−âit−1) = α+β1(T
2
r,t+T 2

r,t−1)+β2(Tr,t+Tr,t−1)+γ(∆Tr,t)
2+ηs,r+δc(r),t+εs,r,t, (33)

where ∆Tr,t is the first-differenced temperature. The estimates from the model-induced re-

gression are reported in Table 2 column 4 are very close to those obtained from the quadratic

specification in column 2. By applying the Delta Method to the estimated coefficients, we can

back out the estimate for the optimal temperature T̂ ∗ = − β̂2

2β̂1
= 12.22◦C (SE: 2.21◦C). The

reduced-form specifications yield T̂ ∗ = 13.75◦C and T̂ ∗ = 14.64◦C for the quadratic and cubic

specifications, respectively. These estimates align closely with those found by Burke, Hsiang,

and Miguel (2015) (and recently Nath, Ramey, and Klenow (2023)), who also estimated that

country-level productivity or GDP peaks at the “bliss point” 13◦C. Our findings corroborate

these findings by suggesting an additional mechanism: the level of temperature contributes to
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aggregate MRPK dispersion and TFP (output) loss as a volatility shock.

7.2 Forecast Error Effect: Temperature Forecast Errors and Misallocation

The forecast error effect ties misallocation with forecast errors of temperature and climate un-

certainty. In our model, even when all the firms face the same temperature forecast as com-

mon information, firms’ knowledge of their firm-specific sensitivity β̂i would lead them to

make differential investment decisions. Thus, any unexpected temperature shock, either cold

or hot, would lead to dispersion in capital return. This is summarized as the climate uncer-

tainty channel in Equation 29 as MRPK dispersion increases in the squared forecast error of

temperature.

We opt to utilize data directly from the long-range temperature forecasts from ECMWF

(Copernicus Climate Change Service and Climate Data Store 2018), instead of relying on prox-

ies or basic statistical models to estimate forecast errors for the company’s weather predic-

tions. Extensive research has demonstrated that accurate daily and seasonal temperature and

weather forecasts can significantly impact adaptation behaviors (Shrader 2023) and mortality

(Shrader, Bakkensen, and Lemoine 2023), as economic agents base their decisions on these sig-

nals. Therefore, we also assume that firms actively incorporate month-ahead weather forecasts

into their learning processes and adjust investments accordingly.

As data on firm-level MRPK is reported on a yearly frequency while the long-range tem-

perature forecast for a 30-day-ahead period is released every month, we need to create a yearly

aggregate measure of squared forecast errors. Let us denote the realized average temperature

in the region r at month m and year t as Tm,r,t and the month-ahead ECMWF temperature

forecast as Em−1Tm,r,t. We construct a measure of mean squared forecast errors, MSFEq,r,t, for

each time frame q in year t, where we let q ∈ {summer,winter, annual}:

MSFEsummer,r,t =
1

6

9∑

m=4

(Tm,r,t − Em−1Tm,r,t − B̂iasm,r)
2,

MSFEwinter,r,t =
1

6

∑

m={1,2,3,10,11,12}

(Tm,r,t − Em−1Tm,r,t − B̂iasm,r)
2,

MSFEannual,r,t =
1

12

12∑

m=1

(Tm,r,t − Em−1Tm,r,t − B̂iasm,r)
2.

The reason behind the seasonal aggregation is that the same temperature forecast errors in

warm and cold seasons might affect firms’ MRPK differently. As all the firms in the sample

reside in the Northern Hemisphere, we group all months between April to September as a

broadly defined “summer” and the other six months as “winter”. We take out the estimated

forecast bias, B̂iasm,r from forecast error to reduce mechanical differences in temperature mea-

surements due to the positioning of the weather stations and forecasting methods. B̂iasm,r is

measured as the region-month fixed effect of the monthly forecast error in the past 40 years.

Equation 29 suggests that a larger squared forecast error in a region-sector would lead to

more capital misallocation. We directly estimate the empirical version of Equation 29 with the

43



following regression:

σ2
mrpk,(s,r),t = θq · MSFEq,r,t + γ1Trt + γ2T

2
rt + ηs,r + δc(r),t + εs,r,t, (34)

where θq measures the impact of a one-unit increase in MSFE in the time frame q on annual

capital misallocation. We control for the level effect in Equation 29 by adding the linear and

quadratic terms of realized annual temperature.

The estimation results are presented in Table 3. Columns (1) and (2) show that the annual

MSFE (all-month average) has a positive and statistically significant effect on MRPK disper-

sion, even after controlling for the level effect of realized temperatures. Columns (2) and (3)

display the estimates using “seasonal” MSFEs from both summer and winter. We find that an

increase in the MSFE in summer is at least twice as costly as the same increase in winter, sug-

gesting unexpected temperature shocks are more damaging in the warmer season. However,

the effect of winter forecast error becomes statistically insignificant when we control for the

level of realized temperature.

Table 3: Temperature Forecast Errors and MRPK Dispersion

(1) (2) (3) (4)

MSFEannual,r,t 0.019114∗∗∗ 0.016249∗∗

(0.006675) (0.006561)

MSFEsummer,r,t 0.014908∗∗ 0.016592∗∗

(0.007115) (0.007084)

MSFEwinter,r,t 0.008536∗∗ 0.006096
(0.004017) (0.003882)

Quadratic Temperature Control No Yes No Yes

Region-Sector FE Yes Yes Yes Yes

Country-Year FE Yes Yes Yes Yes

Observations 124,065 124,065 124,065 124,065
R2 0.876 0.876 0.876 0.876

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for
European countries, prefecture-level for China, and district-levels for India).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The estimates in column (2) can be interpreted in the following way: a 1◦C increase in

the temperature forecast errors in all months would lead to a 1.6 log point increase in MRPK

dispersion, compared to a perfect information counterfactual, equivalent to an approximate

0.58%46 of annual aggregate TFP loss. Obtained from a small deviation from a perfect infor-

mation state, this number should be interpreted as a lower bound of the aggregate cost of

temperature forecast errors. Moreover, the sample average of MSFEannual,r,t is 1.39 in our re-

gression, implying the average cost of temperature forecast errors is 0.81% of annual aggregate

TFP across India, China, and Europe.

Our findings suggest that temperature forecast errors are costly: unexpected temperature

shocks lead to dispersion in investment mistakes among firms due to their varying sensitivity

46. This is obtained by using the calibrated structural parameter, −
α̃K+α̃2

K(σ−1)

2
= 0.359.
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to heat. In sum, the value of temperature forecasts is highlighted through a new channel in

our context: accurate forecast increases the allocative efficiency of capital.

7.3 Channel Decomposition: Which Effect Has Been More Important in the Past?

After establishing the empirical relevance of the level effect and the forecast error effect in

the data, a natural question arises: which channel has contributed more to climate-induced

misallocation? To decompose the contribution of the two effects, we run the following model-

induced regression directly following Equation 29:

σ2
mrpk,(s,r),t = κ1(Tr,t − T̂ ∗)2 + κ2η̂

T
r,t

2 + ιs,r + ιc(r),t + εs,r,t, (35)

where (Tr,t − T̂ ∗)2 is computed as the squared deviation of annual temperature from the esti-

mated optimal temperature from Equation 32 (T̂ ∗ = 12.22◦C). η̂Tr,t
2, representing the squared

unexpected temperature shocks in the model, is proxied by the annual mean squared forecast

error, MSFEannual,r,t in the data, or by the estimated shock from a climate-specific AR(10) pro-

cess following the approach in Nath, Ramey, and Klenow (2023). We include region-sector

fixed effect, ιs,r, and country-year fixed effect, ιc(r),s in the regression. The coefficients κ1

and κ2 are closely connected to objects in the model. Through the lens of Equation 29, we

see that the coefficient κ1 ≈ E

[(
1

1−αN

)2

σ2
ξ̂,(s,r)

]
governs the strength of level effect and re-

flects the average uncertainty of damage sensitivity across all region-sector pairs. Similarly,

κ2 ≈ E

[(
1

1−αN

)2

σ2
β̂,(s,r)

]
governs the forecast error effect and reflects the average degree of

dispersion in persistent temperature sensitivity.

The estimated coefficients of Equation 35 are presented in Table 4. Under our standard

calibration of parameters,47 we have

(
1

1−αN

)2

= 1.95. For the level effect, we estimate κ̂1

to be around 0.046 (see column (1)), indicating an average degree of damage uncertainty of

E[σ2
ξ,(s,r)] ≈ 0.0023. For the forecast error effect, we find κ̂2 to be around 0.016 to 0.030 in

columns (2) and (3), suggesting an average dispersion of persistent climate sensitivity σ2
β̂

to be

around 0.008 and 0.015.

With these estimates, we examine which of the two effects could be more prominent across

the observed realizations in an average region sector in China, India, and European countries.

