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1 Introduction

Traditional consumption-based asset pricing models typically identify the stochastic dis-
count factor (SDF) based on aggregate consumption. However, it has become evident that
these models struggle to explain both the time-series variation in the equity premium (Mehra
and Prescott, 1985; Hansen and Singleton, 1983) and the cross-section of stock returns (Mankiw
and Shapiro, 1986). Literature (Savov, 2011; Kroencke, 2017) try to accurately measure the
quantity of consumption. They assume that there is the single sector in the economy. On
the other hand, barring a few exceptions (Lochstoer, 2009; Roussanov et al., 2021), the asset
pricing implications of detailed prices among different consumption commodities have received
less attention.

Intuitively, high prices reduce consumer’s utility, marginal utility is higher. How to quan-
tify the impact from price of each commodity? In this paper, I develop a general approach to
study the role of detailed consumption prices in asset pricing. I use indirect utility function
to derive consumer’s marginal utility in expression of prices and expenditure. Approximated
pricing kernel, variation in SDF, is a linear combination of expenditure variation, and prices
adjusted by shares. In empirical examination, I estimate the pricing kernel for a two-sector
economy with goods and services. There are two time series factors, expenditure relative
to price of services, and price of goods relative to services. This model explains the cross-
section variation of expected returns well, outperforms Consumption-CAPM using aggregate
consumption quantity growth, and in many cases performs better than Fama-French 5-Factor
model.

To explain this new approach, I begin by a simple two-period, two-sector model to show
the role of detailed prices in consumer’s marginal utility. In this model, consumer preference
doesn’t have analytical utility function over quantities. Using indirect utility function to de-
scribe the consumer, marginal utility of expenditure is a tractable function over prices and
expenditure. Crucially, in each sector, impact of price on marginal utility differs from the
weight of Consumer Price Index (CPI). CPI understates the price of goods, while overstates
for services. As the result, consumption quantity index, expenditure denominated by CPI,
cannot measure marginal utility, whereas detailed prices of goods and services provide the
precise measure. Formally, I derive the non-parametric pricing kernel in a general dynamic
model where a representative consumer consumes multiple types of commodities, holds risky
assets and risk-free bond with no binding financial constraint. Consumer’s marginal utility is
decomposed into expenditure and prices augmented by shares. Notably, this decomposition
applies for a wide set of path-independent preference, includes situation where direct utility
function is unavailable and the situation where a proper calibrated indirect utility function
is unavailable. Specifically, when consumer’s basket changes in expenditure, marginal util-
ity has different sensitivities to prices of commodities. This framework yields a remedy for
Consumption-CAPM, as CPI cannot summarize impact from detailed prices over marginal
utility, directly identifying coefficients for each detailed price elicits more information.

1



In empirical examination, I estimate a dynamic two-sector model of goods and services,
identify the risk prices for expenditure and price of goods in SDF. Estimation has SDF sum-
marized by two time-series, expenditure relative to price of services, and price of goods relative
to price of services. As consumer spends a larger share in goods when her expenditure drops,
marginal utility of expenditure is more sensitive to price variation in goods than services. As
the result, the sensitivity to price of goods is larger than expenditure. When expressing SDF
as expenditure and price of goods relative to price of services, the variation of relative price
adds to explaining the risk premium.

I estimate the model using General Methods of Moments (GMM). Expenditure and prices
are constructed using dis-aggregated expenditures and prices from National Income and Prod-
uct Accounts (NIPA) during sample period 1965-2019. The testing assets are equity portfo-
lios sorted on size, book-market, profitability, investment, momentum and earning-price ratio.
There are three main findings.

Firstly, risk price of expenditure, determined by consumer’s relative risk-aversion coeffi-
cient, is 28.80. Risk price for price of goods is −71.29, in larger absolute value than expen-
diture, meaning relative price contributes a considerable component in SDF. All else equal,
additional 0.1% independent volatility in price of goods implies 2.82% increase of volatility in
SDF annually, while CPI weights suggest increase of volatility as 1.10%. As detailed prices
help describe systematic risk and explain risk premium, estimation doesn’t have the outsized
risk-aversion coefficient. These point estimates are robust to testing assets as Size-BM 25
portfolios and 30 industry portfolios, and different subsamples during 1935-2019.

Secondly, the model produces a smaller pricing error compared to traditional traded factor
models. Mean Absolute Pricing Error (MAPE) is 0.39%, while Fama-French 5-Factor model
has 0.79%. It also outperforms the standard consumption-based model that utilizes the aggre-
gate consumption quantity growth as the factor, where MAPE is 0.71%. In the true SDF, risk
price for price is distinctive in two sectors. On the contrary, aggregate consumption growth
is a single time series, forces different prices with the same risk price, which leads to poor
empirical performance.

Third, covariance between asset returns and relative price of goods are negative, large, and
dispersed. Among testing assets with deeper negative covariance to relative price, expected
return is higher. Without breaking into expenditure and prices, covariance to aggregate
consumption quantity growth distributes around zero, with no discernible relation to expected
return. I estimate risk premium for the two time-series factors in Fama-Macbeth regression.
Equity assets have risk exposure to relative price ranging from −7.99 to −3.46, additional one
1 unit of negative beta yields risk premium 1.64% per year.

Decomposing SDF with prices and expenditure is general and flexible. I further estimate
a four-sector model with food and non-food within goods and services. As prices are more
detailed, it is easier to capture the fluctuation in SDF, risk price of expenditure is 14.70, GMM
estimation yields MAPE as 0.18%.

Beyond the discussion of what would be the robust description of consumer preference
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and stochastic discount factor, this paper presents a surprising finding for the literature of
Consumption-CAPM. Aggregate shocks underlying the changes in sector-level prices, also
changes the expectation of consumption quantity index growth. In the annual frequency, using
the standard 25 Size-BM characteristic portfolios, the consumption quantity index growth
minus the full-sample unconditional mean as unexpected innovation, I reproduce the failure
of Consumption-CAPM. The point estimate of risk-aversion parameter is 106.49, abnormally
large. The MAPE is 9.58%, confirming the old consensus that the covariance to innovation of
consumption quantity growth has no explanation power for the stochastic discount factor. If
using the same len to examine the two time series factors in my model, the total expenditure
relative to price of services, price of goods relative to price of services, which are the building
blocks in price-model of generalized Consumption-CAPM. The linear combination of these
time series conveys considerable variation in the true SDF. The MAPE is 1.07%, much smaller
than the innovation of consumption quantity index growth. The formal estimation admits
the possible variation in expectation of consumption (quantity, expenditure and prices), uses
the diverse equity portfolios of cross-section anomalies as the testing assets, estimate the
standard Consumption-CAPM and the new price-model of generalized Consumption-CAPM.
The standard Consumption-CAPM that utilizes the aggregate consumption quantity growth
as the factor, has MAPE as 0.71%, while the new model of generalized Consumption-CAPM
has MAPE of 0.39%. Forcing the full-sample mean as the constant expected growth, neglects
the time-varying expectation of consumption quantity index growth. Literature arrived to
the overly pessimistic conclusion, in terms of the failure of consumption-CAPM. These shocks
driving the time-varying expectation of consumption quantity index growth are also the forces
for the variation in sector-level prices. The new model describes the consumer preference in
general situation, uses sector-level prices to construct the sufficient statistic of marginal utility,
captures these aggregate shocks that are not directly observed.

My work adds an alternative solution to Consumption-CAPM 1. Admitting detailed prices

1Accumulated solutions come from but are not limited to three main aspects. (1) measure: (Parker
and Julliard, 2005; Jagannathan and Wang, 2007) addresses time-aggregation bias in quarterly consumption,
improves the model fitness in explaining the cross-section variation of returns. (2) marginal utility: (Lettau
and Ludvigson, 2001) suggests scaling consumption in face of unobserved habit, introducing the interaction
term between CaY and consumption growth improves the model-fitness in cross-sectional test. (Lochstoer,
2009) uses relative price to infer habit in luxury, conditional volatility of relative price helps explain the time-
varying risk premia. (Yogo, 2006) considers durable aside from non-durable consumption; (Papanikolaou,
2011) considers leisure, investment-good-specific shock generates variation in labor supply; (Loualiche et al.,
2016) considers variety of consumption products, positive shock to firm entry cost reduces variety growth.
(Papanikolaou, 2011; Loualiche et al., 2016) introduce new measure of shocks to improve measuring the
SDF. (3) marginal investor: (Malloy et al., 2009) use long-run consumption growth of stockholder to explain
the cross-section of returns; (Lettau et al., 2019) use capital (labor) share to indirectly infer stockholder’s
consumption, risk exposure to capital share yields positive risk premium; (Adrian et al., 2014; He et al., 2017)
uses the leverage to indirectly measure financial manager’s marginal utility of wealth, risk exposure to book
leverage yields positive risk premium, while equity-debt ratio is positively priced across different types of
financial assets.

3



avoids overly large point estimate of risk aversion, and simultaneously achieves small model
error in explaining the cross-section of expected returns. Estimated risk-aversion coefficient
is much smaller than 153 in (Cochrane, 1996) and 142 in (Yogo, 2006). This point estimate
is comparable to the range of 19-23 in (Kroencke, 2017), but the new model only uses the
raw aggregate consumption statistics. In (Savov, 2011), measuring quantity using the garbage
yields a point estimate 17, but leaves high model error in cross-section regression.

My work adds analysis for multiple consumption sectors in the asset pricing literature, by
describing a consumer with general preference. It simplifies the analysis where there is no
analytically tractable utility function describing the consumer. Literature typically assume
the homothetic preference. For example, (Yogo, 2006; Belo, 2010; Yang, 2011; Eraker et al.,
2016) considers the nondurable consumption sector and the durable sector. (Piazzesi et al.,
2007) include the housing sector. (Dittmar et al., 2020) include the energy sector. These arti-
cles consider the utility function with Constant Elasticity of Substitution (CES) for tractable
analysis. Nonetheless, estimation in this paper suggests non-homothetic preference within
nondurable sector, marginal utility of expenditure is not separable in prices and expenditure.
C-CAPM using quantity index cannot describe the SDF. A small thread of literature con-
siders the non-homothetic preference under special cases. (Ait-Sahalia et al., 2004) considers
separable utility function over the nondurable sector and the luxury sector. (Lochstoer, 2009)
uses Stone-Geary preference for the basic-good and luxury. (Pakoš, 2011) allows heteroge-
neous elasticity in CES functional form. This paper uses the general indirect utility function
to describe the consumer preference. Analysis applies for aforementioned utility functions,
and the non-homothetic preference in (Muellbauer, 1976; Boppart, 2014; Comin et al., 2021)
where deriving marginal utility over quantities is difficult. The theoretical argument and the
estimation method for SDF in this paper are general, allow for flexible empirical application
in an economy with multiple consumption sectors. (Dittmar et al., 2020) pursue a more ac-
curate utility function over detailed quantities (food, clothes, energy, etc). This paper derives
consumer’s marginal utility in a non-parametric expression of dis-aggregated prices.

This paper works on asset pricing literature that studies the endogenous determination of
asset price and spot commodity price. My work clarifies that consumption prices directly affect
consumer’s marginal utility. This literature provides different explanations for asset pricing
outcomes from commodity price: (1) commodity price is informative of fundamental shocks
in (Papanikolaou, 2011) and (Johnson, 2011); (2) the equilibrium price reflects the producer’s
inter-temporal decision, such as the durable price relative to nondurable in (Belo, 2010),
relative price of basic-good helps measure consumer’s habit in basic-good in (Lochstoer, 2009);
(3) nominal rigidity increases the correlation between aggregate dividend flow and firm owner’s
consumption in (Favilukis and Lin, 2016). This paper uses consumer’s prices and expenditure
to measure marginal utility, aims to explain cross-section variation of expected return. The
theoretical prediction echoes the recent finding about CPI in (Roussanov et al., 2021) and
price risk-exposure in (An et al., 2023). (Roussanov et al., 2021) measure fundamental shocks
using VAR residual in core-CPI and energy-CPI. Compared with (Roussanov et al., 2021),
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this work provides a general explanation for observing risk-premium of consumption prices,
proposes “getting to the detailed CPI”. In estimation of two sectors, I show equity assets have
negative risk exposure to relative price of goods, with high risk premium. In estimation of
multiple sectors, I found negative risk price in grocery (food-at-home), and positive estimate
for dining (food-away).

In the estimation of two-sector economy, sector of goods is relatively necessity commod-
ity compared to services, resembles the basic-good in (Ait-Sahalia et al., 2004; Lochstoer,
2009). Departing from these works, sector of services covers large share in consumption bas-
ket, doesn’t have the large volatility in quantity change. This paper has a different focus: use
comprehensive records of prices to measure consumer’s marginal utility. Inheriting the classi-
fication of NIPA, this paper separates goods and services. This allows for robust identification
in long sample using different groups of testing assets. The estimation method proposed in
this paper is simple, easy for extension when more observations of accurate prices are avail-
able. In extended model, consumer considers food and non-food as different consumption
commodities. The extended estimation of multiple sectors better explains the cross-section of
returns, in testing assets constructed based on anomalies.

This paper is organized as follows. Section 2 derives the stochastic discount factor, and
decomposes the SDF using consumption prices. Section 3 examines the estimation of pricing
kernel in a two-sector economy, analyzes point estimates and model fitness, describes the cross-
section of risk exposure. Section 4 discusses why the price-model differs from quantity-model,
with further empirical investigation. Section 5 extends the estimation of price-model in an
economy with multiple sectors. Section 6 clarifies that consumer’s marginal utility works as
sufficient statistics of shocks, explains the risk prices, and provides further discussion related
with inflation. Section 7 concludes.

2 Theory

This section derives the consumer’s marginal utility in expression of prices and expenditure.
In an economy with a representative consumer without binding financial constraint, marginal
utility is the stochastic discount factor. Subsection 2.1 uses a two-period example to show
the role of detailed prices in SDF where consumer has price-habit. Subsection 2.2 provides
the formal derivation in dynamic environment where consumer holds risky assets and risk-free
bond. Consumer’s preference over multiple commodities is described by general indirect utility
function. Variation of SDF is a simple linear function of expenditure and prices adjusted by
shares.
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2.1 Motivating Example

Consumer lives for two periods t = 0 and t = 1. In period t = 1, there are high and down
states {h, d} in probability {πh, 1− πh}. Consumer has consumption basket as C⃗ = (Cg, Cs)

in each period and state. Her utility from quantity of goods Cg and services Cs is u(C⃗). To
maximize life-time utility, consumer decides the optimal consumption allocation,

max
C⃗0,C⃗h,C⃗d

u(C⃗0) + β · [πh · u(C⃗h) + (1− πh) · u(C⃗d)]

s.t. E0 + β · πh ·Mh ·Wh + β · (1− πh) ·Md ·Wd ≤ W0,

Pg,0 · Cg,0 + Ps,0 · Cs,0 ≤ E0,

Pg,z · Cg,z + Ps,z · Cs,z ≤ Wz, z ∈ {h, d}.

(1)

The asset price for having 1 dollar in period 0 is normalized as M0 = 1. The price β ·πh ·Mh is
the current price for having 1 dollar in period 1 under the high state h. Similarly, β ·(1−πh)·Md

for the 1 dollar under down state d. Here, Mz is the stochastic discount factor adjusting
the subjective discount rate β and the natural probability (πh, 1 − πh) of states z ∈ {h, d}.
Consumer’s financial wealth is W0 units of dollar in current period.

We use indirect utility function V (P⃗ , E) to summarize the consumer’s utility when her
(total) expenditure is E given the price of goods as Pg and services Ps,

V (P⃗ , E) = max
Cg ,Cs

u(Cg, Cs)

s.t. Pg · Cg + Ps · Cs ≤ E.
(2)

Expenditure E counts all spending in goods and services. The optimization problem (1) has
the equivalent problem over expenditure allocation,

max
E0,Eh,Ed

V (P⃗0, E0) + β · [πh · V (P⃗h, Eh) + (1− πh) · V (P⃗d, Ed)]

s.t. E0 + β · πh ·Mh ·Wh + β · (1− πh) ·Md ·Wd ≤ W0,

Ez ≤ Wz, z ∈ {h, d}.

(3)

Consumer’s marginal utility of expenditure DEV (P⃗ , E), first-order partial derivative to
expenditure E, reveals stochastic discount factor, the state price of financial wealth. For the
optimal consumption plan, the first-order-condition for expenditure high state h is stated as,

DEV (P⃗h, Eh)

DEV (P⃗0, E0)
=
Mh

M0

. (4)

Here, state-price of current-period is normalized M0 = 1. We have the similar equation for
the down state d.
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In this two-period world, if we know a company stock k gives us the dividend Dk,h in high
state,Dk,d in down state, the fair price for this stock is P s

k = β·πh·Mh·Dk,h+β·(1−πh)·Md·Dk,d.

When it is period 1 under the high state, realized return from holding the stock is Rk,h =
Dk,h

P s
k
.

One can use the expectation notation E[·] to write the consumer’s Euler Equation for holding
financial assets,

1 = β · E[Mz

M0

·Rk,z]. (5)

In the special case of risk-free bond, where the bond gives us identical 1 unit of dollar in
both the high state and the down state, the Euler Equation is 1 = β · E[Mz

M0
] · Rf . Taking the

difference between two asst pricing equations, removing the subjective discount rate β, we
have the Euler Equation of excess return in risky assets.

0 = E[
Mz

M0

·Re
k,z]. (6)

In this situation of two consumption sectors, if we know the expenditure profile {E0, Eh}
and the price profile {P⃗0, P⃗h}, we can infer the variation of stochastic discount factor Mh

M0
=

DEV (P⃗h,Eh)

DEV (P⃗0,E0)
, and similarly for the down state Md

M0
. Expected return E[Re

k,z] is determined by its

covariance with pricing kernel, variation of SDF across states {Mz

M0
}z∈{h,d}.

Consider a special case of indirect utility function over the good and service,

V (P⃗ , E) =
1

1− γ
· E1−γ

P
ωg ·(1−γ)
g · P (1−ωg)·(1−γ)

s

+
ξ

ϵ
· (Pg

Ps

)ϵ. (7)

The parameter γ describes consumer’s elasticity of inter-temporal substitution. Here, it is
equivalent with the relative risk-aversion coefficient. The parameter ωg affects the consumer’s
expenditure shares in good and service. Importantly, it determines how consumer’s marginal
utility changes with prices. Price-habit ξ

ϵ
·(Pg

Ps
)ϵ allows us describing the additional impact from

prices to consumer’s feeling. This separates the observed share in basket and the importance
of prices in marginal utility.

In this example, consumer preference doesn’t have an analytical direct utility function
u(C⃗) over quantities, due to the existence of price-habit. Nonetheless, one can still use the
indirect utility function to know consumer’s optimal consumption basket given the price vector
and the expenditure. Using Roy’s Identity, consumer’s observed share in goods is ωg =

DgV (P⃗ ,E)·Pg

DgV (P⃗ ,E)·Pg+DsV (P⃗ ,E)·Ps
. The term DgV (P⃗ , E) denotes partial derivative of utility with respect

to price of goods Pg, and similar notation for the services. One can derive the share of service
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ωs in symmetric expression.

ωg =ωg − ξ · (Pg

Ps

)ϵ+ωg ·(1−γ) · (E
Ps

)−(1−γ),

ωs =(1− ωg) + ξ · (Pg

Ps

)ϵ+ωg ·(1−γ) · (E
Ps

)−(1−γ).

(8)

Quantities of goods and services are Cg = ωg ·E
Pg

and Cs = ωs·E
Ps

. So we arrive to consumer’s

basket without looking at the direct utility function.
This equivalent way in describing consumer brings convenience for asset pricing. In this

example, pricing kernel is inferred using the expenditure and prices. From current period to
the high state in following period, change in the marginal utility of expenditure is,

Mh

M0

=
P

−ωg ·(1−γ)
g,h · P−(1−ωg)·(1−γ)

s,h · E−γ
h

P
−ωg ·(1−γ)
g,0 · P−(1−ωg)·(1−γ)

s,0 · E−γ
0

. (9)

The power coefficient −ωg · (1− γ) describes the change of marginal utility to price of goods
Pg, −(1 − ωg) · (1 − γ) for service Ps, and −γ for expenditure E. We observe variations of
consumption prices in the real pricing kernel of financial assets. Multiplier ωg for price of
goods is larger than the observed share in goods ωg, while services has the smaller 1−ωg than
observed share 1−ωg. Pricing kernel is relatively more sensitive to variation in price of goods
than services, to prediction of consumer’s basket. Quantity index, expenditure adjusted by
consumer price index E

P
ωg
g ·P 1−ωg

s

, cannot describe variation in marginal utility. Detailed prices

help accurately measure the marginal utility, hence mitigate the difficulty in using quantity
index. Quantities cannot describe variation of marginal utility either. There is no analytical
function u(Cg, Cs), so the marginal utility in expression of quantities is also not tractable. If we
replace expenditure E with quantities Pg ·Cg+Ps ·Cs, we still need the detailed information of
prices in equation (9). On the contrary, using prices and expenditure has the simpler format.
In the following subsection, we will see this improvement is not limited to this economy with
two commodities, and this special example of indirect utility function.

2.2 Formal Decomposition

2.2.1 Economy Environment and Consumer’s Decision

I consider the discrete-time infinite-horizon consumption basket allocation problem of a
representative consumer. The set of commodity category is fixed set J . The state of the
world is described by the {{zt}∞t=0}. Motion of history path is zt+1 = (zt, zt+1).

Direct utility function u(·) describes consumer’s preference over the consumption basket
(C1, C2, . . . , CJ) within each period. Over the life-time, consumer has utility function U over
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the consumption stream C̃. This paper assumes the path-independent inter-temporal prefer-
ence, flows of utility ut = u(C⃗t) in each period and states are added using constant subjective
discount rate β,

U(C̃) = lim
T→∞

E[
T∑
t=1

βt · u(C⃗t)]. (10)

The consumer participates in the competitive financial market. The price of financial
security2 is P s

k,t, the payout is Dk,t. In period t, the total risk-free rate for one-period bond
is Rf,t+1. The consumer participates in the Walras commodity market. The spot price of

commodity is Pj,t per unit. The vector θ⃗t describes the amounts of financial securities held by
the consumer at time point t. Consumer has bond payment as Bt, decides the new holding
Bt+1. Formally, problem (P.1) describes the consumer’s life-time decision of consumption and
asset holding (P.1),

U0(θ⃗0) = sup
C̃,θ̃,B̃

lim
T→∞

E[
T∑
t=1

βt · u(C⃗t)]

s.t.
∑
k

θk,t · (P s
k,t +Dk,t) +Bt =

∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1︸ ︷︷ ︸
budget constraint

,

Cj,t ≥ 0;
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

≥ a︸ ︷︷ ︸
financial constraint

.

(P.1)

The proper construction of a ensures no Ponzi-game and the financial constraint never binds,
as the same argument of Chapter 8 in (Ljungqvist and Sargent, 2012).

Definition 1. Define the competitive equilibrium in an endowment economy of commodity
quantity process C̃ as

1. Given spot price {P⃗t}∞t=0, financial asset price {P⃗ s
t }∞t=0, consumer makes her optimal

expenditure decision and financial portfolio decision, as in problem (P.1).

2. Spot commodity markets clear. For each consumption sector j, consumer’s demand
equals the exogenous supply at all time periods and states, C∗

j,t = Cj,t.

3. Financial security j with dividend as revenue of commodity j, has market clearing,
θ∗j,t+1 = 1.

2I use the sup-script s for the financial security.
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4. Redundant security k has market clearing, θ∗k,t+1 = 0.

5. One-period risk-free bond has market clearing, B∗
t+1 = 0.

In this equilibrium, one can verify the two facts. (1) Consumer’s net income flow is the
dividend of (risky) financial security,

∑
j∈J Dj,t =

∑
j∈J Pj,t · Cj,t. Because the redundant

securities and the bond have zero supply, they don’t add to the income flow in equilibrium.
(2) Consumer’s marginal utility of commodity j is the relative spot price

Pj

PJ
multiplied by her

marginal utility of numeraire commodity J . This is described formally as
Dju(C⃗t)

DJu(C⃗t)
=

Pj,t

PJ,t
for

each period and state.

2.2.2 Stochastic Discount Factor

The indirect utility function V (P⃗ , E) is defined as

V (P⃗ , E) = max
C⃗

u(C1, C2, . . . , CJ)

s.t.
∑
j∈J

Pj · Cj ≤ E.
(S.1)

Here, consumption basket must be non-negative: in each sector j, the quantity Cj can’t be
negative. This paper only considers the normal situation with all prices are strictly positive
in each sector.

