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Abstract

Individuals often can obtain more information by observing previous decisions of others.

We present a framework of individual choice under uncertainty for agents connected

via a directed network which allows for observational learning. The decision is made

once, thus learning from repetition is not possible. We outline properties of networks

that affect accuracy of individual choice and information aggregation. Performance

is evaluated using two criteria: individual (final agent) and social (group) choice ac-

curacy, with the result that network properties that enhance performance under one

criterion reduce performance under the other. We test theory by designing an experi-

ment with two treatment variables: (1) network structure and (2) method of assigning

subjects to positions within a network. In all treatments, there is efficiency loss com-

pared to a benchmark with all Bayesian agents. On average individuals understand

the value of observational learning, however there is heterogeneity in the willingness

to pay for later positions. In networks with endogenous assignment, the advantage

of later positions is eroded as a result of self-selection of more rational subjects to

those positions, and greater noise in choices of subjects in earlier positions. Persons

exhibit a propensity to overweight information inferred from observed actions of others

as opposed to own private signal, which is increasing in the number of observed actions.
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1 Introduction

In many social and economic settings decisions are made under imperfect information about

the payoffs of available actions. Choice under uncertainty problems have been studied ex-

tensively in economics and related fields, with the standard analysis focusing on individual

decision making. This approach does not take into account the fact that choices are rarely

made in isolation. In many settings, prior to taking an action, a person is able to infer addi-

tional information by observing actions previously taken by others. Individual actions then,

in addition to generating private payoffs, affect social learning. This act of learning through

observation may allow privately held information to be aggregated, in which case individuals

acting later make more informed choices. The decision problem faced by each agent becomes

different depending on the information they have at the time of making the decision, and

requires extending individual decision theory to account for observational social learning.

There are numerous examples of settings where individuals take into account choices of

others. As one example, consider a consumer who is deciding between the latest models of

competing brands of cell phones. If he is uncertain about which alternative is better, he may

note purchasing decisions made by friends and family. Choices of others, particularly if most

of them select the same brand, may change the persons’ original prior about the products and

lead to a decision to follow suit. As another example, consider a person who has to choose

among alternative surgical procedures, a single irreversible choice, with the best match and

thus the success of the treatment becoming clear only after the procedure. A person may

want to explore choices of others taken under similar circumstances albeit without fully

knowing their private medical information. This setting corresponds to our framework of

directed networks since others have already made their decisions. Our results on the impact of

network structure on choice accuracy inform how the person should collect information about

previous choices of others, and can also be used to assess whether information aggregation

within the structure of the organization is optimal for the CEO or the Chair who is making

the final and most significant decision.

The nature of information transmission throughout a group, organization, or society plays

a key role in this interdependence of decisions. Prior research (see, e.g., Golub and Jackson

(2010)) has identified social networks as the primary channel through which information and

opinions are exchanged. The structure of the network in which the individuals are embedded

determines whose actions can be observed and therefore, what information can be obtained

via observation. Social, economic, and organizational networks are complex and have various

structures which lead to different opportunities for social learning. In this paper we set out to

identify properties of networks that make observational learning successful and increase the
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likelihood of selecting an objectively better option. We evaluate the impact such properties

on improving the choices of the final agent in the network and also the overall accuracy of

the whole group.

Our theoretical framework includes a set of Bayes-rational agents, who are uncertain

about the payoffs of their possible choices, and sequentially make a single, irreversible deci-

sion. Each agent has a set of available actions, each corresponding to a possible state, and

earns positive payoff only if their chosen action matches the true state, which is unknown

at the time of making a decision and is revealed afterwards. Each individual receives an im-

perfectly informative private signal, and, prior to acting, observes a subset of actions taken

by other agents. That observed subset depends on the structure of the network and the

individual’s position within it. Since each agent is paid based on own action, it reveals their

beliefs, and possibly their private independent signal.1

We introduce the concept of the informativeness of actions within the network, define its

degrees, and obtain correspondence between the structure of the network and the informa-

tiveness of individual actions within it. The optimal decision rule takes into account whether

observed actions inform of private signals, which is a function of the network and the spe-

cific composition of the set of observed prior actions. When enough prior actions have been

observed, an individual may fall into an information cascade and rationally disregard own

private information in favor of imitating the action taken by the majority of those they ob-

serve. In this case, the individual’s action no longer conveys information about their private

signal. Thus, the formation of a cascade limits the aggregation of privately held information

and reduces the externality benefits which would otherwise accrue to subsequent decision

makers. We present an individual decision rule which establishes precisely how individuals’

optimal choice depends on own private signal and information inferred through observed

actions.

Network performance is evaluated using two criteria: an individual criterion which con-

siders the expected payoff of the final agent and a social criterion which takes a standard

utilitarian approach in comparing the aggregate payoff of all agents in the network. We show

that there is a tradeoff between network properties which improve decision accuracy under

each criteria. Properties that produce the highest accuracy for the group overall, reduce the

payoff to the final agent, and vice versa.

1Unlike individual decisions under uncertainty, in this environment an action taken by the agent is
observed by other agents and affects their decision making process. One can think of this interdependence
as an information externality. However, unlike, for example, environments characterized by consumption
externalities (See, e.g., Katz and Shapiro (1985)) in which individual’s utility from a particular action
depends, at least in part, upon how many others are choosing the same action), here the interdependence is
different: an agent’s payoff depends only on the accuracy of own action, regardless of others’ choices. In our
setting an agent experiences positive externality, only if observed action reveals signal.
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In order to test our theoretical results, we design an experiment with two main treat-

ment variables: the structure of the network and the assignment to positions within the

network. For the first treatment variable variation we use network structures that benefit

the performance of the final agent vs of the whole group. As a second treatment variation,

we employ endogenuos vs exogenous assignment to positions. In organizational structures

an individual may be interested in taking a specific position within it, and furthermore there

might be heterogeneity in the assessments of the benefits of the positions. We therefore want

to investigate if there is self-selection to positions, if it is based on heterogeneity in willing-

ness to pay for positions, and whether it would affect observational learning. The second

treatment variable allows us to explore further any behavioral deviations from theoretical

predictions and to provide insights on the observational learning in the field. To highlight

observational learning as a focus of this study, and give it the best shot, we simplify the

nature of uncertainty and consider a setting with binary states and actions.

We find that there are moderate efficiency losses compared to a benchmark in which

all individuals are Bayes-rational. Overall, about 85% of choices are consistent with the

benchmark of full Bayesian rationality. The efficiency loss is driven by behavioral phenomena

which largely amounts to not weighting own independent private information enough and

imitating observed choices more than it is optimal. Compared to Bayesian benchmark,

subjects decrease weight assigned to own private signal as the number of observed actions

increases. Specifically, in cases of equal posterior beliefs, subjects tend to go with own

signal when the number of observed actions is low and against own signal as the number of

observed actions increases. We estimate subjects’ demand for information in treatments with

endogenous assignment to network positions by designing an auction mechanism that reveals

their valuations of positions’ premiums. Our data indicate that individuals understand the

value of information in this environment – subjects tend to bid higher for positions with

more observed actions. However, we also find that in endogenous assignment treatments,

the frequency of choices consistent with Bayesian is skewed towards later positions, indicating

that more rational subjects who understand the benefits of larger observation sets self-select

themselves to such positions. This leads to more “errors” in the earlier positions and erodes

the payoff to the final agent. Overall experimental data supports theoretical results on the

effect of network structure on the performance of the whole group.

The remainder of the paper is organized as follows. Section 2 provides an overview of

the relevant theoretical and experimental literature and describes how the present study

complements and adds to the existing body of knowledge. The model and theoretical results

are presented in Section 3. We describe experimental design, selection of parameters, and the

procedures of our laboratory experiment in Section 4. Our results are discussed in Section
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5. Section 6 concludes.

2 Related Literature

2.1 Theoretical

The study of observational learning began with the seminal works of Banerjee (1992) and

Bikhchandani et al. (1992) which independently sought to explain observed uniformity in

social behavior.2 These early studies assumed that agents make decisions in a linear sequence

and each agent is able to observe the full history of actions. Since, in most cases, individ-

uals have much less complete information, some follow up studies, which were still based

on the sequential process, assumed, for example, that a random sample of past actions is

observed (Banerjee and Fudenberg, 2004), or that individuals only observe the action of their

immediate predecessor (Çelen and Kariv, 2004b). A recent strand of literature extends the

framework by considering models in which agents are embedded in a network of connections

and observe a subset of prior actions that is determined by the structure of this network.

Golub and Sadler (2016) refer to models of this type, collectively, as the sequential social

learning model (hereafter, SSLM).

Acemoglu et al. (2011), Lobel and Sadler (2015), and Arieli and Mueller-Frank (2018)

all consider a SSLM on a stochastically generated network and examine how properties of

these networks affect information aggregation and social learning. Yet, these analyses differ

from the current study in that their focus is on studying asymptotic learning in very large

or infinite network structures.3 While asymptotic results are crucial for understanding the

dynamics of learning in larger societies, they may fail to describe some intricacies of the

choice environments of smaller social and organizational groups. Our analysis, on the other

hand, examines social learning and information aggregation within relatively small groups

where the effects of network structure are less understood4 while an individual might have

greater control or ability to change the structure of smaller groups.

Out study is also different from settings in which individuals form beliefs and make

decisions over multiple periods (Gale and Kariv, 2003; Golub and Jackson, 2010, 2012; Mossel

2A subsequent, more general analysis is presented in Smith and Sørensen (2000). More recently, Rosen-
berg and Vieille (2019) revisit this environment in order to study the efficiency of social learning under
various conditions.

3Asymptotic learning is said to have occurred if the proportion of agents choosing the optimal action
converges to one over time.

4Golub and Sadler (2016) note that “Asymptotic outcomes of sequential observational learning are now
well understood, but important challenges remain. A significant gap in our knowledge concerns short-run
dynamics and rates of learning in these models.”
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et al., 2015). While these studies are complementary in their investigation of the ability to

update beliefs, they assume that choices are made repeatedly and that the decision maker

has the opportunity to revise actions over time, which does not accurately reflect the decision

environment of many important choices.5

2.2 Experimental

The earliest analysis of observational learning in a laboratory setting is due to Anderson

and Holt (1997). Following early theory literature, their experimental analysis considers the

baseline observational learning environment in which individuals observe the entire history

of actions. Their results indicate that subjects typically use their available information in

a rational, Bayesian manner and that information cascades occur regularly. Several subse-

quent experimental studies have raised doubt about individuals’ ability to properly reason

in a Bayesian manner. For example, experimental subjects often display limited depth of

reasoning (Kübler and Weizsäcker, 2004) and have a tendency to overvalue their private

information relative to information inferred from observed actions (Nöth and Weber, 2003;

Weizsäcker, 2010). As a result of these behavioral aspects of individual choice, cascade for-

mation may often be delayed beyond its theoretically predicted starting point and cascades

may be short-lived or even reversible (Goeree et al., 2007).

Experimental studies examining the role of network structure within a social learning

environment have thus far been limited to environments with repeated learning over multiple

time periods. This is a different setting than the one considered here. In these studies

agents make decisions simultaneously, then the choices of neighbors are revealed, followed by

repetition of the choice, etc., in order to analyze the convergence of beliefs. Choi et al. (2005,

2012) report the results of an experiment designed to test the predictions of the model of

Gale and Kariv (2003) in simple three player networks. Grimm and Mengel (2020) conduct a

similar experiment but employ several, more complex seven-player networks. Chandrasekhar

et al. (2019) report the results of two experiments designed to test different models of social

learning in networks in this repeated learning environment. To the best of our knowledge,

ours is the first study to experimentally examine the SSLM under one-shot sequential learning

with varying network conditions.

5Thaler (2016) notes that “Few of us buy cars often enough to get very good at it, and the really big
decisions like careers, marriages, and retirement saving give very little room for learning...Either the real
world is mostly high stakes or it offers myriad opportunities to learn–not both.” Indeed, there are many
decisions that are irreversible and cannot be taken again in identical settings, for example having a surgery
or going to war.
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3 Theoretical Framework

3.1 Choice Environment and Network Structures

There is a finite set of agents N = {1, 2, . . . , n}, n ≥ 2, connected in a network structure, G.