We compute the average contribution of the two channels to MRPK dispersion and implied

TFP loss using the estimated results of our baseline specification and the unweighted average

47. Recall we use a labor share of α̃N = 0.65 and σn = 4, both of which are standard values in the literature.
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Table 4: Model-induced Regressions: Level Effects and Forecast Error Effects

(1) (2)

(Tr,t − T̂ ∗)2 0.004663∗∗∗ 0.004621∗∗∗

(0.000868) (0.000865)

AR(10) Residuals (η̂Tr,t)
2 0.030096∗∗

(0.013394)

Annual MSFE (η̂Tr,t)
2 0.016204∗∗

(0.006593)

Region-Sector FE Yes Yes

Country-Year FE Yes Yes

Observations 124,065 124,065
R2 0.876 0.876

Notes: Standard errors in parentheses. We cluster standard errors
at the region level (NUTS 3 level for European countries, province
level for China, and first-level administrative divisions for India).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of climate variables in our regression sample:

∆σ2
mrpk,(s,r),t =

(
1

1− αN

)2

σ̂2
ξ̂,(s,r)

(Tr,t − T ∗)2

︸ ︷︷ ︸
0.0047×17.96︸ ︷︷ ︸

Level Effect=0.084

+

(
1

1− αN

)2

σ̂2
β̂,(s,r)

ηTr,t
2

︸ ︷︷ ︸
0.016×1.39︸ ︷︷ ︸

Forecast Error Effect=0.023

,

∆ log TFP(s,r),t =− α̃K + α̃2
K(σ − 1)

2︸ ︷︷ ︸
0.359

∆σ2
mrpk,(s,r),t

=− α̃K + α̃2
K(σ − 1)

2

σ̂2
ξ̂,(s,r)

(1− αN )2
(Tr,t − T ∗)2

︸ ︷︷ ︸
Level Effect
=3.00%

− α̃K + α̃2
K(σ − 1)

2

σ̂2
β̂,(s,r)

(1− αN )2
ηTr,t

2

︸ ︷︷ ︸
Forecast Error Effect

=0.81%

= 3.81%

Through these back-of-envelope calculations, we find that, on average, the level effect of

temperature contributes to 8.4 log points of MRPK dispersion, equivalent to a TFP loss of 3%.

On the other hand, the contribution of the forecast error effect (proxied by annual MSFE) to

MRPK dispersion is around 0.023 log points, implying a TFP loss of 0.81%. Notice that, in

our sample from 1998 to 2018, the contribution of the level effect is almost three times as large

as the contribution of the forecast error effect. Looking ahead, these estimates suggest that the

level effect of increasing global warming would play a more significant role by creating greater

damage volatility in productivity losses from temperature among firms, consistent with our

46



reduced-form projections in Section 4.4.

8 Policies to Manage Climate-Induced Misallocation

Our results shed new light on the design and effect of climate mitigation and adaptation poli-

cies. We discuss three types of policies that could potentially reduce the cost of climate-induced

misallocation: (1) reducing end-of-century temperature rise from 4°C to 2°C ; (2) improving

mid-range weather forecast accuracy; and (3) reducing climate sensitivity heterogeneity across

firms.

8.1 Mitigating Global Warming: RCP 7.0 vs. RCP 2.6

The most important policy to mitigate the cost of the misallocation channel is to address cli-

mate change itself. To illustrate this, we compare the projected misallocation losses between a

stringent policy scenario (RCP 2.6) and a business-as-usual scenario (RCP 7.0). RCP 7.0 repre-

sents a baseline outcome with limited additional climate policies in place, resulting in a pro-

jected 4°C global warming by 2100. In contrast, the RCP 2.6 pathway aligns with the Paris

Agreement goals and aims to limit global warming below 2°C.

Figure 9: Cost and Benefit Comparison

(a) TFP Loss from Misallocation: RCP 2.6 vs. RCP 7.0 (b) The Cost and Benefit of RCP 2.6

Notes: In Figure 9a, the climate projection data is collected from CMIP6, and the income projection data is from the
SSP database. In Figure 9b, the blue line with dot markers represents the difference in TFP losses between the RCP
2.6 and RCP 7.0 scenarios, referred to as the avoided TFP loss or benefit. This is the difference between the two
lines in Figure 9a. The orange line with triangle markers shows the estimated cost of mitigation, calculated using
the results from DICE-2016R, defined as the percentage difference in post-abatement potential output between the
optimal policy scenario to achieve less than 2°C warming (consistent with RCP 2.6) and the baseline scenario with
4°C warming (consistent with RCP 7.0)

Our objective is to compare TFP losses between these two scenarios to assess the effective-

ness of mitigation policies in avoiding misallocation losses. Using the approach developed in

Section 4.4, we compute the projected TFP losses from the misallocation channel for the two

scenarios, as shown in Figure 9a. By the end of the century, TFP losses are projected to be ap-

proximately 21% under RCP 2.6, compared to 43% under RCP 7.0. This suggests that a global

TFP loss of 22% can be avoided by achieving the Paris Agreement goals.
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Using existing estimates from the DICE-2016R model (Nordhaus 2017), we also calculate

the potential costs of switching from RCP 7.0 to RCP 2.6 and compare them to our projected

benefits. We define the cost of mitigation as the percentage difference in post-abatement poten-

tial output between the optimal policy scenario to achieve less than 2°C warming (consistent

with RCP 2.6) and the baseline scenario with 4°C warming (consistent with RCP 7.0). Figure

9b shows that the estimated GDP cost of mitigation is moderate; it initially increases over time,

peaks at 8% around 2065, and then decreases to less than 2% by 2100. More importantly, while

the annual costs closely track the annual benefits from avoided misallocation loss by 2060, the

benefits significantly outweigh the policy costs afterward, amounting to a 20% lead by 2100.

Therefore, we argue that mitigation policy is extremely beneficial to avoid losses from climate-

induced misallocation. Additionally, regardless of the choice of the discount factor, the cost of

such a policy is always justified by the large estimated benefits.

8.2 Improving Mid-range Weather Forecast Accuracy

Our model indicates that lowering mid-range weather forecast errors (a reduction in σ2
η) would

reduce capital misallocation. Therefore, we explore how forecast accuracy improvements by

the end of the century could serve as an important adaptation channel, and to improve invest-

ment efficiency in the aggregate economy and to raise aggregate productivity.

Predicting future forecast accuracy is not an easy task. To make credible inferences, we

leverage two key forces identified by Alley, Emanuel, and Zhang (2019) and Linsenmeier and

Shrader (2023): the decline in forecasting errors associated with technological progress over

time, and the prevalence of this decline in regions with better economic development. We thus

estimate the following regression, with the annual MSFE as our measure of weather forecast

accuracy:

lnMSFEannual,r,t = ι0 + ι1 lnGDPpc,rt + ι2t+ ι3t
2 + (ι4t+ ι5t

2)× lnGDPpc,rt + γr + εrt (36)

where γr is a region fixed effect. We use the regional per-capita GDP as a proxy for eco-

nomic development and a quadratic time trend to capture technological progress. We also

include interaction terms of the quadratic time trend and lnGDPpc,rt to account for the po-

tentially different rates of improvement in regions with varying income levels. Given the

non-negativity constraint on MSFE, we estimate Equation 36 using Poisson Pseudo Maxi-

mum Likelihood (PPML). Using the estimates, we can predict the end-of-century forecast error,
̂MSFEannual,r,EOC , for each region.48 Notice that our prediction implicitly assumes that poorer

regions will gradually invest more in climate information services as they become richer.

We further leverage the estimated structural elasticity κ̂2 = 0.016 in Table 4 to translate

the change in forecast accuracy into an aggregate TFP gain in China, India, and Europe. Our

48. Specifically, we predict the end-of-century MSFE as:

̂MSFEannual,r,EOC = exp[ ̂∆ ln(MSFEannual,r,EOC) + lnMSFEannual,r,2019]

= exp[ι̂1∆ lnGDPpc,r + ι̂2∆t+ ι̂3∆t
2 + ι̂4∆(t× lnGDPpc,r)

+ ι̂5∆(t2 × lnGDPpc,r) + lnMSFEannual,r,2019]
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projection implies a sizable average MSFE reduction (weighted by projected GDP share βr)

of 0.7 in the sample, which translates into an aggregate TFP gain of 0.41% according to the

formula:

∆ logTFP =−
∑

r

βr
α̃K + α̃2

K(σ − 1)

2
∆σ2

mrpk,r

=− α̃K + α̃2
K(σ − 1)

2︸ ︷︷ ︸
0.359

κ̂2︸︷︷︸
0.016

∑

r

βr( ̂MSFEannual,r,EOC − MSFEannual,r,2019)

︸ ︷︷ ︸
Average Forecast Error Reduction

=−0.7

= 0.41%.

Our results suggest that continuously improving mid-range weather forecast accuracy is an

essential aspect of adaptation. The 0.41% gain in TFP (or GDP) could arguably make forecast-

related adaptation investments a cost-effective approach, as these investments are usually well

below that scale (currently below 0.15% of GDP). However, our calculations also show that

adaptation investment is not a substitute for mitigation policy.