The indirect utility function V (P⃗ , E) represents the equivalent utility from consumption

spending E and the price of commodities P⃗ from basket C⃗. Lemma 1 says in consumer’s
problem (P.1), one can replace the consumption basket u(C⃗) with indirect utility function

V (P⃗ , E) in consumer’s life-time utility, the explicit consumption basket
∑

j∈J Pj · Cj with
expenditure E in the budge constraint. Simplifying the basket decision using indirect utility
function doesn’t change the outcome of financial asset decisions.

Lemma 1. Define the consumer’s optimal expenditure problem (P.2) as

V
New

0 (θ⃗0) = sup
Ẽ,θ̃,B̃

lim
T→∞

E[
T∑
t=1

βt · V (P⃗t, Et)]

s.t.
∑
k

θk,t · (P s
k,t +Dk,t) +Bt = Et +

∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

,

Et ≥ 0; financial constraint.

(P.2)

Optimization problem (P.2) yields equivalent value as optimization problem (P.1). For each
optimal consumption policy C∗ in problem (P.1), expenditure E∗ such that

E∗
t =

∑
j∈J

Pj,t · C∗
j,t, ∀t, zt (11)
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is an optimal policy in optimization problem (P.2).

In the appendix, I verify the equivalence between optimal stream of consumption basket
and expenditure in the dynamic problem. For the representative consumer, the financial
constraint never binds, so its shadow price is zero along the optimal path of expenditure.
Consumer’s interior decision implies νt = DEV (P⃗t, Et), where νt is the shadow price of (t, z)
budget constraint in the optimization problem (P.2), after the correction of subjective discount
rate and natural probability.

Definition 2. Define the real stochastic discount factor M̃ as

M̃(P⃗t, Et) ≡ DEV (P⃗t, Et) · PJ,t. (12)

The real stochastic discount factor augments the natural distribution of economic states
and subjective discount rate when determining the financial asset price. The indirect util-
ity function V (P⃗t, Et) is Homogeneous of Degree Zero (H.D.0), while the marginal utility

DEV (P⃗t, Et) depends on the choice of numeraire in the economy environment. I include PJ,t

to focus on the relative term
PJ,t

Et
, and to avoid the distracted discussion related to nominal

inflation 3. Hereafter, I use the notation m̃ = log(M̃), and dm̃ for the change of m̃, and
similar notations for other time-series 4.

Because consumer is the investor in financial market, her shadow price of budget constraint
is the stochastic discount factor. When consumer makes the optimal decision of financial
portfolio, the consumption spending in the future is simultaneously determined. The shadow
price of consumption expenditure is identical with that of financial wealth. Optimal interior
decision gives consumer’s Euler Equation in rebalancing portfolio. Corollary 1 provides the
formal statement for this multi-sector economy.

Corollary 1. Given the security k and the security f , the real total return R̃k,t+1 and R̃f,t+1

from time t to future time t+ 1 satisfy

Et[
M̃t+1

M̃t

· (R̃k,t+1 − R̃f,t+1)] = 0. (13)

Corollary 1 says for arbitrary financial asset, the expected excess return is determined
by covariance between excess return and variation in real stochastic discount factor. This is

3After adjustment using price of numeraire, utility is the same, as V ( 1
PJ,t

· P⃗t,
1

PJ,t
· Et). Marginal utility

DEV ( 1
PJ,t

· P⃗t,
1

PJ,t
· Et) needs the additional term 1

PJ,t
, so we add back the PJ,t.

4The upper-case character is for the level of prices and expenditure. The lower-case character is for the log
amount. I use the notation dp for log-change in price of sector j, dpj = logPj,t+1− logPj,t. I use tilde symbol
for the log-change adjusted by numeraire, dp̃j = dpj − dpJ .

11



similar with the case of single-sector economy, except that nominal return of asset is adjusted
by price of numeraire. When considering excess returns, price of numeraire offsets. This allows

the proper inference of real stochastic discount factor M̃t+1

M̃t
, as proposed in next subsection 5.

In competitive equilibrium where the consumer has optimal decision, marginal utility of
expenditure adjusted by price of numeraire, DEV (P⃗t, Et) · PJ,t, is consumer’s marginal utility

of numeraire, DJu(C⃗t). Under certain situations, the function using quantities DJu(C⃗t) is

complicate. Marginal utility of expenditure adjusted DEV (P⃗t, Et) · PJ,t is Homogeneous of
Degree Zero, variation has simple expression over prices and expenditure. Using indirect utility
function is convenient for describing the real SDF in empirical estimation. The conclusions
about inferring the stochastic discount factor can be extended to an economy with endogenous
production of commodities. When the consumer has optimal dynamic decision in expenditure
and financial wealth, marginal utility of expenditure can be used for inferring the stochastic
discount factor. This identification methodology is similar with (Yogo, 2006), where the details
in production are irrelevant for using consumption to explain expected returns. Assumption
over producers determines the cash flow in equity asset. For arbitrary financial asset, Corollary
1 explains its expected excess return.

2.2.3 Decomposition of Stochastic Discount Factor

In the motivating example of subsection 2.1, prices and expenditure reveal the real stochas-
tic discount factor. Theorem 1 says one can express change of real stochastic discount factor
into changes of prices and expenditure, for general situation of consumer preference. To better
separate the level and change, I use pricing kernel as the equivalent phrase for change of
real stochastic discount factor. Risk price describes the coefficient of changes in prices and
expenditure, in the pricing kernel.

Theorem 1. In the economy with consumption sectors J , real pricing kernel, the first-order
approximated change in real stochastic discount factor is

dm̃ = −be · (de− dpJ)−
∑
j∈J

bj · ωj · (dpj − dpJ) + o(h). (14)

The dpj is the first-order difference of log price pj = log(Pj) in sector j. The de is the first-

order difference of log total consumption expenditure e = log(E). The vector of risk-price b⃗

5This paper is silent toward discussion of nominal inflation as in (Boons et al., 2020; Corhay and Tong,
2021). When there is common change in expenditure and prices, real stochastic discount factor doesn’t change.
Although the choice of numeraire doesn’t matter for discussing excess return for pairwise financial assets,

it affects the definition of risk-free bond. For simplicity, this paper assume coupon of one-period (real) bond
be constant across economy states with respect to numeraire. If the one-period bond in this economy has
constant payment with respect to consumer price index, the real payment with respect to numeraire would be
stochastic, contingent on the states.
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is

be =γ,

bj =− (γ − 1) +
∑
i∈J

ηj,i −
∑
k∈J

ωk ·
∑
i∈J

ηk,i.
(15)

with γ as relative risk aversion coefficient −HE,EV (P⃗ ,E)·E
DEV (P⃗ ,E)

. The high-order term o(h) is with

respect to h = max{{dpj}j, de}.

Equation (14) of decomposition says both the fluctuation in expenditure de, and prices
{dpj}j∈J contribute to the variation in stochastic discount factor. If there is no change
in prices, the pricing kernel is variation of expenditure multiplied by relative risk aversion
coefficient γ. Theorem 1 states the new fact related to prices. Equation (15) of risk price
summarizes the asymmetric contribution from price in each sector. When price Pj increases
by one unit, real stochastic discount factor changes by bj · ωj, share of commodity ωj in the
whole consumption basket, multiplied by the risk price bj. Across consumption sectors, risk
price bj can be different with each other. Given a small share ωj, if the risk price bj has
large absolute value, pricing kernel can be sensitive to the variation in price of commodity j.
Knowing the risk price vector b⃗ helps accurately gauge the contribution from prices.

Intuitively, marginal utility is high when prices are high. Consumer adjusts the quantity
in each sector with different flexibility, so the impact from price in each sector are asymmetric.
When the quantity adjustment is difficult, increase of marginal utility induced by price growth
is large, such as the necessity commodity. This seems like that the necessity commodity is
prior to other commodities, when consumer allocates quantities. When expenditure is lower,
quantity of necessity commodity doesn’t decrease in the same amplitude. We observe the
additional sensitivity of marginal utility to price of necessity commodity.

Formally, consumer’s shares convey the impacts of prices over level of utility. When shares

are affected by expenditure, adjusted partial derivatives
DjV (P⃗ ,E)∑

i∈J DiV (P⃗ ,E)
has non-zero derivative

to expenditure E. When the price vector and expenditure change in the same magnitude,
consumption basket maintains the same. Marginal utility of expenditure is the weighted
outcome of price-partial derivatives, DEV (P⃗ , E) = −

∑
j∈J DjV (P⃗ , E) · Pj

E
. As such, the

impacts from prices to marginal utility of expenditure DEV (P⃗ , E), are not proportional with

their impacts to utility V (P⃗ , E). The share vector ω⃗ in consumption basket reflects the

impacts from prices to utility V (P⃗ , E). It cannot capture the distinct sensitivity in pricing
kernel with respect to prices.

Alternatively, we use consumer’s adjustment of basket to interpret the asymmetric risk
prices. In equation (15), the risk price for sector j’s consumption price bj has an additional
term, the difference between

∑
i∈J ηj,i and the term weighted by expenditure share

∑
k∈J ωk ·∑

i∈J ηk,i. Consumer adjusts shares in consumption basket when there is fluctuation in prices
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and expenditure. Pairwise difference of share elasticity ηj,i−ηk,i describes how shares in sector
j and k reacts to Pi (price of sector i). When the price vector and expenditure change in the
same magnitude, consumption basket maintains the same. Pair difference

∑
i∈J ηj,i−

∑
i∈J ηk,i

describes how shares in sector j and k react to the expenditure E. If the composition of
consumption basket changes with expenditure, we observe the asymmetric risk price vector
{bj}j∈J , and accurate measure of real SDF requires detailed prices.

Above analysis applies for the consumer with any path-independent direct utility function
u(C⃗). One can always derive the implied indirect utility function V (P⃗ , E), the approximated

variation of marginal utility DEV (P⃗ , E), and arrive to equation (14). The CES utility function
(over quantities) is a special example of homothetic preference where there is no expenditure-
effect in consumer’s basket, consumption price of each sector has symmetric risk price bj = 1−γ
6. This assumption of symmetric risk prices might be an inappropriate description. Theorem
1 provides the general expression for the pricing kernel, avoids the special assumption over
risk prices.

As explained by (Cochrane, 1996), expected excess return of financial asset is determined

by the covariance between excess return and pricing kernel, and risk price b⃗ tells us the
contribution of each covariance. Corollary 2 formally explains how risk price determines the
expected excess return.

Corollary 2. Given the security k, the expected excess return Re
k,t+1 satisfies

Et[R
e
k,t+1] =be · Et

[
(det+1 − dpJ,t+1) ·Re

k,t+1

]
+
∑
j∈J

bj · ωj,t · Et

[
(dpj,t+1 − dpJ,t+1) ·Re

k,t+1

]
. (18)

with excess return as the difference between nominal total return Rk,t+1 and risk-free rate
Rf,t+1.

Using the pricing kernel with consumption prices, the expected return can be decomposed
as covariance with price in each sector j, adjusted by the risk price bj. In empirical estimation,
we want to directly estimate the {bj}j∈J using detailed prices, to explain the variation of
expected return across financial assets.

6Consider the special case of two sectors J = {g, s},

u(Cg, Cs) =
1

1− γ
· (Cρ

g + Cρ
s )

1−γ
ρ . (16)

The substitution elasticity ρ describes the sensitivity of
ωg

ωs
with respect to price

Pg

Ps
. In this example, pairwise

difference of share elasticity ηg,g − ηs,g = ηg,s − ηs,s =
ρ

ρ−1 . Assuming numeraire J = s, the pricing kernel is

dm̃ = −γ · (de− dpJ)−
∑
j∈J

(1− γ) · ωj · (dpj − dpJ) + o(h). (17)
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Section 3 estimates this pricing kernel for an economy with two sectors. Section 4 com-
pares the estimation using quantity. Section 5 extends the estimation for a more generalized
environment, where goods and services are separated into food and non-food.

3 Estimation

This section estimates the pricing kernel of financial assets in a two-sector economy with
goods and services J = {g, s}. National Accounts use this classification since 1930s, provide
accurate statistics for these sectors. I choose the service as numeraire. I estimate parameters
b⃗ = (bg, be) in the pricing kernel 7

dm̃(⃗b) ≈ −be · (de− dps)− bg · ωg · (dpg − dps). (20)

Information of prices and expenditure are summarized by two time series factors, expenditure
relative to price of services de− dps, price of goods relative to price of services dpg − dps. All

growths and returns are calculated in annual frequency. Moment gk (⃗b) is the sample-average
error of Euler Equation 8 for holding the risky asset k,

gk (⃗b) ≡
1

T
·

T∑
t=1

[1 + dm̃t+1(⃗b)] ·Re
k,t+1. (21)

I denote g(⃗b) as the vector of {gk (⃗b)}Kk=1. The GMM estimator is the optimal parameter values
(bg, be) that minimize the average error of moments weighted by matrix W ,

b⃗∗ ≡ argmin
b⃗

g(⃗b)
′
·W · g(⃗b) (22)

Estimation have two stages: (1) the first stage assigns equal weight to each asset; (2) the second
stage uses variance matrix from the first stage as the efficient weight matrix to minimize the
standard error of parameters.

7The pricing kernel in the two-sector economy is

dm̃ ≈ −be · (de− dpJ)− bg · ωg · (dpg − dpJ)− bs · ωs · (dps − dpJ). (19)

All nominal time series are converted into real amount with respect to numeraire, services, J = s. So dps−dpJ
is constant zero. Identification of parameters (bg, be) provide sufficient knowledge of pricing kernel.

8In the two-sector economy, the moment is

gk (⃗b) =
1

T
·

T∑
t=1

[1− be · (det+1 − dps,t+1)− bg · ωg,t · (dpg,t+1 − dps,t+1)] ·Re
k,t+1.
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Subsection (3.1) explains the measure of total expenditure and prices for the economy
of goods and services, and describes the two time series factors for estimating the pricing
kernel. Subsection (3.2) describes the main estimation outcome. Subsection (3.3) provides the
estimations using alternative testing assets, definitions of consumption sectors, and different
sample periods.

3.1 Data Description

3.1.1 Data Construction

I use annual data during 1964-2019 in Table 2.3.4, Table 2.3.5 from the NIPA to construct
the sector-level price and total non-durable consumption expenditure. I consider goods and
services within nondurable consumption:

� good: food-at-home, apparel, other non-durable goods. I remove energy from the non-
durable good sector referring (Nakamura, 2008).

� service: food-away, recreation, health care, financial service, and other service. I remove
public transportation, housing from the service sector, following (Hazell et al., 2020).

Expenditure is measured as the total spending across these sectors. I construct the Fisher
index 9 as the sector-level price index. Figure (A.1) visually shows that relative price of goods
is stationary after adjustment using price of services.

The equity portfolios are from the Kenneth French data library on the website. I choose
the equity portfolios based on main cross-section anomalies documented by literature. In
the benchmark testing assets, the 6 different stock characteristics are {Size, Book-to-Market,
Profitability, Investment, Momentum, Earning/Price ratio}. For each characteristic, there
are 5 single-sorted portfolios. In total, there are 30 testing assets. Mutual fund managers
build portfolios referring to cross-section return anomalies, so the testing assets replicate the
market practice of professional investors. For example, value funds pool companies with high
book-market ratio. I estimate the pricing kernel during the time interval of 1965-2019, when
the equity portfolios are all available. Combination of anomalies addresses the critique of
linear reformation in testing assets. For example, the profitability portfolios are in smaller
correlation with the value portfolios.

9NIPA reports the nominal expenditure and price indices for each type of goods and services. In each
line (category) of personal consumption expenditure table, price is normalized to 1 in the base year, and real
quantity is the expenditure adjusted by the price. In each sector, chained quantity index is the summation
of quantities for all categories. Sector-level price index is calculated as expenditure divided by the chained
quantity index. Previous theoretical discussion of consumer price index uses the formula of Tornqvist Index,
for analytical explanation of quantity index. In historical data, Tornqvist index and Fisher index are similar.

16



3.1.2 Descriptive Statistic

Panel (A) of Table (1) provides the descriptive statistic for the two time series: the ex-
penditure de − dps, and the relative price of goods dpg − dps. The first column shows that
the mean annual growth rate of expenditure is 1.27%, mean annual growth in relative price
of goods is -1.33%. The second and the third columns show the standard deviation and auto-
correlation coefficient in each time series. The AR(1) coefficient for expenditure is 0.36, and
0.47 for relative price of goods .

Panel (B) of Table (1) provides the correlation coefficient between relative price of goods
and other consumption outcome. The growth in expenditure has weak positive correlation
with relative price of goods, as 0.26. Figure (1) provides the visualization for weak correlation
between expenditure and relative price of goods. This reflects the fact: goods and services have
different business cycle. Alternatively, Figure (A.2) demonstrates the gap of quantity growths
across the two sectors. For comparison with the nondurable consumption in literature, I use
the quantity index in the same method with NIPA. In this two-sector economy, we observe
the weak negative correlation between quantity index and relative price of goods, as −0.17.

Table (A.2) provides correlation coefficients for other business cycle indices. Relative price
of goods is negatively correlated with market excess return. Correlation with aggregate labor
input is insignificant. Variation in labor income has high correlation with the expenditure,
but the correlation with relative price of goods is a weak positive number 0.21. Unfiltered
consumption quantity in (Kroencke, 2017) extracts a latent time series from the raw quantity
index provided by NIPA. Relative price has negative correlation −0.31 to unfiltered consump-
tion. I construct the long time series of garbage growth in the spirit of (Savov, 2011), measured
using the generation waste. Relative price has inaccurate correlation coefficient −0.06 to this
alternative measure of consumption quantity. When breaking the quantity index into expen-
diture and prices, the time series of relative price provides additional information not captured
by other economic indicators.

Pairwise correlation between relative price and prices in detailed categories are provided
in appendix Table (A.3). For simplicity, all prices are adjusted by price of services, assuming
composite service is well-defined. The Food-at-Home has highest correlation with the relative
price of goods, because it is volatile and contributes the main share for sector of goods. Dickey-
Fuller test of relative price of goods and other prices in main sectors are provided in Table
(A.4) in the appendix. Growth in relative price of goods is stationary, as demonstrated in
Table (A.4). During the sample period 1965-2019, average share of goods ωg,t is 39.6%.

3.2 Main Results

Subsection (3.2.1) reports the point estimates of risk price vector. Subsection (3.2.2)
compares the fitness of estimation between the price-model and other asset pricing models.
Subsection (3.2.3) reports the estimations using Size-BM 25 portfolios and Industry portfolios.
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Subsection (3.2.4) documents the distribution of risk exposure to each time-series factor.

3.2.1 Benchmark Estimation

Table (2) reports the point estimates b⃗∗ that minimize the weighted error of Euler equation,
for the pricing kernel in the economy of goods and services.

Risk price vector b⃗ reflects how each time series contributes to the variation of stochastic
discount factor. For expenditure, the parameter value is b∗e = 28.80. As in equation (15) of
Theorem 1, risk price of expenditure be is consumer’s relative risk aversion parameter γ.

The risk price of good’s price is b∗g = −71.29, in large absolute value. Admitting the
fluctuation in prices, the component of relative price bg · ωg · (dpg − dps) helps explain the
cross-section of expected returns. Hypothetically, given larger risk price bg, negative covariance
to price of goods yields higher expected return.

Point estimate b∗g is largely different with 27.80 from −(γ − 1). This means impacts from
prices to SDF largely depart from weights in CPI, hence detailed prices in goods and services
bring considerable improvement in measuring the pricing kernel. All else equal, additional
0.1% independent volatility in price of goods implies 2.82% (7.129% adjusted by share of
goods 39.6%) increase of volatility in SDF annually, while CPI weights suggest increase of
volatility as 1.10% (2.780% adjusted by 39.6%).

In this estimation, Mean Absolute Pricing Error (MAPE) is 0.39%. MAPE has a clear
interpretation for portfolio’s annual excess return,

MAPE =
1

K

∑
k

∣∣∣∣∣∣∣∣∣∣
1

T
·

T∑
t=1

Re
k,t+1︸ ︷︷ ︸

Realized Average Excess Return

−

[
1

T
·

T∑
t=1

−dm̃t+1(⃗b
∗) ·Re

k,t+1

]
︸ ︷︷ ︸

Model-Predicted Excess Return

∣∣∣∣∣∣∣∣∣∣
.

Across expected returns of testing assets, average statistic is 7.82% (median is 7.33%). The
magnitude of MAPE reflects the amount of potential abnormal return in an investment strat-
egy. If an investor uses a model of pricing kernel dm̃ to hedge the aggregate risk, excess return
in his portfolios would come from the covariation between his portfolio return and the pric-
ing kernel. As we observe small MAPE, estimated pricing kernel explains the cross-sectional
variation of expected returns.

For alternative evaluation of model fitness, I report the RMSE (Root Mean Square Error).

The statistic RMSE =

√
1
K

∑
k

∣∣∣ 1T ·
∑T

t=1(1 + dm̃t+1) ·Re
k,t+1

∣∣∣2 takes care of the dispersed

pricing error. In estimation, RMSE is 0.44%. I report the p-value for the J-stat, J ≡
T · gT (⃗b∗)

′
·W ∗ · gT (⃗b∗) in 2nd stage of estimation. The p-value of J-stat is high 10, there exists

no concern of over-identification.
10If we observe the J-stat to be tiny, that means we don’t observe variation in the moment of Euler Equation
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3.2.2 Comparison of Models

In this section, the pricing kernel in equation (20) is named as the Price-Model of
Consumption-CAPM, in abbreviation P-ND. Table (4) evaluates if price-model P-ND is
a successful asset pricing model, by comparing fitness with other models. Table (3) pro-
vides the simplified estimation for the formal examination in Table (4). Figure (3) directly
demonstrates the model error in scatter plots.

For comparable evaluation of the fitness, I consider four traditional asset pricing models.
These asset pricing models are CAPM (Capital Asset Pricing Model), FF-5 (Fama-French 5-
Factor Model), and two consumption-based models using quantities, C-ND (quantity-model
of non-durable), C-D (quantity-model augmented by the durable quantity). Here, I explain
the construction of other consumption-based models.

Model C-ND uses direct utility function to describe the marginal utility. In particular,
I assume non-durable composite commodity Cnd is well defined, described by the chained-
quantity index. Consumer has the CRRA preference for the utility flow in each period,

u(Cnd) =
C1−γ

nd

1−γ
. The pricing kernel is approximated as

dm̃t+1 ≈ −bc · dcnd,t+1. (23)

The risk price for nondurable consumption (quantity index) is bc = γ, the risk aversion
coefficient in the traditional consumption-CAPM.

Model C-D considers the durable stock affects the utility flow of representative consumer.
Construction of durable stock Cdur follows (Yogo, 2006). I consider the utility flow is log-

separable in durable stock and non-durable quantity u(Cnd, Cdur) =
(Cnd·Cχ

dur)
1−γ

1−γ
. The pricing

kernel is decomposed as

dm̃t+1 ≈ −bnd · dcnd,t+1 − bdur · dcdur,t+1. (24)

For comparison with model C-ND, I use notation bnd. It is determined by the risk aversion
coefficient γ. For the stock of durable consumption good, the risk price is bdur = −(1− γ) ·χ.

For comparable analysis, model P-D (price-model augmented by the durable quantity)
considers the durable stock affects the utility flow of representative consumer. This assumption
is similar with the two-stage budget system in (Parodi et al., 2020). The durable stock
acts as the parameter for the indirect utility function from budget allocation decision in
non-durable consumption basket. The utility flow is u(Cg, Cs, Cdur) = u(Cg, Cs) · Cχ·(1−γ)

dur =

V (Pg, Ps, End)·Cχ·(1−γ)
dur with End for expenditure in nondurable. When inferring the fluctuation

(1 + dm̃t+1) ·Re
k,t+1 across testing assets. This would leads to over-identification of parameter b⃗. An extreme

case would be that the asset returns are highly correlated, Re
k,t+1 ≡ k · Re

1,t+1, then we in fact use the single
moment for asset-type No.1. When using the single moment to identify two parameters bg and be, we have
the issue of over-identification.
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of marginal utility from non-durable expenditure, I consider the separable effect from change
of durable stock,

dm̃ ≈ −be · (de− dps)− bg · ωg · (dpg − dps)︸ ︷︷ ︸
Durable Stock is fixed

−bdur · dcdur︸ ︷︷ ︸
Quantity Change of Durable

. (25)

This estimation works as if the durable stock is the state variable when calculating the marginal
utility of service. The first term uses the durable stock as the previous observed amount,
calculates the variation of marginal utility driven by the variations of the nondurable good
and service. I assume the contribution of durable stock is stationary 11.