Let Ω = {A,B} be the set of possible, payoff relevant states and ω ∈ Ω denote the unknown,

underlying state of the world. We index agents according to the order in which they make

decisions. Each agent i makes a single, irreversible decision, denoted by xi ∈ {A,B}, which
is their prediction regarding the true state. Individuals receive a fixed payoff V > 0 if their

choice corresponds to the true state and nothing otherwise. Thus, each agent’s preferences

can be represented by

ui(xi, ω;G) =

V, if xi = ω

0, otherwise

For simplicity, we will assume throughout that each state is, a priori, equally likely and this

is common knowledge (i.e., there is a common prior p0 = P (ω = A) = P (ω = B) = 1/2).6

Each agent receives a private signal, si = {a, b}, that is imperfectly informative with precision

q = P (a | ω = A) = P (b | ω = B) ∈ (1/2, 1). Signals are independent conditional upon

the true state. Additionally, agents observe the actions (but not signals) of others that act

before them and who they are connected to via the network structure.

Networks are represented by a collection of links which are listed as subsets of N of size

2. We write ij ∈ G to indicate that the link from i to j exists in network G. Given, the

sequential nature of the choice environment, networks are assumed to be directed with each

agent k observing the action of every agent i for which there exists a directed path from i

to k in the network.7 Furthermore, we restrict attention throughout to a subset of directed

networks which we refer to as sequential networks.

Definition 1 (Sequential network) A directed network G is a sequential network if

i) for all i ∈ N , there is no j < i such that ij ∈ G

ii) for all i ∈ {1, 2, . . . , n− 1} there is a unique j > i such that ij ∈ G

This definition implies that the action of every non-final agent is directly observed by only

one other agent. Therefore, the decision making process eventually concludes with a unique

6This is a prevalent assumption in the existing literature on observational learning–both theoretical
(Bikhchandani et al., 1992; Smith and Sørensen, 2000; Acemoglu et al., 2011) and experimental (Anderson
and Holt, 1997; Çelen and Kariv, 2004b).

7We consider a class of directed networks such that if ij ∈ G then ji /∈ G. If we denote a link ij by ℓiℓj ,
then a directed path in network G from i to k is a set of links ℓ1ℓ2, ℓ2ℓ3, . . . , ℓM−1ℓM such that ℓmℓm+1 ∈ G
for each m ∈ {1, 2, . . . ,M − 1} with ℓ1 = i and ℓM = k, and where each node ℓ1, ℓ2, . . . , ℓM is distinct.
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final agent. This allows us to apply findings to organizations with a leading decision maker

such as a CEO, Chairperson, commander-in-chief, general, etc. This definition, additionally,

eliminates the possibility of networks in which any agent or set of agents is isolated (i.e., we

consider directed networks comprised of a single, weakly connected component). Since our

focus is on examining how the structure of a network affects the aggregation of information

and observational learning, and unconnected agents are described by standard individual

decision theory, we ignore such cases in this paper.

In sequential networks, the set of actions observed by each agent i, which we denote by

Oi ⊆ {x1, x2, . . . , xi−1}, is entirely determined by the structure of the network G. Since indi-

vidual decisions take into account information that may be inferred from observed actions, it

will be useful to refer to the information structure generated by a specific network structure.

Definition 2 (Information Structure) The information structure of a sequential net-

work G is I(G) ≡ {O1, O2, . . . , On}

Since much of the observational learning literature has focused on a simple linear network

in which each agent observes the full history of actions taken prior to her when making a

decision, we select this network to serve as a benchmark and refer to it as the complete

history network.

Definition 3 (Complete History Network) The complete history network, denoted by

GC, has ij ∈ GC if and only if j = i+ 1

In the complete history network, each agent is directly connected to their immediate successor

in the sequence of decision makers, and, for any agents i and j with i > j, there exists a

directed path from j to i. Therefore, each agent observes the actions of every agent who

acts before them in the sequence, and GC generates an information structure I(GC) with

O1 = ∅ and Oi = {x1, x2, . . . , xi−1} for all i ∈ {2, . . . , n}.

3.2 Individual Choice and Information Cascades

When making a decision, each agent i observes own independent private signal, si, and Oi.

We denote the information set of agent i by Ii = {si, Oi}. Our benchmark solution concept

is that each agent uses their available information and Bayes’ rule to form a posterior belief,

pi = P (ω = A | Ii). Since agents’ preferences are such that they want their action to

correspond to the true state, a rational Bayesian agent will choose xi = A if pi > 1/2 and

xi = B if pi < 1/2. If pi = 1/2, i.e. an individual is indifferent between alternatives, we
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assume a tie-breaking rule that leads them to side with their private independent information,

si.
8

Assumption 1 An agent i with posterior belief pi = P (ω = A | Ii) = 1/2, chooses xi = A

if si = a and xi = B if si = b

It is readily apparent that any individual with Oi = ∅ (i.e., one that observes no prior

actions) will choose the action that corresponds to private signal. Furthermore, any agent

with |Oi| = 1 observes only a single prior action and, as a consequence of the tie-breaking rule,

will also choose the action corresponding to own private signal regardless of the observed

action. The choice for individuals with |Oi| ≥ 2 is not determined ex ante as it can be

influenced by the actions they observe.

When enough prior actions have been observed (two or more in the case of binary states),

it is possible for an information cascade to form. This occurs when, given the information

inferred from observed actions, it is optimal for an individual to disregard own private signal

and imitate the majority action taken by those he observes. Information cascades therefore

can be started with very little information and may result in herding on either the correct

or incorrect state. Formally, we say that an individual is in a cascade if, for any si ∈ {a, b},
P (ω = z | Oi) >

1
2
and P (ω = z | Ii) > 1

2
hold for some z ∈ {A,B}.

Prior to the formation of a cascade, individuals can perfectly infer the private signal

of another individual by observing their choice. Such actions are said to be informative.

However, if an individual is in a cascade, their action no longer conveys their signal. Given

this insight, we follow the approach of Bikhchandani et al. (1992) and assume that agents

ignore those actions which are not informative.

Definition 4 ((Un)Informative Action) The action of an agent i, xi, is (un)informative

if that agent’s signal, si, can (not) be inferred by observing xi

We can now describe the decision rule for each individual by employing an approach in-

troduced by Acemoglu et al. (2011) which established that posterior beliefs can be expressed

as an additive decomposition of private beliefs and social beliefs. An individual’s private

belief is defined as the probability P (ω = A | si) and their social belief as P (ω = A | Oi).

The following result is a modification of Proposition 2 in Acemoglu et al. (2011) which ac-

commodates our tie-breaking assumption and yields a type-dependent decision rule, where

an individual’s type is their private signal.

8This assumption is also made in Anderson and Holt (1997), and, while not entirely innocuous, it
appears to have been supported by experimental findings that individuals have a tendency to overweight
their private signal relative to information obtained through observation (Anderson and Holt, 1997; Nöth
and Weber, 2003; Goeree et al., 2007; Weizsäcker, 2010). A common alternative assumption is to suppose
that individuals randomize over their alternatives when indifferent (Bikhchandani et al. (1992); Acemoglu
et al. (2011)).
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Proposition 1 The action of agent i, xi, satisfies the following decision rule

• If si = a,

xi =

A, if P (A | Oi) ≥ 1− q

B, if P (A | Oi) < 1− q

• If si = b,

xi =

A, if P (A | Oi) > q

B, if P (A | Oi) ≤ q

proof: All proofs are provided in online appendix B.

The form of the optimal decision rule highlights the important role that socially conveyed

information plays in influencing the decisions of individuals. Additionally, we have discussed

the possibility of information cascades in which social beliefs outweigh private beliefs to the

extent that individuals simply disregard their private information. This characterization of

the individual decision rule allows us to establish precise conditions under which an indi-

vidual’s action will be informative or uninformative. Specifically, we describe the following

property which relates the informativeness of an individuals’ action to their social belief.

Property 1 The action of an agent i, xi, is uninformative if P (A | Oi) ∈ (0, 1− q)∪ (q, 1);

otherwise, it is informative

This property follows directly from the decision rule in Proposition 1 since, for extreme

levels of social belief, an agent makes the same choice regardless of their private signal. To

better understand how cascades and uninformative actions affect social learning in various

network structures, we first consider what criteria must be met in order for a cascade to

form. Specifically, we are interested in characterizing conditions under which an individual

is susceptible to falling into a cascade. The following result demonstrates that an individual

must have observed a minimum number of prior actions in order to possibly be in a cascade.

Lemma 1 For any network G, in the binary states case, an individual i can be in a cascade

only if |Oi| ≥ 2

Intuitively, an individual must have inferred enough socially conveyed information in

order for it to be rational for them to disregard own private information. While having

observed at least two prior actions is necessary for an individual to be in a cascade, it is

not sufficient. It is possible for private signals to be distributed in such a way that an

information cascade never occurs in a finite network. As an example, consider the complete

history network, GC and a sequence of private signals that continuously alternates between a
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and b. In this scenario, every agent chooses the action corresponding to their private signal,

a cascade never forms, and all actions are informative. Furthermore, it is possible, albeit less

trivial, to construct a signal sequence in such a way as to prevent the formation of a cascade

in more general sequential network structures.

It is useful at this point to define a property of network structures that will prove im-

portant going forward in our analysis. It reflects, from the perspective of the final decision-

maker, the number of nodes within the network where the action is guaranteed to be infor-

mative. We say that a network is k-informative if k < n actions coincide with private signals

regardless of the distribution of signals.

Definition 5 (k-Informative Network) A sequential network G is k-informative if the

actions of k non-final agents are guaranteed to be informative for any sequence of private

signals, 0<k<n

It is worth noting that, while this definition could be extended to allow for 0-informative

networks, these never arise in the binary states case with equal priors that we consider here;

however, in general, it is possible for a network to be 0-informative.9

In some networks, it is impossible for any non-final agent to fall into a cascade for any

signal draws. This in turn guarantees that the action of every non-final agent is informative

about their private signal and the network is (n − 1)-informative. In these networks, all

privately held information is aggregated, and the final decision maker will effectively have n

private signals at their disposal when making a decision. We say that a network with this

property is fully informative.

Definition 6 (Fully Informative Network) A sequential network G is fully informative

if the actions of all non-final agents are guaranteed to be informative for any sequence of

private signals

While the concept of k-informative and fully informative networks apply generally to

observational learning environments, it will be useful for the present analysis to describe

properties of these networks which are specific to the environment considered here. For the

binary states case with equal priors, we describe the relationship between a k-informative

network and the information structure it generates. Furthermore, since fully informative

networks are simply (n−1)-informative, this relationship extends to these network structures

as well. These properties are described formally below.

9Consider a binary states environment with asymmetric priors such that P (A) = p0 > 1/2 and signal
precision P (a | A) = P (b | B) = q < p0. In this setting, each agent i will choose action xi = A regardless
of their private signal, and therefore, all actions are uninformative. This case is outside the scope of the
present study since in sequential networks that are 0-informative, no private information is aggregated, and
no observational learning occurs.
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Property 2 A k-informative sequential network, G, generates an information structure

I(G) such that |Oi| ≤ 1 for all i ∈ N1, |Oi| ≥ 2 for all i ∈ N2, and On = {x1, x2, . . . , xn−1};
where N1 and N2 are disjoint subsets of N such that N1∪N2 = {1, 2, . . . , n−1} and |N1| = k

Property 3 A fully informative sequential network, G, generates an information structure

I(G) such that |Oi| ≤ 1 for all i ∈ {1, 2, . . . , n− 1} and On = {x1, x2, . . . , xn−1}

As previously discussed, the formation of a cascade limits the aggregation of private infor-

mation because individual actions do not inform about private signals. Then, an important

consideration for our comparison of network structures is the likelihood of cascade formation

in various structures. We begin by considering the benchmark case of the complete history

network, GC , and demonstrate that cascades can only begin at specific points in the sequence

of decision makers.

Proposition 2 In the complete history network, GC, an information cascade can start with

an agent i ≥ 3 and only if i is odd.