8.3 Reducing “Climate Inequality” Across Firms

The differential response of MRPK to shocks stems from the heterogeneity in temperature sen-

sitivity (σ2
ˆbeta

and σ2
ξ̂
) across firms. We also point out that this “climate inequality” among firms

could result from various factors, including size-related distortions and adaptability. There-

fore, policies should be targeted to identify and subsidize firms that are productive but lack

the resources to defend against heat. These policies could include targeted subsidies or credit

policies for air conditioning installations and other risk control practices. By harmonizing cli-

mate sensitivity among firms, the MRPK dispersion will be less responsive to heat shocks or a

warming climate.

Interestingly, our results also highlight that there need not be an equity-efficiency trade-off

in the context of heterogeneous firms. If more firms become more “equal” in their sensitiv-

ity to temperature, the aggregate efficiency in the economy will also increase. We will leave

quantitative explorations of optimal firm-level policies for future research.

9 Conclusion

This paper provides the first causal estimates of the misallocation effect from temperature

shocks using firm-level microdata from 32 countries. On average, an additional hot day with >

30°C of temperature increases MRPK dispersion by 0.31 log points and contributes to a 0.11%

decline in annual aggregate TFP. Intriguingly, the detrimental impact of extreme heat on capital

misallocation is more severe in regions with hotter climates and higher incomes, highlighting a

significant market cost of climate change coupled with a limited capacity for adaptation. Using

projected temperature and income data, we find that global warming, under the SSP3-4.5 sce-

nario, could lead to an aggregate TFP loss of 35.4%. By writing down a firm dynamics model

with heterogeneous temperature sensitivity, climate uncertainty, and damage volatility, we
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use model-implied regressions to explain the differential effects among regions: regions with

higher deviations from the optimal temperature, (around 13◦C) and lower temperature fore-

cast accuracy will have larger unexpected volatility in firm-level TFP and investment mistakes.

Overall, our results imply that firm-level heterogeneity matters for analyzing the aggregate ef-

fect of climate change. This paper suggests an important venue for research in understanding

the impact of climate change in a distorted economy.

We conclude with a final suggestion for future research. First, the identified misalloca-

tion effect is highly heterogeneous across different geographical locations, implying a different

level of TFP losses across regions and sectors globally. This will lead to shifts in comparative

advantage and endogenous variations in trade patterns with deteriorating climate conditions

caused by global warming. Moreover, as we only focus on the misallocation effect within a

region sector as a lower-bound estimate of the climate-induced misallocation, one could also

study the misallocation that arises between sectors, regions, and even countries. On the em-

pirical side, it would be important to understand whether demand-side or supply-side factors

function as the main drivers of climate-induced misallocation. We leave these questions for

future research.
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Online Appendix

A Additional Derivations for Section 2

This appendix provides the derivation of the expressions and propositions featured in Section

2.

A.1 Equilibrium Allocations in Distorted Equilibrium

In this appendix, we solve the firm’s profit maximization problem in Equation 4 and derive

Equation 6.

Subject to the inverse demand and wedges, each firm i in region-sector n engages in mo-

nopolistic competition and optimally chooses its quantity of inputs and price to maximize

profits

max
Pnit,Knit,Lnit

(
1− τYnit

)
PnitAnitK

αKn
nit LαLn

nit︸ ︷︷ ︸
Ynit

−
(
1 + τKnit

)
RntKnit −

(
1 + τLnit

)
WntLnit

subject to : Ynit = BnitYnt

[
Pnit

Pnt

]−σn

.

After substituting the demand curve PnitYnit = PntY
1
σn
nt B

1
σn
nitY

σn−1
σn

nit into the objective function,

we derive the first-order condition with respect to any factor input Fnit used (where Fnit can

be either Knit or Lnit)

MRPFnit = αFn

σn − 1

σn

PnitYnit
Fnit

=
1 + τFni(T̃rt, ·)
1− τYni(T̃rt, ·)

PF
nt,

where PF
nt denotes the factor price, specifically Wnt for labor and Rnt for capital. σn−1

σn
is the

optimal CES markup. This is Equation 6 in the main text.

Next, we will derive the allocation in the distorted equilibrium. We rewrite the demand

curve as

Pnit =

(
Ynit

BnitYnt

)− 1
σn

Pnt =

(
Ynit
Fnit

Fnit

BnitYnt

)− 1
σn

Pnt. (37)

Combining with Equation 6 yields

αFn

σn − 1

σn

(
Ynit
Fnit

Fnit

BnitYnt

)− 1
σn

Pnt
Ynit
Fnit

=
1 + τFni(T̃rt, ·)
1− τYni(T̃rt, ·)

PF
nt.

We can rewrite the previous equation as

Fnit = ασn
Fn

(
σn − 1

σn

)σn
(
Pnt

PF
nt

)σn (1− τYnit)
σn

(1 + τFnit)
σn

(
Ynit
Fnit

)σn−1

BnitYnt,
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and combining with

Ynit
Fnit

= Anit
(1 + τFnit)

(1 + τKnit)
αKn(1 + τLnit)

αLn
(
αL

Wnt
)αL(

αK

Rnt
)αK (

αF

PF
nt

)−1,

we can derive an expression for Fnit as

Fnit =
1(

1 + τFnit
)
(
αFn

PF
nt

)
BnitA

σn−1
nit

(
1− τYnit

)σn

(
1 + τKnit

)αKn(σn−1) (
1 + τLnit

)αLn(σn−1)

·
(
σn − 1

σn

)σn
(
αKn

Rnt

)αKn(σn−1)(αLn

Wnt

)αLn(σn−1)

P σn
nt Ynt,

(38)

where F ∈ {K,L}. Substituting this expression into the production function of firm i for each

factor F yields

Ynit = AnitK
αKn
nit LαLn

nit =
BnitA

σn
nit

(
1− τYnit

)σn

(
1 + τKn

nit

)αKnσn
(
1 + τLnnit

)αLnσn

·
(
σn − 1

σn

)σn
(
αKn

Rnt

)αKnσn
(
αLn

Wnt

)αLnσn

P σn
nt Ynt

(39)

Similarly, we can write the sales of firm i as

PitYit = PntY
1
σn
nt B

1
σn
nitY

σn−1
σn

nit

= P σn
nt Ynt

BnitA
(σn−1)
nit

(
1− τYnit

)(σn−1)

(
1 + τKn

nit

)αKn(σn−1) (
1 + τLnnit

)αLn(σn−1)

·
(
σn − 1

σn

)(σn−1)(αKn

Rnt

)αKn(σn−1)(αLn

Wnt

)αLn(σn−1)

.

(40)

Then the sales share of firm i in region-sector n, θnit, can be expressed in closed form of the

fundamentals as:

θnit =
PnitYnit∫ Jn

0 PnitYnitdi
=

BnitA
(σn−1)
nit (1−τYnit)

(σn−1)

(1+τKn
nit )

αKn(σn−1)
(1+τLn

nit)
αLn(σn−1)

∫ Jn
0

BnitA
(σn−1)
nit (1−τYnit)

(σn−1)

(1+τKn
nit )

αKn(σn−1)
(1+τLn

nit)
αLn(σn−1)di

(41)

Finally, by combining 38 and 41, we derive the equilibrium allocation of factors in the distorted

economy as

Fnit =
Fnit

Fnt
Fnt =

1
1+τFnit

θnit
∫ Jn
0

1
1+τFnit

θnitdi
Fnt =

1 + τFnt
1 + τFnit

θnitFnt, (42)

where 1+τFnt :=

(∫ Jn
0

1

(1+τFnit)
θnitdi

)−1

is a measure of aggregate factor distortion. Mathemat-

ically, it is a sales-weighted harmonic mean of all firm-level distortions of input F . Equation 42

states that a firm would use more of input F if it faces smaller distortion than the region-sector

aggregate distortion. Moreover, a firm with a larger equilibrium sales share, θit, is, loosely

speaking, more productive and less distorted in production, and will thus use more inputs.
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A.2 Proof of Proposition 1

Proposition 1. Equilibrium (Mis)Allocation. The distorted equilibrium allocation of capital,

labor, and material inputs must satisfy that for any factor F ∈ {K,L},

log(
Fnit

F ∗
nit

) =− log(1 + τFnit(T̃rt, ·))

+ σn log(1− τYnit(T̃rt, ·))− (σn − 1)
∑

F ′={K,L}

αF ′

n
log(1 + τF

′

ni (T̃rt, ·))

+ log(CFnt(T̃rt, ·)),

(43)

where CFnt is a region-sector-year specific constant and F ∗
nit is the efficient equilibrium allo-

cation of factors that are entirely determined by preference shifter and physical productivity

within the region-sector:

F ∗
nit =

Bni(T̃rt, ·)Ani(T̃rt, ·)σn−1

∫ Jn
0 Bnj(T̃rt, ·)Anj(T̃rt, ·)σn−1dj

Fnt (44)

Proof. Substituting the expression of θit from 41 into 42 yields an explicit expression of Fnit
Fnt

in

terms of micro fundamentals

Fnit

Fnt
=

1
1+τFnit

θnit
∫ Jn
0

1
1+τFnit

θnitdi
=

BnitA
σn−1
nit

(
1− τYnit

)σn

(
1 + τFnit

) (
1 + τKnit

)αKn(σn−1) (
1 + τLnit

)αLn(σn−1)

· 1
∫ Jn
0

BnitA
σn−1
nit (1−τYnit)

σn

(1+τFnit)(1+τKnit)
αKn(σn−1)

(1+τLnit)
αLn(σn−1)di

where it is more transparent that for factor F ∈ {K,L}, any increase in input distortion has

two effects on the equilibrium allocation: (1) it brings down the sales share of the firm in the

economy, limiting the usage of all inputs, and (2) it brings up the cost of the specific factor F .