Approximated stochastic discount factor in equation (20) involves the time-varying con-
sumption basket ωg. In Table (2) of the two-sector economy, the parameters (be, bg) are
identified using the equation (18)

Et[R
e
k,t+1] =be · Et

[
(det+1 − dps,t+1) ·Re

k,t+1

]
+ bg · ωg,t · Et

[
(dpg,t+1 − dps,t+1) ·Re

k,t+1

]
.

(26)

For comparison with asset pricing models in the literature, we begin with the simple linear
asset pricing models.

Denote the vector of macro risk factor as f⃗ . Under the simple situation of linear asset pric-
ing model with dm̃t+1 = −b⃗·f⃗t+1, if the drift term of time-series factors Et[f⃗t+1] is known, there

is the simplified identification with scaling, Et[R
e
k,t+1] =

b⃗
1+Et[dm̃t+1]

·Et

[
(f⃗t+1 − Et[f⃗t+1]) ·Re

k,t+1

]
.

which is derived from splitting the drift-term and diffusion term in stochastic discount fac-
tor dm̃t+1, Et[R

e
k,t+1] = −Et[dm̃t+1] · Et[R

e
k,t+1]− Et

[
(dm̃t+1 − Et[dm̃t+1]) ·Re

k,t+1

]
. Empirical

asset pricing literature, especially the literature of consumption-based asset pricing models,
often implicitly includes such assumption of constant expectation (constant conditional mean)

Et[f⃗t+1] ≡ g⃗f , in pursuit of equivalence between the Fama-Macbeth two-pass regression and
the GMM estimation with equal weights. Referring (Cochrane, 1996), I use the risk-free rate
as the expected drift in stochastic discount factor 12 Rf,t+1 = Et[dm̃t+1]. By assumption of
constant expectation and linear asset pricing model, risk-free rate is constant, and directly
measured as the sample-average outcome Rf . The asset pricing equation becomes familiar to
literature,

Et[R
e
k,t+1] =

b⃗

1 +Rf

· Et

[
(f⃗t+1 − Et[f⃗t+1]) ·Re

k,t+1

]
(27)

11In this example, the utility flow u(Cg, Cs, Cd) = u(Cg, Cs) ·Cχ·(1−γ)
d obeys the feature of constant contri-

bution from the stock of durable goods. (Yogo, 2006; Eraker et al., 2016) shows the empirical importance in
inferring the SDF based on business cycle of durable stock. (Yogo, 2006) considers the CES utility function
where the consumer substitutes nondurable with the durable stock. The contribution from durable growth to
marginal utility of nondurable is time-varying. The example provided here is a simplified version.

12Directly replacing b⃗
1+Et[dm̃t+1]

= b⃗

1+b⃗·g⃗f
would maintain the non-linear function over risk price b⃗.
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with b⃗ to be estimated. The price-model is nonlinear, with the time-varying expenditure share
ωt contingent on the historical path. For comparison, the model PL-ND is the linear factor
model that simplifies the price-model P-ND (price-factor model). This linear factor model
with relative price is dm̃t+1 = −be,L · (det+1 − dps,t+1) − bp,L · (dpg,t+1 − dps,t+1). For model
P-D , the simplified linear factor model with relative price and durable quantity growth is
dm̃t+1 = −be,L · (det+1 − dps,t+1)− bp,L · (dpg,t+1 − dps,t+1)− bdur,L · dcdur,t+1, denoted as model
PL-D.

Table (3) summarizes the model fitness in the simplified estimation. For all asset pric-

ing models, estimation with the additional assumption of constant drift term Et[f⃗t+1] ≡ g⃗f
generates larger equation error compared to the benchmark estimation of model P-ND in
Table (2) 13. Specifically, the consumption-CAPM of quantity index, model C-ND, generates
huge pricing error, as high as 7.85% annually. This model is rejected by the historical data.
In model P-ND, expenditure share ωt serves as the sufficient statistic for the impact of by-
sector price over consumer’s utility, summarizing the unobserved consumer taste parameter
and elasticity matrix. The simplified model PL-ND doesn’t include this part, its equation
error is 1.15% annually, larger than the 0.39% of benchmark model. However, the simplified
model PL-ND has smaller equation error than the traded factor models, and the model with
variation of durable stock growth C-D. This indicates the variation in the two time series risk
factors, expenditure relative to price of services de − dps, price of goods relative to price of
services dpg − dps helps convey the information in the true pricing kernel.

Table (4) summarizes the model fitness in the formal estimation. All the traded fac-
tor models and the consumption-based models are estimated using equation Et[R

e
k,t+1] =

−Et

[
dm̃t+1 ·Re

k,t+1

]
, without the additional assumption of constant expectation.

In Table (4), the CAPM model has MAPE as high as 1.58%. Given the failure of CAPM,
investors seek abnormal returns from the value strategy and profitability strategy. After
adding the value factor and profitability factor, the multi-factor asset pricing models gradually
deplete the potential abnormal return in investment practice. In Table (4), the Fama-French
5-factor model has a high MAPE 0.79%. This means that the investor can still build the
abnormal return from systematic risk not captured by Fama-French 5-factor model. There
are more dispersed pricing errors across testing assets. RMSE is much larger than MAPE in
the traded-factor models.

MAPE is 0.71% for the pricing kernel of non-durable quantity index, in model C-ND.
This comparison shows that the quantity-model has larger model error than 0.39% of price-
model. The improvement of model-fitness mainly occurs in the testing assets of Size-BM and
the Momentum. Improvement occurs because there is large dispersion of factor-loading to-

13Often, empirical asset pricing test uses the demeaned time series risk factors. This implicitly assumes the
constant drift term, and estimate it as the realized sample-mean g⃗f ≈ 1

T ·
∑T

τ=1 f⃗τ+1. The simplified estimation
inherits this practice. Alternatively, one can add more equations to directly estimate the unconditional drift
g⃗f , but the choice of weight in GMM estimation is not determined and invokes further problems.
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ward the relative price of goods, inside Size-BM testing assets. The Momentum assets have a
large dispersion of factor-loading toward expenditure. Model C-D has MAPE as 0.66%, be-
cause the durable quantity growth provides additional information for macro-economic states.
Model P-D allows for a more accurate measure of consumer’s marginal utility of non-durable
expenditure, by admitting the impact from variation of durable stock growth. The MAPE is
0.27%, smaller than the model C-D with non-durable quantity and durable stock.

Figure (2) illustrates the two components in MAPE for the simplified estimation outcome
of asset pricing models estimated. The two time series risk factors, expenditure relative to
price of services, price of goods relative to price of services, are important for approximating
the true pricing kernel. Figure (3) illustrates the two components in MAPE for the six asset
pricing models in formal estimation. The price-model P-ND, the generalized consumption-
CAPM for robust specification of consumer preference, is a successful asset pricing model. As
in the figure, model-predicted excess return is close with the expected return.

Accurate estimation of b⃗ using this equation is difficult, because it requires describing
consumer’s belief Et[f⃗t+1] in historical data. The consumption-CAPM of quantity index is
drastically affected by the mis-specification of time-invariant expectation. The expected con-
sumption growth correlates to price variation in current period. Admitting the expected
consumption growth, has the similar role with selecting the price variation out. Still, the
time-varying expectation of consumption expenditure raise challenge for identifying param-
eters in the model P-ND. Estimation has unstable point estimate for risk price in different
specifications of testing assets. This paper takes the conservative approach: (1) use the full
Euler Equation to estimate the risk price for each time-series in the consumer’s marginal
utility; (2) account the covariance between pricing kernel and excess returns, based on the
accurate point estimates. For an asset pricing model with high accuracy in approximating the
stochastic discount factor, the expected return financial asset is supposed to be linear over its
covariance with the model-predicted pricing kernel. The post-estimation validation is detailed
in sub-section 3.2.3.

3.2.3 Other Testing Assets

Previous discussion demonstrates the price-model has high in-sample fitness of estimation
across equity portfolios built from cross-section anomalies. When using traditional testing
assets and industry portfolios to estimate the pricing kernel, the point estimates of risk price
are similar with Table (2). Across other testing assets, covariance with the benchmark pricing
kernel in Table (2) explains the cross-section of expected return. This indicates the nice
out-of-sample explanation.

Table (5) lists the point estimate of parameters using 25 portfolios double-sorted based on
Size and Book-to-Market, the 30 industry portfolios. Columns Size-BM 25 and Industry
30 show the choice of testing assets has small effect over the point estimates 14. When using

14Alternative estimations of quantity model and Fama-French 5-factor model are reported in Table (A.5)

22



the Size-BM 25 portfolios, point estimate of be and bg slightly changes to 30.05 and −68.26.
When using the industry portfolios, point estimate of be and bg slightly changes to 33.27
and −69.95 15. In these two setups, over-identification hypothesis are both rejected. The
price-model has high fitness in these alternative estimations.

Figure (4) uses the estimated pricing kernel in Table (2), to account the contribution of
covariance with pricing kernel in the expected return, for all testing assets. After being nor-
malized with the volatility of pricing kernel, pairwise covariance is the slope term in univariate
regression of excess return to pricing kernel. This βm coefficient resembles the Market-beta of
CAPM in financial news and media. As shown in Figure (4), beta to pricing kernel positively
correlates with the sample average return across testing assets.

3.2.4 Cross-section of Risk Exposure

This subsection delineates the distribution of risk exposure, correlation between asset
return and time-series factors in pricing kernel. Figure (5) plots β⃗ coefficients from first step
in Fama-Macbeth regression 16, for benchmark testing assets Mix-30. As in second plot of
Figure (5), these testing assets have negative correlation to relative price of goods. When
price of goods increases slower than price of services, very likely we would observe positive
realized excess return in the same year.

Table (6) shows small and value firms have negative correlation with relative price. The
smallest portfolio in testing assets sorted by size, has the largest (negative) risk exposure
−7.99, while the growth portfolio sorted by book-market has the risk exposure −3.46. Median
statistic is −4.84. The point estimates for βg are statistically different from zero, except for

and (A.7) in online appendix.
The point estimate of Fama-French 5-factor model changes in different testing assets. The risk price for the

size factor bSize has large standard error in Industry 30 portfolio. The risk price for the value-growth factor
bBM is −2.24, with large standard error in the Size-BM 25 portfolio. However, the point estimate of bBM is
−5.86 using the Industry 30 portfolio, with small standard error. Fama-French 5-factor model is constructed
with the equity portfolios based on cross-section anomalies, correlation between traded factors and the testing
assets is supposed to be more strong. Nonetheless, when separating these portfolios based on construction,
irrelevant traded factors tend to have weak correlation. Subsection 3.3.1 provides more detailed discussion.

15In estimating the simplified model with additional assumption of constant drift Et[f⃗t+1] ≡ g⃗f , the co-

variance in testing assets Et

[
(f⃗t+1 − g⃗f ) ·Re

k,t+1

]
is weak, hence the point estimates are unstable. Appendix

Table A.10 reports those point estimates. The parameter of price b̂g,L changes from −101.03 in estimation

using Mix-30 portfolios to −79.69 in that of Industry-30 portfolios. The parameter of expenditure b̂e,L is
positive but has large standard error in first-stage estimation.

16Fama-Macbeth regression allows for straightforward interpretation of risk-premium and risk exposure,
but it requires more assumptions than GMM estimation, one can find more explanation in (Cochrane, 1996).

For linear pricing kernel dmt+1 = −b⃗ · f⃗t+1, 1st step regression calculates the risk exposure β⃗ from Re
k,t+1 =

ak + β⃗k · f⃗t+1, 2nd step computes the slope of sample-average return over risk exposure as Et[R
e
k,t+1] = β⃗k · λ⃗.
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several portfolios such as the growth portfolio. Point estimates for risk exposure to expenditure
βe are often inaccurate. Table (A.6) in appendix reports the risk exposure for other testing
assets. In Size-BM 25 portfolios, small and value firms have risk exposure in larger absolute
value. Most portfolios in Industry 30 have negative correlation to relative price except for
Mining and Coal industries.

Table (6) reports the time-series average risk-premium in the second step of Fama-Macbeth
regression, for benchmark and alternative testing assets 17. Covariance matrix between ex-
penditure and price augments the risk price vector. They jointly determine risk premium. For
each group of testing assets, I report both the risk-premium assuming zero-beta rate identical
with risk-free rate, and the risk premium without this assumption. Risk-premium for relative
price of goods λg is significantly negative. All else equal, additional unit of negative risk
exposure βg yields positive return of 1.64% per year.

Risk premium for relative price of goods is quantitatively similar when using other testing
assets. Across Size-BM 25 portfolios, point estimate of λg is -1.56%. Across Industry
30 portfolios, point estimate is -1.43%. In the Size-BM 25 portfolios, the dispersion of
correlation is highly linear, so the identification is weaker. Risk exposure in Industry 30 has
sufficient variation for identifying risk premium for relative price of goods λg, but not so for
relative expenditure. Point estimate of risk premium λe is inaccurate.

3.3 Supplementary Estimation

Subsection (3.3.1) provides the supplementary estimation for the two-sector model, using
alternative testing assets. Subsection (3.3.2) investigates definitions of goods and services.
Point estimates and fitness of estimation are similar with the benchmark results. Subsection
(3.3.3) estimates the model in different sub-sample periods during 1935-2019. In early sample
of 1935-1989, point estimates of risk price vector have the same sign, but in smaller absolute
value. The sample of 1950-2004 has the similar estimation outcome with benchmark results.

3.3.1 Testing Assets

Table (7) further investigates estimation inside the benchmark testing assets Mix 30.
Table (7) estimates the pricing kernel in three subsets of testing assets: (a) 5 Size + 5 BM;
(b) 5 Profitability + 5 Investment; (c) 5 Momentum + 5 Earning/Price ratio. In the group
of Profit-IK, the Fama-French 5 factor model generates the smaller model error. In other

17OLS-R2 in 2nd step is reported. I also consider the GLS regression for each model, using the weight-matrix
suggested by (Lewellen et al., 2010), to mitigate the concern of strong correlation within testing assets. GLS-
R2 tends to over-interpret certain subset of testing assets in small total volatility, but ex-ante we don’t know
the systematic component there. Statistic OLS-R2 and GLS-R2 assume the zero-beta-rate is identical with
risk-free rate, with no omitted component in pricing kernel. I also include statistic COLS-R2 and CGLS-R2,
where 2nd step of regression includes the intercept term, assuming all assets have identical constant term in
excess return. Appendix Table (A.5) reports these statistics for other asset pricing models.
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two groups, Size-BM and MoM-EP, the price-model has better model fitness in the GMM
estimation. The MAPE decreases from 0.55% to 0.33% for the testing assets Size-BM. It
decreases from 0.55% to 0.36% for the testing assets MoM-EP.

Among the two groups Size-BM andMoM-EP, the point estimate for parameters (be, bg)
are similar. But the point estimate of bg is slightly lower when using the testing assets Profit-
IK. Joint distribution of return covariance affect the point estimates. As these tests using
small group of testing assets, when the variation of risk exposure is weak, point estimates
are distorted. This situation is more severe for estimation asset pricing models with multiple
factors, such as Fama-French 5-factor model 18. We observe more stable point estimate for
the price-model of consumption CAPM. From the side of pricing kernel, this model captures
consumer’s marginal utility in the more accurate way. From the side of estimation, testing
assets have sufficient variation in risk exposure, so we observe similar points estimates across
groups of testing assets.

3.3.2 Alternative Definitions

Table (8) shows alternative definitions of consumption sector have small affects over the
point estimate of be and bg. Column Financial-Service removes the quasi-durable service
categories such as health-care and financial service 19, the point estimates are similar. Column
NIPA-Nondurable uses the classification of non-durable good and service of NIPA, the
point estimate of bg is quantitatively similar. This definition includes the gasoline (energy) for
the non-durable good, housing and public transportation for the service, compared with the
benchmark estimation in Table (2). Table (2) uses a more rigorous definition of nondurable
consumption sector following the literature.

Table (9) investigates whether the price index construction procedure affects the point esti-
mate of be and bg. When using the first-order difference of Tornqvist Index, the point estimate
is quantitatively similar. If I use the average change of category-level price index, the point
estimate of expenditure parameter be is no longer accurate. Using simply the cross-category
average price produces non-negligible approximation error. Construction of Fisher-Index and
Tornqvist Index takes the size of consumption categories into consideration, approximation
errors are smaller when I use these price indices for the simplified two-sector economy.

3.3.3 Long Sample

Table (10) lists the estimation of risk price and risk premium during the time intervals:
(a) 1935-1989; (b) 1950-2004; (c) 1965-2019. I construct these alternative samples of 55 years,

18Fama-French 5-factor model has under-identification when the number of testing assets is small. This
problem maintains when using Size-BM 25 and Industry 30.

19Equity issuance cost affect asset returns from the production side, as shown in (Belo et al., 2019). Variation
in price of financial services might capture the fluctuation in financing cost.
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with the same length as the benchmark sample. Construction of consumption price indices
was substantially revised in the early years of NIPA statistics as documented in (Rippy, 2013),
so the sample starts from 1935. For consistent testing assets during the three time blocks, I
use the Size-BM 25 portfolios. Across the three sample periods, all point estimates for the
relative price of goods bg are negative. But the point estimate in the early sample 1935-1989
has much larger absolute value in the first-stage, and drastically changes to smaller value in
the second-stage estimation. This shows certain testing assets have high idiosyncratic noise
in the early years of NIPA records. In the period 1950-2004 and the period 1965-2019, we
observe close point estimates for the risk price bg.

4 Comparison between Quantity and Prices

In empirical estimation, detailed prices help provides more accurate description of pricing
kernel than the quantity index. I use the Tornqvist index to provide the analytical explanation
for quantity index. When consumer preference is non-homothetic, quantity index cannot
accurately measure the SDF. Subsection 4.1 derives the quantity index for examples of Cobb-
Douglas utility function and Constant Elasticity of Substitution. Under these situations of
homothetic preference, quantity index describes the pricing kernel. This argument doesn’t hold
in other general situations. Subsection 4.2 shows in historical data, pricing kernel measured
using quantity index leads to over-estimation of consumer’s risk-aversion coefficient, and worse
explanation of expected returns. Subsection 4.3 shows the difficulty in identifying a suitable
utility function over quantities. General indirect utility function is an alternative way to
describe consumer’s preference when the direct utility function over quantities is not tractable.
The non-parametric SDF using prices provides a simpler expression, so it is convenient for
empirical estimation.

4.1 Explanation of Quantity Index

Consider the special case where the consumer has utility function as u(Cg, Cs) =
[C

ωg
g ·C1−ωg

s ]1−γ

1−γ
,

This reads as a monotonic transformation for Cobb-Douglas utility function. Share of goods in
the consumption basket is fixed as ωg. We use the service as the numeraire, the real stochastic
discount factor is the marginal utility of service20. The pricing kernel is written as

dm̃ =− γ · (de− dpJ)− (1− γ) · ωg · (dpg − dpJ)− (1− γ) · ωs · (dps − dpJ). (29)

20Marginal utility of service is DCs
u(Cg, Cs) = [C

ωg

g,t · C
1−ωg

s,t ]−γ · Cωg

g,t · C
−ωg

s,t · (1− ωg). The variation is

dm̃ ≈ (1− γ) · ωg · dcg + [(1− γ) · ωs − 1] · dcs. (28)

We can replace quantity of services as Cs =
(1−ωg)·E

Ps
, and similarly for the goods Cg =

ωg·E
Pg

.
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In this example, consumer price index as Tornqvist index 21 provided by NIPA summarizes
the contribution of detailed prices,

d log(PTornqvist) = ωg · dpg + ωs · dps. (30)

Replacing variation in consumer price index, the pricing kernel is simplified as, dm̃ = −γ ·
(de − dpJ) − (1 − γ) · [d log(PTornqvist) − dpJ ]. Alternatively, we can defines composite good

as Ct = C
ωg

g,t · C
1−ωg

s,t . This quantity index is equivalent with total expenditure adjusted by
consumer price index,

Ct =
Et

PTornqvist,t

. (31)

In this economy of goods and services, quantities in consumption basket is summarized the
quantity index, as if we are in a one-sector economy of composite commodity.

When choosing the composite good as numeraire, the pricing kernel is,

dm̃ =− γ · [de− d log(PTornqvist)]. (32)

Equivalently, this is standard Consumption-CAPM,

dm̃ =− γ · dc. (33)

More generally, when consumer preference has Constant Elasticity of Substitution, pricing
kernel has the identical expression with equation (32). Consider the utility function over quan-

tities as u(Cg, Cs) =
1

1−γ
· (Cρ

g +Cρ
s )

1−γ
ρ . The marginal utility of services 22 has approximated

variation as,

dm̃ ≈ −γ · (ωg · dcg + ωs · dcs)︸ ︷︷ ︸
weighted change in quantities

−ωg · (ρ− 1) · (dcg − dcs)︸ ︷︷ ︸
CPI v.s. Ps

. (35)

21The level of Tornqvist index is recovered from the growth of index in each period. Growth of index is
using the changes of prices across sectors weighted by the previous expenditure share. In this economy with
two sectors, the Tornqvist index is updated period by period as,

PTornqvist,t+1 = PTornqvist,t · exp[ωg,t·dpg,t+1+ωs,t·dps,t+1].

When the shares are constant ωj,t = ωj , consumer price index has the analytical expression after normalization,

PTornqvist,t = P
ωg

g,t · P
1−ωg

s,t .

22Cobb-Douglas utility function is a special case of ρ → 0. Marginal utility of services has variation as

dm̃ ≈ −(γ − 1 + ρ) ·
Cρ

g

Cρ
g + Cρ

s
· dcg − [(γ − 1 + ρ) · Cρ

s

Cρ
g + Cρ

s
− (ρ− 1)] · dcs. (34)

From proportional marginal utility across goods and services, we know
∂u
∂Cg
∂u
∂Cs

= (
Cg

Cs
)ρ−1 =

Pg

Ps
. Given equation

(
Cg

Cs
)ρ =

ωg

ωs
, we replace

Cρ
g

Cρ
g+Cρ

s
using shares. This gives the simplified result.
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we arrive to the identical expression with equation (32) after organization 23 . We obtain the
nice identical result because the shares help summarize the ratio of quantities.

CES utility function is a special case where the composition of consumption basket is
unaffected by the change in expenditure. Other homothetic preferences also have this feature.
We derive the identical pricing kernel with equation (32). One can confirm this prediction
using Theorem (1): the indirect utility function of homothetic preference has the identical
risk prices bg and bs, so we can use variation in Tornqvist price index to summarize variations
in prices.

In the economy with good and service sectors, if there is the symmetric risk price bg = bs
across sectors, quantity index Et

PTornqvist,t
is sufficient statistic 24 for pricing kernel. However,

we encounter the trouble when consumer preference doesn’t have this special feature.
The motivating example of subsection 2.1 uses a typical indirect utility function in the

Price-Independent General Linear preference, to demonstrate quantity index inaccurately
measure the pricing kernel. When consumer’s price-habit has the parameter h > 0, we have
the risk price of good’s price in larger absolute value, |bg| > |bs|. Under this circumstance,
quantity index cannot describe the pricing kernel. Nonetheless, there is an explicit function
of marginal utility over prices and expenditure in subsection 2.1.

Subsection 2.2 derives the marginal utility for the consumer with general preference. Equa-
tion (15) in Theorem (1) shows the risk price of consumption prices can be different with each
other. Under this situation, composite price index cannot convey the different contribution
from each commodity price. If the risk price vector is very asymmetric, when breaking the
composite consumption quantity into prices and expenditure, we will obtain more information
to accurately describe consumer’s marginal utility. This estimation in Table (2) doesn’t agree
with homothetic preference over goods and services, as bg < −(be − 1). This clarifies why we
cannot use quantity index to precisely measure the pricing kernel.

4.2 Estimation using Quantity Index

Column (1) of Table (11) reports the large point estimate of risk-aversion coefficient 106.47.
Estimation uses the Size-BM 25 portfolios for comparison with the literature. The linear
approximated stochastic discount factor of quantity index is estimated using the equation

Et[R
e
k,t+1] =

1

1 + Et[dm̃t+1]
· γ · Et

[
(dct+1 − gc) ·Re

k,t+1

]
. (36)

23In the first component, one can substitute dcg = de+dωg −dpg and similarly for dcs. Given ωg +ωs = 1,
we have ωg · dωg + ωs · dωs = 0. The weighted change in quantities collapses as de− (ωg · dpg + ωs · dps). In
the second component, one can substitute dpg − dps = (ρ− 1) · (dcg − dcs), and arrive to ωg · (dpg − dps) =
d log(PTornqvist)−dps. The second component is canceled out when choosing the composite good as numeraire.
The variation of real stochastic discount factor is marginal utility of services adjusted by price of composite
good, dm̃ = dm̃− dps + d log(PTornqvist).