From Lemma 1 and Proposition 2 we can infer that the number of agents with which a

cascade can begin depends on the structure of the network. This raises a question about how

more complex changes in the network, and, more specifically, changes in the number and

location of these points at which cascades can begin may affect a network’s susceptibility

to cascade formation. This is particularly important in the present environment given that

information cascades are not necessarily a permanent state. In the complete history network,

Bikhchandani et al. (1992) note that a cascade, once formed, is never reversed. While there

are many proofs of this result in the literature, this statement does not hold for more general

network structures.

Consider, as a counter example, a network comprised of two separate chains of an equal

number of individuals which eventually converge into a single chain. If every individual

observes all prior actions in their own chain but none from the other chain, these sequences

act as distinct complete history networks until they converge. It is possible that the chains

will herd on different actions. Then, if we consider the choice of the first individual after

which these isolated chains converge, this agent, observing the same number of informative

actions on respective chains, will choose the action corresponding to own private signal,

thereby ending both cascades.

3.3 Individual and Social Criteria

In this section we address the key question of this paper regarding which network structures

will yield better outcomes or greater accuracy. To address this question, we propose two
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criteria to compare outcomes across networks, which are motivated by observations that

while, for example, in some committees decisions are taken by voting and the overall accuracy

of the group matters most, in other types of organizations, it is the final decision maker whose

choice is most important.

Given the decision rule described in Proposition 1, for a fixed network structure and

signal precision, the actions of all agents are determined solely by the sequence of private

signals. Therefore, in order to compare networks based on outcomes, we consider expected

payoffs over the set of possible signal sequences which may arise. Let s = (s1, s2, . . . , sn)

denote a vector of individual signals, S(n) be the set of all possible signal sequences of length

n, and xi(s) the choice of any agent i for a given signal sequence s. Then, we define the

expected payoff of each agent i as follows.

ES(n)[ui(xi, ω;G)] =
∑

s∈S(n)

P (s)ui(xi(s), ω;G) (1)

3.3.1 Individual Criterion

In some settings it may be most important that a particular, key, individual ultimately

makes the correct decision. Consider, as an example, a business setting in which employees

sequentially make recommendations regarding an investment opportunity to their immediate

superiors. This process continues up the organizational chain until recommendations are

made to the CEO who then makes the final decision of whether or not to invest. In this

scenario, it is much more important that the final agent (the CEO) makes the correct decision

than it is that any other individual gives a correct recommendation. Therefore, an analysis

of the merits of various organizational structures should focus on the expected payoff of the

final agent in the sequence.10 Our individual criterion takes this approach by comparing

networks (of equal size) based on the expected payoff of the final agent in the sequence.11

Following equation (1), we can express the expected payoff of the final agent.

ES(n)[un(xn, ω;G)] =
∑

s∈S(n)

P (s)un(xn(s), ω;G) (2)

10While they do not model the choice of the final decision maker explicitly, Jackson et al. (2019) takes
a similar approach in examining whether it is possible for the final agent to learn the true state when
messages, which may be randomly mutated or intentionally biased, are passed along chains of individuals
which ultimately converge.

11While the individual criterion could be discussed in regards to any arbitrary agent in the sequence,
analyzing the final agent is most meaningful in economic and social settings since many organizations have
a chairperson or executive officer which makes the ultimate decision. The theory to analyze non-final agents
is a straightforward extension of the analysis presented in this paper. Individuals observing no prior actions
are covered by standard choice under uncertainty models. Other non-final agents are described by individual
criterion considering a sub-network in which they are the final agent.
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In what follows, we examine how the final agent’s expected payoff differs under various

network structures. We begin by noting that for very small groups all networks yield the

same expected payoff for the final agent.

Proposition 3 For fixed n and q, if n ≤ 3, then the expected payoff of the final agent is the

same under any possible network structure

In such small network structures, an information cascade cannot start before the final

agent, and all prior actions are guaranteed to be informative for every sequence of private

signals. Thus, the final agent always has access to n private signals when making a decision

and, regardless of the structure of the network, makes the same choice. More generally,

this reasoning can be extended to show that, for any fixed number of agents, the expected

payoff of the final agent is equal under all network structures that are fully informative.

Furthermore, as shown in the next result, for a fixed number of agents, the expected payoff

of the final agent is maximized by any fully informative network structure.

Proposition 4 For fixed n and q, the expected payoff of the final agent is maximized by any

network that is fully informative

This demonstrates that the best outcome for the final agent could be achieved by every

other member having a direct link to him. These are not, however, the kinds of network

structures we might observe in real world organizations. In environments where the final

agent has the ability to directly manipulate the structure of the network, why would she

choose to implement an organizational structure that is not fully informative?

One possible explanation is that it may be exceedingly costly, in time and effort, for

this individual to directly interact with every other person in the organization. We can

explicitly examine this scenario by modifying our individual criterion to account for the

costs of direct links to the final agent. Specifically, assume that the final agent must pay a

fixed cost, c > 0, for each incoming link. A standard measure of individual connectivity is

the in-degree of an agent which describes the number of other individuals that link directly

that agent. In our framework, the in-degree of the final agent in a network G is defined as

ηINn (G) ≡ |{j ∈ N : jn ∈ G}|. By Definition 1, the final agent must have ηINn (G) ≥ 1 in all

sequential networks. If direct links are costly, the final agent must then consider the cost of

maintaining additional links relative to their expected benefits. This tradeoff is captured by

the following expression of the final agent’s utility, ũn, which is a modification of our earlier

expression for the expected payoff of the final agent.

ES(n)[ũn(xn, ω;G)] =
∑

s∈S(n)

P (s)un(xn(s), ω;G)− cηINn (G) (3)
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When links are costless, Proposition 4 demonstrates that the expected payoff of the final

agent is maximized by any network structure that is fully informative. In the presence

of sufficiently costly direct links, there is a unique network structure that maximizes the

expected payoff of the final agent. This network generates an information structure with

Oi = ∅ for i ∈ {1, 2, . . . , n − 2}, On−1 = {x1, x2, . . . , xn−2}, and On = {x1, x2, . . . , xn−1},
and therefore, is (n − 2)-informative. This structure minimizes the expected loss over all

networks which are not fully informative since at most one private signal cannot be inferred.

Additionally, it minimizes the link costs to the final agent by having her interact directly

with only one prior agent. Returning to our CEO story, we might think of this network as

one where the CEO hires an assistant to speak with each employee directly and then advise

the CEO on the best course of action.

3.3.2 Social Criterion

On the other hand we are interested in taking a standard welfare analysis approach to de-

termine the network structure which maximizes aggregate expected payoffs. Indeed, a social

planner would be interested in structuring a network that aggregates private information in

such a way as to maximize the aggregate expected payoffs of all individuals. The overall

accuracy of all members of the organization or committee is essential when decisions are

taken by voting. Let x = (x1, x2, . . . , xn) denote the vector of all individual choices. Then,

the social criterion compares network structures based on aggregate expected payoffs which

can be expressed as follows:

ES(n)[U(x, ω;G)] =
∑

s∈S(n)

P (s)
n∑

i=1

ui(xi(s), ω;G) (4)

Changes in the network structure, G, affect observational learning and individual choices

through changes in the information structure, I(G), since individuals observing different

sets of prior actions face inherently different choice problems. Furthermore, the formation

of a cascade, the likelihood of which differs under various structures, limits the amount of

information some individuals are able to infer from observing past actions. To understand

the welfare impacts of these various network effects, we begin by comparing the expected

payoffs of individuals in different positions within a fixed network.

As previously indicated, individuals with |Oi| ≤ 1 always choose the action that corre-

sponds to their private signal and have expected payoff:

ES(n)[ui(xi, ω;G)] = q

[
n−1∑
r=0

(
n− 1

r

)
qr(1− q)n−1−r

]
V, if |Oi| ≤ 1 (5)
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For individuals with |Oi| = 2, both actions observed are guaranteed to be informative for

any sequence of private signals. In any event where these actions differ, the agent’s social

belief is P (A | Oi) = 1/2 and they choose the action corresponding to their private signal.

However, if the two observed actions coincide, agent i falls into a cascade and imitates the

action taken by the two observed agents. Therefore, we can express the expected payoff of

any individual with |Oi| = 2 as follows:12

ES(n)[ui(xi, ω;G)] =

[(
q2 + 2q2(1− q)

) n−3∑
r=0

(
n− 3

r

)
qr(1− q)n−3−r

]
V, if |Oi| = 2 (6)

Direct comparison of Equations (5) and (6) reveals that, regardless of the structure of the

network, if there is an individual who observes exactly two actions, he is strictly better off,

in expectation, than individuals observing zero or one prior action.

Proposition 5 For any network, G, and any agents i and j such that |Oj| ≤ 1 and |Oi| = 2,

ES(n)[ui(xi, ω;G)] > ES(n)[uj(xj, ω;G)]

Comparisons between two agents i and j such that |Oi| > |Oj| = m for m ≥ 2 are less

straight forward. While it is true that individuals are better off with more information,

observing additional actions does not always imply that more information is inferred since

some of these actions may be uninformative. However, what we can say with certainty is that

individuals are weakly better off than those whose actions they observe.13 The underlying

intuition of this result is that they are better off ex ante because, for every sequence of

private signals, they must have at least as much information when making their decision.

Proposition 6 For any network, G, and any two agents i and j such that xj ∈ Oi,

ES(n)[ui(xi, ω;G)] ≥ ES(n)[uj(xj, ω;G)]

The intuition of this result implies that in the complete history network, beginning with

the third agent, non-final agents are better off in expectation than non-final agents in a

fully informative network. We can show that, for n ≥ 4, these improvements outweigh the

12As shown in the proof of Proposition 5, Equation (5) can be reduced to qV and Equation (6) can be
reduced to [q2 + 2q2(1− q)]V .

13Prior literature has described a similar improvement principle which details the improvement in an
individual’s ex ante expected payoff relative to one of their neighbors whose action they observe. For a
comprehensive discussion of the improvement principle and its importance in the study of social learning in
networks, see, for example, Acemoglu et al. (2011), Lobel and Sadler (2015), and Golub and Sadler (2016).
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increase in expected payoff to the final agent, and therefore, aggregate expected payoffs are

higher in the complete history network than in fully informative networks.

Proposition 7 Aggregate expected payoffs are at least as large in the complete history net-

work as in any fully informative network and strictly greater if n ≥ 4.

We therefore note the tradeoff between the expected payoff of the final agent and that of the

group overall. A fully informative network provides the most independent private signals to

the final agent; however this comes at the cost of this information being unavailable to any

intermediate agents, thereby reducing their expected earnings.14.

4 Experimental Design

In this section, we describe the design and procedures of our experiment aimed to test

theoretical predictions. We employ two treatment variables. First, we vary the network

structure, examining the three structures shown in Figure 1. Network 1 is the complete

Figure 1: Experimental Networks
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history network and Network 3 is fully informative. We can therefore directly examine our

predictions about the tradeoff between the payoff of the final agent and the aggregate group

14An illustration of this tradeoff is presented in Appendix A Figure 5
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payoff. Network 2 is not the complete history network, but it is outcome equivalent to

Network 1 under the tie-breaking assumption discussed earlier. The selected networks allow

us to examine the effects of network structure and compare observed behavior with our

theoretical results discussed in Section 3.

The second experimental treatment variable is the assignment method to positions within

the network. As a control, subjects are assigned to positions randomly. A treatment variation

here is the endogenous assignment which is implemented via an auction-type allocation

mechanism developed for this setting. Although, unlike typical auctions, the number of

bidders is equal to the number of positions, so everyone is guaranteed to be assigned, our

mechanism allows us to elicit subjects’ evaluations of the expected payoff premiums of being

in later positions. Specifically, in a fully informative network, the final agent’s expected

payoff dominates any earlier agent’s, and in the complete history network, expected payoff

is weakly increasing in the number of observed actions. Endogenous assignment treatments,

employing the allocation mechanism described in subsection 4.2, allow us to investigate

subjects’ beliefs manifested in their bidding behavior. The endogenous allocation stage

treatments are added for Networks 1 and 3, our main networks of interest. In addition to

investigating subjects’ demand for information and anticipated benefits of occupying specific

positions we are interested in the potential impact of heterogeneity.