We can evaluate this expression at the efficient equilibrium (quantities and prices in the

efficient allocations are marked with ∗) where all distortions are eliminated and get

F ∗
nit

Fnt
=

θ∗nit∫ Jn
0 θ∗nitdi

= θ∗nit =
BnitA

σn−1
nit∫ Jn

0 BnitA
σn−1
nit di

To obtain a more intuitive expression , we use equation 38 to get

Fnit

F ∗
nit

=
1

1 + τFnit︸ ︷︷ ︸
own

wedge
effect

· 1 + τFnt︸ ︷︷ ︸
aggregate

wedge
effect

· θnit
θ∗nit︸︷︷︸
size

effect

where we used the fact that τF∗
nit = 0 and τF∗

nt = 0 in the efficient equilibrium. Writing this out
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fully in logs yields

log(
Fnit

F ∗
nit

) = − log (1 + τFnit)︸ ︷︷ ︸
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effect

− log
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Further simplifying yields

log(
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1 + τF

′

nit

)

+ log




∫ Jn
0 BnitA

σn−1
nit di

∫ Jn
0

BnitA
(σn−1)
nit (1−τYnit)

(σn−1)

(1+τFnit)(1+τKnit)
αKn(σn−1)

(1+τLnit)
αLn(σn−1)di


 ,

which delivers equation 43 by letting CFnt =
∫ Jn
0 BnitA

σn−1
nit di

∫ Jn
0

BnitA
(σn−1)
nit (1−τY

nit)
(σn−1)

(1+τF
nit)(1+τK

nit)
αKn(σn−1)

(1+τL
nit)

αLn(σn−1)
di

.

A.3 Proof of Proposition 2

Proposition 2. Aggregation and TFP Decomposition. Under the log-normality assumption,

each region-sector n admits an aggregate production function of the form

Ynt = TFPntK
αKn
nt LαLn

nt ,
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where the region-sectoral aggregate Total Factor Productivity TFPnt := TFPn

(
T̃rt, X̃nt

)
can

be decomposed as follows:

logTFPn(T̃rt, ·) =
1

σn − 1
log

[
JnEi

[
Bni(T̃rt, ·)

(
Ani(T̃rt, ·)

)σn−1
]]

︸ ︷︷ ︸
Technology(log TFPE

n )

− σn
2

varlog(1−τYni)
(T̃rt, ·)

︸ ︷︷ ︸
Output Wedge Dispersion

−
∑

F∈{K,L}

αFn + α2
Fn(σn − 1)

2
varlog(1+τFni)

(T̃rt, ·)

︸ ︷︷ ︸
Factor Wedge Dispersion

+ σn
∑

F∈{K,L}

αFn covlog(1−τYni),log(1+τFni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Output-Factor Mixed Distortion

− (σn − 1)αKnαLn covlog(1+τKni),log(1+τLni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Factor Mixed Distortion

(45)

Proof. Using 38, we can derive an expression for the equilibrium aggregate factor demand Fnt

as

Fnt =

∫ Jn

0
Fnitdi =

(
σn − 1

σn

)σn
(
PF
nt

αFn

)−1(
Rnt

αKn

)αKn(1−σn)(Wnt

αLn

)αLn(1−σn)

P σn
nt Ynt

·
∫ Jn

0

BnitA
σn−1
nit

(
1− τYnit

)σn

(
1 + τFnit

) (
1 + τKnit

)αKn(σn−1) (
1 + τLnit

)αLn(σn−1)
di.

(46)

Substituting the expression of Fnt into TFPnt :=
Ynt

K
αKn
nt L

αLn
nt

yields

TFPnt =

{
1

Pnt

σn
σn − 1

(
Rnt

αKn

)αKn
(
Wnt

αLn

)αLn
}σn

· 1(∫ Jn
0

BnitA
σn−1
nit (1−τYnit)

σ

n

(1+τKnit)
αKn(σn−1)+1

(1+τLnit)
αLn(σn−1)di

)αKn

· 1(∫ Jn
0

BnitA
σn−1
nit (1−τYnit)

σ

n

(1+τKnit)
αKn(σn−1)

(1+τLnit)
αLn(σn−1)+1di

)αLn

(47)

Using 40 and the fact that
∫
PnitYnitdi = PntYnt, we can derive the aggregate price index as

Pnt =

(
σn

σn − 1

)(
Rnt

αKn

)αKn
(
Wnt

αLn

)αLn

·


∫ Jn

0


 B

1
σn
nitAnit

(
1− τYnit

)
(
1 + τKs

nit

)αKn
(
1 + τLnnit

)αLn




σn−1

di




σn−1
(48)

Substituting this back into equation 47 and taking logs to both sides yields
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logTFPnt =
σn

σn − 1
log

∫ Jn

0


 B

1
σn
nitAnit

(
1− τYnit

)
(
1 + τKs

nit

)αKn
(
1 + τLnnit

)αLn




σn−1

di

− αKn log

∫ Jn

0

BnitA
σn−1
nit

(
1− τYnit

)σ
n(

1 + τKnit
)αKn(σn−1)+1 (

1 + τLnit
)αLn(σn−1)

di

− αLn log

∫ Jn

0

BnitA
σn−1
nit

(
1− τYnit

)σ
n(

1 + τKnit
)αKn(σn−1) (

1 + τLnit
)αLn(σn−1)+1

di

(49)

Under the assumption that Bnit, Anit , 1 + τKnit and 1 + τLnit follow a joint log-normal dis-

tribution, and all firm-level fundamentals
{
Bnit, Anit, τ

Y
nit, τ

F
nit

}
to be firm-specific and smooth

functions of (T̃rt, X̃nt, Z̃nit), expanding all the terms in 49 yields

logTFPn(T̃rt, ·) =
1

σn − 1
logEi

[
Bni(T̃rt, ·)

(
Ani(T̃rt, ·)

)σn−1
]

︸ ︷︷ ︸
Technology(log TFPE

n )

− σn
2

varlog(1−τYni)
(T̃rt, ·)

︸ ︷︷ ︸
Output Wedge Dispersion

−
∑

F∈{K,L}

αFn + α2
Fn(σn − 1)

2
varlog(1+τFni)

(T̃rt, ·)

︸ ︷︷ ︸
Factor Wedge Dispersion

+ σn
∑

F∈{K,L}

αFn covlog(1−τYni),log(1+τFni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Output-Factor Mixed Distortion

− (σn − 1)αKnαLn covlog(1+τKni),log(1+τLni)

(
T̃rt, ·

)

︸ ︷︷ ︸
Factor Mixed Distortion

(50)

which is the Equation 11 in the text.

B Data Sources and Variable Construction

This appendix provides details on data sources and variable constructions.

B.1 Orbis Data

Our data of firms from the European countries comes from the Orbis historical Disk Product.

We use the sample period 1995-2018 for our analysis. We detail the cleaning process below.

Sample Cleaning. Following the procedure of Kalemli- Özcan et al. (2024), we link multiple

vintages of Orbis products over time and link the firm’s descriptive information with its fi-

nancial information via the unique BVD firm identifier (BVDID). We then apply the following

standard cleaning procedure:

1. We restrict our analysis to firms that satisfy the following criteria: the country they reside

in from their latest address matches with their ISO codes in their BVDID identifier. For
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example, if the firm’s ISO-2 code in BVDID is FR while its latest address is in Spain, then

we exclude this firm from our sample.

2. For some firms that lack address information but have other identifiers such as post-

codes, we manually map the postcodes to NUTS3 for each country.

3. We harmonize each firm’s fiscal year with the calendar year based on the closing date:

if the closing date is on or after July 1st, we use the current year as the calendar year;

otherwise, we use the previous year.

4. Firms may report multiple sales figures from different sources (like local registries, an-

nual reports, etc.) for consolidated or unconsolidated accounts. Following Fan (2024),

we use the unconsolidated accounts to avoid double-counting that can occur with con-

solidated accounts.

5. We only keep firms with non-missing and positive sales (operating revenue turnover)

and fixed assets (fixed assets).

6. We calculate firm-level MRPKit for firm i in year t as logMRPKit = log(αKn
σn−1
σn

PitYit
Kit

)

where PitYit is measured with sales and Kit is measured with fixed assets.

7. We winsorize the observations of MRPKit, fixed assets, or sales at the top and bottom

0.1% of the distribution in the entire panel for each country. This is to prevent outliers

from affecting the variance calculation and estimation.

B.2 China NBS Data

The annual firm-level data for China is derived from surveys conducted by the National Bu-

reau of Statistics (NBS) in China. We only use the sample period of 1998-2007 due to inconsis-

tent reporting after 2008 as discussed in Brandt, Van Biesebroeck, and Zhang (2014) and Nath

(2023).