24In practice of NIPA, chained real quantity index is very similar with this analytical index.
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The expected consumption growth Et[dct+1] is assumed to be constant gc, measured as the full-

sample mean growth rate. The mean absolute error MAPE = 1
K

∑
k

∣∣∣ 1T ·
∑T

t=1R
e
k,t+1 − λ̂c · β̂k,c

∣∣∣
in equation (36) is 9.53% annually. The cross-section of expected return cannot be explained
by the correlation to consumption quantity growth. Using alternative testing assets for esti-
mation doesn’t change the large equation error in cross-section of expected returns. When es-
timation uses Industry 30 portfolios as testing assets, point estimate of implied risk-aversion
coefficient is −64.22, and 46.59 in estimation using Mix-30 portfolios. Large pricing error in
cross-section estimation is named as the failure of Consumption-CAPM 25 in literature since
(Mankiw and Shapiro, 1986). This asset pricing model using aggregate consumption quantity
index is mis-specified. Stringent assumption over the time-series of consumption quantity
index growth, further exacerbates the pricing error.

Under the special case where the composite good is well-defined Ct = C
ωg

g,t · C
1−ωg

s,t , the
stochastic discount factor using the quantity index has the explicit nonlinear function form
M̃ = C−γ

t+1. Column (3) of Table (11) reports estimation of the nonlinear stochastic discount
factor using the inter-temporal equation

Et

[
(
Ct+1

Ct

)−γ ·Re
k,t+1

]
=0. (39)

The point estimate of risk-aversion parameter is large 66.93 for risky assets in Size-BM
25 portfolios. The gap of expected return and the covariance to nonlinear pricing kernel

is large, MAPE = 1
K

∑
k

∣∣∣ 1T ·
∑T

t=1R
e
k,t+1 − 1

T
·
∑T

t=1[1− (Ct+1

Ct
)−γ] ·Re

k,t+1

∣∣∣ is 4.60% annually.

The pricing error using nonlinear stochastic discount factor maintains large. Estimation out-
comes are similar when the risky assets are Industry 30 portfolios or Mix-30 portfolios of

25One can translate the consumer’s Euler equation as

Et[R
e
k,t+1] =

1

1 + Et[dm̃t+1]
· γ · Et

[
(dct+1 − gc) · (Re

k,t+1 − Et[R
e
k,t+1])

]
. (37)

using the covariance (dct+1 − gc) · (Re
k,t+1 − Et[R

e
k,t+1]) = σc · βk,c. The asset pricing equation for financial

asset k reads as

Et[R
e
k,t+1] =β · R̃f,t+1 · γ · σc · βk,c. (38)

The consumption-beta βk,c is estimated using the time-series regression Re
k,t+1 = ak + βk,c · dct+1 for asset k.

The σc is the volatility of consumption growth. Additional identification assumption is added, compared to
the estimation specification in Section 3. Constant consumption volatility and expected consumption growth
implies constant risk-free rate. The simplified identification has equivalent expression with 2nd step of Fama-
Macbeth regression Et[R

e
k,t+1] = λc · βk,c, more risk-aversed consumer or more volatile consumption implies

the higher risk premium λc = β · R̃f · γ · σc from risk exposure to consumption.
Asset pricing tests in Consumption-CAPM in literature sometimes include the zero-beta rate λ0 in cross-

section regression Et[R
e
k,t+1] = λ0+λc ·βk,c, considers excess return of risky assets have identical premium that

are not explained by the consumption beta, eg. the risk-free rate equation might not hold. This alternative
estimation still has large mean absolute error 1.29% annually.
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representative anomalies. The exact nonlinear stochastic discount factor cannot explain the
cross-section of expected return.

Column (4) of Table (11) estimate the linear approximated stochastic discount factor using
equation,

Et

[
(1 + dm̃t+1) ·Re

k,t+1

]
= 0, (40)

compares the pricing kernel measured using the quantity index with the price-model. The
model C-ND is identified using equations

Et

[
(1− bc · dct+1) ·Re

k,t+1

]
= 0 (41)

The point estimate is b̂c = 50.88. Column (4) and Column (1) have identical approximated
model of consumer’s marginal utility. The pricing error is reduced for the statistic reason be-
cause estimation doesn’t restrict the expected growth in each period. The nonlinear stochas-
tic discount factor (Ct+1

Ct
)−γ in Column (3) doesn’t put this restriction of constant expected

growth. The model mis-specification error is slightly less severe than Column (1), but the
model error is still large.

In the price-model of generalized consumption-CAPM, parameters are identified by esti-
mating equations for risky assets

Et

[
[1− be · (det+1 − dps,t+1)− bg · ωg,t · (dpg,t+1 − dps,t+1)] ·Re

k,t+1

]
= 0, (42)

In Column (1), estimation specification replicates the difficulty of consumption-CAPM in the
annual frequency. For comparison, Column (2) uses the same lens, estimates the linear factor
model with relative expenditure and relative price. This reduced-form model is informative
for how the two time series factors convey the variation in stochastic discount factor, and how
estimation restriction affects the parameter estimates. The point estimate for relative price
b̂p,L is negative and in much larger absolute value, while the point estimate of b̂e,L is a small
positive number with large standard error. Estimation of Column (2) has the same assumption
of the constant drift term with Column (1). The volatility in the relative price of goods is
understated, and similarly for the time series of expenditure. Parameters of abnormally large
value are chosen to resolve the high expected return of the small volatility. Risky assets
have covariance to the slow-moving component in the expenditure growth. Omitting this
component of covariance leads to additional equation error and inaccurate point estimate.

Column (5) of Table (11) avoids the omitted variation in expectation of expenditure growth
and price growth, attains the much smaller equation error, and relatively small risk-aversion
coefficient. The point estimate b̂e = 30.05, much smaller than the risk aversion parameter
b̂c = 50.88 in Column (4). As in the descriptive statistic Table (1), the time series of relative
price of goods and the time series of expenditure have weak correlation. Intuitively, when these
time series are combined together, the positive risk price be and the negative risk price bg leads
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to unclear economic interpretation of coefficient for the quantity index bc
26. As described in

Section 3, the risk price for quantity index b̂c is interpreted as risk aversion parameter γ in
literature. Comparing the point estimates, b̂e < b̂c, ignoring the heterogeneous consumption
sectors leads to overstated risk aversion in empirical estimation.

Figure (A) plots the pairwise covariance between the excess return and the quantity of
nondurable. Beta to quantity index surrounds zero, in weak correlation with sample average
excess return. This echoes the huge pricing error of model C-ND in Table (3), the negative
OLS-R2 in Table (A.5), and the similar estimation outcome of cross-section asset pricing
test in (Kroencke, 2017). Here are detailed explanations for this problematic outcome: (1)
expenditure and price of goods have different risk prices in the true model of consumer’s
marginal utility, but quantity index adds assumption in combining these components; (2) the
expected growth in nondurable expenditure is time-varying in the historical data, this further
exacerbates the weak correlation between quantity-beta and expected return.

Previous estimation for model C-ND and model P-ND uses Euler Equation for holding
the risky assets. Representative consumer is indifferent between the different equity portfolios
and the risk-free asset. Estimation uses this fact to identify the consumer preference. Columns
(6) to (7) in Table (11) further examine the risk-free rate equation

Et

[
β · (1 + dm̃t+1) · R̃f

t+1

]
= 1. (43)

This equation reflects consumer’s trade-off between current consumption spending and saving.
The constant subjective discount rate β is calibrated as 0.98. In Theorem 1, approximation
of pricing kernel only considers the first-order terms. This approximation captures the main
component when considering the covariance between pricing kernel and the excess return
of risky assets. I use the sample variance of pricing kernel as the approximated second-order
term, similar with (Savov, 2011; Kroencke, 2017). The vector of moments has K+1 equations:
equation (40) for excess return of each risky asset k ∈ {1, · · · , K}, and one equation (44) for
the risk-free rate as

1

T
·

T∑
t=1

β · R̃f
t+1 ·

[
1 +

1

T
·

T∑
t=1

dm̃t+1(⃗b)−
1

2
· ˆV ar[dm̃t+1(⃗b)]

]
=1. (44)

I maintain the equal weight for moments in the first-stage estimation of GMM. The equation
(40) of each risky asset reflects consumer is indifferent to risk-free asset, while equation (44)
reflects consumer is indifferent to current consumption and future spending. When including
the equation of risk-free asset, the point estimates of risk prices are similar in the price model.

26In quarterly frequency, identification of consumption-based asset pricing model is challenged by the season-
ality in consumption expenditure and asset returns, the point estimates for parameter bc are unstable across
quarters. Online table (A.13) shows the exacerbated difficulty in quarterly estimation. For price-model,
estimated parameter value bg is much larger in quarterly frequency.
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Estimation and discussion of quantity index use the Size-BM 25 equity portfolios for
straight-forward comparison to the literature. The benchmark estimation in Section 3 uses
Mix 30 equity portfolios of representative anomalies, calculates moments for inter-temporal
equations of risky asset excess return. Estimated price-model has close point estimates. Here-
after, estimation of consumer preference uses inter-temporal equations of risky assets, for
coherent discussion in this paper.

4.3 Quantities for Two Sectors

In Table (11), we observe the improvement from model of quantity index toward the price-
model P-ND. Estimation suggests consumer has non-homothetic preference over the goods
and services. Price of goods has different risk price bg from −(be− 1). Directly estimating the
parameter bg allows for the more accurate measure of pricing kernel. When consumer has non-
homothetic preference, it is difficult to derive the marginal utility using detailed quantities.
Table (12) conducts empirical examination for whether we can use detailed quantities to
describe the pricing kernel.

If we relax the CES preference to the more generalized situation, for example non-separable
preference based on (Ait-Sahalia et al., 2004),

u(Cg, Cs) =
1

1− γ
· (Cρg

g + Cρs
s )

1−γ
ρs ,

marginal utility of services can be written in shares and quantities as 27,

dm̃ ≈ −ρg
ρs

· [γ − (ρs − 1)] ·
ωg

ρg
ωg

ρg
+ 1−ωg

ρs

· dcg − {[γ − (ρs − 1)] ·
ωg

ρg
ωg

ρg
+ 1−ωg

ρs

+ γ} · dcs. (46)

Table (12) estimates the pricing kernel in linear function of variations in quantities,

dm̃ ≈ −b̂cg · dcg − b̂cs · dcs. (47)

Parameter bcg is sensitivity of marginal utility of services DCgu(Cg, Cs) with respect to Cg.

Estimation of linear pricing kernel gives the rough point estimate of average sensitivity b̂cg .

And similarly for the b̂cs .
As shown in the table, when using the quantity variation of goods (services) as the time-

series factors to approximate the variation of consumer’s marginal utility, the point estimate

27Using quantity of goods and that of services, marginal utility of services reads as

dm̃ ≈ −ρg
ρs

· (γ − 1 + ρs) ·
C

ρg
g

C
ρg
g + Cρs

s
· dcg − [(γ − 1 + ρs) ·

Cρs
s

C
ρg
g + Cρs

s
− (ρs − 1)] · dcs. (45)
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in the first stage is inaccurate. This specification of direct utility function creates high ap-
proximation error of model.

Table (13) investigates whether Stone-Geary preference provides a better description, as
specified in (Lochstoer, 2009). The Stone-Geary preference qualitatively captures the essence
of non-homothetic preference, but the financial economist meets difficulty in reasonably as-
suming the structure of consumption-habit. Table (13) shows inaccurate point estimates and
worse fitness of estimation.

In the Column Good, I assume consumer has the zero habit in the basic-good sector,

u(Cg, Cs) =
[C

ωg
g ·(Cs−Xs)

1−ωg ]1−γ

1−γ
, decompose the pricing kernel (using service as the numeraire)

as

dm̃ ≈ −γ · dcg − [(γ − 1) · (1− ωg) + 1] · (dpg − dps). (48)

Negative habit in the services Xs is consistent with the observation of asymmetric risk prices
in previous price-model P-ND. Given the negative habit Xs < 0, observed expenditure share
in goods ωg is larger than the share-parameter ωg. In estimation, I require the point estimate
bpg is smaller than (bcg − 1) · (1− ω̂g) + 1. The share ω̂g is calibrated as sample-average 40%
for simple estimation. When explicitly estimating the Stone-Geary preference with zero habit
in goods, point estimate of risk price bcg is abnormally large. MAPE is 2.79%. The fitness of
estimation is worse than the general price-model P-ND.

In the Column Service I assume consumer has zero habit in the services, u(Cg, Cs) =
[(Cg−Xg)

ωg ·C1−ωg
s ]1−γ

1−γ
, decompose the pricing kernel (using service as the numeraire) as

dm̃ ≈ −γ · dcs − (1− γ) · ωg · (dpg − dps). (49)

Positive habit in the goods Xg is consistent with the observation of risk prices in price-model
P-ND. Given the positive habit Xg > 0, observed expenditure share in goods ωg is larger
than the share-parameter ωg. In estimation, I require the point estimate bpg is smaller than
(1 − bcs) · ω̂g. The point estimate for bcs is 33.79 with considerable precision, but the point
estimate for bpg = −13.12 has large standard error. Fitness of estimation is also worse than
the general price-model P-ND.

Under certain situation, direct utility function might not have the tractable expressions.
For example, non-homothetic CES preference in (Comin et al., 2021). The utility u(Cg, Cs)
is solution to a non-linear equation of quantities, 1 = Cρ

g · u−ρg +Cρ
s · u−ρs . Marginal utility of

services is derived from the implicit function theorem,

DCsu(Cg, Cs) =
u

Cs

· ρ · Cρ
s · u−ρs

ρg · Cρ
g · u−ρg + ρs · Cρ

s · u−ρs
. (50)

There is no analytical expression for the marginal utility of services. Under this situation,
estimation of pricing kernel is difficult.
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In summary, using detailed quantities helps improve the fitness of estimation, compared
with the model C-ND using quantity index. Nonetheless, there is larger inaccuracy in esti-
mating the direct utility function over quantities of goods and services. The model P-ND
considers the general indirect utility function, skips the explicit assumption of function shape
and parameters. This allows for the simple empirical estimation.

5 Extension for Multiple Sectors

Zoo of cross-section anomalies emerged in recent decades (Hou et al., 2015; Harvey et al.,
2016), especially in the sample period after 1960s. Benchmark testing assets include portfolios
of investment, profitability and momentum, to examine whether the asset pricing model can
explain the returns of representative anomalies. When considering a more generalized economy
with multiple sectors, the extended pricing kernel provides better explanation for testing assets
of anomalies. Estimated risk aversion coefficient is smaller. The contribution of detailed prices
to pricing kernel is better identified.

Table (14) includes a more detailed consumption basket, by separating the food and non-
food categories within goods and services. Estimations relax the definition of consumption
sectors gradually. Expenditure and price of food-service, and other detailed product-level data
use Table 2.4.4 and Table 2.4.5 provided by NIPA. Overall, estimation with detailed sectors
bring small model error, consumption prices have risk price in large absolute value, while
expenditure contributes to the pricing kernel in a smaller way.

Column Food in Good separates the goods into food-good (food-at-home) and the non-
food. I estimate parameters (bgf , bgn, be) using the pricing kernel as

dm̃ ≈− bgf · ωgf · (dpgf − dps)− bgn · ωgn · (dpgn − dps)

− be · (de− dps).
(51)

Estimation of bgf is quantitatively close with bg in the benchmark estimation of two-sector
economy. Due to the inaccurate estimate of bgn, it is difficult to conclude whether the non-food
goods are different from the food goods. Construction of total nondurable expenditure and
price of services use more dis-aggregated data, be has the point estimate 14.13, smaller than
the parameter value 28.80 in the benchmark estimation of the two-sector economy.

Column Food in Service separates services into food-service (food-away) and non-food.
I estimate parameters (bg, bsf , be) in the similar procedure, all nominal time series are adjusted
using price of non-food services . Point estimate for parameter bg is −71.95, similar with the
estimation−71.29 in two-sector economy. I observe the risk-price for food-service bsf = 302.21.
The estimation for parameter be is 21.63, smaller than the benchmark estimation in Table (5).

Column Four considers all sectors, estimate parameters (bgf , bgn, bsf , be) using the pricing
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kernel as

dm̃ ≈− bgf · ωgf · (dpgf − dpsn)− bgn · ωgn · (dpgn − dpsn)

− bsf · ωsf · (dpsf − dpsn)− be · (de− dpsn).
(52)

The risk price for food-service is quantitatively close with estimation of three-sectors in Food
in Service. SDF have different sensitivities to prices of goods and services within food. Food-
at-home has risk price bgf as −78.10, but food-service has risk price as 302.37. Estimated risk
price for expenditure be is 14.70, in a small value. Further, MAPE in estimation of four-sector
economy is 0.18%, smaller than all other consumption-based models.

When the consumer decides her basket over multiple consumption sectors, distinguishing
the risk price for dis-aggregated prices improves measuring the SDF. Risk price of expendi-
ture is determined by consumer’s relative risk-aversion coefficient. We observe smaller point
estimate for parameter be. The variation of consumption expenditure has small contribution
toward the fluctuation in SDF. On the contrary, variations in detailed prices contribute the
main fluctuation. We don’t see the puzzling high point estimate of risk-aversion in literature.

In Fama-Macbeth regression, after including these detailed prices, cross-section fitness
slightly improves, prices have negative risk premiums. Food-good and food-service have pos-
itive correlation, while the correlations with non-food good are weak. Covariance matrix of
prices and risk price vector together determines the observed risk premium (vector), so there
is no simple match between risk price and risk premium.

The extended price-model with four sectors well explains the family of cross-section anoma-
lies documented in (Hou et al., 2015). Table (15) reports the average estimation outcome
across 114 anomalies, available during the years 1968-2019. For each anomaly, testing assets
are 15 portfolios double sorted on size and the firm characteristics from database global-q.
Estimation is conducted by group of 15 testing assets, then the average point estimate and
the model fitness are reported. Average MAPE of price-model P-ND is 0.22%, comparable
with 0.24% in augmented q-factor model of (Hou et al., 2021), outperforms 0.73% in the
consumption-based quantity model C-ND.

6 Discussion

6.1 Sufficient Statistic of Shocks

Systematic risk comes from primitive macroeconomic shocks that cannot be diversified
using financial assets. This paper doesn’t explicitly measure each shock. These primitive
shocks are summarized by the change of consumption expenditure, and the changes of prices in
each sector. As in the motivating example of subsection 2.1, consumer fully anticipates prices
of next period, chooses optimal allocation of expenditure across time and states. Economists
can combine realized prices and expenditure to infer change of consumer’s shadow price of
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financial wealth, the pricing kernel. Theorem (1) constructs sufficient statistics for pricing
kernel in a generalized economy environment.

Quantitative asset pricing papers used to identify the “primitive macroeconomic shock”
empirically, and then explain how shock propagates in the model 28. Decomposition of con-
sumer’s marginal utility works in the similar way here. The fundamental shocks lead to
variation in consumer’s price vector and total expenditure, and correspondingly the stochas-
tic discount factor M̃ . This paper goes directly to empirical inference, skips solving the full
quantitative model.

In supplementary estimations, I don’t observe discernible change in model-fitness when
including supplement proxies for primitive shocks. These checks include (1) each traded factor
in Fama-French 5-factor model and momentum factor; (2) fundamental shocks extracted from
the capital-good price 29, durable-good price, gasoline-good price and public transportation
service price; (3) innovations from economic quantity outcomes: the labor hour in private
sector, the landfill garbage, unfiltered consumption; (4) innovations from wealth distribution:
nominal wealth of bottom 90% households (deflated using service price), top 10% households,
the wealth-share of wealthiest 1% household and 5% 30. Appendix Table (A.14) reports the
GMM estimation outcomes. There is no obvious improvement in the fitness of estimation.
For each additional proxy of primitive shock, point estimate of risk price has large standard
error. Table (A.13) shows MKT factor and size factor correlate with time-series components
in the price-model. When assigning non-zero risk price bx for included proxy, we observe the
adjustment in parameters of price-model. When including the MKT factor, point estimate for
price of goods bg has smaller absolute value. When including the size factor point estimate of
parameter bg has larger absolute value.

The shocks constructed with energy price and public-transportation slightly add to the
model-fitness of Fama-Macbeth regression, and the risk-premium is significantly negative.
However, the distribution of risk exposure tends to be weak for volatile innovations in energy
and transportation prices. Overall, consumption price works well in summarizing the consumer
welfare outcome from the primitive shocks.

28For example, (Papanikolaou, 2011; Kogan and Papanikolaou, 2014) document the cross-section risk ex-
posure to investment-specific-technology change (IST shock), (Loualiche et al., 2016) extracts the entry-cost
shock from firm entry-exit statistics across industries, (Belo et al., 2019) extracts the equity-issuance-cost shock
from the debt growth and equity issuance fraction across listed firms, (Dou et al., 2022) extracts the common
fund flow shock in financial intermediary. (Roussanov et al., 2021) estimate VAR model for core-inflation and
energy-inflation, use the residual of VAR model as inflation shocks.

29These estimations use the IST shock constructed in (Papanikolaou, 2011) during the years 1965-2008, and
the extended measure of investment-good price shock to 1965-2019, using the price of equipment in capital
investment from NIPA Table 114-Line 11-Equipment.

30These statistics are available from the website of Emmanuel Saez and Gabriel Zucman. For non-stationary
wealth shares, I filter the linear trends.
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6.2 Explanation of Risk Price

Consumer preference determines her choice of consumption basket within each period,
and how she allocates her financial wealth across different states and periods. Subsection
(6.2.1) explains how the pairwise difference in the share elasticity matrix η determines the

asymmetric vector of risk price b⃗. This assumes the representative consumer, provides the
qualitative explanation for empirical facts. Subsection (6.2.2) discusses the situation with
multiple consumers. Redistribution of consumer welfare helps explain the large point estimates
of risk prices.

6.2.1 Consumer preference

Lemma 2 demonstrates how consumption price and total expenditure shape the consump-
tion basket, the shares ω across sectors, when the matrix of share elasticity η has the stable
pairwise difference 31.

Lemma 2. Given consumption sector k and j, change in the relative share Sk,j =
ωk

ωj
can be

decomposed into the price effect and the income effect,

dsk,j =(1− ηk,k + ηj,k) · dpk − (1− ηj,j + ηk,j) · dpj −
∑
i ̸=k,j

(ηk,i − ηj,i) · dpi

+
∑
i

(ηk,i − ηj,i) · de+ o(h).
(53)

The small character s is the log relative share s = log(S). The dsk,j is the log-growth of
relative share between sector k and j. The term o(h) is a higher-order term to the change of
expenditure and the prices.

Corollary 3 formally states how share elasticity explains the asymmetric risk premium cross
consumption sectors. Without the explicit assumption of consumer preference, this corollary
provides a robust prediction for risk price of consumption prices .

Corollary 3. Define the Engel Slope for the sector pair (k, j) as sensitivity of relative share
sk,j = log(ωk

ωj
) to expenditure,

ESk,j(P⃗ , E) = lim
de→0

sk,j(p, e+ de)− sk,j(p, e)

de
, (54)

31Demand systems in (Deaton and Muellbauer, 1980; Parodi et al., 2020) use absolute share for identification.
In practice, these estimation has stable point estimates and good model fitness in micro-economic literature.
Lemma 2 further simplifies the demand system using the pairwise equations of relative share, in the similar
fashion. Importantly, Lemma 2 helps us directly read how expenditure changes the shares.
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In real stochastic discount factor, the risk price of necessity price Pk is more negative than the
luxury price Pj, as necessity sector k inferior to than luxury sector j,

bk − bj = ESk,j(P⃗ , E). (55)

When the Engel Slope ESk,j is in negative value, after an increase in total consumption
expenditure de > 0, consumer allocates a smaller fraction of spending to the necessity sector k,
while the expenditure share in the luxury sector j expands. The equation (55) in Corollary 3
says for this necessity sector, we shall witness the consumer charges higher risk compensation
for the equity portfolio correlated with the necessity spot price. Intuitively, consumer has
more rigid adjustment in quantity of necessity, so the increased price of necessity brings more
severe reduction of consumer’s utility. Suppose we fix the prices, decrease in total expenditure
de < 0 pushes the consumer to cut the luxury quantity in larger extent than the necessity.
On the opposite side, to maintain the same utility, unit increase of necessity price requires the
larger compensation of expenditure than the unit increase of luxury price.