4.1 Network Structures and Experimental Parameters

We selected networks comprised of five players because they are large enough for social learn-

ing to affect individual decisions (thus allowing us to test predictions) but small enough to

avoid additional complexity. The specific networks chosen represent important structures

discussed in theoretical analysis in Section 3. Network 1 is the baseline, complete history net-

work, in which each individual observes the actions taken by everyone before them. Network

3 is a fully informative network structure where the final agent learns all five independent

signals. Network 2, while distinct from Network 1, produces theoretically identical choices

for each position within the network for every possible sequence of private signals. Thus,

any differences in outcomes between Network 1 and Network 2 may indicate a behavioral

effect arising from a change in the network structure, including non-Bayesian beliefs.

As described in Section 3, two possible events, A and B, are equally likely to occur. The

payoff for making the correct choice is $9.00. To determine the parameter value for signal

precision q, we obtained theoretical expected payoffs across Networks 1-3. Since the signal

is informative, the possible range of values of q is (1
2
, 1). Figure 2 shows the difference in

the ex ante expected payoffs for the final agent (individual criterion) and the group (social
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criterion) as a function of the signal precision.15

Figure 2: Difference in Expected Payoffs by Signal Precision
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Since Network 1 and Network 2 produce theoretically identical choice sequences, the

difference in expected payoffs is zero in both cases. Comparing Network 1 and Network

3, we see that, as expected, Network 3 yields a higher payoff to the final agent, while

Network 1 generates higher group payoff. For both criteria, the difference is maximized in

the same neighborhood of q, and based on the graphs we selected the value q = 0.7.16 While

the actual value of difference maximizing signal precision is slightly higher in both cases,

we round down for the following reasons. First, for subject understanding, it is simpler

than presenting a more precise but complex number. Second, even greater than 0.7 signal

precision will increase the likelihood of uninteresting cases – signal draws where actions

become uninformative very early. Lastly, if signals are overly informative, subjects might be

uninterested in social learning and ignore prior actions, which would make it more difficult

for us to test our theory, including the consistency with the tie breaking assumption. Since

our primary goal is to examine how changes in network structure affect social learning, 0.7

should provide a good environment and the right balance between above considerations.

Overall, this choice of signal precision should give our experiment the best opportunity to

15For all figures, amounts are in cents and correspond to our experimental parameter of $9 or 900 cents
payoff for the correct choice.

16We assigned more weight to the optimal q for the difference in the payoffs of the final agent since testing
that difference is a greater challenge. The magnitude of the difference is less than 20 cents which is unlikely
to return statistical significance given random signal draws and possible deviations and heterogeneity of
behavior. We could not increase the overall payoff given standard earning rates for the experiments at
XS/FS experimental lab as well as budgetary considerations.
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investigate treatment effects.

4.2 Endogenous Position Assignment

In our main treatments, positions within the networks are assigned randomly once subjects

have been matched into groups of five. This corresponds to the standard convention in

prior information cascade and herding literature which assumes that the sequence in which

individuals act is exogenously determined.17 For our endogenous assignment treatments,

network positions are allocated via an auction allocation mechanism. At the beginning of

each round, after new groups of five have been formed, subjects participate in an auction to

determine their positions within the network. The auction mechanism was designed for our

setting with the main objective that it reveals each subject’s valuations of payoff premiums

of all positions.

Subjects are given an endowment of 100 cents ($1) and asked to submit a bid between 0

and 100 cents for each of the five positions in the network structure. This results in a total

of 25 bids submitted within each group, each corresponding to a unique subject-position

pair. The highest among these is identified and that subject is assigned to that position. All

bids for that position and also by that subject are then removed from further consideration.

There are then 16 subject-position bids remaining. The highest among these is identified and

that subject is assigned to that position, leaving 9 remaining bids. This process is repeated

until all subjects have been assigned a position in the network. Subjects pay a price equal

to the next highest bid, among all 25 of the originally submitted bids, for the position they

are assigned. In the event that a subject submits the lowest bid for their assigned position,

they pay a price of zero. Any remaining balance from their bidding endowment is added to

their earnings for the round.

Examining subjects’ bidding provides insights into the degree to which they understand

the value of information and the benefit afforded to later decision makers. The ex ante

expected payoffs for every network-position are shown in Figure 3. We see that there is a

premium to acting later in the sequence since these individuals are able to infer additional

information by observing earlier choices. We expect that bids are non-decreasing in position

and outline risk neutral bidding below.

Unlike most auctions, our position allocation mechanism has the same number of bidders

and positions, so every subject is guaranteed to be assigned a position within the network.

Therefore the valuation of each position by risk neutral subjects is the premium that this po-

17Exogenous order of decisions is explicit in the original formulation of social learning models (Bikhchan-
dani et al., 1992; Banerjee, 1992), and this assumption was subsequently adopted by experimental studies
(e.g., Anderson and Holt (1997); Nöth and Weber (2003); Çelen and Kariv (2004a, 2005)).
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Figure 3: Individual Expected Payoffs
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sition is expected to generate compared to position(s) with no opportunity for observational

learning. For example, in Network 1, the expected payoff is 630 in positions 1 and 2 (0 and

1 observed actions respectively), therefore the expected premium is 76 for positions 3 and 4,

and it is 107 for position 5. In equilibrium subjects bid own valuations for the position, so

agents will bid 0 for positions 1 and 2 and respective premiums for the later positions. In

the theoretical benchmark case of homogeneous risk neutral agents, bids for all positions will

be tied (broken randomly), effectively resulting in random assignment while allowing us to

elicit valuations, which is our main objective. The assignment process among heterogeneous

subjects during the experiment will reflect their likely heterogeneous valuations and bidding

which may be affected by their risk preferences, understanding of the environment and the

advantage of later positions, and other behavioral phenomena.

4.3 Treatments

Based on network structures and random versus endogenous position assignment, we con-

ducted five treatments. The different treatments, as well as the number of sessions and

subjects for each, are shown in Table 1. For the remainder of the paper we refer to network

and position assignment conditions using the treatment abbreviations shown in Table 1.
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Table 1: Experimental Treatments

Treatments Sessions Subjects
Network 1: Exogenous (N1) 2 40
Network 2: Exogenous (N2) 2 35
Network 3: Exogenous (N3) 2 40
Network 1: Endogenous (N1A) 3 50
Network 3: Endogenous (N3A) 3 50
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4.4 Procedures

All experimental sessions were conducted at the XS/FS laboratory at Florida State Univer-

sity using z-Tree (Fischbacher, 2007). A total of 215 subjects participated in 12 sessions

with each subject participating in only one session. All participants were recruited using

ORSEE (Greiner, 2015) from a pool of FSU students who had previously registered to par-

ticipate in experiments. Upon arrival, subjects were seated at private computer terminals.

At the beginning of each session, instructions were distributed and then read aloud by the

experimenter.18 Additionally, prior to the beginning of the experiment, subjects completed

a practice stage to familiarize themselves with the program interface. In endogenous as-

signment treatments subjects also received instructions and illustration of the allocation

mechanism.

At the beginning of each round, subjects were matched into groups of five and assigned to

positions within a network. Prior to making a decision, each subject was given their private

signal that round, A or B, and knew that it corresponds to the true state with probability

0.7. Events and private signals were randomly generated prior to the experiment; summary

statistics for the signal sequences are provided in Appendix C. Additionally, subjects were

shown the choices made by others in their group that acted before them (if any) as specified

by the network structure. Subjects made decisions in sequence, according to their position

in the network, with their sole task being to make a prediction about which of these events

had occurred.

A round ended after every subject has made a decision. Subjects were then told which

of the two events actually occurred and informed about their earnings. Subjects earned

$9 for the round if their choice corresponded to the event and nothing otherwise.19 Each

experimental session consisted of seven decision making rounds. In each session, subjects

interacted within the same network structure in all rounds, although their position within

the network might have changed across rounds. Groups were randomly rematched before

the start of each round.

After all seven rounds of the main part of the experiment had been completed, subjects

participated in the (over)confidence elicitation instrument. The instrument was designed for

this study to investigate whether subjects’ consistency with Bayesian updating and propen-

sity for observational learning are affected by their general confidence in their knowledge.20

18Sample experimental instructions are available in online Appendix C.
19The experimental findings of Anderson (2001) suggest that this is more than sufficient to induce subjects

to approach the task seriously.
20Our instrument is an improvement on select existing confidence elicitation tasks as it allows mea-

suring subjects’ assessment of the precision of their knowledge and provides a continuous measure of
(over)confidence. We find evidence that confidence affects decisions and consider using this data and re-
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At the end of the experiment, one round was randomly selected for payment. Each session

lasted between 60 and 90 minutes. On average, subjects earned $14.48 including a $7 show

up payment.

5 Results

5.1 Consistency with Bayesian Choices

We start with noting the consistency of choices with theory. Since individual and group

payoffs depend on randomly drawn signal sequences, we compare observed data to simula-

tions of Bayesian agents. Thus, our hypotheses are whether subjects’ decisions are consistent

with actions of simulated Bayesian agents conditional on experimental signal draws. Table

2 shows that, overall, about 15% of choices are not consistent with the benchmark of all

Bayesian agents. These deviations lead to efficiency loss which persists even under a more

favorable evaluation paradigm: where we evaluate consistency with Bayesian choice based

on experimental history. The loss of efficiency caused by the accumulation of “incorrect”

choices accounts for only 0-4%, and the efficiency loss remains at 12%.

Table 2: Experimental Choices Consistent with Bayesian Updating

N1 N2 N3 N1A N3A Total
All

Bayesian
233 204 250 291 309 1287

(0.8321) (0.8327) (0.8929) (0.8314) (0.8829) (0.8551)

Conditional
on History

242 215 250 304 318 1329
(0.8643) (0.8776) (0.8929) (0.8686) (0.9086) (0.8831)

Result 1 About 15% of choices are not consistent with Bayesian predictions

To investigate the causes of efficiency loss we first explore the tie-breaking assumption

which states that, in the case of a 0.5 posterior, an agent follows own signal. Table 3 reports

the frequency of such behavior.

We compare observed frequencies with two alternative benchmark frequencies: 0.5, which

is consistent with the agent flipping a coin when posterior belief is 0.5, and 1, which indi-

cates consistency with theoretical assumption. For all treatments, the observed frequency

is significantly different from 1 (p < 0.05). At the same time, observed frequency is also

significantly different than 0.5 (p < 0.05) in all except two treatments (N1: p = .152; and

N2: p = .138). There is indeed a tendency to bias the tie breaking choice towards own

sults in a follow up paper.
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Table 3: Experimental Choices Consistent with Tie Breaking Assumption

N1 N2 N3 N1A N3A Total
Posterior 0.5 39 16 52 50 62 219
Consistent 24 11 41 33 44 153
Frequency (0.6154) (0.6875) (0.7885) (0.6600) (0.7097) (0.6986)

signal compared to a random draw, however the assumption of going with own signal is not

supported.

Result 2 The tie-breaking assumption is not supported by data

A posterior of 0.5 can only occur for an odd number of observed informative actions. So

for treatments N3 and N3A all relevant observations are only when |Oi| = 1 (positions 3 and

4), and, as indicated above, it is significantly different from both frequencies, 0.5 and 1, of

going with own signal. Table 4, below, reports the frequency of breaking the tie in favor of

own signal for treatments N1, N2, and N1A. For Network 1 (N1 and N1A) the 0.5 posterior

can occur for positions 2, 4, and 5. For Network 2 (N2) it can occur only for positions 4 and

5. In all three of these treatments, position 5 needs to be treated with caution since there are

only 2-3 relevant observations for each network as reported in Table 4. The results indicate

that the propensity to break the tie in favor of own signal is decreasing in the number of

observed actions.