Sample Cleaning. To process the NBS data, we follow the methodology outlined in Zhang

et al. (2018). We measure sales using the variable ”产品销售收入” (product sales revenue)

and capital using the variable ”固定资产合计” (total fixed assets). Each firm in the dataset is

categorized using a four-digit Chinese Industry Classification (CIC) code and is harmonized to

the USSIC division level. Each firm’s reported location can be mapped into a prefecture-level

division. The rest of the cleaning follows the same procedure as items 5-7 in Appendix B.1.

B.3 India ASI Data

Our data for India are drawn from India’s Annual Survey of Industries (ASI). We use the

sample period of 1998 to 2018.

Sample Cleaning. We match the plants to the Indian districts following the approach of So-

manathan et al. (2021) and harmonize the industries first to the NIC-04 classification, and then
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to the SIC division level. We measure sales using the gross sale value of all products and cap-

ital using an average of the opening and closing gross book value of total capital, as in Bils,

Klenow, and Ruane (2021). The rest of the cleaning follows the same procedure as items 5-7 in

Appendix B.1.

B.4 Additional Descriptive Statistics

The table below lists out the countries, year coverage, number of regions in each country, and

the total number of firm-year pair observations in the final sample we used for the empirical

analysis.
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Table B.1: Descriptive Table of Dataset by Country

Dataset Country Coverage Number of Regions Number of Firm-Year Obs

NBS China Industrial China 1998-2007 325 2069100

India ASI India 1998-2017 267 473646

BvD Orbis

Austria 2004-2018 34 185029

Belgium 1998-2018 44 781322

Bulgaria 1998-2018 28 1439871

Switzerland 2003-2018 3 1701

Cyprus 2005-2018 1 17356

Czech Republic 1998-2018 14 1425901

Germany 1998-2018 346 765981

Denmark 1999-2018 11 392015

Estonia 1998-2018 5 791340

Greece 1998-2018 44 342636

Spain 1998-2018 52 12210663

Finland 1998-2018 19 1909080

France 1998-2018 96 15151185

Croatia 1998-2018 21 1202515

Hungary 2004-2018 20 3095326

Ireland 2000-2018 8 115344

Italy 1998-2018 107 12083926

Lithuania 1998-2018 10 129442

Luxembourg 1998-2018 1 74287

Latvia 2010-2018 6 533640

Malta 2000-2018 1 21249

Netherlands 1998-2018 36 201182

Norway 1998-2018 12 2462277

Poland 1998-2018 73 1207428

Portugal 1998-2018 24 3882515

Romania 1998-2018 42 4636047

Sweden 1998-2018 21 3934403

Slovenia 1998-2018 12 744495

Slovakia 1998-2018 8 1008353

United Kingdom 1998-2018 178 3537701

64



C Additional Figures for Section 4

This appendix provides additional results and figures to complement the main analysis in

Section 4.

C.1 Firm-level MRPK and Temperature

Here we present the average effect of temperature on firm-level MRPK across climates and

income. We show that heat shocks negatively affect firm-level MRPK across almost all climates

and income. As an economy becomes more developed or traditions into a hotter climate, the

negative effect of heat shocks on MRPK becomes larger.

Figure C.1: Average Effect of Temperature on firm-level MRPK Across Climates and Income
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Notes: The graph plots the estimated effect of exposure to daily mean temperature bins on the level of MRPK at

varying levels of income and climates. The regression is at the firm-level with firm and country-year fixed effect.

The graph includes 90% confidence intervals and standard errors are clustered at the regional level. The reference

temperature is at 5-10°C.

C.2 Projected Evolution of Income and Temperature under SSP3-4.5

The figure illustrates the projected evolution of income and average temperature from the

2000-2014 baseline to the end of the century (2081-2100) under the SSP3-4.5 scenarios. Among

the 172 countries, All 172 countries show a rightward shift (indicating an increase in tempera-

ture), and 96% of them also show an upward shift (indicating an increase in per-capita income).

In the baseline period, average temperatures are below 5°C in 11 countries, between 5-15°C in

49 countries, between 15-25°C in 62 countries, and above 25°C in 50 countries. Baseline per

capita income is below $5000 in 41 countries, between $5000-$30000 in 83 countries, between
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$30000-$60000 in 38 countries and above $60000 in 10 countries. The blue arrow exemplifies

the joint evolution of income and temperature.

Figure C.2: Joint Evolution of Income and Average Temperature from Base Period to End of
Century (under SSP3-4.5)

Notes: Grey texts represent the baseline period from 2000 to 2014, and the red texts represent the end of the

century (2081 - 2100). End-of-century projection comes from SSP3-4.5 projection. The graph shows the joint

evolution of income per capita and average temperature for each country.

C.3 Projection Components

The graph shows a breakdown of the three effects contributing to the total projected TFP loss

under SSP3-4.5 scenarios in Section 4.4.
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Figure C.3: Three Effects Contribution to Projected TFP Loss (SSP3-4.5)

(a) Shock Effects Projection

(b) Level Effects Projection

(c) Income Effects Projection
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C.4 Projections from Other Scenarios

This appendix presents global TFP loss projections by current income levels under different

scenarios. We categorize the countries into four groups based on current GDP per capita

quantiles: below the 25th percentile (less than $5149.8), 25th-50th percentile ($5149.8-$13968.3),

50th-75th percentile ($13968.3-$32776.8), and above the 75th percentile (greater than $32776.8).

The four scenarios considered are SSP2-4.5, SSP3-7.0, SSP3-4.5, and SSP5-8.5.
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Figure C.4: Global TFP Loss Projection By Current Income Levels from Other Scenarios (Part
1)

(a) Income Below 25% Percentile

(b) Income at 25% to 50% Percentile
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Figure C.5: Global TFP Loss Projection By Current Income Levels from Other Scenarios (Part
2)

(a) Income at 50% to 75% Percentile

(b) Income above 75% Percentile
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D Additional Tables for Regressions in Section 6

This appendix reports the estimates in Section 6, corresponding to Figures 6b and 6a.
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Table D.2: Relative Firm Size and Firm MRPK

(1) (2)

< −5°C 0.00056∗∗ 0.00046∗

(0.00027) (0.00027)

−5 ∼ 0°C 0.00019 0.00012
(0.00016) (0.00015)

0 ∼ 5°C 0.00015 0.00010
(0.00013) (0.00013)

5 ∼ 10°C 0.00005 0.00001
(0.00014) (0.00013)

15 ∼ 20°C 0.00004 0.00002
(0.00011) (0.00011)

20 ∼ 25°C -0.00016 -0.00024
(0.00016) (0.00016)

25 ∼ 30°C -0.00019 -0.00028
(0.00024) (0.00024)

> 30°C -0.00119∗∗∗ -0.00133∗∗∗

(0.00045) (0.00044)

< −5°C × Relative Size 0.00089∗∗∗

(0.00019)

−5 ∼ 0°C × Relative Size 0.00077∗∗∗

(0.00024)

0 ∼ 5°C × Relative Size 0.00062∗∗∗

(0.00022)

5 ∼ 10°C × Relative Size 0.00041
(0.00027)

15 ∼ 20°C × Relative Size 0.00021∗∗∗

(0.00008)

20 ∼ 25°C × Relative Size 0.00092∗∗∗

(0.00017)

25 ∼ 30°C × Relative Size 0.00098∗∗∗

(0.00031)

> 30°C × Relative Size 0.00105∗∗

(0.00049)

Control: Relative Size Yes Yes

Firm FE Yes Yes

Country-Sector-Year FE Yes Yes

Observations 73350226 73350226
R2 0.880 0.880

Notes: Standard errors in parentheses. We cluster standard errors

at the region level (NUTS3 level for European countries, province

level for China, and first-level administrative divisions for India).

The dependent variables are the log MRPK. These results are ob-

tained by estimating Equation 31. Column 2 presents results that

interact with relative firm size, Relative Size r,s
it := logKs,r

it −

logKit
s,r

, which is standardized over the entire sample.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.3: AC Installation and Firm MRPK

(1) (2) (3) (4)

< 10°C 0.00156 0.00124 0.00083 0.00178

(0.00105) (0.00101) (0.00268) (0.00202)

10 ∼ 15°C 0.00032 0.00075 -0.00064 0.00131∗

(0.00051) (0.00051) (0.00085) (0.00075)

20 ∼ 25°C -0.00037 -0.00015 -0.00226∗∗∗ -0.00175∗∗∗

(0.00027) (0.00024) (0.00080) (0.00061)

25 ∼ 30°C -0.00060∗ -0.00035 -0.00286∗∗∗ -0.00245∗∗∗

(0.00031) (0.00028) (0.00083) (0.00065)

> 30°C -0.00068∗ -0.00044 -0.00249∗∗ -0.00224∗∗∗

(0.00040) (0.00035) (0.00099) (0.00075)

< 10°C × AC Installation 0.00089 -0.00051

(0.00305) (0.00243)

10 ∼ 15°C × AC Installation 0.00110 -0.00062

(0.00095) (0.00085)

15 ∼ 20°C × AC Installation 0.00218∗∗∗ 0.00185∗∗∗

(0.00081) (0.00062)

20 ∼ 25°C × AC Installation 0.00259∗∗∗ 0.00240∗∗∗

(0.00087) (0.00068)

25 ∼ 30°C × AC Installation 0.00208∗∗ 0.00206∗∗∗

(0.00102) (0.00077)

Control: lnK No Yes No Yes

Firm FE Yes Yes Yes Yes

Sector-Year FE Yes Yes Yes Yes

Observations 532,425 532,425 532,425 532,425

R2 0.748 0.815 0.748 0.815

Notes: Standard errors in parentheses. We cluster standard errors at the districts level. The depen-

dent variables are the log MRPK. These results are obtained by estimating Equation 31. Column 1

and 3 present results that do not include control variables logK.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

E Additional Derivations for Section 5

This appendix provides the derivations of the expressions and propositions featured in Section

5.
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E.1 Proof of Lemma 1

Lemma 1. TFP Volatility, Var(âit − Et−1[âit]), and can be written as:

Var(âit − Et−1[âit]) = (Tt − T ∗)2σ2
ξ̂
+ η̂Tt

2σ2
β̂
+ σ2

ε̂ . (51)

TFP volatility reaches its minimum when the temperature is at its optimum, Tt = T ∗, and

when there is no unexpected change in temperature, ηTt = 0.