In particular, the gap between the risk price coefficient {bj}j is exactly the marginal
effect of expenditure effect (income effect) in the consumption portfolio. We see this simple
relationship between the risk-price of consumption sector and the position of sectors along the
Engel curve, as stated in Corollary 3.

For the economy with good and service, estimated Engel slope ESg,s ≈ −0.49. This
estimate is consistent with the estimate of (Boppart, 2014) and (Comin et al., 2021), where
the quantitative magnitude of expenditure effect (income effect) is small. However, financial
asset returns tend to require large risk compensation from necessity price growth, than this
prediction of intra-period consumption basket. If we use the Engel slope from consumer’s
static decision of basket to back-out the risk-price, implied risk-price for the relative price
of goods is bg = ωs · ESg,s + 1 − be = −28.10 with additional −0.30 from ωs · ESg,s. But in
estimation of financial market pricing kernel, we observe the point estimate bg = −71.29 in a
much larger absolute value.

For the economy admitting food-service and non-food within service sector, we observe
high point estimate for the price of food-service bsf . Estimation using financial asset returns
says food-service is superior (luxury) to non-food service. Qualitatively, this is reasonable.
However, financial market tends to assign an overly large risk price for the positive correlation
with food-service price.
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6.2.2 Discussion of Multiple Consumers

In a more generalized economy with multiple consumers, we can express the representative
consumer’s utility function as a weighted outcome of individual consumers,

V (P⃗ ,E;α) ≡ max
{E(n)}

1

N
·
∑
n∈N

α(n) · V (n)(P⃗ , E(n))

s.t.
1

N
·
∑
n∈N

E(n) ≤ E.
(56)

The Negishi-weight32 reflects the difference across individual consumer’s marginal utility.
Here, I pick consumer (1) as the benchmark consumer construct the Negishi weight, α(n) =
DEV (1)(P⃗ ,E(1))

DEV (n)(P⃗ ,E(n))
. Theorem (1) decomposes the marginal utility for general situation of consumer

preference. Although we don’t know the explicit form of representative consumer’s indirect
utility function V (P⃗ ,E;α), pricing kernel can be organized in the same way of Theorem (1).
Corollary (4) formally states the decomposition results assuming the representative consumer
has the fixed Negishi weights α.

Corollary 4. Given invariant distribution of Negishi-weight {α∗(n)}n along the equilibrium
path, the log-change in real marginal utility of expenditure for the representative consumer
approximately equals

dm̃ = −
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ) + o(h). (57)

where α is the artificial Negishi-weight, ω⃗ is the aggregate expenditure share, e is the (log)
aggregate total consumption expenditure, and the vector b(α) is written with aggregate expen-
diture share ω⃗ and representative consumer’s elasticity η

bj(α) =− [γ(α)− 1] +
J∑

i=1

ηj,i(α)−
J∑

k=1

ωk ·
J∑

i=1

ηk,i(α),

be(α) =γ(α).

(58)

For consistent notation, I use b(α) for the representative consumer with Negishi weights
α. Even if individual consumers have identical indirect utility function, the risk price vector

32Some papers use Pareto weight as the alternative name. In the appendix Explanations for Aggregation
I discuss how to reveal the Negishi weight, and how to recover the effective representative consumer given
we observe the equilibrium outcome of consumption distribution, where consumers simultaneously decide the
expenditures in the dynamic environment.
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b(α) can be different from the prediction of individual consumer’s preference, because Negishi
weights α work as the additional parameters.

Previously, I assume the Representative Consumer has fixed preference for clear explana-
tion and simple estimation. If the primitive macroeconomic shocks induce both fluctuation of
consumption price, and the redistribution of consumption across consumers, we would witness
significant distortion of aggregate share elasticity. Limited stock market participation, finan-
cial constraints lead to welfare redistribution, because the aggregate shocks are not perfectly
shared across consumers. Sensitivity of pricing kernel over prices can depart from the predic-
tion of consumer preference, due to the feature of incomplete financial market. Here I pro-
vide the hypothetical decomposition for the quantitative gap between the aggregate-elasticity
measured from the financial asset returns and the representative consumer’s preference, in the
economy with incomplete financial market.

Consumers might have borrowing constraint and transaction cost in equity assets. When
these constraints are binding, the fluctuation in α resembles the change of wedge, as opposed
to the consumer’s counter-factual optimal expenditure. The fluctuation of effective Negishi
weights can come from the change in distribution of wedges. Corollary (5) generalizes the the
decomposition results, admitting the change in the fluctuation of Negishi-weight distribution
{α(n)}n.

Corollary 5. Given the process of effective Negishi-weight distribution {α(n)}n along the
equilibrium path, the log-change in real marginal utility of expenditure for the representative
consumer approximately equals

dm̃ =−
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ)

+
1

N
·
∑
n

s(n) · d log[α(n)] + o(ĥ).

(59)

where dα is the directional derivative of Negishi-weight distribution, ω⃗ is the aggregate ex-
penditure share, e is the (log) aggregate total consumption expenditure, and the vector b(α)
is defined in the Corollary 4, the expenditure-ratio s(n) is the ratio of consumer-expenditure

and aggregate-expenditure E(n),∗

E∗ in the equilibrium. The perturbation term is the norm of

perturbation term ĥ = max{h, 1
N
· dα}.

When the wedge changes with the aggregate shock, it contributes to the discrepancy be-
tween pricing kernel in financial market and the change of representative consumer 33. Corol-
lary (5) admits the contribution from variation of wedges, for a time-varying representative

33(Basak and Cuoco, 1998; Chien and Lustig, 2010; Chien et al., 2011) explain the role of wedge in pricing
kernel, for an economy with transaction constraint. Equilibrium outcomes from a heterogeneous-agent model
can be mapped into this accounting framework. The decomposition helps to read the contribution of prices
to pricing kernel, from the channel of welfare redistribution.
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consumer. For the observation of excessive risk price, if we observe the change of welfare
weights α in correlation with the consumption prices, we would be see the additional con-
tribution from consumption prices. In an economy where unconstrained household 34 is not
accurately observed, prices still summarize the unconstrained consumer’s marginal utility well.
Further, if the expenditure discrepancy between unconstrained consumer and other consumers
are negatively correlated with consumption prices, we would observe high sensitivity of pricing
kernel over prices.

6.3 Relative Price and Nominal Price

Inflation has always been an important topic in asset pricing. Inheriting the thought of
consumption quantity index, traditional asset pricing papers measure nominal inflation as
growth in consumption price index, focus on outcomes related to treasury bond. In (Cies-
lak and Povala, 2015), expectation of (nominal inflation) explains the yield rate of treasury
bond. In (Eraker, 2008; Eraker et al., 2016), expectation of nominal inflation is negatively
correlated with the expected real quantity growth in consumption, variation of nominal in-
flation contributes to the fluctuation of SDF when the consumer has Epstein-Zin preference.
Further, when the nominal inflation has negative correlation with SDF, nominal yield rate
of short-term bond has negative beta to SDF. This helps explain the upward slope in yield
curve (Eraker, 2008). Compared with nondurable, durable stock growth has stronger negative
correlation with nominal inflation, as documented by (Eraker et al., 2016).

More broadly, when monetary policy is non-neutral for the economy, nominal inflation
leads to time-varying risk premium. In literature such as (Drechsler et al., 2018), cash (liquid
asset) is required for investment in risky asset. There, monetary expansion invokes positive
nominal inflation and lower liquidity premium simultaneously. We observe correlation between
nominal inflation and time-varying risk premia, due to the transaction restriction in financial
assets. However, variation of nominal inflation doesn’t directly add to the variation of SDF.
In literature such as (Silva, 2016), expansive monetary policy increases the wealth share of
borrowers (risk-tolerant consumers), hence the lower risk premium. Similarly, we don’t observe
the direct correlation between the nominal inflation and stochastic discount factor.

This paper investigates how detailed consumption prices contribute to fluctuation of stochas-
tic discount factor. Decomposition of marginal utility in this paper extends to New-Keynesian
models. When consumer has no binding financial constraints, marginal utility of expenditure
is identical with stochastic discount factor, consumer’s prices and expenditure summarize the
impact of aggregate shocks to pricing kernel.

(Weber, 2014) documents the firms with infrequent price adjustment have greater cor-
relation with Market factor of CAPM, suggesting the higher systematic risk. (Chava et al.,
2022) construct the direct measure of (nominal) inflation exposure using the textual data from

34For example, wealthy stockholder in (Malloy et al., 2009) and fund manager in (He et al., 2017).
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earning calls, they document the negative return in response to earning calls across firms with
high inflation exposure. Consumer’s utility in (Weber, 2014) can be described by consumer
price index, while this paper investigates the asymmetric impacts from prices to marginal
utility. In a full New-Keynesian model where producers are heterogeneous in price adjust-
ment across sectors, nominal cash flow has different correlations with prices. This type of
model can illustrate why equity returns have dispersed risk exposure to prices. Alternatively,
in an extended model of (Corhay and Tong, 2021) where the monetary policy is contingent
on detailed consumer’s prices, one can observe producer’s borrowing has asymmetric reaction,
correspondingly. This provide explanation for the cross-sectional variation of risk exposure in
nominal dividend flow.

In (Roussanov et al., 2021)35, when the economy has the negative long-run productivity
growth shock, the producer in consumption sector increases the output price. Hence, innova-
tion in long-run productivity growth has negative correlation to the core inflation. Bringing
the theoretical insight from (Roussanov et al., 2021) to a economy of heterogeneous goods-
services sectors, the asynchronized fluctuation in price of goods and services, can be outcome
of producers’ different reaction to the long-run productivity shock and short run shock. Due to
the different flexibility in price adjustment, long-run and short-run shocks are the underlying
aggregate shocks for the variation in sector-level prices. Simple accounting of risk premium can
be conducted here. One observes the asymmetric risk price of productivity shocks, due to their
impact to the marginal utility of expenditure, via the asymmetric impacts over sector-level
prices. Contrary to the traditional wisdom of recursive preference, if the inflation of goods
is mainly attributed by the negative long-run productivity shock, consumer in the economy
would charge high risk price for the long-run productivity shock.

7 Conclusion

Prices and expenditure describe consumer’s marginal utility in an economy with multi-
ple consumption sectors. This paper provides a non-parametric decomposition of stochastic
discount factor using variations of detailed prices and expenditure.

In an economy of goods and services, variation of stochastic discount factor is summarized
by variations in price of goods, price of services and total expenditure. This price model
explains excess return of equity portfolios in U.S. market during 1965-2019. Because consumer
has more difficulty in adjusting the share of goods, high price of goods leads to high marginal
utility. In empirical examination of this model, price of goods has a negative risk price.
Fluctuation of prices contributes to the variation of SDF. Consumer’s risk-aversion, the risk
price of expenditure, has a small point estimate. Financial assets have strong and dispersed
risk exposure to relative price of goods, and it yields negative risk premium.

35Their revised version in 2024 has more elaboration of the quantitative model.
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The price model directly estimate the risk price for prices and expenditure, while the quan-
tity index puts restriction in traditional Consumption-CAPM. This helps accurately measure
the variation of stochastic discount factor, and explain the cross-sectional variation of expected
returns. The price model is simple. This provides convenience for empirical estimation, com-
pared to the pricing kernel using detailed quantities.

Measuring the pricing kernel using prices and expenditure is a general approach. Inference
method can be flexibly extended to detailed consumption sectors. Including dis-aggregated
prices helps capture the systematic risk priced across financial assets. Generally, consumer’s
marginal utility increases more when there is growth in price of necessity commodities, as
such, risk price is more negative.
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A Figure

Figure 1: Time Series of Economic Outcomes

The X-axis is time-axis. The figure plots the annual log change of price of goods relative to
price of services dpg − dps and the log change or expenditure deflated by price of services
de− dps. The red thick line plots the price of goods, black dashed line plots the expenditure.
All time series are relative to price of services. Definition of sectors described in Section (3).
The purple dashed line plots the price, the green dashed line for expenditure, using original
definition of nondurable sectors in NIPA.
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Figure 2: Fitness of Linear Asset Pricing Models in Simplified Estimation

The X-axis is the model-predicted excess return of simplified linear factor models, − 1
T
·∑T

t=1
b̂

1+Rf
· [f⃗t+1 − 1

T
·
∑T

τ=1 f⃗τ+1] · Re
k,t+1 for each asset k. The Y-axis is the average excess

return in sample, 1
T
·
∑T

t=1 R
e
k,t+1. Subfigure CAPM uses the Market factor. Subfigure

FamaFrench-5 is the Fama-French 5-Factor Model. Subfigure C-ND uses quantity index
of nondurable consumption, as the single factor. Subfigure C-D includes quantity of durable
stock. Subfigure PL-ND uses two time series risk factors, expenditure relative to price of
services, price of goods relative to price of services. Simplified linear model PL-ND is dm̃t+1 =
−be,L · (det+1−dps,t+1)− bg,L · (dpg,t+1−dps,t+1), doesn’t include the correction of expenditure
share. Subfigure PL-D includes quantity of durable stock. Full description of asset pricing
models, construction of durable stock, quantity index and price index are described in Section
(3). The dark-green dots are Size-BM portfolios. The green dots are Profitability-Investment
portfolios. The light-green dots are Momentum portfolios and Earning/Price portfolios.
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Figure 3: Fitness of Asset Pricing Models in Formal Estimation

The X-axis is the model-predicted excess return, − 1
T
·
∑T

t=1 dm̃t+1 · Re
k,t+1 for each asset k.

The Y-axis is the average excess return in sample, 1
T
·
∑T

t=1 R
e
k,t+1. Subfigure CAPM uses

the Market factor. Subfigure FamaFrench-5 is the Fama-French 5-Factor Model. Subfigure
C-ND uses quantity index of nondurable consumption, as the single factor. Subfigure C-D
includes quantity of durable stock. Subfigure P-ND uses price of goods, price of services, total
expenditure in the nondurable consumption sector and expenditure share of goods. Model
P-ND is dm̃t+1 = −be · (det+1−dps,t+1)− bg ·ωg,t · (dpg,t+1−dps,t+1). Subfigure P-D includes
quantity of durable stock. Full description of asset pricing models, construction of durable
stock, quantity index and price index are described in Section (3). The dark-green dots are
Size-BM portfolios. The green dots are Profitability-Investment portfolios. The light-green
dots are Momentum portfolios and Earning/Price portfolios.
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Figure 4: Financial Asset Returns and Covariance with Pricing Kernel

The X-axis is slope in univariate regression of excess return to pricing kernel of two-sector
economy, for each asset k. Univariate regression is specified as Re

k,t+1 = ak + βk,m · dmt+1.
Pricing kernel is the benchmark estimation in Table (2). The Y-axis is the average excess
return in sample. The Mix-30 are quintile portfolios sorted by Size, BM, Profitability, In-
vestment, Momentum, Earning/Price. The SizeBM-25 are 25 portfolios double sorted by
Size and BM. The Industry-30 are industry portfolios.
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Figure 5: Risk Exposure to Factors

The X-axis is joint β⃗ in 1st step of Fama-Macbeth regression. The Y-axis is the average excess
return in sample. The dark-green dots are Size-BM portfolios. The green dots are Profitability-
Investment portfolios. The light-green dots are Momentum portfolios and Earning/Price
portfolios.
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Figure 6: Financial Asset Returns and Covariance with Quantity of Nondurable

The X-axis is slope in univariate regression of excess return to quantity index of nondurable
consumption, for each asset k. Univariate regression is specified as Re

k,t+1 = ak + βk,c · dct+1.
The Y-axis is the average excess return in sample. Other explanations for portfolios are the
same with Figure (4).
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Table 1: Descriptive Statistic

Time span of sample is during 1965-2019. Annual growth of relative price of goods (price
of goods relative to price of services) is denoted as dp̃g, growth of expenditure (nondurable
expenditure relative to price of services) is denoted as dẽ, growth of quantity index in non-
durable is denoted as dcnd. Panel (A) reports the unconditional mean, standard deviation,
and auto-correlation coefficient. Panel (B) reports the correlation between relative price of
goods and other consumption outcomes. All the standard errors are Newey-West standard
error adjusted with two periods, reported in parenthesis.

Panel (A): Time Series - Statistic

Mean(pct) SE(pct) AR(1)

dẽ 1.27 1.28 0.36
(s.e.) ( 0.21) ( 0.13) ( 0.12)
dp̃g -1.33 1.38 0.47
(s.e.) ( 0.24) ( 0.23) ( 0.13)

Panel (B): Business Cycle - Correlation

dẽ dcnd

Corr(z, dp̃g) 0.26 -0.17
(s.e.) ( 0.18) ( 0.17)
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Table 2: Estimation of Pricing Kernel

This table reports the point estimate of risk price vector b⃗ in GMM estimation, for pricing
kernel of a two-sector economy with goods and services, using annual data during 1965-2019.
testing assets are equity portfolios constructed with size, BM ratio, profitability, investment,
momentum and earning/price. Panel Risk Price reports the vector b⃗. Panel Stats reports
the MAPE (Mean Absolute Pricing Error) and J-pval (p-value for the J-stat). In constructing
the weight matrix for GMM, 1st-Stage uses the Identity Matrix, 2nd-Stage uses the asymp-
totical variance of 1st-Stage estimation. T-stat is reported in brackets, Newey-West standard
error has adjustment for two periods.

Risk Price
1st-Stage 2nd-Stage

be 28.80 30.75
[t] [ 1.95] [ 14.08]
bg -71.29 -72.26
[t] [ -2.31] [ -15.89]

Stats

MAPE 0.39
RMSE 0.44
J-pval 91.48
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Table 3: Fitness of Linear Asset Pricing Models in Simplified Estimation

The fitness of linear asset pricing models are reported. Estimation of linear factor model

dm̃t+1 = b⃗ · f⃗t+1 uses equation Et[R
e
k,t+1] =

b⃗
1+Et[dm̃t+1]

· Et

[
(f⃗t+1 − g⃗f ) ·Re

k,t+1

]
, assuming risk

factors f⃗ have the constant conditional mean, Et[f⃗t+1] ≡ g⃗f . GMM estimation outcome is
reported. Estimation uses annual data during 1965-2019. Estimation outcome using testing
assets of Mix 30 portfolios is reported. Column CAPM uses the Market factor. Column
FF-5 is the Fama-French 5-Factor Model. Column C-ND uses quantity index of nondurable
consumption, as the single factor. Column C-D includes quantity of durable stock. Column
PL-ND uses two time series risk factors, expenditure relative to price of services, price of
goods relative to price of services. Column PL-D includes quantity of durable stock. Full
description of linear asset pricing models, construction of durable stock, quantity index and
price index are decribed in Section (3). Simplified linear model PL-ND doesn’t include the
correction of expenditure share, and similarly for model PL-D. Construction of MAPE (Mean
Absolute Pricing Error), RMSE (Root Mean Square Error), and J-pval (p-value for the J-stat)
are described in Section (3).

Specification of Model

Traded Factor Quantity Price (Linear)
CAPM FF-5 C-ND C-D PL-ND PL-D

MAPE 1.67 1.20 7.85 1.68 1.15 1.10
RMSE 2.32 1.96 8.01 2.15 1.43 1.42
J-pval 95.96 97.15 96.97 98.04 98.46 98.21
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Table 4: Fitness of Asset Pricing Models in Formal Estimation

The fitness of asset pricing models are reported. Estimation of model dm̃t+1 uses equation
Et[R

e
k,t+1] = −Et

[
dm̃t+1 ·Re

k,t+1

]
. GMM estimation outcome is reported. Estimation uses

annual data during 1965-2019. Column CAPM uses the Market factor. Column FF-5 is the
Fama-French 5-Factor Model. ColumnC-ND uses quantity index of nondurable consumption,
as the single factor. Column C-D includes quantity of durable stock. Column P-ND uses
price of goods, price of services and total expenditure. Column P-D includes quantity of
durable stock. Full description of asset pricing models, construction of durable stock, quantity
index and price index are decribed in Section (3). Construction of MAPE (Mean Absolute
Pricing Error), RMSE (Root Mean Square Error), and J-pval (p-value for the J-stat) are
described in Section (3).

Specification of Model

Traded Factor Quantity Price
CAPM FF-5 C-ND C-D P-ND P-D

MAPE 1.58 0.79 0.71 0.66 0.39 0.27
RMSE 2.20 1.37 0.87 0.83 0.44 0.36
J-pval 93.38 81.07 96.23 95.12 91.48 92.08
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Table 5: Parameters using Other Testing Assets

This table reports the point estimate of risk price vector b⃗ in GMM estimation, for model
P-ND, using alternative testing assets. Panel (A) reports the vector of risk price b⃗. Panel
(B) reports the statistics for each estimation. 2nd column and 3rd column use 25 portfolios
double sorted based on Size and BM ratio. 4th column and the 5th column use 30 industry
portfolios. Description of estimation is identical with Table (2), explanation of reported
statistics is identical with Table (4).

Specification of Testing Assets

Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 30.05 33.72 33.27 33.88
[t] [ 2.61] [ 13.06] [ 4.38] [ 24.98]
bg -68.26 -63.83 -69.95 -67.92
[t] [ -2.90] [ -11.68] [ -3.04] [ -17.21]

Panel (B): Stats

MAPE 0.38 0.84
RMSE 0.51 0.99
J-pval 81.48 94.03

60



Table 6: Risk Exposure to Factors

This table reports the point estimate of risk exposure in Fama-Macbeth 2-step regression, β⃗,
for different subsets of testing assets in Mix 30. T-stat is reported in brackets, Newey-West
standard error has adjustment for 2 periods. For each testing asset, sample-average excess
return (%) is reported as µ, and volatility is reported as σ.

Estimation Outcomes in 1st Step

BM G 2 3 4 V

βe -1.63 -1.30 0.17 0.81 -0.09
[t] [ -0.71] [ -0.64] [ 0.08] [ 0.36] [ -0.03]
βg -3.46 -4.83 -5.22 -5.72 -7.07
[t] [ -1.59] [ -2.51] [ -2.64] [ -2.66] [ -2.76]

µ 6.78 6.97 7.84 8.61 11.08
σ 19.47 16.96 16.37 18.48 20.72

Size S 2 3 4 B

βe -2.58 -2.22 -2.29 -1.51 -0.48
[t] [ -0.77] [ -0.80] [ -0.91] [ -0.66] [ -0.23]
βg -7.99 -7.16 -6.34 -5.24 -4.16
[t] [ -2.51] [ -2.73] [ -2.65] [ -2.40] [ -2.08]

µ 10.18 9.75 9.34 8.84 6.48
σ 28.53 22.83 20.69 19.24 17.06

Profit L 2 3 4 H

βe -1.39 -0.66 -0.41 -0.61 -1.25
[t] [ -0.63] [ -0.33] [ -0.19] [ -0.30] [ -0.54]
βg -5.26 -5.49 -4.33 -4.08 -4.58
[t] [ -2.50] [ -2.90] [ -2.15] [ -2.10] [ -2.10]

µ 5.27 6.01 7.25 7.39 8.27
σ 23.04 17.51 16.83 16.22 18.40
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Estimation Outcomes in 1st Step

Invest L 2 3 4 H

βe -1.86 -0.34 -0.42 0.09 -1.73
[t] [ -0.75] [ -0.17] [ -0.21] [ 0.04] [ -0.69]
βg -4.98 -4.64 -4.93 -4.85 -3.84
[t] [ -2.10] [ -2.42] [ -2.57] [ -2.36] [ -1.60]

µ 9.98 7.85 7.25 7.28 6.63
σ 19.48 15.07 16.01 17.54 22.97

MoM L 2 3 4 W

βe -4.07 -2.72 -1.65 -1.49 0.17
[t] [ -1.82] [ -1.27] [ -0.83] [ -0.70] [ 0.06]
βg -4.66 -4.44 -4.01 -4.72 -5.30
[t] [ -2.19] [ -2.18] [ -2.13] [ -2.33] [ -1.93]

µ 2.43 6.65 6.59 7.86 11.81
σ 26.78 19.84 17.12 16.30 20.17

EP L 2 3 4 H

βe -1.42 -1.22 0.34 0.32 0.23
[t] [ -0.68] [ -0.59] [ 0.17] [ 0.13] [ 0.09]
βg -3.38 -4.15 -4.67 -5.60 -6.09
[t] [ -1.69] [ -2.11] [ -2.52] [ -2.41] [ -2.49]

µ 5.88 7.04 7.08 9.75 10.52
σ 19.41 16.73 16.01 18.11 19.36
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Table 6: Risk Premium

This table reports the time-series average risk premium λ⃗ in Fama-Macbeth two-step regres-
sion, for model P-ND, using annual data during 1965-2019. Panel (A) reports the time-series
average risk premium in sample. Panel (B) reports the statistics for each estimation. In 2nd,
4th and 6th columns, risk premium is estimated assuming zero-beta rate identical with risk-
free rate. Estimation of risk premium is without intercept term in 2nd step of regression.
In 3rd, 5th and 7th columns, risk premium is estimated with intercept term in 2nd step of
regression. T-stat is reported in brackets. Calculation of t-stat uses the simple standard error.
OLS-R2 calculates the Fama-Macbeth two-step regression without intercept term in 2nd step,
and similarly for GLS-R2. COLS-R2 calculates the Fama-Macbeth two-step regression with
intercept term in 2nd step, and similarly for CGLS-R2.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Premium
without with without with without with

λe 0.54 0.65 0.38 0.43 -0.06 -0.19
[t] [ 1.26] [ 1.55] [ 0.55] [ 0.64] [ -0.17] [ -0.59]
λg -1.64 -1.11 -1.56 -1.28 -1.43 -0.20
[t] [ -3.91] [ -2.05] [ -4.19] [ -2.50] [ -3.34] [ -0.50]

α - 2.90 - 1.99 - 6.96
[t] - [ 0.93] - [ 0.63] - [ 2.62]

Panel (B): Stats

OLS-R2 0.43 0.63 -1.49
GLS-R2 0.15 -0.38 -0.10
COLS-R2 0.53 0.67 0.10
CGLS-R2 0.15 0.01 0.06
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Table 7: Subgroup of Testing Assets

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for model
P-ND, using different subsets of testing assets within Mix 30. Column Size-BM uses the
size and BM portfolios. Column Profit-IK uses the profitability and investment portfolios.
Column MoM-EP uses the momentum and earning/price portfolios. Other description in
Table (5) applies.