Table 4: Choices Consistent with Tie Breaking Assumption by Number of Observed Actions

Treatment
Number of Observed Actions

1 3 4

N1
Posterior 0.5 21 15 3
Consistent 18 6 0
Frequency (0.8571) (0.4000) (0.0000)

N2
Posterior 0.5 - 14 2
Consistent - 10 1
Frequency - (0.7143) (0.5000)

N1A
Posterior 0.5 27 21 2
Consistent 23 10 0
Frequency (0.8519) (0.4762) (0.0000)

Result 3 Observed propensity to break a tie in favor of own signal decreases with the number

of observed actions
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For treatments N1 and N1A, when only one action is observed, the frequency of going

with own signal is about 0.85 which is significantly different from 0.5 in both treatments

(p < 0.01). Furthermore, this frequency is not significantly different from 1 in the N1A

treatment. However, when three actions are observed, the likelihood of going with own

signal is not significantly different from 0.5, and is, in fact, lower than 0.5; so, the propensity

switches towards giving more weight to social learning and going against own signal. We find

additional support for Result 3 by testing pairwise comparisons of frequencies of following

own signal in case of 0.5 posterior. That frequency is significantly greater in cases when one

action is observed than in cases when three or four actions are observed (p < .01; using both

proportions and t-test). In all but one cases of 0.5 posterior when 4 actions are observed

subjects went against own private signal. Pooling together N1 and N1A data also shows a

(marginally) significant difference between positions 3 and 4 (p < .06; using both proportions

and t-test).

5.2 Accuracy of choice

Inconsistency with Bayesian decision making manifests as a loss in payoffs. Table 5 reports

the difference between observed payoffs and Bayesian payoffs for each treatment and the

number of observed actions. With only three (not significant) exceptions, all numbers in the

table have a negative sign. Furthermore, all numbers where social learning matters (number

of observed actions at least two) have a negative sign and some are statistically significant

as indicated in the table. Payoff losses become significant for network positions with two

observable actions, which is the first position where a subject can disregard own private

signal based on observing the actions of others. We therefore conclude that the complexity

of social information aggregation leads to payoff loss.

Result 4 There is, on average, payoff loss compared to Bayesian benchmark. This loss is

more pronounced when social beliefs can dominate private beliefs.

Table 10, in Appendix A, confirms that the payoff loss is consistent with deviations from

Bayesian updating. Furthermore, Table 5 indicates that payoff loss is pronounced for the

final agent. The largest and most significant deviation is observed for the final agent in N3A.

As explained in more detail in the next section, with endogenous assignment, subjects who

are better at understanding the advantage of the final position (recall that N3 is the most

favorable to the final agent) self select to be in the final position. Earlier positions end up

being filled by subjects with less understanding and greater noise in decisions. We do not

find significant differences in the payoff of the final agent between treatments. The closest
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Table 5: Difference in Earnings (Experimental minus All Bayesian)

Treatment
Number of Observed Actions

0 1 2 3 4
N1 16.07 16.07 -80.36† -48.21 -80.36†

(27.44) (36.65) (51.59) (58.14) (47.59)
N2 -9.18 - -91.84 -73.47 -128.57∗∗

(30.90) - (63.24) (51.54) (55.19)
N3 -40.18† 8.04 - - -64.29

(25.80) (31.42) - - (44.49)
N1A -12.86 -38.57 -102.86∗ -12.86 -51.43

(34.07) (39.54) (52.91) (50.29) (48.84)
N3A -12.86 -6.43 - - -154.29∗∗∗

(18.27) (26.83) - - (40.63)

Average, robust standard errors (clustered at subject level) reported in parentheses
† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

to the standard significance level difference (p < 0.1) is between treatments N3 and N3A

indicting the endogenous selection effect.

Result 5 Observed accuracy of choices of the final agent in networks N3 and N3A is not

greater than in other networks for both Bayesian and experimental data.

The hypothesis of higher payoff to the final agent in N3 and N3A compared to other

networks is among most challenging to evaluate experimentally since the theoretical expected

difference in payoffs is only 15.88 cents. Given random signal draws, even decisions of

Bayesian agents do not result in manifestation of ex ante expected differences in payoffs

as can be seen from Table 12 in Appendix A. Therefore, it is not that this result is not

supported by data, but our data, given random signal draws realizations, does not allow us

to statistically test it. An experimental design aimed specifically at studying the payoffs of

the final agents may employ larger networks and the parameters resulting in greater payoff

differences to give theory a statistical chance to be tested.

We can, however, use our setting to test the underlying property determining the perfor-

mance of the final agent. Table 6 presents two panels that report the effect of the number of

observed informative actions on individual earnings. The upper panel is based on simulated

data for Bayesian agents and serves as hypotheses for the lower panel that reports experi-

mental data. Table 6 indicates that, except for treatments with endogenous assignments, the

payoff is increasing in the number of observed informative actions as predicted by theory. In

the endogenous assignment treatments early choice inconsistencies erode the payoff to the

final agent.
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Table 6: Effect of Observed Informative Actions on Earnings

(a) All Bayesian

N1 N2 N3 N1A N3A
Number of Informative 19.87 19.30 36.01∗∗ 26.55† 38.57∗∗∗

Actions Observed (18.47) (18.40) (16.19) (16.68) (14.55)

Constant 673.10∗∗∗ 654.70∗∗∗ 612.50∗∗∗ 645.70∗∗∗ 604.30∗∗∗

(38.61) (36.74) (30.72) (35.29) (27.60)

(b) Experimental

N1 N2 N3 N1A N3A
Number of Informative -23.08 -17.21 27.98∗∗ 8.15 1.67
Actions Observed (21.00) (23.07) (13.11) (18.00) (15.19)

Constant 711.30∗∗∗ 646.30∗∗∗ 596.40∗∗∗ 633.90∗∗∗ 610.00∗∗∗

(42.71) (41.92) (30.15) (38.28) (24.96)

Robust standard errors (clustered at subject level) reported in parentheses
† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We next investigate the accuracy of decisions of the group. In this regard, Networks

1 and 2 (treatments N1(A) and N2) are predicted to perform better. Figure 4 shows the

distributions of the number of correct choices in a group across treatments. Despite random

signal draws, distributions for All Bayesian agents reflect theory: distributions for N1, N2

and N1A are skewed to the right compared to N3 and N3A. Using correct unanimity as the

measure of group success, for Bayesian agents, the frequency is expected to be about 0.5 for

N1(A) and N2 and only about 0.23 for N3(A). Although experimental data indicates lower

accuracy overall, the frequency of correct unanimity is greater in treatments N1(A) and N2

compared to N3(A).

Formal tests of network comparison are presented in Table 7. The upper panel of the table

indicates the differences between treatments in proportions of groups that were unanimously

correct using decisions of All Bayesian agents. As predicted by theory N1 and N2 perform

better than N3 (including with endogenous entry). The lower panel of the table is based on

experimental data and shows that, with the exception of comparisons for N3A, theoretical

predictions are supported. These results confirm that network properties outlined in Section

3 lead to better group performance. We next turn to a more detailed analysis of networks

with endogenous position assignment.

Result 6 Theoretical predictions for group performance are supported by data, except for

treatment N3A. Specifically, groups in treatments N1(A) and N2 are more accurate than

those in N3.
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Table 7: Difference in Proportion of Groups with Five Correct Choices

(a) All Bayesian

N2 N3 N1A N3A
N1 0.0459 0.3036∗∗∗ 0.0214 0.3071∗∗∗

(0.0977) (0.0873) (0.0895) (0.0834)
N2 - 0.2577∗∗∗ -0.0245 0.2612∗∗∗

- (0.0910) (0.0931) (0.0873)
N3 - - -0.2821∗∗∗ 0.0036

- - (0.0822) (0.0755)
N1A - - - 0.2857∗∗∗

- - - (0.0780)

(b) Experimental

N2 N3 N1A N3A
N1 -0.0153 0.2143∗∗ 0.0214 0.0929

(0.0959) (0.0829) (0.0871) (0.0852)
N2 - 0.2296∗∗∗ 0.0367 0.1082

- (0.0869) (0.0909) (0.0891)
N3 - - -0.1929∗∗ -0.1214†

- - (0.0772) (0.0750)
N1A - - - 0.0714

- - - (0.0796)

Cells denote difference in proportions of row minus column

Standard errors reported in parentheses
† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 4: Number of Correct Choices in a Group
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5.3 Demand for Information (Positions within Network)

Providing subjects with the mechanism to select into specific positions resulted in changed

assignments compared to exogenous random method. The average number of different posi-

tions held by a subject during a session under exogenous assignment method was higher than

in endogenous treatments (3.90 and 3.03, respectively). Table 8 reports the distribution of

the number of different positions held by subjects across all rounds. With endogenous as-

signment the number of different positions occupied by a subject within a session decreased

(p < 0.01) indicating heterogeneity in bidding and selection.

Table 8: Number of Different Positions (by subject within session)

1 2 3 4 5
Exogenous 0 3 28 61 23

(0.0000) (0.0261) (0.2435) (0.5304) (0.2000)

Endogenous 10 17 39 28 6
(0.1000) (0.1700) (0.3900) (0.2800) (0.0600)

While there are no subjects who experienced only one position in exogenous treatments,

the number of individuals who ended up in the same position in all decision rounds is positive

in endogenous assignment treatments. Some noise in allocations in endogenous assignment

treatments is expected and caused by occasional ties among bidders for later positions,

consistently with theory, as well as bidding noise. Generally, in the endogenous assignment

treatments we see the frequencies skewed towards a less diverse position distribution. Overall,

this indicates heterogeneity in competitiveness for positions and recognition of the benefits
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of social learning on behalf of the majority of subjects.

Result 7 There is evidence of (heterogenous) demand for information in endogenous posi-

tions assignment.

Table 9 reports regression analysis of subjects’ bids submitted for the network positions.

Consistent with theory, subjects show demand for observational learning. Bid amounts

increase with the size of the observation set. The structure of the network affects the bids,

which are slightly greater for N3A. The benefit to the final agent in N3A is recognized by

subjects (p < 0.1).21 There is a slight tendency by subjects to pay premium for observing

only one action. Recall that in case of 0.5 posterior, subjects’ decision propensity changes

with the number of observed actions. Subjects were significantly more likely to follow their

signal when only 1 action was observed, while they effectively flipped a coin (or even sided

with social beliefs against own signal) when facing 0.5 posterior after observing three or

four actions. These decisions show that there is demand for information even if in the end

subjects do not take it fully into account.

Result 8 Subjects increase their bids for positions with the number of observed actions

greater than 1. Bid premiums are consistent with expected payoff gains.

6 Conclusion

We present a theoretical framework of choice under uncertainty where, in addition to own

private signal, individuals observe previous choices of others. Our setting applies to situations

when the decision is made once, thus learning from repetition is not possible, and we use

directed networks to specify the observation sets of choices made by others. Observational

learning in this setting relies on determining whether an observed action is informative and

reveals an independent signal about the true state. We evaluate network performance using

two criteria, individual (final agent) and social (group), and show that there is a tradeoff:

properties that enhance performance under one criterion reduce the performance of the other

criterion. For example, the complete history network, where all agents make decisions in a

sequence and observe all prior actions, leads to higher social payoff. Conversely, a fully

21There is a positive premium that subjects are willing to pay to be the final agent in N3A compared
to N1A albeit under lower confidence level. The results of both regressions when errors are not clustered
on the subject level bring the significance level of extra premium of bids in N3A for the final position to
p < 0.01. There is significant heterogeneity in recognizing the benefit of being the final agent in N3A. A
subset of subjects who recognize it bid consistent with theory, while there is considerable noise and lack of
consistency for other subjects.
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Table 9: Subject Bids by Number of Observed Actions

OLS Tobit
N3A 2.96 7.44

(2.61) (7.49)

1 Observed Action 0.73† 5.03∗

(0.45) (2.68)

2 Observed Actions 4.51∗∗∗ 17.72∗∗∗

(1.43) (4.92)

3 Observed Actions 18.78∗∗∗ 36.75∗∗∗

(4.52) (8.62)

4 Observed Actions 20.35∗∗∗ 37.21∗∗∗

(4.74) (9.11)

N3A × 1 Observed Action 3.68∗∗ 5.14
(1.47) (4.08)

N3A × 4 Observed Actions 13.28∗ 15.31
(7.10) (12.12)

Constant 4.97∗∗∗ -19.20∗∗∗

(1.08) (6.34)

Robust standard errors (clustered at subject level) reported in parentheses
† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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informative network, where all agents are directly connected to the final agent, maximizes

the payoff to the final agent at the expense of group payoff.