Proof. We can write a firm’s (log) TFP, âit, as

âit = β̂it(Tt − T ∗) + ẑit

=
(
β̂i + ξ̂it + Ot

)
(Tt − T ∗) + ρz ẑit−1 + ε̂it.

(52)

where Ot is defined as

Ot = c(Tt − T ∗), with c =
(σ2

β̂
+ σ2

ξ̂
)σ

2
.

hen the expected TFP, Et−1[âit], can be expressed as

Et−1[âit] = β̂iEt−1[Tt − T ∗] + Et−1[ξ̂it(Tt − T ∗)] + Et−1[Ot(Tt − T ∗)] + ρz ẑit−1

= β̂iEt−1[Tt − T ∗] + cEt−1[(Tt − T ∗)2] + ρz ẑit−1

(53)

where we have used that Et−1[ξ̂it(Tt − T ∗)] = Et−1[ξ̂it]Et−1[(Tt − T ∗)] = 0. Using Equations 52

and 53, we can write the forecast error of a firm’s TFP as

âit − Et−1[âit] = β̂iη̂
T
t + c

(
(Tt − T ∗)2 − Et−1

[
(Tt − T ∗)2

])

︸ ︷︷ ︸
from Temperature FE

+ ξ̂it(Tt − T ∗)︸ ︷︷ ︸
from Sensitivity FE

+ε̂it,
(54)

where the first term stems from the firm’s forecast error on temperature, the second term repre-

sents the firm’s unexpected sensitivity shock, and the third term represents the firm’s idiosyn-

cratic productivity.

We define TFP Volatility, Var(âit − Et−1[âit]), to be the cross-sectional variance of the TFP

forecast error across firms. Taking the variance of 54 across i yields

Var(âit − Et−1[âit]) = (Tt − T ∗)2σ2
ξ̂
+ ηTt

2
σ2
β̂
+ σ2

ε̂ . (55)

We thus obtain Equation 51 in the text.

E.2 Solving the Model

This appendix provides additional derivations for solving the model in Section 5. Specifically,

we will derive the optimal capital investment policy function in Equation 25.
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Flexible Input Choice and Profits. Optimal choice of flexible inputs is made after capital

inputs are allocated and all shocks are realized. The static input choice solves

max
Nit

PitYit −WtNit,

where PitYit = ÂitK
αK
it NαN

it . Taking the first-order condition of Nit gives

Nit =

(
Wt

ÂitαNKαK
it

) 1
αN−1

. (56)

Plugging in the equilibrium wage, Wt = W exp (χ(Tt − T ∗)), into this equation yields the op-

timal labor choice

Nit =

(
W exp (χ(Tt − T ∗))

ÂitαNKαk
it

) 1
αN−1

. (57)

Also, notice that WtNit = αNPitYit, so the firm’s profits can be written as

Πit = PitYit −WtNit

= (1− αN )ÂitK
αK
it NαN

it ,
(58)

Plugging in the expression of optimal labor, we obtain

Πit = G exp (χ(Tt − T ∗))
−

αN
1−αN Â

1
1−αN
it K

αK
1

1−αN
it , (59)

where G = (1−αN )W
−

αN
1−αN αN

αN
1−αN . To simplify notations, we define a firm’s profitability, Ait,

as

Ait = exp (χ(Tt − T ∗))
−

αN
1−αN Â

1
1−αN
it = exp (βit(Tt − T ∗) + zit),

where zit = 1
1−αN

ẑit, and βit = β̂it−χαN
1−αN

is the firm’s profitability sensitivity to temperature.

Therefore, we can write a firm’s revenue function as

Πit = G exp (βit(Tt − T ∗) + zit)K
α
it := GAitK

α
it,

where α = αK
1−αN

is the curvature of profits. This is Equation 23 in the main text.

Dynamic Capital Investment. We now characterize the firm’s investment problem. The

firm’s dynamic capital investment problem takes the form

V (Tt, Zit,Kit) = max
Kit+1

G exp (βit(Tt − T ∗) + zit)K
α
it −Kit+1 + (1− δ)Kit

+
1

1 + r
Et [V (Tt+1, Zit+1,Kit+1)] .

(60)
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Combining the first order condition and the envelope condition associated with Equation 60

gives the Euler equation

1 =
1

1 + r︸ ︷︷ ︸
Discount Factor


αGKα−1

it+1Et [exp (zit+1 + βit+1(Tt+1 − T ∗))]︸ ︷︷ ︸
Expected Value of Marginal Profits of Capital

+ (1− δ)︸ ︷︷ ︸
Value of

Undepreciated Capital


 . (61)

We then rearrange the Euler equation to get the expression for optimal capital investment

K1−α
it+1 =

αG

r + δ
Et [exp (ait+1)]

=
αG

r + δ
Et

[
exp

(
β̂i + ξ̂it+1 + Ot+1 − χαN

1− αN
(Tt+1 − T ∗)

)]
.

(62)

Notice that a first-order approximation of a non-linear function f(ξ̂it+1, Tt+1 − T ∗) around

(Et[ξ̂it],Et[Tt − T ∗]), we get:

f(ξ̂it+1, Tt+1 − T ∗) ≈f(Et[ξ̂it+1],Et[Tt+1 − T ∗])

+
∂f(ξ̂it+1, Tt+1 − T ∗)

∂(Tt+1 − T ∗)

∣∣∣∣∣
(Et[ξ̂it+1],Et[Tt+1−T ∗])

(Tt+1 − Et[Tt+1])

+
∂f(ξ̂it+1, Tt+1 − T ∗)

∂ξ̂it+1

∣∣∣∣∣
(Et[ξ̂it+1],Et[Tt+1−T ∗])

(ξ̂it+1 − Et[ξ̂it+1]).

(63)

Applying expectation on both sides of this equation yields

Et

[
f(ξ̂it+1, Tt+1 − T ∗)

]
≈ f(Etξ̂it+1,Et[Tt+1 − T ∗]). (64)

Under this first-order approximation, the optimal investment in 62 becomes

K1−α
it+1 ≈ αG

r + δ
exp

(
β̂i + Etξ̂it+1 + EtOt+1 − χαN

1− αN
Et[Tt+1 − T ∗] +

Et[ẑit]

1− αN

)
.

Taking logs on both sides yields the policy function

kit+1 =
1

1− α

(
β̂i + Etξ̂it+1 + EtOt+1 − χαN

1− αN
Et[Tt+1 − T ∗] +

Et[ẑit]

1− αN

)
+ k0. (65)

where k0 =
1

1−α

(
log
[
αG
r+δ

])
. Therefore, Firm i’s investment, relative to the average firm in the

economy at date t+ 1, would be:

kit+1 − kit+1 =
1

1− α

(
Et[ẑit+1]

1− αN
+

(β̂i − β̂i)

1− αN
Et[(Tt+1 − T ∗)]

)
.

which is Equation 26 in the main text.

To gain some intuitions, using Et[Ot+1(Tt+1 − T ∗)] = Et[Ot+1]Et[(Tt+1 − T ∗)] + cσ2
η , we can
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also write Equation 65 as

kit+1 =
1

1− α
Et[ait] + k′0.

=
1

1− α

(
1

1− αN
Et[âit+1]−

αN

1− αN
Et[wt+1 − w]

)
+ k′0

=
1

1− α

(
1

1− αN

(
Et[ẑit+1] + Et[β̂it+1(Tt+1 − T ∗)]

)
− αNχ

1− αN
Et[Tt+1 − T ∗]

)
+ k′0,

(66)

where k′0 =
1

1−α

(
log
[
αG
r+δ

]
− cσ2

η

1−αN

)
. The derivations illustrate the following logic: investment

is proportional to the expected profitability of capital, which is increasing in expected (revenue)

productivity and decreasing in expected wages. These are, in turn, dependent on the firm’s

expectation of future temperature sensitivity and future temperature.