Specification of Testing Assets

Size-BM Profit-IK MoM-EP

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 25.15 28.65 40.79 42.74 27.12 24.73
[t] [ 2.05] [ 4.57] [ 2.74] [ 5.41] [ 1.34] [ 4.21]
bg -71.94 -62.63 -62.93 -72.75 -74.44 -81.56
[t] [ -3.11] [ -5.97] [ -1.90] [ -5.00] [ -1.97] [ -6.85]

Panel (B): Stats

MAPE 0.33 0.36 0.36
RMSE 0.41 0.42 0.37
J-pval 25.15 45.57 40.40
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Table 8: Definitions of Sector

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for
model P-ND, using different definitions of consumption sectors. Column Financial-Service
considers a narrow definition of nondurable services, where financial service are excluded.
ColumnNIPA-Nondurable considers nondurable good sector and service sector, using NIPA
definition. Gasoline goods are included. Point estimates of risk price vector, model-fitness
statistic in first stage of GMM and J-stat in second stage are reported. All estimations use
Mix 30 portfolios as testing assets. Other description in Table (2) and Table (4) applies.

Specification of Sector Definition

Financial Service NIPA-Nondurable

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 28.12 26.55 35.77 36.19
[t] [ 1.70] [ 15.25] [ 4.78] [ 27.71]
bg -73.37 -76.57 -71.84 -69.44
[t] [ -2.15 ] [ -13.40 ] [ -2.31 ] [ -11.19 ]

Panel (B): Stats

MAPE 0.39 0.40
RMSE 0.45 0.47
J-pval 91.40 93.68
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Table 9: Construction of Price Index

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for model
P-ND, using different definitions of price index. Column Tornqvist constructs the Tornqvist
index as sector-level price. Column Average uses the average change of sub-category price
index in each sector. Point estimates of risk price vector, model-fitness statistic in first stage
of GMM and J-stat in second stage are reported. All estimations use Mix 30 portfolios as
testing assets. Other description in Table (2) and Table (4) applies.

Method of Price Calculation

Tornqvist Average

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 26.09 27.20 15.51 17.33
[t] [ 1.74] [ 13.36] [ 0.99] [ 11.27]
bg -70.82 -69.75 -83.72 -78.54
[t] [ -2.20 ] [ -16.42 ] [ -2.51 ] [ -23.97]

Panel (B): Stats

MAPE 0.37 0.35
RMSE 0.43 0.44
J-pval 92.32 93.74
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Table 10: Long-Sample Estimation

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for asset
pricing model P-ND, using different sample periods during 1935-2019. All estimations use
the Size-BM 25 portfolios as the testing assets.

Sample Period

1935-1989 1950-2004 1965-2019

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 31.56 31.64 35.41 39.59 30.05 33.72
[t] [ 3.69] [ 26.79] [ 3.19] [ 12.49] [ 2.61] [ 13.06]
bg -47.41 -45.67 -65.65 -62.79 -68.26 -63.83
[t] [ -2.68 ] [ -11.06 ] [ -2.85 ] [ -13.66 ] [ -2.90 ] [ -11.68]

Panel (B): Stats

MAPE 0.70 0.32 0.38
RMSE 0.95 0.38 0.51
J-pval 82.51 96.93 81.48
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Table 12: Quantities

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for the
pricing kernel measured with quantities. Estimation uses the quantity of goods and quantity
of services. 1st-stage estimation outcome and 2nd-stage are reported. Point estimates of
risk price vector, model-fitness statistic in first stage of GMM and J-stat in second stage are
reported. All estimations use Mix 30 portfolios as testing assets. Other description in Table
(2) and Table (4) applies.

Risk Price
1st-Stage 2nd-Stage

bcg 45.04 37.22
[t] [ 1.09] [ 5.66]
bcs 6.34 10.61
[t] [ 0.22] [ 2.74]

GMM Stats

MAPE 0.53
RMSE 0.65
J-pval 91.31
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Table 13: Habit Model

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for Stone-
Geary preference. 1st-stage estimation outcome is reported for each specification of zero-habit
sector. Column Good assumes the consumer has zero habit in goods, Service assumes the
zero habit in services. Point estimates of risk price vector, model-fitness statistic in first stage
of GMM and J-stat in second stage are reported. All estimations use Mix 30 portfolios as
testing assets. Other description in Table (2) and Table (4) applies.

Zero-Habit Sector

Good Service

bcg 182.54
[t] [ 2.56]
bcs 33.79
[t] [ 2.70]

bpg 108.92 -13.12
[t] [ 1.60] [ -0.81]

GMM Stats

MAPE 2.91 0.53
RMSE 4.04 0.64
J-pval 95.91 95.73
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Table 14: Detailed Consumption Sectors

This table reports the point estimate for the risk price vector b⃗ in GMM estimation, for model
P-ND with multiple consumption sectors. Food in Good considers food-good and non-food
within good sector. Food in Service considers food-service and non-food within service
sector. Four considers all four sectors. Point estimates of risk price vector, model-fitness
statistic in first stage of GMM and J-stat in second stage are reported. All estimations use
Mix 30 portfolios as testing assets. Other description in Table (2) and Table (4) applies.

Specification of Consumption Sector

Food in Good Food in Service Four

be 14.13 21.63 14.70
[t] [ 1.77] [ 5.54] [ 1.74]

bg -71.95
[t] [ -3.58]

bgf -51.85 -78.10
[t] [ -1.34] [ -2.60]
bgn -76.62 -88.46
[t] [ -1.72] [ -2.44]

bsf 302.21 302.37
[t] [ 2.11] [ 2.02]

Stats

MAPE 0.26 0.19 0.18
RMSE 0.31 0.25 0.21
J-pval 88.49 92.02 88.08
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Table 15: Average Fitness of Asset Pricing Models

The average fitness of asset pricing models are reported. GMM estimation is conducted for 114
groups of testing asset. All statistics are the average outcome across estimations. Estimation
uses annual data during 1968-2019. Column CAPM uses the Market factor. Column Q-5
is the augmented q-factor model. Column P-ND uses prices of food goods, non-food goods,
food services, non-food services and total expenditure. Column P-D includes quantity of
durable stock. Other descriptions are identical with Table (4).

Specification of Model

Traded Factor Quantity Price
CAPM Q-5 C-ND C-D P-ND P-D

MAPE 2.20 0.24 0.73 0.67 0.22 0.21
RMSE 2.74 0.30 0.92 0.86 0.27 0.26
J-pval 38.27 46.45 76.63 73.48 49.62 49.03
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Figure A.1: Plot of Price Indices

The X-axis is time-axis, the first row of figure plots the annual log change of price of goods
relative to price of services dpg − dps. The second row of figure plots the annual log change
in nominal price of goods dpg. The third row of figure plots the annual log change in nominal
price of services dps. The red thick line plots the price index using the definition of sectors
described in Section (3). The dark dashed line plots the price index using the original definition
of sectors in NIPA.
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Figure A.2: Time Series of Quantity Outcomes

The X-axis is time-axis. The figure plots the annual log change of quantity indices. The blue
thick line plots the quantity index for the whole nondurable consumption dcnd. The purple
dashed line plots the quantity for the nondurable goods, the green dashed line for the services.
Definition of sectors is described in Section (3).
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Table A.2: Correlation with Economic Outcomes

This table reports correlation between relative price of goods and other economic outcomes.
Market factor is denoted as MKT. Growth in GDP (including both the consumption and
investment) is denoted as Output. Stock market uncertainty index is denoted as VIX,
available from 1991-2019. Growth in dividend-price ratio from Robert Shiller’s website, minus
the 10-Year treasury yield rate is denoted as EP-Y10. Growth in Consumption-Wealth CaY
index from Martin Lettau’s website, is denoted as CaY. Growth in households labor earning
comes from NIPA Table 2.1, denoted as income. Growth in per-employee wage comes from
NIPA Table 6.6, denoted as Wage-emp. Growth in per-hour wage comes from CPS, denoted
as Wage-hour. Unfiltered consumption quantity, Unfiltered-C comes from Tim Kroencke’s
website. Growth of households garbage, use LandFill and Generation of waste from EPA
website.

Panel (c): Business Cycle - Correlation

MKT Hour Output

Corr(z, dpg/s) -0.35 0.01 0.01
(s.e.) ( 0.15) ( 0.19) ( 0.21)

Income Wage-emp Wage-hour

Corr(z, dpg/s) 0.21 0.43 0.28
(s.e.) ( 0.20) ( 0.15) ( 0.15)

VIX EP-Y10 CAY

Corr(z, dpg/s) 0.33 0.22 -0.21
(s.e.) ( 0.18) ( 0.10) ( 0.20)

Unfiltered-C LandFill Generation

Corr(z, dpg/s) -0.31 -0.00 -0.06
(s.e.) ( 0.14) ( 0.17) ( 0.16)
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Table A.3: Pairwise Correlation in Prices

Time span of sample is during 1965-2019. Correlation coefficient are computed for the price
x and the price of goods, all nominal prices are deflated by the price of services. Standard
error is in parenthesis.

Business Cycle - Correlation

PCE Good Dur Good
Corr(dpx/s, dpg/s) 0.58 0.55 0.14

(s.e) ( 0.10) ( 0.11) ( 0.08)

Vehicle Furniture Rec Vehicle
Corr(dpx/s, dpg/s) 0.06 0.27 0.12

(s.e) ( 0.18) ( 0.08) ( 0.12)

Other DurGood (NIPA) NDur Good Food
Corr(dpx/s, dpg/s) 0.30 0.61 0.92

(s.e) ( 0.12) ( 0.12) ( 0.05)

Clothes Gasoline Other NDurGood
Corr(dpx/s, dpg/s) 0.32 0.15 0.36

(s.e) ( 0.09) ( 0.15) ( 0.13)

(NIPA) Serv House Util
Corr(dpx/s, dpg/s) 0.10 0.05 -0.04

(s.e) ( 0.06) ( 0.07) ( 0.11)

Health Transport Recreation
Corr(dpx/s, dpg/s) -0.13 0.27 0.23

(s.e) ( 0.08) ( 0.12) ( 0.17)

FoodAway Finance Other Service
Corr(dpx/s, dpg/s) 0.45 -0.23 0.28

(s.e) ( 0.09) ( 0.12) ( 0.12)
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Table A.4: Dickey-Fuller Test

Time span of sample is during 1965-2019. Dickey-Fuller test is implemented for prices relative
to price of services. P-value is reported in brackets.

Dickey-Fuller Test

NDur Good Wage Dur Good

px/s 1.00 1.00 0.00
[p] [ 0.00] [ 0.01] [ 0.18]
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Table A.5: Fitness of Asset Pricing Models, Fama-Macbeth Regression

The fitness of asset pricing models are reported. Estimation outcome of Fama-Macbeth two-
step regression using testing assets of Mix 30 portfolios is reported. Estimation uses annual
data during 1965-2019. Column CAPM uses the Market factor. Column FF-5 is the Fama-
French 5-Factor Model. Column C-ND uses quantity index of nondurable consumption, as
the single factor. Column C-D includes quantity of durable stock. Column P-ND uses price
of goods, price of services and total expenditure. Column P-D includes quantity of durable
stock. Full description of asset pricing models, construction of durable stock, quantity index
and price index are decribed in Section (3).OLS-R2 calculates the Fama-Macbeth two-step
regression without intercept term in 2nd step, and similarly for GLS-R2. COLS-R2 calculates
the Fama-Macbeth two-step regression with intercept term in 2nd step, and similarly for
CGLS-R2.

Specification of Model

Traded Factor Quantity Price
CAPM FF-5 C-ND C-D P-ND P-D

OLS-R2 -0.48 -0.07 -16.76 -0.28 0.43 0.44
GLS-R2 0.12 0.15 0.13 0.13 0.15 0.15
COLS-R2 0.04 0.58 0.34 0.38 0.53 0.53
CGLS-R2 0.12 0.16 0.13 0.13 0.15 0.15
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Table A.6: Risk Exposure to Factors, Other Testing Assets

This table reports the point estimate of risk exposure in Fama-Macbeth 2-step regression, β⃗,
for different subsets of testing assets in Size-BM 25. T-stat is reported in brackets, Newey-
West standard error has adjustment for 2 periods. For each testing asset, sample-average
excess return (%) is reported as µ, and volatility is reported as σ.

Estimation Outcomes in 1st Step

SMALL BM1 BM2 BM3 BM4 BM5

βe -4.11 -2.36 -2.87 -1.40 -1.46
[t] [ -1.14] [ -0.69] [ -0.89] [ -0.39] [ -0.37]
βg -6.90 -7.71 -8.16 -8.54 -9.41
[t] [ -2.01] [ -2.37] [ -2.66] [ -2.51] [ -2.54]

µ 4.89 11.08 10.64 13.60 14.57
σ 36.06 29.54 26.75 25.45 27.86

ME2 BM1 BM2 BM3 BM4 BM5

βe -3.70 -2.64 -2.20 -0.74 -0.88
[t] [ -1.27] [ -0.95] [ -0.76] [ -0.24] [ -0.28]
βg -5.51 -6.58 -8.00 -8.70 -8.66
[t] [ -1.99] [ -2.48] [ -2.90] [ -3.02] [ -2.88]

µ 6.91 10.28 11.40 11.86 12.35
σ 27.99 22.72 22.44 21.71 23.23

ME3 BM1 BM2 BM3 BM4 BM5

βe -3.13 -2.38 -1.03 -1.55 -0.88
[t] [ -1.24] [ -0.90] [ -0.42] [ -0.55] [ -0.29]
βg -5.55 -6.82 -6.59 -6.69 -7.97
[t] [ -2.31] [ -2.72] [ -2.84] [ -2.51] [ -2.73]

µ 7.10 10.01 9.75 11.50 13.14
σ 24.33 20.94 18.87 21.65 22.66
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Estimation Outcomes in 1st Step
ME4 BM1 BM2 BM3 BM4 BM5

βe -1.14 0.14 0.60 -1.16 -1.46
[t] [ -0.56] [ 0.04] [ 0.32] [ -0.41] [ -0.61]
βg -5.28 -5.16 -5.04 -4.97 -4.84
[t] [ -2.72] [ -1.65] [ -2.85] [ -1.86] [ -2.14]

µ 6.69 8.88 6.09 9.93 8.65
σ 17.36 28.30 16.82 19.90 17.92

BIG BM1 BM2 BM3 BM4 BM5

βe -0.22 1.93 2.16 -1.33 -0.50
[t] [ -0.10] [ 0.87] [ 1.00] [ -0.70] [ -0.19]
βg -3.91 -3.59 -3.54 -3.42 -3.22
[t] [ -1.82] [ -1.70] [ -1.72] [ -1.90] [ -1.31]

µ 7.48 6.96 3.76 6.67 6.79
σ 22.82 19.62 25.50 17.23 20.22
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This table reports the point estimate of risk exposure in Fama-Macbeth 2-step regression, β⃗,
for different subsets of testing assets in Industry 30. T-stat is reported in brackets, Newey-
West standard error has adjustment for 2 periods. For each testing asset, sample-average
excess return (%) is reported as µ, and volatility is reported as σ. Full name of industry is
listed at the end of the table.

Estimation Outcomes in 1st Step

Food Beer Smoke Games Books Hshld

βe -1.46 -1.16 0.35 -1.88 -1.62 -1.14
[t] [ -0.61] [ -0.41] [ 0.11] [ -0.60] [ -0.60] [ -0.56]
βg -4.84 -4.97 -2.93 -7.79 -5.65 -5.28
[t] [ -2.14] [ -1.86] [ -0.98] [ -2.63] [ -2.21] [ -2.72]

µ 8.65 9.93 12.56 11.55 6.53 6.69
σ 17.92 19.90 22.51 29.84 23.09 17.36

Clths Hlth Chems Txtls Cnstr Steel

βe -5.63 -0.87 -3.54 -5.31 -1.02 2.16
[t] [ -1.73] [ -0.33] [ -1.69] [ -1.67] [ -0.41] [ 1.00]
βg -6.74 -2.41 -1.96 -6.05 -6.63 -3.54
[t] [ -2.17] [ -0.97] [ -0.99] [ -2.00] [ -2.80] [ -1.72]

µ 10.70 8.89 6.67 8.17 7.30 3.76
σ 29.73 18.93 20.45 29.78 22.45 25.50

FabPr ElcEq Autos Carry Mines Coal

βe -0.22 -1.57 -5.61 -0.71 0.23 0.41
[t] [ -0.10] [ -0.55] [ -2.01] [ -0.22] [ 0.08] [ 0.09]
βg -3.91 -6.95 -7.00 -7.37 -0.36 0.56
[t] [ -1.82] [ -2.54] [ -2.64] [ -2.40] [ -0.13] [ 0.12]

µ 7.48 10.24 6.28 10.57 6.15 9.21
σ 22.82 24.05 29.42 26.11 29.08 42.50

89



Estimation Outcomes in 1st Step

Oil Util Telcm Servs BusEq Paper

βe 1.93 0.60 -0.50 -3.81 0.14 -1.33
[t] [ 0.87] [ 0.32] [ -0.19] [ -1.07] [ 0.04] [ -0.70]
βg -3.59 -5.04 -3.22 -5.54 -5.16 -3.42
[t] [ -1.70] [ -2.85] [ -1.31] [ -1.63] [ -1.65] [ -1.90]

µ 6.96 6.09 6.79 10.77 8.88 6.67
σ 19.62 16.82 20.22 28.81 28.30 17.23

Trans Whlsl Rtail Meals Fin Other

βe -3.28 -2.44 -3.93 -2.14 0.39 0.20
[t] [ -1.48] [ -0.88] [ -1.41] [ -0.60] [ 0.15] [ 0.09]
βg -5.51 -6.54 -5.99 -7.84 -7.46 -6.61
[t] [ -2.62] [ -2.49] [ -2.25] [ -2.32] [ -2.95] [ -3.10]

µ 6.79 8.95 9.00 12.01 8.52 4.41
σ 20.72 24.47 22.76 31.52 21.67 20.53
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Note for industry names:
1 Food: Food Products
2 Beer: Beer and Liquor
3 Smoke: Tobacco Products
4 Games: Recreation
5 Books: Printing and Publishing
6 Hshld: Consumer Goods
7 Clths: Apparel
8 Hlth: Healthcare, Medical Equipment, Pharmaceutical Products
9 Chems: Chemicals
10 Txtls: Textiles
11 Cnstr: Construction and Construction Materials
12 Steel: Steel Works Etc
13 FabPr: Fabricated Products and Machinery
14 ElcEq: Electrical Equipment
15 Autos: Automobiles and Trucks
16 Carry: Aircraft, ships, and railroad equipment
17 Mines: Precious Metals, Non-Metallic, and Industrial Metal Mining
18 Coal: Coal
19 Oil: Petroleum and Natural Gas
20 Util: Utilities
21 Telcm: Communication
22 Servs: Personal and Business Services
23 BusEq: Business Equipment
24 Paper: Business Supplies and Shipping Containers
25 Trans: Transportation
26 Whlsl: Wholesale
27 Rtail: Retail
28 Meals: Restaraunts, Hotels, Motels
29 Fin: Banking, Insurance, Real Estate, Trading
30 Other: Everything Else
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Table A.4: Subgroup of Testing Assets, Fama-Macbeth Regression

This table reports the time-series average risk premium λ⃗ in Fama-Macbeth two-step regres-
sion, for model P-ND, using different subsets of testing assets within Mix 30. Column
Size-BM uses the size and BM portfolios. Column Profit-IK uses the profitability and
investment portfolios. Column MoM-EP uses the momentum and earning/price portfolios.
Other description in Table (6) applies.

Specification of Testing Assets

Size-BM Profit-IK MoM-EP

Panel (A): Risk Premium
without with without with without with

λe 0.16 0.12 -0.66 -0.33 0.98 1.24
[t] [ 0.29] [ 0.22] [ -0.95] [ -0.50] [ 2.02] [ 2.32]
λg -1.51 -1.03 -1.42 0.39 -1.83 -1.01
[t] [ -3.66] [ -1.75] [ -3.27] [ 0.53] [ -4.15] [ -1.39]

α - 2.85 - 8.87 - 4.25
[t] - [ 0.87] - [ 2.18] - [ 1.14]

Panel (B): Stats

OLS-R2 0.65 -0.48 0.73
GLS-R2 0.18 -0.57 0.36
COLS-R2 0.85 0.06 0.78
CGLS-R2 0.25 0.28 0.36
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Table A.5: Parameters, Quantity

This table reports the point estimate of the risk price parameter bc in GMM estimation, for
model C-ND, using sets of testing assets Mix 30, Size-BM 25, Industry 30, during the
time-interval 1965-2019. Panel (A) reports the point estimate. Panel (B) reports statistics of
model fitness. Other description of statistics in Table (2) and Table (4) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bc 51.16 49.27 50.88 46.26 52.64 48.81
[t] [ 4.31] [ 18.94] [ 4.74] [ 28.43] [ 4.23] [ 26.17]

Panel (B): GMM Stats

MAPE 0.71 0.79 0.98
RMSE 0.87 0.95 1.36
J-pval 96.23 95.51 96.78
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Table A.6: Subgroup of Testing Assets, Quantity

This table reports the point estimate of the risk price parameter bc in GMM estimation,
for asset-pricing model C-ND, using different subsets of testing assets in Mix 30. Column
Size-BM uses the size and BM portfolios. Column Profit-IK uses the profitability and
investment portfolios. Column MoM-EP uses the momentum and earning/price portfolios.
Other description in Table (5) applies.

Specification of Testing Assets

Size-BM Profit-IK MoM-EP

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bc 51.13 38.18 52.30 53.41 50.26 43.31
[t] [ 4.32] [ 8.99] [ 3.96] [ 9.56] [ 4.56] [ 13.63]

Panel (B): Stats

MAPE 0.70 0.38 1.04
RMSE 0.79 0.46 1.18
J-pval 40.94 79.76 41.53
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Table A.7: Parameters, Fama-French 5-Factor Model

This table reports the point estimate of the risk price vector b⃗ in GMM estimation, for Fama-
French 5-Factor Model FF-5, using sets of testing assets Mix 30, Size-BM 25, Industry
30, during the time-interval 1965-2019. Panel (A) reports the point estimate. Panel (B)
reports statistics of model fitness. Other description of statistics in Table (4) and Table (5)
applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bMKT 2.38 2.51 2.51 2.65 2.64 2.78
[t] [ 3.77] [ 10.82] [ 4.39] [ 10.04] [ 4.02] [ 7.94]
bSize 1.72 1.64 1.28 1.20 0.88 0.68
[t] [ 2.15] [ 5.36] [ 1.32] [ 2.92] [ 0.69] [ 1.45]
bBM -3.44 -3.06 -2.24 -1.82 -5.86 -4.88
[t] [ -2.05] [ -4.45] [ -1.07] [ -2.99] [ -2.13] [ -6.31]
bProfit 6.56 6.69 5.79 6.28 5.18 5.30
[t] [ 4.28] [ 11.59] [ 2.39] [ 9.33] [ 2.96] [ 10.62]
bInvest 7.42 7.33 6.97 7.37 9.36 8.21
[t] [ 4.36] [ 9.10] [ 3.16] [ 10.67] [ 2.05] [ 6.91]

Panel (B): Stats

MAPE 0.79 0.65 1.09
RMSE 1.37 0.81 1.37
J-pval 81.07 59.85 84.45
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Table A.8: Subgroup of Testing Assets, Fama-French 5-Factor Model

This table reports the point estimate of the risk price vector b⃗ in GMM estimation, for Fama-
French 5-Factor Model FF-5, using different subsets of testing assets in Mix 30. Column
Size-BM uses the size and BM portfolios. Column Profit-IK uses the profitability and
investment portfolios. Column MoM-EP uses the momentum and earning/price portfolios.
Other description in Table (5) applies.