We design an experiment to test theoretical predictions using three network structures.

We compare observed behavior to the benchmark of the performance of Bayes-rational agents

and also investigate differences between treatments. In all treatments there is efficiency loss

compared to Bayesian agents. One of the causes for deviations from Bayesian choices is

violation of a tie breaking assumption in the case of equal posterior beliefs. The data reveals

that this common assumption is not supported. Further, we find that the propensity to make

decisions under equal posteriors changes with the size of the observation set: as the number

of observed actions increases agents are more likely to go against own private signal. This

result has important implications for theoretical literature on individual decision making

with observational learning. This phenomenon suggests that if a strong consensus has not

been reached by a number of agents, subsequent decision makers may disregard their private

information and effectively erase the impact of new independent signals for future population.

We find support for our theoretical predictions regarding the relationship between net-

work structure and social criterion. Networks which perform better under the social criterion

tend to yield more accurate outcomes for groups in the experiment. Due to small magni-

tudes of payoffs and randomness of signal draws, we do not observe significant differences

in the performance of final agents between treatments for both, experimental and Bayesian-

simulated data. Despite this, we do find that the underlying property of the final agent’s

performance is supported by the data: accuracy of choice increases with the number of

informative actions observed.

In settings where participants can self select to positions within the network, more so-

phisticated agents, who understand that later positions provide greater opportunities for

observational learning, are generally more successful in getting later positions. This pushes

other agents, who are more prone to make mistakes, to earlier positions within the network.

Greater noise in decisions of earlier agents in turn erodes the benefit of observational learning

and reduces the accuracy of the final agent in networks with endogenous position assign-

ment. Examples where this phenomenon should be considered include multi-stage selection

processes, such as hiring decisions that have to be approved by several levels of personnel.

If the most sophisticated decision maker reaches the position of the CEO of the company, a

talented potential worker may not be recognized by decision makers of the early stages of the

selection process and ranked lower. Considering the propensity to disregard own signal with

the number of observed actions as described above, the CEO might just go with the rankings

received, which further highlights the importance of this phenomenon in organization design

for optimal information aggregation.
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Our results have implications for a range of social and economic settings; in particular,

committee design and decision rules. Depending on whether a choice is set by the group

(the strongest criteria being unanimous voting where every member has veto power) or by

a single decision maker, our study informs on theoretical properties as well as behavioral

consistencies that can be used in the design. The same properties of networks are also

useful to inform how one might collect or present information to the decision makers. In

the surgical procedure selection example described earlier, a person should try to talk to

independent decision makers who made their choices without sharing information with each

other. Moreover, if a person is misinformed about the structure of the network, for example

if previous choices of others were part of a complete history network or generally were not

part of a fully informative network, but are presented as the latter to the final agent, that

would reduce the accuracy of the final agent, and made him side with the choices of others

more than it is optimal. Future studies may also address settings where the final agent is

uncertain about the structure of the network.
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A Additional Tables and Figures

A.1 Social Criterion

Figure 5: Aggregate Payoff Difference

2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

Horizontal axis indicates the number of agents (n). Circles indicate the aggregate expected payoffs of all
non-final agents in the complete history network minus the aggregate expected payoffs of all non-final agents
in a fully informative network. Squares indicate the difference in the expected payoff of the final agent in
the complete history network minus the expected payoff of the final agent in the fully informative network.
All calculations assume equally likely states, signal precision q = 0.7, and V = 1 for correct choice.

A.2 Supplementary Tables

Table 10: Frequency Against All Bayesian

Treatment
Number of Observed Actions

0 1 2 3 4
N1 3 5 11 17 11

(0.0536) (0.0893) (0.1964) (0.3036) (0.1964)
N2 11 - 9 10 11

(0.1122) - (0.1837) (0.2041) (0.2245)
N3 11 13 - - 6

(0.0982) (0.1161) - - (0.1071)
N1A 7 7 16 17 12

(0.1000) (0.1000) (0.2286) (0.2429) (0.1714)
N3A 8 21 - - 12

(0.0571) (0.1500) - - (0.1714)

37



Table 11: Frequency Against Bayesian (Conditional on Experimental History)

Treatment
Number of Observed Actions

0 1 2 3 4
N1 3 5 10 13 7

(0.0536) (0.0893) (0.1786) (0.2321) (0.1250)
N2 11 - 5 9 5

(0.1122) - (0.1020) (0.1837) (0.1020)
N3 11 13 - - 6

(0.0982) (0.1161) - - (0.1071)
N1A 7 7 13 14 5

(0.1000) (0.1000) (0.1857) (0.2000) (0.0714)
N3A 8 21 - - 3

(0.0571) (0.1500) - - (0.0429)

Table 12: Difference in Proportion of Final Agents making Correct Choice

(a) All Bayesian

N2 N3 N1A N3A
N1 0.0204 -0.0179 0.0143 -0.0143

(0.0705) (0.0643) (0.0639) (0.0615)
N2 - -0.0383 -0.0061 -0.0347

- (0.0689) (0.0684) (0.0662)
N3 - - 0.0321 0.0036

- - (0.0620) (0.0596)
N1A - - - -0.0286

- - - (0.0591)

(b) Experimental

N2 N3 N1A N3A
N1 0.0740 -0.0357 -0.0179 0.0679

(0.0867) (0.0775) (0.0748) (0.0786)
N2 - -0.1097 -0.0918 -0.0061

- (0.0846) (0.0821) (0.0856)
N3 - - 0.0179 0.1036

- - (0.0723) (0.0763)
N1A - - - 0.0857

- - - (0.0735)

Cells denote difference in proportions of row minus column

Standard errors reported in parentheses
† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Online Appendix: Proofs

Proof of Proposition 1

We begin by showing that the following condition holds

P (A | Ii) ≥
1

2
⇐⇒ P (A | si) + P (A | Oi) ≥ 1

By Bayes’ rule and our assumption that both states are equally likely, we have

P (A | Ii) =
P (Ii | A)P (A)

P (Ii | A)P (A) + P (Ii | B)P (B)
=

P (Ii | A)
P (Ii | A) + P (Ii | B)

Thus, P (A | Ii) ≥ 1/2 if and only if P (Ii | A) ≥ P (Ii | B). Conditional on the true state, ω,

private signals and observed actions are independent. Therefore, for all z ∈ Ω, we have

P (Ii | z) = P (si | z)P (Oi | z)

It then follows from the preceding relations that

P (A | Ii) ≥
1

2
⇐⇒ P (si | A)P (Oi | A) ≥ P (si | B)P (Oi | B)

⇐⇒ P (Oi | A)
P (Oi | A) + P (Oi | B)

≥ P (si | B)

P (si | A) + P (si | B)

⇐⇒ P (Oi | A)P (A)

P (Oi | A)P (A) + P (Oi | B)P (B)
≥ P (si | B)P (B)

P (si | A)P (A) + P (si | B)P (B)

Applying Bayes’ rule to each side of the previous inequality, we have

P (A | Ii) ≥
1

2
⇐⇒ P (A | Oi) ≥ P (B | si)

⇐⇒ P (A | si) + P (A | Oi) ≥ 1

Suppose agent i has private signal si = a. Then, we have

P (A | Oi) ≥ 1− q ⇐⇒ P (A | Ii) ≥
1

2
=⇒ xi = A

P (A | Oi) < 1− q ⇐⇒ P (A | Ii) <
1

2
=⇒ xi = B
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Suppose agent i has private signal si = b. Then, we have

P (A | Oi) ≤ q ⇐⇒ P (A | Ii) ≤
1

2
=⇒ xi = B

P (A | Oi) > q ⇐⇒ P (A | Ii) >
1

2
=⇒ xi = A

The previous relations yield the stated decision rule. □

Proof of Lemma 1

Here, we prove the contrapositive that an individual i with |Oi| < 2 cannot possible be

in a cascade. Such an individual observes at most one prior action and, therefore, has

Oi ∈ {{A}, {B},∅}. Their social belief, P (A | Oi), is equal to q if Oi = {A}, 1 − q if

Oi = {B}, or 1/2 if Oi = ∅. In any case, the decision rule derived in Proposition 1 dictates

that they choose the action corresponding to their private signal. Therefore, there is no case

in which an individual with |Oi| < 2 falls into a cascade. □

Proof of Proposition 2

Let G = GC and suppose a cascade has not yet started (i.e., all prior actions are informative).

By Lemma 1, an information cascade can start in this network structure no earlier than

the third agent. Then, consider any agent j ≥ 4 with j being even. It is easily verified

that if agent j − 1 (which is, by definition, odd) is not in a cascade their social belief

must be P (A | Oj−1) = 1/2. It follows then that the social belief of agent j is such that

1 − q ≤ P (A | Oj) ≤ q and a cascade cannot possibly start with agent j. Therefore, in the

complete history network, GC , a cascade can start with an agent i only if i is odd. □

Proof of Proposition 3

Fix q and note that n ≥ 2 by construction. In the case of n = 2, there is a unique network

structure that generates an information structure in which O1 = ∅ and O2 = {x1}. For every
signal sequence, the final agent chooses the action that corresponds to their private signal.

In the case of n = 3, there is no longer a unique network structure. However, by Lemma 1,

in any network with n = 3, an information cascade can start no earlier than with the final

agent. Therefore, it is guaranteed that x1 and x2 are informative about their private signal

and the final agent effectively has three independent signals when making their decision.

Therefore, regardless of the structure of the network, the final agent makes the same choice

for each realization of private signals. □
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Proof of Proposition 4

Fix n and q, set V = 1, let Ĝ denote a fully informative network structure, and let G denote

an arbitrary network structure which is not fully informative. Let xn and x̂n denote the

choice of the final agent in networks G and Ĝ respectively. By Definition 6 and Property 3,

in G there must be at least one agent j ∈ N \ {n} such that |Oj| ≥ 2. Then, there must

exist a signal sequence for which the action of agent j, xj, is uninformative.

Consider a signal sequence for which the actions of m < n − 1 non-final agents are

informative in G (i.e., n − 1 − m > 0 actions are uninformative).22 Let Oi and Ôi denote

the set of actions observed by agent i in G and Ĝ respectively. In Ĝ the final agent infers an

additional n − 1 −m signals by observing the actions of other agents. For any sequence of

private signals, we define the following values, which describe the composition of information

available to the final agent in each network.

αn = |{xℓ ∈ On : xℓ = A and P (A | Oℓ) ∈ [1− q, q]}|

α̂n = |{xℓ ∈ Ôn : xℓ = A and P (A | Ôℓ) ∈ [1− q, q]}| − αn

The social belief of the final agent in network Ĝ can then be expressed as follows

P (A | Ôn) =
qαn+α̂n(1− q)n−1−αn−α̂n

qαn+α̂n(1− q)n−1−αn−α̂n + qn−1−αn−α̂n(1− q)αn+α̂n

Applying the decision rule derived in Proposition 1, the choice of the final agent in Ĝ satisfies:

• If sn = a,

x̂n =

A, if α̂n ≥ n
2
− 1− αn

B, if α̂n < n
2
− 1− αn

• If sn = b,

x̂n =

A, if α̂n > n
2
− αn

B, if α̂n ≤ n
2
− αn

Define the following, where, by construction, α̂ ≤ n− 1−m must also hold.

ZA
a =

{
α̂n : α̂n ≥ n

2
− 1− αn

}
ZA

b =
{
α̂n : α̂n >

n

2
− αn

}
ZB

a =
{
α̂n : α̂n <

n

2
− 1− αn

}
ZB

b =
{
α̂n : α̂n ≤ n

2
− αn

}
There are now multiple cases to consider. In each we will show that the expected gains (EG)

are at least as large as the expected losses (EL) for the final agent in Ĝ relative to G.