E.3 Proof of Proposition 3

Proposition 3 Firms with higher unexpected changes in productivity exhibit higher MRPK

relative to the average level:

mrpkit −mrpkit =
1

1− αN

{
(β̂i − β̂i)η

T
t︸ ︷︷ ︸

Unexpected
Temperature Shock

on Productivity

+ ξ̂it(Tt − T ∗)︸ ︷︷ ︸
Unexpected

Damage
Sensitivity

+ε̂it

}
,

(67)

where the relative MRPK of heat-averse firms (β̂i < β̂i) will decrease with a positive temper-

ature shock ηTt ; while the relative MRPK of heat-loving firms (β̂i > β̂i) will increase with a

positive temperature shock.

Proof. Recall that PitYit = ÂitK
αK
it NαN

it and therefore a firm’s MRPK can be written as

MRPKit =
∂PitYit
∂Kit

= αK
PitYit
Kit

. (68)

Note that since αK = σ−1
σ α̂K , this definition of MRPK is consistent with the definition in our

accounting framework (see Equation 6). Using 58, we can write revenue as

PitYit =
Πit

1− αN
=

GAitK
α
it

1− αN

= GAitK
α
it,

where G = G
1−αN

. Plugging this expression in 68 and taking logs to both sides, we obtain

mrpkit = ait + (α− 1)kit + log(αKḠ). (69)
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Plugging in the optimal investment policy kit from 66 into this expression yields

mrpkit =(ait − Eit−1[ait]) + log(r + δ) +
cσ2

η

1− αN

=
1

1− αN

{
(âit − Eit−1[âit])− χαN (Tt − Et−1[Tt])

}
+ log(r + δ) +

cσ2
η

1− αN

=
1

1− αN

(
β̂iη

T
t︸︷︷︸

Unexpected
T Shock

on Productivity

+ ξ̂it(Tt − T ∗)︸ ︷︷ ︸
Unexpected

Damage
Sensitivity

− χαNηTt︸ ︷︷ ︸
Unexpected

T Shock
on Wage

+ε̂it

}
+ log(r + δ)

+
(Ot(Tt − T ∗)− Et−1[Ot]Et−1[Tt − T ∗])

1− αN
.

(70)

which made clear that MRPK is just the user cost r + δ in the absence of any forecast error.

To calculate the average mrpk across all firms in a given year mrpkit, we notice that vari-

ables without i subscript will remain the same. And thus, when calculating the difference

between mrpkit and mrpkit, those terms will be canceled out. Knowing this, we achieve the

following

mrpkit −mrpkit =
1

1− αN

{
(β̂i − β̂i)η

T
t + ξ̂it(Tt − T ∗) + ε̂it

}
,

where ξ̂it = 0.

E.4 Proof of Proposition 4

Proposition 4 Within a region-sector pair n = (r, s), the mrpk dispersion across firms is in-

creasing in TFP Volatility, Var(ânit − Et−1[ânit]), and can be decomposed into:

σ2
mrpk,(r,s),t =

(
1

1− αN

)2

Var(ânit − Et−1[ânit])

=

(
1

1− αN

)2
[
(Tr,t − T ∗)2σ2

ξ,(r,s)︸ ︷︷ ︸
Damage Volatility

(Level Effect)

+ ηTr,t
2
σ2
β,(r,s)︸ ︷︷ ︸

Climate Uncertainty
(Shock Effect)

+σ2
ε,(r,s)

]
(71)

Within n = (r, s), mrpk dispersion is increasing in:

(1) squared deviation from optimal temperature, (Tr,t+1 − T ∗)2,

(2) squared (unexpected) temperature shocks ηTr,t
2
.

Proof. From the proof above for Proposition 3, we know that

mrpkit =
1

1− αN

(
âit − Eit−1[âit]

)
+ constant terms

78



We can then compute the variance and obtain the following equation:

σ2
mrpk,(r,s),t =

(
1

1− αN

)2

Var(ânit − Et−1[ânit])

=

(
1

1− αN

)2
[
(Tr,t − T ∗)2σ2

ξ,(r,s)︸ ︷︷ ︸
Damage Uncertainty

Channel

+ ηTr,t
2
σ2
β,(r,s)︸ ︷︷ ︸

Climate Uncertainty
Channel

+σ2
ε,(r,s)

]
.

(72)

Note that we have obtained Var(âit−Et−1[âit]) = (Tt−T ∗)2σ2
ξ̂
+ ηTt

2
σ2
β̂
+σ2

ε̂ from Equation 55.

E.5 Derivation of TFP Loss from Misallocation

This appendix provides the derivation for Equation 30. We now aggregate firm-level produc-

tion and productivity to the aggregate region-sector level. Labor market clearing implies

Nt =

∫
Nitdi =

∫ (
ÂitαNKαk

it

Wexp(χ(Tt − T ∗)

) 1
1−αN

di

=

(
αN

W exp(χ(Tt − T ∗)

) 1
1−αN

∫ (
ÂitK

αk
it

) 1
1−αN

di.

Then we solve for MRPKit through the revenue function.

PitYit = ÂitK
αK
it NαN

it

= ÂitK
αK
it

(
W exp (χ(Tt − T ∗))

ÂitαNKαk
it

) αN
αN−1

.

Note that from the labor market clearing condition, we can get the following equation

(
W exp(χ(Tt − T ∗))

αN

) 1
αN−1

=
Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

.

We plug this back into the revenue function and get

PitYit = ÂitK
αK
it (ÂitK

αK
it )

αN
1−αN

(
Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

)αN

=

(
ÂitK

αK
it

) 1
1−αN ·

(
Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

)αN
(73)
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From this, we can solve for MRPKit. Note that MRPKit = αK
PitYit
Kit

= αK
ÂitK

αK
it N

αN
it

Kit
.49

Plugging in the expression of revenue function, we get

MRPKit = αKÂ
1

1−αN
it Kθ−1

it ·
(

Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

)αN

,

where θ = αK
1−αN

. Next we rearrange terms to find expressions for Kit

Kit =

(
αKÂ

1
1−αN
it

MRPKit

) 1
1−θ

·
(

Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

) αN
1−θ

We now use the capital market clearing condition

Kt =

∫
Kitdi

= α
1

1−θ

K ·
(

Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

) αN
1−θ ∫ ( Â

1
1−αN
it

MRPKit

) 1
1−θ

di

Rearrange terms we can have

(
Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

) αN
1−θ

=
Kt

α
1

1−θ

K

∫ ( Â
1

1−αN
it

MRPKit

) 1
1−θ

di

We can plug this equation to the expression for Kit

Kit =

(
αKÂ

1
1−αN
it

MRPKit

) 1
1−θ

· Kt

α
1

1−θ

K

∫ ( Â
1

1−αN
it

MRPKit

) 1
1−θ

di

=
Â

1
1−αN

1
1−θ

it MRPK
−1
1−θ

it

∫
Â

1
1−αN

1
1−θ

it MRPK
−1
1−θ

it di

Kt

49. Note that it’s also fine to use the derivative definition of MRPK. This term will cancel out later.
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We now have solved for Nit,Kit all in terms of MRPKit and aggregate variables Nt and Kt.

We plug Nit,Kit back into Equation 73 and get

PitYit =

(
ÂitK

αK
it

) 1
1−αN ·

(
Nt

∫ (
ÂitK

αK
it

) 1
1−αN

di

)αN

=
Â

1
1−αN

1
1−θ

it MRPK
−θ
1−θ

it(∫
Â

1
1−αN

1
1−θ

it MRPK
−θ
1−θ

it di

)αN
(∫

Â
1

1−αN

1
1−θ

it MRPK
−1
1−θ

it di

)αK
KαK

t NαN
t

Using PitYit = B
1
σ
it Y

σ−1
σ

it , we can write aggregate output as

Yt =

(∫
B

1
σ
it Y

σ−1
σ

it di

) σ
σ−1

=

(∫
PitYitdi

) σ
σ−1

=




∫
Â

1
1−αN

1
1−θ

it MRPK
−θ
1−θ

it di(∫
Â

1
1−αN

1
1−θ

it MRPK
−θ
1−θ

it di

)αN
(∫

Â
1

1−αN

1
1−θ

it MRPK
−1
1−θ

it di

)αK




σ
σ−1

K
αK

σ
σ−1

t N
αN

σ
σ−1

t

= Ã
σ

σ−1

t Kα̃K
t N α̃N

t ,

(74)

where we define Ãt :=

(
∫
Â

1
1−αN

1
1−θ

it MRPK
−θ
1−θ
it di

)1−αN

(
∫
Â

1
1−αN

1
1−θ

it MRPK
−1
1−θ
it di

)αK . We take logs to Ãt and get

ãt = (1− αN )