Specification of Testing Assets

Size-BM Profit-IK MoM-EP

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bMKT 2.27 2.40 2.72 2.55 -0.28 2.01
[t] [ 2.76] [ 4.48] [ 3.24] [ 4.43] [ -0.07] [ 2.01]
bSize 0.24 0.91 1.22 1.15 10.96 6.00
[t] [ 0.19] [ 1.29] [ 0.55] [ 0.73] [ 1.02] [ 1.76]
bBM 2.89 0.64 -7.79 -7.48 -12.17 -6.16
[t] [ 1.01] [ 0.40] [ -1.56] [ -2.08] [ -1.00] [ -1.27]
bProfit 1.71 3.79 5.90 5.59 25.31 14.77
[t] [ 0.54] [ 1.47] [ 4.20] [ 4.85] [ 1.17] [ 3.27]
bInvest -2.14 2.64 12.56 11.90 10.14 9.14
[t] [ -0.44] [ 1.19] [ 2.18] [ 2.94] [ 1.21] [ 2.83]

Panel (B): Stats

MAPE 0.35 0.11 0.52
RMSE 0.40 0.14 0.65
J-pval 14.51 91.92 21.61
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Table A.9: Parameters, 1935-2019

This table reports the estimation during the time-interval 1935-2019. In the 2nd column and
the 3rd column, teststing assets are Size-BM 25 portfolios. In the 4th column and the 5th
column, teststing assets are Industry 30 portfolios. Panel (A-B) reports the estimate of GMM
estimation. Other description of statistics in Table (2) and Table (4) applies.

Specification of Testing Assets

Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be 31.40 37.30 35.72 32.54
[t] [ 3.17] [ 10.06] [ 3.71] [ 12.06]
bg -68.76 -69.77 -69.03 -66.66
[t] [ -3.14 ] [ -12.89 ] [ -4.48 ] [ -19.39 ]

Panel (B): GMM Stats

MAPE 0.58 0.92
RMSE 0.75 1.25
J-pval 78.78 84.30
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Table A.9: Parameters, No Correction in Share

This table reports the estimation without the correction of expenditure share ωg,t, during the
sample period 1935-2019. The model PL-ND of dm̃t+1 = −be,L · (det+1 − dps,t+1) − bp,L ·
(dpg,t+1 − dps,t+1) is estimated. Panel (A-B) reports the estimate of GMM estimation. Other
description of statistics in Table (2) and Table (4) applies.

Specification of Testing Assets

Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be,L 26.93 30.26 31.94 29.44
[t] [ 2.88] [ 8.34] [ 3.90] [ 11.62]
bp,L -35.65 -34.52 -34.96 -34.49
[t] [ -3.27 ] [ -14.55 ] [ -4.61 ] [ -15.62 ]

Panel (B): GMM Stats

MAPE 0.48 0.89
RMSE 0.63 1.17
J-pval 62.35 82.10
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Table A.10: Parameters, unconditional GMM

This table reports the point estimate for the risk price vector b⃗ in uncondi-
tional GMM estimation of model PL-ND of dm̃t+1 = −be,L · (det+1 − dps,t+1) −
bp,L · (dpg,t+1 − dps,t+1). Estimation uses equation Et[R

e
k,t+1] = 1

1+Et[dm̃t+1]
·

Et

[
[be,L · (det+1 − dps,t+1 − gẽ) + bp,L · (dpg,t+1 − dps,t+1 − gp̃)] ·Re

k,t+1

]
, with gẽ as the con-

stant expected growth of total expenditure relative to price of services, and gp̃ for the relative

price of goods. Panel (A) reports the vector of risk price b⃗. Panel (B) reports the statistics
for each estimation. 2nd column and 3rd column use Mix 30 portfolios. 4th column and the
5th column use Size-BM 25 portfolios. 6th column and the 7th column use Industry 30
portfolios. Other description in Table (3) and Table (5) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

be,L 59.05 61.13 47.49 49.29 18.17 19.95
[t] [ 0.75] [ 8.24] [ 0.63] [ 5.38] [ 0.55] [ 1.35]
bp,L -101.03 -97.56 -93.67 -79.58 -79.69 -81.64
[t] [ -2.16] [ -8.98] [ -3.17] [ -9.66] [ -1.89] [ -9.24]

Panel (B) Stats

MAPE 1.15 1.07 2.42
RMSE 1.43 1.50 3.37
J-pval 98.46 93.34 96.92
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Table A.11: Parameters, Quantity, unconditional GMM

This table reports the point estimate for the risk price parameter bc in unconditional GMM
estimation of model C-ND of dm̃t+1 = −bc · dct+1. Estimation uses equation Et[R

e
k,t+1] =

bc
1+Et[dm̃t+1]

· Et

[
(dct+1 − gc) ·Re

k,t+1

]
, with gc as the constant expected growth of nondurable

consumption compositie quantity index. Panel (A) reports the risk price parameter bc. Panel
(B) reports the statistics for each estimation. 2nd column and 3rd column use Mix 30
portfolios. 4th column and the 5th column use Size-BM 25 portfolios. 6th column and the
7th column use Industry 30 portfolios. Other description in Table (3) and Table (5) applies.

Specification of Testing Assets

Mix 30 Size-BM 25 Industry 30

Panel (A): Risk Price
1st-Stage 2nd-Stage 1st-Stage 2nd-Stage 1st-Stage 2nd-Stage

bc 48.27 50.54 106.47 101.46 -66.54 -60.76
[t] [ 1.10] [ 7.94] [ 1.98] [ 5.75] [ -1.84] [ -6.64]

Panel (B): GMM Stats

MAPE 7.85 9.53 7.96
RMSE 8.01 9.81 8.35
J-pval 96.97 89.60 97.30
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Table A.12: Seasonality in Quarterly-Growth Estimation: Price

This table reports the point estimate of the risk price vector b⃗ in GMM estimation, for asset-
pricing model P-ND, using quarter-to-quarter growth during 1965Q1-2019Q4. Column Q1
uses the 1st quarter stock return and pricing kernel, and similarly for Columns Q2-Q4. All
estimations use the Size-BM 25 portfolios as the testing assets. Sample uses NIPA quarterly
statistics. Other description in Table (2) applies.

Q1 Q2 Q3 Q4
Panel (A): Risk Price

be 94.76 -143.69 -62.61 158.78
[t] [ 1.18] [ -0.46] [ -1.17] [ 5.98]
bg -228.11 -359.54 -524.45 -102.18
[t] [ -0.99 ] [ -1.03 ] [ -2.98 ] [ -0.98 ]

Panel (B): GMM

MAPE 0.33 0.30 0.71 0.40
RMSE 0.40 0.38 0.85 0.49
J-pval 79.62 82.12 80.67 79.24
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Table A.13: Seasonality in Quarterly-Growth Estimation: Quantity

This table reports the point estimate of the risk price parameter bc in GMM estimation, for
asset-pricing model C-ND, using quarter-to-quarter growth during 1965Q1-2019Q4. Pricing
kernel is approximated using the consumption quantity index growth in nondurable sector.
Other description in Table (A.12) applies.

Q1 Q2 Q3 Q4
Panel (A): Risk Price

bc 136.63 16.47 74.42 132.82
[t] [ 1.20] [ 0.17] [ 2.13] [ 4.53]

Panel (B): GMM

MAPE 0.35 0.48 0.83 0.39
RMSE 0.42 0.65 1.02 0.47
J-pval 88.64 83.30 88.32 84.52
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Table A.14: Estimation with Supplementary Proxy of Shock

This table reports the estimation using the two-sector pricing kernel and supplement proxy
for priminitive shocks. The proxies include each traded factor in Fama-French 5-factor model
and momentum factor. Risk price for the supplement proxy is reported as bx. Description of
statistics in Table (2) and Table (4) applies.

Specification of Additional Shock Proxy

MKT Size Value Profit Invest MoM

be 32.15 23.80 31.15 26.21 30.94 27.05
[t] [ 3.05] [ 1.05] [ 2.35] [ 1.51] [ 2.36] [ 2.55]
bg -58.75 -82.35 -69.70 -73.76 -68.68 -72.72
[t] [ -3.70] [ -1.64] [ -2.41] [ -2.23] [ -2.51] [ -2.69]

bx 0.26 -0.55 -0.40 0.53 -0.53 0.10
[t] [ 0.38] [ -0.58] [ -0.72] [ 0.69] [ -0.53] [ 0.18]

MAPE 0.35 0.31 0.28 0.37 0.32 0.38
RMSE 0.41 0.39 0.38 0.43 0.40 0.44
J-pval 88.68 89.82 89.19 88.99 88.90 88.99
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The proxies are from time series of prices. These include IST shock constructed in (Pa-
panikolaou,2011) (available during the years 1965-2008), the extended measure of investment-
good price shock measured as equipment price, durable-good price (detrended using Hodrick-
Prescott filter, or the linear trend is removed), gasoline-good price and public transportation
service price. Shock from nominal equipment price is constructed in the similar way with (Pa-
panikolaou,2011) during 1965-2019. Other nominal prices are adjusted using price of services.

Specification of Additional Shock Proxy

Capital-Good Durable-good Gasoline Trans.

IST Equipment HP Linear

be 32.13 32.34 37.05 34.24 28.21 37.41
[t] [ 4.17] [ 3.18] [ 3.34] [ 3.69] [ 1.75] [ 2.94]
bg -55.94 -62.82 -59.89 -63.48 -66.34 -67.11
[t] [ -4.46] [ -3.65] [ -3.60] [ -3.81] [ -3.17] [ -2.76]

bx 9.16 -6.25 20.40 11.36 -0.91 16.90
[t] [ 0.73] [ -0.41] [ 0.55] [ 0.43] [ -0.33] [ 0.56]

MAPE 0.42 0.36 0.34 0.35 0.38 0.36
RMSE 0.51 0.48 0.44 0.46 0.49 0.46
J-pval 92.28 74.36 71.27 75.68 75.38 77.74
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The proxies include the labor hour in private sector, the landfill garbage, the unfiltered con-
sumption, nominal wealth of bottom 90% households denoted as W-90, top 10% households
denoted as W-10, the wealth-share of wealthiest 1% household denoted as ws-1. Nominal
wealth are adjusted using price of services.

Specification of Additional Shock Proxy

Hour Landfill Unf-C W-90 W-10 ws-1

be 40.87 33.63 29.85 28.60 28.46 28.40
[t] [ 3.92] [ 3.15] [ 1.20] [ 1.72] [ 1.69] [ 1.80]
bg -59.33 -65.78 -74.99 -65.20 -62.40 -62.57
[t] [ -2.71] [ -3.26] [ -3.95] [ -2.93] [ -3.00] [ -2.07]

bx -8.74 -3.70 -1.96 -0.80 -0.02 -2.02
[t] [ -0.82] [ -0.40] [ -0.13] [ -0.23] [ -0.00] [ -0.29]

MAPE 0.37 0.35 0.38 0.39 0.39 0.39
RMSE 0.42 0.41 0.44 0.45 0.46 0.46
J-pval 89.70 89.83 89.62 94.34 94.30 94.25
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Table A.13: Risk Exposure to Factors, Traded Factors

This table reports the point estimate of risk exposure β⃗ for each traded factor in Fama-French
5-factor model and momentum factor. T-stat is reported in brackets, Newey-West standard
error has adjustment for 2 periods. For each testing asset, sample-average excess return (%)
is reported as µ, and volatility is reported as σ.

Estimation Outcomes in 1st Step

Factor MKT Size BM Profit Invest MoM

βe -0.92 -1.60 2.26 -1.04 0.30 3.69
[t] [ -0.44] [ -0.83] [ 1.38] [ -0.98] [ 0.25] [ 1.55]
βg -4.74 -2.61 -2.40 0.18 -0.48 -1.87
[t] [ -2.39] [ -1.42] [ -1.54] [ 0.18] [ -0.41] [ -0.83]
R2 0.15 0.11 0.07 0.02 0.00 0.07
µ 6.94 3.30 4.09 3.38 3.51 8.05
σ 17.57 13.77 14.26 9.15 9.81 18.12
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E Proof and Discussion

E.1 Notation

For consistent notation, I use the upper-case character for the nominal price and the
nominal expenditure. I use the lower-case character for the log nominal price pj = log(Pj),
and the log expenditure e = log(E).

I use notation Djf as the derivative of function f with respect to j-th element. I use Dj,if
as the second-order derivatives of function f , where Dj,if = DiDjf . I denote the matrix of
second-order derivatives as Hf where Hj,if = Dj,if . I denote the first-order difference of
variable x as dx = x′ − x.

I use the core-IDU function V ∗(p) = V (p, 1) to simplify the notation. The budget set is
Homogeneous of Degree Zero,{

C⃗ ∈ X |
∑
j∈J

(k · Pj) · Cj ≤ k · E

}
=

{
C⃗ ∈ X |

∑
j∈J

Pj · Cj ≤ E

}
, k > 0.

Because the budget set is H.D.0, when the consumption spending is positive, the core-IDU
function V ∗ and the indirect utility function V has relationship as V (P,E) = V ∗(E−1 · P ).
Thorough this paper, I require the core-IDU function V ∗ with continuous third-order deriva-
tives.

E.2 Approximation

E.2.1 Preference

Definition 3. Define the relative expenditure share between the k-th sector and the j-th
sector as Sk,j,

Sk,j ≡
ωk

ωj

.

Define the core-IDU as the value of IDU given price vector P and 1 unit consumption
spending E,

V ∗(P ) ≡ V (P, 1).
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E.2.2 Relative Share

Lemma 2. Given consumption sector k and j, change in the relative share Sk,j =
ωk

ωj
can be

decomposed into the price effect and the income effect,

dsk,j =(1− ηk,k + ηj,k) · dpk − (1− ηj,j + ηk,j) · dpj −
∑
i ̸=k,j

(ηk,i − ηj,i) · dpi

+
∑
i

(ηk,i − ηj,i) · de+ o(h).
(53)

The small character s is the log relative share s = log(S). The dsk,j is the log-growth of
relative share between sector k and j. The term o(h) is a higher-order term to the change of
expenditure and the prices.

Proof. By Taylor’s Theorem, for sk,j with continuous second-order derivatives in neighborhood
of a = (p, e), there exists θ ∈ [0, 1] such that

sk,j(a+ h)− sk,j(a) =Dsk,j(a) · h+
1

2
· hT · Hsk,j(a+ θ · h) · h (60)

Denote the term o(h; a) = 1
2
· hT · sk,j(a + θ · h) · h. The term o(h; a) is higher-order in h in

the sense that given the sup-norm ||h|| ≡ supj |hj|, lim||h||→0
o(h;a)
||h|| = 0 for arbitrary a.

Given the optimal consumption bundle is unique, the Roy Identity tells us that absolute
share ω can be written as

ωj =
Pj · Cj

E
=

Pj · DjV
∗∑

i Pi · DiV ∗ . (61)

Replacing the absolute share ωk and ωj, the log of relative expenditure share satisfies

sk,j = log(
ωk

ωj

)

= log(Pk) + log[−DkV
∗]− log(Pj)− log[−DjV

∗].
(62)

Now I explicitly decompose the term Dsk,j(a) · h. Recall the first-order derivative of com-

position satisfies D[log ◦f(a)] = Df(a)
f(a)

. Recall a = (p⃗, e) and h = (p⃗B − p⃗, eB − e), the term
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Dsk,j(a) · h is decomposed as below,

Dsk,j(a) · h =(pk,B − pk)− (pj,B − pj)

+[
J∑

i=1

Dk,iV
∗ · (E−1 · Pi) · (pi,B − pi)

+
J∑

i=1

Dk,iV
∗ · (−E−1 · Pi) · (eB − e)] · [DkV

∗]−1

−[
J∑

i=1

Dj,iV
∗ · (E−1 · Pi) · (pi,B − pi)

+
J∑

i=1

Dj,iV
∗ · (−E−1 · Pi) · (eB − e)] · [DjV

∗]−1.

(63)

I use the matrix of share elasticity η(P⃗ , E) at (P⃗ , E). For succinct notation, I use η as the

local elasticity. The level of second order derivative −Dk,iV
∗

DkV ∗ · (E−1 · Pk) changes when there
is monotonic transformation of utility function V ∗. Using the second order derivative matrix

minus removing the weighted average term η = 1
J
·
∑J

i=1 ωi ·
∑J

k=1

[
−Dk,iV

∗

DkV ∗ · (E−1 · Pk)
]
, share

elasticity is defined as the normalized outcome,

ηk,i = −Dk,iV
∗

DkV ∗ · (E−1 · Pk)− η

Intra-period decision of consumption basket only depends on the pairwise difference of elas-
ticity.

Substituting ηk,i−ηj,i = −Dk,iV
∗

DkV ∗ ·(E−1 ·Pk)+
Dj,iV

∗

DjV ∗ ·(E−1 ·Pj), the equation (60) is written
as

sk,j(a+ h)− sk,j(a) =(1− ηk,k + ηj,k) · (pk,B − pk)− (1− ηj,j + ηk,j) · (pj,B − pj)

−
∑
i ̸=k,j

(ηk,i − ηj,i) · (pi,B − pi)

+
∑
i

(ηk,i − ηj,i) · (eB − e)

+
1

2
· hT · Hsk,j(a+ θ · h)

Sk,j(a)
· h

(64)

For simple notation, I denote the first-order difference using dsk,j = sk,j(a + h) − sk,j(a),
dpk = pk,B − pk and de = eB − e, so the equation (60) reads as equation (53). The Hessian
matrix of indirect utility function changes after the monotonic transformation. Notice for
describing the change of relative share, only the pairwise difference of share elasticity matters.
Absolute level cancels out.
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E.2.3 Dynamic Decision with IDU

Lemma 1. Define the consumer’s optimal expenditure problem (P.2) as

V
New

0 (θ⃗0) = sup
Ẽ,θ̃,B̃

lim
T→∞

E[
T∑
t=1

βt · V (P⃗t, Et)]

s.t.
∑
k

θk,t · (P s
k,t +Dk,t) +Bt = Et +

∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

,

Et ≥ 0; financial constraint.

(P.2)

Optimization problem (P.2) yields equivalent value as optimization problem (P.1). For each
optimal consumption policy C∗ in problem (P.1), expenditure E∗ such that

E∗
t =

∑
j∈J

Pj,t · C∗
j,t, ∀t, zt (11)

is an optimal policy in optimization problem (P.2).

Proof. Following Theorem 7.6 and Theorem 9.2 in (Stokey,1989), I require Assumption 9.1-9.2
in (Stokey,1989) to ensure the proper measure space and the well-defined optimal consumption
plan for the optimization problem (P.1). Similar assumptions are required to ensure the proper
measure space and the well-defined optimal expenditure plan for the optimization problem
(P.2). Optimization problem (P.1) and (P.2) have identical solution and life-time utility.
Verification is slightly lengthy because consumer makes decision for infinite horizon.

Step 1: Construct problem (P.3) with psuedo constraint
∑

j Pj · Cj ≤ E in each period
and state,

V 0(θ⃗0) = sup
Ẽ,C̃,θ̃,B̃

lim
T→∞

E[
T∑
t=1

βt · u(C⃗t)]

s.t.
∑
j

Pj,t · Cj,t ≤ Et,

∑
k

θk,t · (P s
k,t +Dk,t) +Bt =

∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

,

Cj,t ≥ 0;
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

≥ a.

(P.3)

This convert the consumer’s problem into two stages within each period and state: decide the
expenditure first, then the basket. I verify Problem (P.2) generates lower value than problem
(P.3),

V
New

0 (θ⃗0) ≤ V 0(θ⃗0).
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To see this is true, I construct the auxiliary consumption bundle C̃E∗ implied by the optimal
expenditure plan E∗ in problem (P.2),

CE∗
j,t (z

t) =
E∗

t (z
t)

Pj,t(zt)
· Pj,t(z

t) · DjV (P⃗t(z
t), E∗

t (z
t))∑

i Pi,t(zt) · Di(P⃗t(zt), E∗
t (z

t))
. (65)

By construction,consumption plan CE∗ depletes the expenditure in each period and state,∑
j∈J

Pj,t(z
t) · CE∗

j,t (z
t) = E∗

t (z
t).

Notice that V [P⃗t(z
t), E∗

t (z
t)] = u(C⃗E∗

t (zt)) at each time-state node, so the objective function
value is identical. I construct the investment plan of financial security and risk-free bond ex-
actly the same as the optimal policy in problem (P.2). Therefore, the plan (C̃E∗, Ẽ∗, θ̃E∗, B̃E∗)
is feasible in Problem (P.3). For arbitrary feasible expenditure plan of problem (P.2), a feasi-
ble plan can be constructed in the similar way, so I conclude problem (P.2) generates (weakly)
lower value than the problem (P.3).

Recall that Problem (P.3) adds additional constraints to the Problem (P.1), so Problem
(P.3) generates (weakly) lower value than Problem (P.1). Overall, I conclude problem (P.2)
generates lower value than the problem (P.1).

Step 2: I verify U0(θ⃗0) ≤ V 0(θ⃗0). Construct the implied expenditure plan EC∗ from the
optimal consumption plan C∗ in problem (P.1),

EC∗
t (zt) =

∑
j∈J

Pj,t(z
t) · C∗

j,t(z
t).

Again, the exact inter-temporal budget constraints implies V [P⃗t(z
t), EC∗

t (zt)] = V ∗(EC∗
t (zt)−1·

P⃗t(z
t)) = u(C⃗∗

t (z
t)) at each time-state node, so objective function values are identical. A

financial portfolio plan θ̃C∗ can be constructed exactly the same as solution in problem (P.2).
Therefore, the plan (ẼC∗, θ̃C∗) is feasible in Problem (P.2). Given the enlarged feasible set, I
conclude Problem (P.1) generates lower value than the Problem (P.2).

Step 3: Combine step (1) and step (2), we conclude

U0(θ⃗0) = V 0(θ⃗0).

Furthermore, for each optimal policy c∗ in problem (P.1), EC∗ such that

EC∗
t (zt) =

∑
j∈J

Pj,t(z
t) · C∗

j,t(z
t), ,∀t, z (66)

is also an optimal policy in the optimization problem (P.2). To see this is true, recall the

optimal value U0(θ⃗0) is attained by the consumption plan C∗, so EC∗ attains the optimal

value V 0(θ⃗0). In the symmetric argument, for each optimal policy E∗ in problem (P.1), CE∗

constructed as in equation (65) is also an optimal policy in the optimization problem (P.1).
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E.2.4 Stochastic Discount Factor

Theorem 1. In the economy with consumption sectors J , real pricing kernel, the first-order
approximated change in real stochastic discount factor is

dm̃ = −be · (de− dpJ)−
∑
j∈J

bj · ωj · (dpj − dpJ) + o(h). (14)

The dpj is the first-order difference of log price pj = log(Pj) in sector j. The de is the first-

order difference of log total consumption expenditure e = log(E). The vector of risk-price b⃗
is

be =γ,

bj =− (γ − 1) +
∑
i∈J

ηj,i −
∑
k∈J

ωk ·
∑
i∈J

ηk,i.
(15)

with γ as relative risk aversion coefficient −HE,EV (P⃗ ,E)·E
DEV (P⃗ ,E)

. The high-order term o(h) is with

respect to h = max{{dpj}j, de}.
Proof. By the Taylor’s Theorem, in the neighborhood of a = (p⃗, e), there exists θ ∈ [0, 1] such
that

m̃(a+ h)− m̃(a) = Dm̃(a) · h+
1

2
· hT · Hm̃(a+ θ · h) · h. (67)

The log of real Stochastic Discount Factor M̃ satisfies

m̃ = log[
J∑

j=1

DjV
∗ · (−E−2) · Pj] + log(PJ). (68)

Now I explicitly decompose the term Dm̃(a)·h. Recall the first-order derivative of composition

satisfies D[log ◦f(a)] = Df(a)
f(a)

. The term Dm̃(a) · h− dpJ is decomposed as below,

Dm̃(a) · h− dpJ = [
J∑

j=1

DjV
∗ · (−E−2) · Pj]

−1·[
J∑

j=1

DjV
∗ · (−E−2) · dpj

+
J∑

j=1

DjV
∗ · (2 · E−3) · Pj · de]

+[
J∑

j=1

DjV
∗ · (−E−2) · Pj]

−1·[
J∑

j=1

J∑
i=1

Dj,iV
∗ · (−E−3) · Pj · dpi

+
J∑

j=1

J∑
i=1

Dj,iV
∗ · E−4 · Pj · Pi · de].