22Note that we need not consider any signal sequences for which the actions of all non-final agents are
informative since it is necessarily the case that xn = x̂n for any such sequence.
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Case 1 Suppose P (A | On) ∈ (0, 1 − q). For any sn ∈ {a, b}, xn = B and the final agent
in G makes the correct choice only if ω = B. Therefore, the final agent experiences a gain
in Ĝ if ω = A and x̂n = A. Conversely, they experience a loss if ω = B and x̂n = A. Thus,

EG =
qαn(1− q)m−αn

2

q ∑
α∈ZA

a

(
n− 1−m

α

)
qα(1− q)n−1−m−α + (1− q)

∑
α∈ZA

b

(
n− 1−m

α

)
qα(1− q)n−1−m−α


EL =

qm−αn(1− q)αn

2

(1− q)
∑

α∈ZA
a

(
n− 1−m

α

)
qn−1−m−α(1− q)α + q

∑
α∈ZA

b

(
n− 1−m

α

)
qn−1−m−α(1− q)α


The net increase in expected payoff of the final agent in Ĝ relative to G is given by:

EG− EL =
1

2

∑
α∈ZA

a

(
n− 1−m

α

)[
qαn+α+1(1− q)n−1−αn−α − qn−1−αn−α(1− q)αn+α+1

]
+

1

2

∑
α∈ZA

b

(
n− 1−m

α

)[
qαn+α(1− q)n−αn−α − qn−αn−α(1− q)αn+α

]

If ZA
a = ∅, the first sum equals zero; otherwise, it is non-negative. If ZA

b = ∅, the second

sum equals zero; otherwise it is strictly positive. Therefore, EG− EL ≥ 0.

Case 2 Suppose P (A | On) ∈ [1 − q, q]. Then, xn = A if sn = a and xn = B if sn = B,
and the final agent in G makes the correct decision only if they receive a correct signal.
Therefore, a final agent in Ĝ experiences a gain if they make a correct choice despite having
an incorrect signal. Conversely, they experience a loss if they receive a correct signal but
make an incorrect choice. Thus,

EG =
qαn(1− q)m−αn

2

(1− q)
∑

α∈ZA
b

(
n− 1−m

α

)
qα(1− q)n−1−m−α


+

qm−αn(1− q)αn

2

(1− q)
∑

α∈ZB
a

(
n− 1−m

α

)
qn−1−m−α(1− q)α


EL =

qαn(1− q)m−αn

2

q ∑
α∈ZB

a

(
n− 1−m

α

)
qα(1− q)n−1−m−α


+

qm−αn(1− q)αn

2

q ∑
α∈ZA

b

(
n− 1−m

α

)
qn−1−m−α(1− q)α


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The net increase in expected payoff of the final agent in Ĝ relative to G is given by:

EG− EL =
1

2

∑
α∈ZA

b

(
n− 1−m

α

)[
qαn+α(1− q)n−αn−α − qn−αn−α(1− q)αn+α

]
+

1

2

∑
α∈ZB

a

(
n− 1−m

α

)[
qn−1−αn−α(1− q)αn+α+1 − qαn+α+1(1− q)n−1−αn−α

]

If ZA
b = ∅, the first sum equals zero; otherwise it is strictly positive. If ZB

a = ∅, the second

sum equals zero; otherwise it is strictly positive. Therefore, EG− EL ≥ 0.

Case 3 Suppose P (A | On) ∈ (q, 1). For any sn ∈ {a, b}, xn = A and the final agent in G
makes the correct choice only if ω = A. Therefore, the final agent experiences a gain in Ĝ if
ω = B and x̂n = B. Conversely, they experience a loss if ω = A and x̂n = B. Thus,

EG =
qm−αn(1− q)αn

2

(1− q)
∑

α∈ZB
a

(
n− 1−m

α

)
qn−1−m−α(1− q)α + q

∑
α∈ZB

b

(
n− 1−m

α

)
qn−1−m−α(1− q)α


EL =

qαn(1− q)m−αn

2

q ∑
α∈ZB

a

(
n− 1−m

α

)
qα(1− q)n−1−m−α + (1− q)

∑
α∈ZA

b

(
n− 1−m

α

)
qα(1− q)n−1−m−α


The net increase in expected payoff of the final agent in Ĝ relative to G is given by:

EG− EL =
1

2

∑
α∈ZB

a

(
n− 1−m

α

)[
qn−1−αn−α(1− q)αn+α+1 − qαn−α+1(1− q)n−1−αn−α

]
+

1

2

∑
α∈ZB

b

(
n− 1−m

α

)[
qn−αn−α(1− q)αn+α − qαn+α(1− q)n−αn−α

]

If ZB
a = ∅ the first sum equals zero; otherwise it is strictly positive. If ZB

b = ∅, the second

sum equals zero; otherwise it is non-negative. Therefore, EG− EL ≥ 0.

We conclude that, in every possible case, the final agent is at least as well off in network

Ĝ as they are in G. Therefore, the expected payoff of the final agent is maximized by any

network structure that is fully informative. □

Proof of Proposition 5

Consider agents i and j such that |Oj| ≤ 1 and |Oi| = 2. The expected payoff of agent i is

given by Equation (5) and the expected payoff of agent j is given by Equation (6). By the
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binomial theorem, these expected payoffs can equivalently be expressed as follows:

ES(n)[uj(xj, ω;G)] = qV

ES(n)[ui(xi, ω;G)] = q2(3− 2q)V

Then, it is straightforward to show the following:

ES(n)[ui(xi, ω;G)]− ES(n)[uj(xj, ω;G)] = q[q(3− 2q)− 1]V

This difference is strictly positive since, by assumption, q ∈ (1/2, 1). □

Proof of Proposition 6

Fix n and q. Set V = 1, and let G be any arbitrary network structure. Consider any two

agents i and j such that i > j and xj ∈ Oi (i.e., the action of j, xj, is observed by i). Note

that agent i acts after j, observes every action j observes, and possibly observes additional

actions. Let Oi−j = Oi \ Oj denote the set of actions observed by agent i which are not

observed by agent j. For any sequence of private signals, we define the following values,

which describe the composition of information available to each agent.

mj = |{xℓ ∈ Oj : P (A | Oℓ) ∈ [1− q, q]}|

mij = |{xℓ ∈ Oi−j : P (A | Oℓ) ∈ [1− q, q]}|

αj = |{xℓ ∈ Oj : xℓ = A and P (A | Oℓ) ∈ [1− q, q]}|

αij = |{xℓ ∈ Oi−j : xℓ = A and P (A | Oℓ) ∈ [1− q, q]}|

The social belief of agent i can then be expressed as follows

P (A | Oi) =
qαj+αij(1− q)mij+mj−αj−αij

qαj+αij(1− q)mij+mj−αj−αij + qmij+mj−αj−αij(1− q)αj+αij

Applying the decision rule derived in Proposition 1, the choice of agent i satisfies:

• If si = a,

xi =

A, if αij ≥ mj+mij−1

2
− αj

B, if αij <
mj+mij−1

2
− αj

• If si = b,

xi =

A, if αij >
mij+mj+1

2
− αj

B, if αij ≤ mij+mj+1

2
− αj
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Define the following, where, by construction, αij ≤ mij must also hold:

ZA
a =

{
αij : αij ≥

mij +mj − 1

2
− αj

}
ZA
b =

{
αij : αij >

mij +mj + 1

2
− αj

}
ZB
a =

{
αij : αij <

mij +mj − 1

2
− αj

}
ZB
b =

{
αij : αij ≤

mij +mj + 1

2
− αj

}
There are now multiple cases to consider. In each we will show that the expected gains (EG)

are at least as large as the expected losses (EL) for agent i relative to agent j.

Case 1 Suppose P (A | Oj) ∈ (0, 1 − q). For any sj ∈ {a, b}, xj = B and agent j makes
the correct choice only if ω = B. Therefore, agent i experiences a gain if ω = A and xi = A.
Conversely, they experience a loss if ω = B and xi = A. Thus,

EG =
qαj (1− q)mj−αj

2

q ∑
α∈ZA

a

(
mij

α

)
qα(1− q)mij−α + (1− q)

∑
α∈ZA

b

(
mij

α

)
qα(1− q)mij−α


EL =

qmj−αj (1− q)αj

2

(1− q)
∑

α∈ZA
a

(
mij

α

)
qmij−α(1− q)α + q

∑
α∈ZA

b

(
mij

α

)
qmij−α(1− q)α


Then, the net increase in expected payoff of agent i relative to agent j is given by:

EG− EL =
1

2

∑
α∈ZA

a

(
mij

α

)[
aα+αij+1(1− q)mij+mj−α−αj − qmij+mj−α−αij (1− q)α+αj+1

]
+
1

2

∑
α∈ZA

b

(
mij

α

)[
qα+αj (1− q)mij+mj+1−α−αj − qmij+mj+1−α−αj (1− q)α+αj

]

If ZA
a = ∅, the first sum equals zero; otherwise, it is non-negative. If ZA

b = ∅, the second

sum equals zero; otherwise it is strictly positive. Therefore, EG− EL ≥ 0.

Case 2 Suppose P (A | Oj) ∈ [1 − q, q]. Then, xj = A if sj = a and xj = B if sj =

B, and agent j makes the correct choice only if they receive a correct signal. Therefore,

agent i experiences a gain if they make a correct choice despite having an incorrect signal.

Conversely, they experience a loss if they receive a correct signal but make an incorrect

choice. Thus,
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EG =
qαj (1− q)mj−αj

2

(1− q)
∑

α∈ZA
b

(
mij

α

)
qα(1− q)mij−α


+

qmj−αj (1− q)αj

2

(1− q)
∑

α∈ZB
a

(
mij

α

)
qmij−α(1− q)α


EL =

qαj (1− q)mj−αj

2

q ∑
α∈ZB

a

(
mij

α

)
qα(1− q)mij−α


+

qmj−αj (1− q)αj

2

q ∑
α∈ZA

b

(
mij

α

)
qmij−α(1− q)α


Then, the net increase in expected payoff of agent i relative to agent j is given by:

EG− EL =
1

2

∑
α∈ZA

b

(
mij

α

)[
qα+αj (1− q)mij+mj−α−αj − qmij+mj+1−α−αj (1− q)α+αj

]
+

1

2

∑
α∈ZB

a

(
mij

α

)[
qmij+mj−α−αj (1− q)α+αj+1 − qαj+α+1(1− q)mij+mj−α−α+j

]

If ZA
b = ∅, the first sum equals zero; otherwise it is strictly positive. If ZB

a = ∅, the second

sum equals zero; otherwise it is strictly positive. Therefore, EG− EL ≥ 0.

Case 3 Suppose P (A | Oj) ∈ (q, 1). For any sj ∈ {a, b}, xj = A and agent j makes the
correct choice only if ω = B. Therefore, agent i experiences a gain if ω = B and xi = B.
Conversely, they experience a loss if ω = A and xi = B. Thus,

EG =
qmj−αj (1− q)αj

2

(1− q)
∑

α∈ZB
a

(
mij

α

)
qmij−α(1− q)α + q

∑
α∈ZB

b

(
mij

α

)
qmij−α(1− q)α


EL =

qαj (1− q)mj−αj

2

q ∑
α∈ZB

a

(
mij

α

)
qα(1− q)mij−α + (1− q)

∑
α∈ZB

b

(
mij

α

)
qα(1− q)mij−α


Then, the net increase in expected payoff of agent i relative to agent j is given by:

EG− EL =
1

2

∑
α∈ZB

a

(
mij

α

)[
qmij+mj−α−αj (1− q)α+αj+1 − qα+αj+1(1− q)mij+mj−α−αj

]
+

1

2

∑
α∈ZB

b

(
mij

α

)[
qmij+mj+1−α−αj (1− q)α+αj − qα+αj (1− q)mij+mj+1−α−αj

]

If ZB
a = ∅, the first sum equals zero; otherwise, it is strictly positive. If ZB

b = ∅, the second

sum equals zero; otherwise, it is non-negative. Therefore, EG− EL ≥ 0.
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We conclude that, in every possible case, the expected payoff of agent i is at least as large

as that of agent j. Therefore, every agent is weakly better off in expectation than any agent

whose action they observe. □

Proof of Proposition 7

Fix n and q, set V = 1, let GC denote the complete history network, and let Ĝ denote a

fully informative network. We can express aggregate expected payoffs in Ĝ as follows:

If n is odd,

E[U ; Ĝ] = (n− 1)q + q

(
n− 1
n−1
2

)
[q(1− q)]

n−1
2 +

n−1∑
r=n+1

2

(
n− 1

r

)
qr(1− q)n−1−r

If n is even,

E[U ; Ĝ] = (n−1)q+q

(
n− 1
n
2
− 1

)
q

n
2
−1(1−q)

n
2+q

(
n− 1

n
2

)
q

n
2 (1−q)

n
2
−1+

n−1∑
r=n

2
+1

(
n− 1

r

)
qr(1−q)n−1−r

In GC , we can express the aggregate expected payoffs in GC as follows (where the index

r counts pairs of subsequent agents which alternate actions; i.e., this describes how long

cascade formation is delayed).