[
log

(∫
Å

1
1−θ

it MRPK
− θ

1−θ

it

)
− θ log

(∫
Å

1
1−θ

it MRPK
− 1

1−θ

it

)]
,

where Åit = Â
1

1−αN
it . Now, assuming log-normality, the first term is equal to

log

(∫
Å

1
1−θ

it MRPK
− θ

1−θ

it

)
=

1

1− θ
åit −

θ

1− θ
mrpkit

+
1

2

(
1

1− θ

)2

σ2
å,t +

1

2

(
θ

1− θ

)2

σ2
mrpk,t −

θ

(1− θ)2
σmrpk,̊a,t

The second term is equal to

θ log

(∫
Å

1
1−θ

it MRPK
− 1

1−θ

it

)
=

θ

1− θ
åit −

θ

1− θ
mrpkit

+
1

2
θ

(
1

1− θ

)2

σ2
å,t +

1

2
θ

(
1

1− θ

)2

σ2
mrpk,t −

θ

(1− θ)2
σmrpk,̊a,t

Combining them together, we have the following equation for aggregate productivity

ãt = (1− αN )

[
åt +

1

2

1

1− θ
σ2
å,t −

1

2

θ

1− θ
σ2
mrpk,t

]
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Using Equation 74, we write the log aggregate output as

yt =
σ

σ − 1
ãt + α̃Kkt + α̃Nnt

=
σ

σ − 1
(1− αN )

[
åt +

1

2

1

1− θ
σ2
å,t −

1

2

θ

1− θ
σ2
mrpk,t

]
+ α̃Kkt + α̃Nnt

= at + α̃Kkt + α̃Nnt,

where the total factor productivity is defined as

at =
σ

σ − 1
(1− αN )

[
åit +

1

2

1

1− α
σ2
å,t −

1

2

α

1− α
σ2
mrpk,t

]

=
σ

σ − 1
âit +

1

2

σ

σ − 1

1

(1− α) (1− αN )
σ2
â,t

− 1

2

σ

σ − 1

αK

1− α
σ2
mrpk,t

Finally, we plug in the definition for âit and σ2
â,t, and we can write the TFP as

ant =
σ

σ − 1

[
β̂i(Tt − T ∗) + c(Tt − T ∗)2

]

+
σ

2

σ

σ − 1

[(
σ2
β̂
+ σ2

ξ̂

)
(Tt − T ∗)2 +

σ2
ε̂

1− ρ2z

]

− α̃K + α̃2
K(σ − 1)

2

(
1

1− αN

)2
[
(Tt − T ∗)2σ2

ξ̂
+ ηTt

2
σ2
β̂
+ σ2

ε̂

]
(75)

Under the parametrization that c = −σ
2

(
σ2
β̂
+ σ2

ξ̂

)
, we will have

at =a∗t − Misallocation Losst

=
σ

σ − 1

[
β̂i(Tt − T ∗)

]
+

σ

2

σ

σ − 1

[
σ2
ε̂

1− ρ2z

]

− α̃K + α̃2
K(σ − 1)

2

(
1

1− αN

)2
[
(Tt − T ∗)2σ2

ξ̂
+ ηTt

2
σ2
β̂
+ σ2

ε̂

]
(76)
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E.6 General Solution of the Firm’s Investment Problem

This Appendix outlines the general solution of the firm’s investment problem without using

the first-order approximation method in Section 5. We will discuss why our first-order approx-

imation is valid for both the theoretical analysis and the empirical identification of key model

parameters.

We rearrange the Euler equation in equation 24 to get the expression for optimal capital

K1−α
it =

αG

r + δ
Et−1 [exp (ait)]

=
αG

r + δ

1√
d
e

(
(β̂i−χαN )
(1−αN )

Et−1[(Tt−T∗)]+ 1
2

(β̂i−χαN )2σ2
η

(1−αN )2
+ c

(1−αN )
(Et−1[(Tt−T∗)])2+1

2

σ2
ξ̂

(1−αN )2
(Et−1[(Tt−T∗)])2

d

)

· e
(

ρzẑit−1
1−αN

+
σ2
ε̂

2(1−αN )2

)

(77)

where d = 1−2
cσ2

η

1−αN
−

σ2
ησ

2
ξ̂

(1−αN )2
. Notice that the risk-adjusted terms are small (as shown by our

estimation), so empirically we have that d ≈ 1.

Taking logs on both sides yields the investment decision:

kit =
1

(1− α)d

(
(β̂i − χαN )

(1− αN )
Et−1[(Tt − T ∗)] +

c

(1− αN )
(Et−1[(Tt − T ∗)])2 +

1

2

σ2
ξ̂

(1− αN )2
(Et−1[(Tt − T ∗)])2

+
1

2

(β̂i − χαN )2σ2
η

(1− αN )2

)
+

1

1− α

(
ρzzit−1 +

1

2
σ2
ε

)
+

1

1− α
log(

αG

(r + δ)
√
d
)

=
1

(1− α)d

(
Et−1[ait − zit]−

cσ2
η

1− αN
+

1

2

σ2
ξ̂

(1− αN )2
(Et−1[(Tt − T ∗)])2 +

1

2

(β̂i − χαN )2σ2
η

(1− αN )2

)

+
1

1− α

(
ρzzit−1 +

1

2
σ2
ε

)
+

1

1− α
log(

αG

(r + δ)
√
d
).

(78)

The mrpk of a firm can be then expressed as:

mrpkit =βi

(d− 1

d
(Tt − T ∗) +

1

d
(Tt − E[Tt])

)
+

1

2

β2
i σ

2
η

d
+ ξit(Tt − T ∗) + εit

+
(Ot(Tt − T ∗)− Et−1[Ot]Et−1[Tt − T ∗])

1− αN

+

(
1

2

σ2
ξ

d
(Et−1[(Tt − T ∗)])2

)

− 1

2
σ2
ε + log(

αG

(r + δ)
√
d
).

(79)

We now take variance of both sides of the mrpk expression and use the fact that for a standard

normal variable x ∼ N(µ, σ2), Var(Ax+Bx2) = (A+ 2Bµ)2σ2 + 2µ2σ4. A few lines of algebra
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yields:

σ2
mrpk,t =

(d− 1

d
(Tt − T ∗) +

1

d
(Tt − E[Tt]) +

σ2
ηβ̄

d

)2
σ2
β + 2β̄2σ4

β + (Tt − T ∗)2σ2
ξ + σ2

ε

=
(d− 1)2

d2
σ2
β (Tt − T ∗)2 +

1

d2
σ2
β (Tt − E [Tt])

2 + σ2
ξ (Tt − T ∗)2 + 2

d− 1

d2
σ2
β (Tt − T ∗) (Tt − E [Tt])

+ 2
(d− 1)σ2

ησ
2
ββ̄

d2
(Tt − T ∗) + 2

σ2
ησ

2
ββ̄

d2
(Tt − E [Tt]) +

(
σ2
ηβ̄
)2

σ2
β

d2
+ 2β̄2σ4

β + σ2
ε

Lastly, notice that since d ≈ 1, as our empirical results suggest, the above expression can be

approximated as:

σ2
mrpk,t ≈

1

(1− αN )2

(
σ2
β̂
ηTt

2
+ σ2

ξ̂
(Tt − T ∗)2 + σ2

ε̂

+ 2
σ2
ηT
σ2
β̂
(
¯̂
β − χαN )

(1− αN )
ηTt +

¯̂
β
2
σ2
β̂
σ4
ηT

(1− αN )2
+ 2

(
¯̂
β − χαN )2σ4

β̂

(1− αN )4

)

where we have used that σ2
β =

σ2
β̂

(1−αN )2
, σ2

ξ =
σ2
ξ̂

(1−αN )2
. Notice that apart from the risk-adjusted

terms in the second line, the first line of this equation yields exactly Equation 29 in the main

text.

We now discuss in detail why the risk-adjusted terms in the second line do not affect our

analysis. First, regarding the identification of σ2
β̂

and σ2
ξ̂

in the regression specification of

Equation 35, the linear term
σ2
ηT

σ2
β̂
(
¯̂
β−χαN )

(1−αN ) ηTt does not affect the identification of σ2
β̂

, given that

ηTt ∼ N(0, σ2
ηT
). Even if we use the monthly aggregated index, MSFEannual,r,t =

∑12
m=1 η

T
m,t

2
,

as an empirical counterpart for ηTt
2
, the forecast error of any month remains uncorrelated with

MSFEannual,r,t as long as ηTm,t ∼ N(0,ΣηTmηTm
).

Second, regarding the analysis of the computed average misallocation, the linear term
σ2
ηT

σ2
β̂
(
¯̂
β−χαN )

(1−αN ) ηTt has a mean of zero and does not affect the average misallocation around year

τ , Et[σ
2
mrpk,t+τ | T̄ ′, σ′2

ηT
], given the temperature distribution or forecastability (T̄ ′, σ′2

ηT
). The

constant term
σ4
ηT

¯̂
β
2
σ2
β̂

(1−αN )2
is small as it is of the fourth order in σηT . If we are interested in ana-

lyzing a positive change in σ2
ηT

, ignoring this term would only lead to an underestimate of the

welfare loss associated with MRPK dispersion; similarly, for a negative change in σ2
ηT

(i.e., a

decrease in forecast error), ignoring this term would lead to an underestimate of the benefits.

Thus, we will always capture a conservative lower bound. Therefore, we conclude that the

first-order approximation approach in the main text is valid for the purpose of analysis.
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