If n is odd,

E[U ;GC ] =

n−3
2∑

r=0

[2q(1− q)]r
[
q2(n− r) + (1− q)2r

]
+ [2q(1− q)]

n−1
2

(
n− 1

2
+ q

)

If n is even,

E[U ;GC ] =

n
2
−1∑

r=0

[2q(1− q)]r
[
q2(n− r) + (1− q)2r

]
+ [2q(1− q)]

n
2

(n
2

)
Subsequent analysis is simplified by establishing a lower bound on the aggregate expected

payoffs in GC . Proposition 6 implies that all agents after the third must have expected payoff

at least as large as the third agent who has expected payoff equal to q2 + 2q2(1− q). Closer

inspection reveals that, beginning with the fifth agent they are actually strictly better in

expectation than the third agent. So, assuming n ≥ 5, we can establish the following bound
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on aggregate expected payoffs in GC :

E[U ;GC ] > 2q + (n− 2)[q2 + 2q2(1− q)] = 2q + (n− 2)q2(3− 2q)

In the case of n = 3, Proposition 3, implies that E[U ;GC ]−E[U ; Ĝ] = 0, since the payoff of

non-final agents are necessarily q in both cases. For the case of n = 4, it is straightforward

to verify that E[U ;GC ] − E[U ; Ĝ] > 0. Therefore, we will move on to the general case of

n ≥ 5. We will examine the cases of n odd and n even separately; however, regardless of

whether n is odd or even, the (bounded) difference in aggregate expected payoffs is given by

φ − E[un; Ĝ], where φ = (n − 2)q2(3 − 2q) − (n − 3)q. Finally note that, by the binomial

theorem, we can rewrite φ as follows:

φ = φ
n−1∑
r=0

(
n− 1

r

)
qr(1− q)n−1−r

Case 1 Suppose n is odd. Then, we have the following:

E[U ;GC ]− E[U ; Ĝ] > φ− q

(
n− 1
n−1
2

)
[q(1− q)]

n−1
2 −

n−1∑
r=n+1

2

(
n− 1

r

)
qr(1− q)n−1−r

Now, for any λ ∈ [0, 1], note that:

n−1∑
r=n+1

2

(
n− 1

r

)
qr(1− q)n−1−r = λ

n−3
2∑

r=0

(
n− 1

r

)
qn−1−r(1− q)r + (1− λ)

n−1∑
r=n+1

2

(
n− 1

r

)
qr(1− q)n−1−r

Now, we can express the (bounded) difference in aggregate payoffs as follows:

E[U ;GC ]− E[U ; Ĝ] >

n−3
2∑

r=0

(
n− 1

r

)[
qr(1− q)n−1−rφ− qn−1−r(1− q)rλ

]
+

(
n− 1
n−1
2

)
[q(1− q)]

n−1
2 [φ− q]

+
n−1∑

r=n+1
2

(
n− 1

r

)
qr(1− q)n−1−r [φ− (1− λ)]
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We first consider the second term which is non-negative if and only if φ− q ≥ 0.

φ− q = (n− 2)q2(3− 2q)− (n− 2)q

= (n− 2)q [q(3− 2q)− 1]

This is strictly positive for q ∈ (1/2, 1). Terms in the second summation are non-negative if

and only if λ ≥ 1− φ and terms in the first summation are non-negative if and only if

λ ≤ φ

[
1− q

q

]n−1−2r

Therefore, we must choose a weight, λ, to satisfy both constraints. The proof of this case

is completed by demonstrating that such a weight exists. We select λ to satisfy the tightest

constraint on the first summation, which occurs for r = n−3
2
. That is, λ = φ[1−q

q
]2. Then, our

second condition requires that φ
[
1−q
q

]2
≥ 1−φ. This is equivalent to φ(1− q)2 ≥ (1−φ)q2,

which holds since q ∈ (1/2, 1) and φ > q. Therefore, it is possible to choose a weight, λ,

to satisfy the preceding analysis. We conclude that for n ≥ 5 and odd aggregate expected

payoffs are strictly higher in GC than in Ĝ.

Case 2 Suppose n is even. Then, we have the following:

E[U ;GC ]− E[U ; Ĝ] > φ− q

(
n− 1
n
2
− 1

)
q

n
2
−1(1− q)

n
2 + q

(
n− 1

n
2

)
q

n
2 (1− q)

n
2
−1

+
n−1∑
n
2
+1

(
n− 1

r

)
qr(1− q)n−1−r

Now, for any λ ∈ [0, 1], note that:

n−1∑
n
2
+1

(
n− 1

r

)
qr(1−q)n−1−r = λ

n
2
−2∑

r=0

(
n− 1

r

)
qn−1−r(1−q)r+(1−λ)

n−1∑
n
2
+1

(
n− 1

r

)
qr(1−q)n−1−r
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Then, we can express the (bounded) difference in aggregate payoffs as follows:

E[U ;GC ]− E[U ; Ĝ] =

n
2
−2∑

r=0

(
n− 1

r

)[
qr(1− q)n−1−rφ− qn−1−r(1− q)rλ

]
+

(
n− 1
n
2
− 1

)
q

n
2
−1(1− q)

n
2 [φ− q] +

(
n− 1

n
2

)
q

n
2 (1− q)

n
2
−1 [φ− q]

+
n−1∑
n
2
+1

(
n− 1

r

)
qr(1− q)n−1−r [φ− (1− λ)]

Recall that, for q ∈ (1/2, 1), φ > q, and so, the second and third terms are strictly positive.

Terms in the second summation are non-negative if and only if λ ≥ 1− φ and terms in the

first summation are non-negative if and only if

λ ≤ φ

[
1− q

q

]n−1−2r

Therefore, we must choose a weight, λ, to satisfy both constraints. The proof of this case

is completed by demonstrating that such a weight exists. We select λ to satisfy the tightest

constraint on the first summation, which occurs for r = n
2
− 2. That is, λ = φ

[
1−q
q

]
. Then,

our second condition requires that φ
[
1−q
q

]
≥ 1−φ. This is equivalent to φ(1−q) ≥ (1−φ)q,

which holds since q ∈ (1/2, 1) and φ > q. Therefore, it is possible to choose a weight, λ,

to satisfy the preceding analysis. We conclude that for n ≥ 6 and even aggregate expected

payoffs are strictly higher in GC than in Ĝ. □
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C Online Appendix: Experiment Documentation

C.1 Experimental Design

Table 13: Signal Sequence Frequencies (by Group)

Sequence Frequency Percent Sequence Frequency Percent
AAAAA 21 8.57 ABAAA 2 0.82
AAAAB 8 3.27 ABAAB 5 2.04
AAABA 12 4.90 ABABA 15 6.12
AAABB 10 4.08 ABABB 5 2.04
AABAA 10 4.08 ABBAA 10 4.08
AABAB 5 2.04 ABBAB 3 1.22
AABBA 9 3.67 ABBBA 15 6.12
BBAAB 7 2.86 ABBBB 20 8.16
BBABA 13 5.31 BAABA 15 6.12
BBABB 10 4.08 BABAB 10 4.08
BBBAA 3 1.22 BABBA 5 2.04
BBBBA 10 4.08 BBAAA 5 2.04
BBBBB 17 6.94 - - -

C.2 Sample Experimental Instructions (N3)

Welcome to the experiment. Please put away your phones, books, etc. for the duration of

the experiment. We will need your full attention. From this point on, please also do not

communicate with other subjects in the experiment.

These instructions will describe the experiment, your decisions, and payoffs. Your earnings

for this experiment may depend on your decisions, decisions of others, and chance. You will

receive $7 for arriving on time and participating in the experiment, and will have the oppor-

tunity to earn additional money throughout the course of the experiment. The $7 show-up

payment plus any money that you earn during the experiment will be paid to you, in cash,

at the end of the experiment.

If you have a question at any point please raise your hand and your question will be answered.

Groups The first part of the experiment will consist of 7 decision making rounds. At the

beginning of every round, all participants will be randomly matched into groups of 5. You
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will not know who is in your group in any round, just that these are 4 other participants in

the experiment. Groups will be randomly re-matched after every round.

Event Every round, one of the two events, A or B, will take place. Each event is equally

likely to happen; in other words there is a 50-50 chance for either A or B to occur. This

random process (you can think of it as a coin toss) will determine which event takes place

at the beginning of every round.

Signal Every person in the group will independently get their signal of the event, A or B.

The signal precision is 0.7 or 70%. This means that there is 70% chance the signal you receive

corresponds to the true event A or B, and 30% chance your signal does not correspond to the

true event. Every person in the group draws their own signal. You will see your signal but

not the signals of other persons in your group. Again, signal precision of 0.7 or 70% means

that on average, out of many draws, about 70% of signals are expected to correspond to the

true event (A or B), and 30% of signals are expected to indicate the other event. Since the

signals are drawn randomly various compositions of true and false signals are possible but

the likelihood of your signal being the same as the true event is 0.7 or 70%.

Are there any questions?

Choice Every person in the group has to make a choice, A or B, for what is the true event.

The true event, A or B, will be announced at the end of the round.

Payoff Every person whose choice corresponds to the true event, gets a payoff of $9.

Sequence All people in the group will make their choices, A or B, in a sequence. The

structure of the sequence is shown below.

1

2

3

4

5

There are 5 positions within a sequence, and each person in a group will be randomly assigned

to one of the positions at the beginning of every round. Your position within the sequence

also indicates what information you have available to you when you make your choice of

the true event, A or B. Specifically, in addition to your private signal, you observe choices
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of persons in your group that were in earlier positions as indicated by the arrows. The

order in which all group participants make decisions are as the number of the position. The

individual in position 1 will make their decision first, and will see only their signal. Then

person in position 2 makes their choice and observes only their signal. Person in position 3

will observe their private signal and the choice of individual in position 1 before making a

decision. Person in position 4 observes own signal and the choice of individual in position

2, and makes own choice about the state. Person in position 5 will observe their signal, and

the choices of the 4 individuals in the group who made decisions in earlier positions before

making own choice.

Earnings Your earnings in a round are $9.00 if your choice matches the true event, A or

B, and $0 otherwise. After the completion of 7 decision rounds, one round payoff will be

randomly drawn for payment to be added to your $7 show up fee. Each round is equally

likely to be drawn for payment.

To Summarize At the beginning of every round, all subjects will be randomly re-matched

into new groups of 5 persons each. Every person in a group is randomly assigned a position

within a sequence structure. Every person draws a private signal of the true event, A or B,

with signal precision, or accuracy, being 0.7 or 70%. At the time of making a decision, A

or B, you may also observe decisions of persons in positions prior to yours as indicated by

the sequence structure. After all persons within a sequence have made their choice, the true

event will be revealed. If your choice matches the true event, your payoff in a round is $9.
If your choice does not match the true event, your payoff in a round is $0. Since groups and
positions are assigned randomly at the beginning of every round, the compositions of which

persons are in the group with you, and your positions within a sequence, are likely to change

from round to round. Your earnings from this part of the experiment will be your payoff

from one randomly drawn round.

Are there any questions?
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C.3 Experiment Screenshots

Figure 6: Individual Decision Screen (N3, Position 5)

Figure 7: Endogenous Position Auction Screen
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