(69)
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Denote A =
∑J

j=1DjV
∗ · Pj. Replacing the formulas

DEV (P⃗ , E) =
J∑

j=1

DjV
∗ · (−E−2) · Pj,

Vj(P⃗ , E) =DjV
∗ · E−1,

ωk =
Pk · DkV

∗∑J
j=1DjV ∗ · Pj

,

yields the simplified Dm̃(a) · h− dpJ as below,

Dm̃(a) · h− dpJ

= [A · (−E−2)]−1·[
J∑

j=1

ωj · A · (−E−2) · dpj + A · (2 · E−2) · de]

+[A · (−E−2)]−1·[
J∑

j=1

J∑
i=1

Dj,iV
∗ · (−E−3) · Pj · Pi · dpi

+
J∑

j=1

J∑
i=1

Dj,iV
∗ · E−3 · Pj · Pi ·

de

e
].

(70)

We further replace the term with second-order derivatives,

Dj,iV
∗ · E−3 · Pj · Pi =DiV

∗ · Pi ·
Dj,iV

∗ · E−3 · Pj · Pi

DiV ∗ · Pi

=ωi · A · (−E−2) · Dj,iV
∗ · Pj

DiV ∗ · E

=ωi · A · (−E−2) · Di,jV
∗ · Pj

DiV ∗ · E
=ωi · A · (−E−2) · [η − ηi,j].

The term Dm̃(a) · h− dpJ is further simplified as

Dm̃(a) · h− dpJ =(
J∑

j=1

ωj · dpj − de)− de

+
J∑

i=1

ωi ·
J∑

j=1

[η − ηi,j] · (dpi − de).

(71)
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The term Dm̃(a) · h is further simplified as

Dm̃(a) · h =(
J∑

j=1

ωj · dpj − de)

− (de− dpJ) + (J · η) ·
J∑

i=1

ωi · (dpi − de)−
J∑

i=1

ωi ·
J∑

j=1

ηi,j · (dpi − de)

=(J · η + 1) · (
J∑

i=1

ωi · dpi − de)

− (de− dpJ)−
J∑

i=1

ωi · (
J∑

j=1

ηi,j · dpi −
J∑

j=1

ηi,j · de).

(72)

Hence, the First-Order Approximated Linear SDF is

dm̃ = −
J∑

j=1

bj · ωj · dpj − be · de+ dpJ + o(h).

has risk price b⃗ as

bj =− (J · η + 1) +
J∑

k=1

ηj,k, (73)

be =(J · η + 1) + 1−
J∑

j=1

ωj ·
J∑

k=1

ηj,k. (74)

By construction, absolute consumption shares add-up to 1,

J∑
j=1

ωj = 1.

Therefore, the risk price vector b satisfies

J∑
j=1

ωj · bj + be = 1. (75)

Considering the relative change using the deflator PJ , the First-Order Approximated Linear
SDF is

dm̃ = −
J∑

j=1

bj · ωj · (dpj − dpJ)− be · (de− dpJ) + o(h).
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Recall the consumer adjusts shares based on the pairwise difference of share elasticity. The
absolute level of elasticity doesn’t plays the role.

Given (P⃗ , E), the relative risk-aversion is −HE,EV (P⃗ ,E)·E
DEV (P⃗ ,E)

, denote as γ. This is from the

definition of sensitivity of marginal utility with respect to the expenditure. The risk price of
expenditure be describes the response of marginal utility to expenditure, when the price vector
is fixed. As such,

be =γ. (76)

The sensitivity of marginal utility of expenditure to each price Pj needs further derivation.

Replacing γ = (J · η + 1) + 1 −
∑J

j=1 ωj ·
∑J

k=1 ηj,k for J · η + 1, the vector of risk price b⃗ is
further simplified as

bj =− (γ − 1) + [
∑
k∈J

ηj,k −
∑
i∈J

ωi ·
∑
k∈J

ηi,k]. (77)

Alternatively, one can use the H.D.O property DEV (P⃗ , E) =
∑J

j=1DjV
∗(E−1 ·P⃗ )·(−E−2)·

Pj to verify the identity equation with second order derivatives,

−HE,EV (P⃗ , E) · E
DEV (P⃗ , E)

= 2−
J∑

j=1

ωj ·
J∑

k=1

Dj,kV
∗ · Pk

DjV ∗ · E
.

Corollary 3. Define the Engel Slope for the sector pair (k, j) as sensitivity of relative share
sk,j = log(ωk

ωj
) to expenditure,

ESk,j(P⃗ , E) = lim
de→0

sk,j(p, e+ de)− sk,j(p, e)

de
, (54)

In real stochastic discount factor, the risk price of necessity price Pk is more negative than the
luxury price Pj, as necessity sector k inferior to than luxury sector j,

bk − bj = ESk,j(P⃗ , E). (55)

Proof. Recall the Lemma (2),

ESk,j(P⃗ , E) =
J∑

i=1

ηk,i(P⃗ , E)−
J∑

i=1

ηj,i(P⃗ , E). (78)

Theorem (1) tells us,

bk − bj =
J∑

i=1

ηk,i(P⃗ , E)−
J∑

i=1

ηj,i(P⃗ , E). (79)

So we arrive to bk − bj = ESk,j(P⃗ , E).
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Corollary 1. Given the security k and the security f , the real total return R̃k,t+1 and R̃f,t+1

from time t to future time t+ 1 satisfy

Et[
M̃t+1

M̃t

· (R̃k,t+1 − R̃f,t+1)] = 0. (13)

Proof. I refer the standard argument as in Chapter 13, (Ljungqvist, Sargent, 2012). The
Lagrangian for the consumption allocation problem is

L0(θ⃗0, λ0, ν0, ν
e
0) = sup

Ẽ,θ̃,ν̃,ν̃a,ν̃e
lim
T→∞

{βT+1 · E
[∑

k

Pk,T+1 · DEV (P⃗T , ET )]

+E
[ T∑

t=1

βt · [V (P⃗t, Et) + νt · ( budget constraint)

+ νa
t · (bounded total wealth)

+ νe
t · (non-negative spending)]

]
}.

(L.1)

Here, the budget constraint reads as∑
k

θk,t · (P s
k,t +Dk,t) +Bt = Et +

∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

.

The bounded total wealth constraint reads as∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

≥ a.

Given limE→0DEV (P⃗ , E) = −∞, the shadow price νe
t ≡ 0. Optimal stream of investment

amount in k-th financial security θ̃k implies the motion equation of shadow price νt

βt · π(zt) · [νt(zt) + νa
t (z

t)] · P s
k,t(z

t)

=
∑

zt+1|zt
βt+1 · π(zt+1) · νt+1(z

t+1) · [P s
k,t+1(z

t+1) +Dk,t+1(z
t+1)]. (80)

Optimal stream of expenditure Ẽ implies the equality between shadow price νt and marginal
utility of expenditure,

νt(z
t) =DEV (P⃗t(z

t), Et(z
t)). (81)

Similarly, at the succeeding time-state zt+1, the FOC of consumption spending also holds

νt+1(z
t+1) =DEV (P⃗t+1(z

t+1), Et+1(z
t+1)).
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For short notation, I use DEVt(z
t) for DEV (P⃗t(z

t), Et(z
t)). Substituting FOCs of consumption

spending into the equation of shadow price (80) yields,

[DEVt(z
t) + ηat (z

t)] · P s
k,t(z

t)

=
∑

zt+1|zt
β · π(zt+1|zt) · DEVt+1(z

t+1) · [P s
k,t+1(z

t+1) +Dk,t+1(z
t+1)]. (82)

If household is unconstrained νa
t (z

t) = 0, this equation is

1 =β · E[DEVt+1(z
t+1)

DEVt(zt)
·
P s
k,t+1(z

t+1) +Dk,t+1(z
t+1)

P s
k,t(z

t)
|zt]. (83)

Denote the real total return for financial asset k as

R̃k,t→t+1(z
t+1) =

[P s
k,t+1(z

t+1) +Dk,t+1(z
t+1)]/PJ,t+1(z

t+1)

P s
k,t(z

t)/PJ,t(zt)
.

I conclude E[β · M̃t+1

M̃t
· R̃k,t→t+1|It] = 1. The similar argument can be constructed for arbitrary

finite time-interval (t, t′), hence optimal financial wealth allocation implies the Euler equation
for the real total return of financial asset k

E[βt′−t · M̃t′

M̃t

· R̃k,t→t′|It] = 1. (84)

Similarly, there exists the Euler equation of financial asset f ,

E[βt′−t · M̃t′

M̃t

· R̃f,t→t′ |It] = 1. (85)

The excess return satisfies

E[βt′−t · M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (86)

Removing the constant non-zero term βt′−t gives us the Euler equation across financial assets

E[
M̃t′

M̃t

· (R̃k,t→t′ − R̃f,t→t′)|It] = 0. (87)
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Corollary 2. Given the security k, the expected excess return Re
k,t+1 satisfies

Et[R
e
k,t+1] =be · Et

[
(det+1 − dpJ,t+1) ·Re

k,t+1

]
+
∑
j∈J

bj · ωj,t · Et

[
(dpj,t+1 − dpJ,t+1) ·Re

k,t+1

]
. (18)

with excess return as the difference between nominal total return Rk,t+1 and risk-free rate
Rf,t+1.

Proof. Recall the return spread across pairs of financial assets approximately equals the spread
of deflated total return,

Rk,t→t′ −Rf,t→t′ ≈ R̃k,t→t′ − R̃f,t→t′ , (88)

so the equation of real current pricing kernel is written as

E[
M̃t′

M̃t

· (Rk,t→t′ −Rf,t→t′)|It] ≈ 0. (89)

The change in real stochastic discount factor is further approximated as the 1 plus the loga-

rithmic growth,
M̃t′

M̃t
≈ 1 + dm̃t→t′ .
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E.3 Aggregation

Here, I explain the price-decomposition of pricing kernel in the heterogeneous-agent econ-
omy. In this economy, the consumer n has indirect utility function V (n)(P⃗ , E(n)) for intra-
temporal consumption decision. Consumer (n) has initial endowment of financial security

θ⃗
(n)
0 .

Definition 4. The price system (P, P s) and the consumption allocation C̃ constitutes the
(Heterogeneous Consumer) Competitive Equilibrium if

1. C̃(n) solves problem

U0(θ⃗
(n)
0 ) = sup

C̃,θ̃

lim
T→∞

E[
T∑
t=1

βt · u(n)(C⃗t)]

s.t.
∑
k

θk,t · (P s
k,t +Dk,t) +Bt =

∑
j

Pj,t · Cj,t +
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

,

Cj,t ≥ 0;
∑
k

θk,t+1 · P s
k,t +

Bt+1

Rf,t+1

≥ a.

(P.1-HA)

2. commodity market (j, t) clears in the demand side
∑

n∈N C
(n)
j,t = Cj,t.

3. commodity market clears in the supply side, labor market clear, given the model specifi-
cation of producers;

4. financial security market clears, given the model specification of foreign borrowing and
lending.

At the equilibrium path {P⃗ ∗, E∗, λ∗}, DEV
(n)(P⃗ ∗, E(n),∗) is the marginal utility of con-

sumption expenditure E(n). I choose the consumer (1) as the benchmark consumer for the
aggregation analysis. Construct the Negishi-weight α(1) = 1, and

α∗(n) =
DEV

(1)(P⃗ ∗, E(1),∗)

DEV (n)(P⃗ ∗, E(n),∗)
. (90)

The distribution of expenditure {E(n),∗}(n) solves the auxiliary-optimization problem,

V (P⃗ ,E;α) ≡ max
E

1

N
·
∑
n∈N

α(n) · V (n)(P⃗ , E(n))

s.t.
1

N
·
∑
n∈N

E(n) ≤ E.
(SP.1)

I denote the aggregate consumption spending on the equilibrium path as E∗ = 1
N
·
∑

n∈N E(n),∗.
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Theorem 2. In the economy where price system (P,M) and quantity system ({c̃(n)}n∈N , {ℓ̃(n)}n∈N )
constitute a Competitive Equilibrium for N heterogeneous consumers with preference {⪰(n)},
there exists a Representative Consumer with preference ⪰N such that

� price system (P,M) and quantity system (
∑

n∈N c̃(n),
∑

n∈N ℓ̃(n)) constitute a Competi-
tive Equilibrium for N homogeneous consumers with preference ⪰N .

The indirect utility function of the Representative Consumer is V (P⃗ ,E;α) with the Negishi
weight constructed in equation (90). Along the equilibrium path, the Representative Consumer
has identical marginal utility of expenditure with the Benchmark Consumer

DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗), (91)

and the absolute expenditure share of artificial consumer V (P⃗ ∗,E∗;α) is identical with observed
aggregate expenditure share,

ω⃗(P⃗ ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω⃗(n)(P⃗ ∗, E(n),∗) (92)

The weight αn reflects the shadow price of consumer (n)’s budget constraint in the Com-
petitive Equilibrium. If we take the aggregation consumption bundle as if the Representative
Consumer’s choice, the Negishi weight works as if it is the “Taste” of representative consumer
over individual consumers. Recall we use the expenditure share over commodities to reveal
the single-consumer’s preference over consumption bundle. Here, we use the expenditure
allocation across consumers to reveal the Representative Consumer’s social preference over
individual consumers.

By constructing the representative consumers consistent with the aggregate consumption
expenditure and the fluctuation of SDF, the representative consumer’s indirect utility func-
tion also reveals the financial market SDF {Mt}. Decomposition of indirect utility function
in Section (2) is non-parametric, so previous analysis holds in the heterogeneous-consumer
economy. This allows the economist to track the marginal utility of investor even if we fail to
explicitly identify who is the unconstrained financial market investor.

In the economy with homothetic preference and additive utility flow, where the financial
market is complete for the consumer, {α∗(n)}n is invariant along the equilibrium path 36. In
other words, in the economy with perfect risk-sharing and homothetic preference, we have
fixed Negishi weight 37. The numerator DEV

(1)(P⃗ ∗, E(1),∗) in the Negishi weight can’t be

36Along the equilibrium path, {α∗(n)}n might vary, if the economy has idiosyncratic labor endownment and
non-trivial wealth-constraint.

37The international finance literature often consider the integrated economy with fixed Negishi weight. I
depart from the Constant Social Planner’s problem because the consumption allocation is implemented by
the financial market and the commodity market. On the equilibrium path, the aggregate wealth allocation
might be inconsistent with the Representative Consumer constructed from the intra-temporal consumption
allocation.
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removed, because we attempt to track the benchmark consumer (1) by constructing a Repre-
sentative Consumer whose welfare is comparable with benchmark consumer (1). Only in this
way, fluctuation of Representative Consumer’s welfare is meaningful for tracking the financial
market SDF.

I use γ(n) to describe the curvature of utility flow in consumer (n)’s life-time utility (EIS
parameter in path-independent utility function),

γ(n) = −HE,EV
(n)(P⃗ , E) · E

DEV (n)(P⃗ , E)
. (93)

Definition 5. Define the real Marginal Utility of Expenditure of consumer (n) as M̃(n),

M̃(P⃗t, Et;n) ≡ DEV
(n)(P⃗t, Et(n)) · PJ,t. (94)

One can extend the analysis of representative consumer to each consumer (n),

Corollary 6. First-Order Approximated change of Marginal Utility M̃(n) is

dm̃(n) = −
J∑

j=1

bj(n) · ωj(n) · (dpj − dpJ)− be(n) · (de(n)− dpJ) + o(h). (95)

with high-order term o(h) for h = max{{dpj}j, de(n)}. The coefficient vector b(n) is

bj(n) =− [γ(n)− 1] +
J∑

i=1

ηj,i(n)−
J∑

k=1

ωk(n)
J∑

i=1

ηk,i(n),

be(n) =γ(n).

(96)

Before diving into the generalization of Effective Representative Consumer, I construct the
curvature γ(α) for the Effective Representative Consumer with weights α. It works as if the
Effective Representative Consumer substitutes the utility-flow across time-periods using this
curvature γ(α),

γ(α) = −HE,EV (P⃗ ,E;α) · E
DEV (P⃗ ,E;α)

. (97)

Here, I want to clarify the abuse of math symbols: the sup-script (n) highlights the name
of consumer (n), while the sup-script (α) serves as the name of this artificial Representative
Consumer. Hereafter, I generalize the analysis of single-consumer’s marginal utility for this
constructed consumer (α). I have to emphasize the fact, γ(α) is endogenously determined by

the distribution of risk aversion γ(n) and the expenditure across consumers E(n),∗

E∗ in equilib-
rium. Lemma E.1 restates this fact. It is the standard result in asset pricing textbook.

121



Lemma E.1. For (static) Effective Representative Consumer with the curvature γ(α) satis-
fying equations below

γ(α) =
∑
n∈N

E(n),∗

E∗ · 1

γ(n)
. (98)

This (static) Effective Representative Consumer is dynamically consistent on the equilibrium-
path.

The Effective Representative Consumer is ex-post constructed, her inter-temporal con-
sumption expenditure is consistent with the observed aggregate expenditure across time peri-
ods: (a) change in marginal utility of expenditure is identical with consumer (1); (b) aggregate
consumption basket is the optimal intra-period consumption basket decision.

In Corollary 4, the parameter γ(α) is the reciprocal of expenditure-weighted reciprocal risk
aversion. The elasticity of relative sector-share η(α) is derived similarly with the case of sta-
tionary representative consumer, assuming the weight α is fixed. There is no simple analytical
expression over the η(α) elasticity matrix from the distribution of individual consumer.

In the economy with generalized consumption preference, the representative consumer
implied by the competitive equilibrium outcome might depart from the individual consumer,
in the sense that the functional form of indirect utility function is different. This result
departs from (32), because I don’t pursue the similarity in the functional form of utility
function. This result departs from (5), because I recover the Representative Consumer using
the approach of “revealed social preference”. I only require the consistent marginal utility
of aggregate spending and the consistent aggregate consumption portfolio. Further, I recover
the inter-temporal preference for the Effective Representative Consumer, so that the dynamic
of aggregate expenditure is consistent with the marginal utility of hypothetical unconstrained
consumer.

The construction of Negishi weight departs from (55) and (9). Both (55) and (9) use the
marginal utility of consumption as the denominator of Negishi weight. In (55), the numerator
of the Negishi weight is chosen to be consistent with the optimal fiscal tax transfer. In (9), the
numerator is the average marginal utility of consumption across consumers. Compared with
(55) and (9), I use benchmark consumer’s marginal utility as the numerator, this ensures the
reverse-engineered representative consumer has identical marginal utility with the financial
market investor. To be clear, my construction of Negishi weight is the result implied by
consumption allocation in a competitive equilibrium. I don’t rely on the government or other
legal authority assigning the consumption across consumers directly. Recovering the Effective
Representative Consumer is an ex-post accounting exercise. It simplifies the asset-pricing
analysis, without touching the exact underlying model. To some extent, the empirical exercise
here is similar with the computation technique in the economy with financial market friction
(14), where the stochastic weights augment the aggregate consumption quantity in the SDF.
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The generalized decomposition of SDF in the Corollary (4) formally verify the equiva-
lence between an economy with heterogeneous-consumers, and an simplified economy with
representative consumer. The empirical analysis is under the assumption of the Corollary
(4). Although Corollary (4) puts strong assumptions over the distribution of Negishi weight,
it serves as the benchmark to compare the true data and hypothetically ideal economy with
complete financial market. When consumers have binding borrowing constraints or transac-
tion constraints, effective Negishi weights vary. Corollary (5) extends the analysis for this
situation.

E.3.1 Proof for Aggregation

Lemma E.2. At (P⃗ ∗,E∗), artificial consumer has marginal utility of expenditure equivalent
with the benchmark-consumer (1)

DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗) (99)

Proof. By construction of V (P⃗ ,E;α),

V (P⃗ ,E;α) = max
s∈△N−1

1

N
·
∑
n∈N

α(n) · V (n)(P⃗ , s(n) · E)

s.t.
∑
n∈N

s(n) ≤ 1.
(100)

Denote the optimal solution for this static optimization problem satisfies s∗static(n).
By the envelope theorem,

DEV (P⃗ ,E;α) =DE

[
1

N
·
∑
n∈N

α(n) · s∗static(n) · V (n)(P⃗ , s∗static(n) · E)

]

=
1

N
·
∑
n∈N

α(n) · s∗static(n) · DEV
(n)(P⃗ , s∗static(n) · E)

=
1

N
·
∑
n∈N

α(n) · s∗static(n) · DEV
(n)(P⃗ , s∗static(n) · E)

(101)

Effective Negishi-weight α∗ is constructed based on the equilibrium allocation α∗(n) = DEV (1)(P⃗ ∗,E(1),∗)

DEV (n)(P⃗ ∗,E(n),∗)
.

We can see the first fact: s∗(n) = E(n),∗

E∗ solves the static problem for s∗static. We can see the
second fact as below,

1

N
·
∑
n∈N

s∗(n) · α∗(n) · DEV
(n)(P⃗ ∗, E(n),∗) = [

1

N
·
∑
n∈N

s∗(n)] · DEV
(1)(P⃗ ∗, E(1),∗). (102)
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Recall by construction 1
N
·
∑

n∈N s∗(n) = 1, Therefore, we can conclude

DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗).

Lemma E.3. At (P⃗ ∗,E∗), absolute expenditure share of artificial consumer V (P⃗ ∗,E∗;α) is
identical with aggregate expenditure share on the equilibrium path,

ω⃗(P⃗ ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω⃗(n)(P⃗ ∗, E(n),∗) (103)

Proof. Recall the Roy identity,

ω
(n)
j (P⃗ , E(n)) = −DjV

(n)(P⃗ , E(n))

DEV (n)(P⃗ , E(n))
· Pj

E(n)
. (104)

Hence, I can simplify the formula as below∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω(n)

j (P⃗ ∗, E(n),∗)

=−
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · DjV

(n)(P⃗ ∗, E(n),∗)

DEV (n)(P⃗ ∗, E(n),∗)
·

P ∗
j

E(n),∗

=−
∑
n∈N

P ∗
j∑

m∈N E(m),∗ · DjV
(n)(P⃗ ∗, E(n),∗)

DEV (n)(P⃗ ∗, E(n),∗)

(105)

By the Roy Identity, absolute expenditure share of artificial consumer V (P⃗ ∗,E∗;α) is

ωj(P⃗
∗,E∗;α) = −DjV (P⃗ ∗,E∗;α)

DEV (P⃗ ∗,E∗;α)
· Pj

E∗ . (106)

By the envelope theorem,

DjV (P⃗ ∗,E∗;α) =
1

N
·
∑
n∈N

α(n) · DjV
(n)(P⃗ ∗, E(n),∗). (107)

I derive the formula α(n)

DEV (P⃗ ∗,E∗;α)
as

α(n)

DEV (P⃗ ∗,E∗;α)
=
DEV

(1)(P⃗ ∗, E(1),∗)

DEV (n)(P⃗ ∗, E(n),∗)
· 1

DEV (P⃗ ∗,E∗;α)

=
DEV

(1)(P⃗ ∗, E(1),∗)

DEV (n)(P⃗ ∗, E(n),∗)
· 1

DEV (1)(P⃗ ∗, E(1),∗)

=
1

DEV (n)(P⃗ ∗, E(n),∗)
.

(108)
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The first equality comes from the definition of Proper Negeishi weight α∗(n) = DEV (1)(P⃗ ∗,E(1),∗)

DEV (n)(P⃗ ∗,E(n),∗)
.

The second equality comes from Lemma E.2, DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗).

I simplify the formula below

DjV (P⃗ ∗,E∗;α)

DEV (P⃗ ∗,E∗;α)
=

1
N
·
∑

n∈N α(n) · DjV
(n)(P⃗ ∗, E(n),∗)

DEV (1)(P⃗ ∗, E(1),∗)

=
1

N
·
∑
n∈N

1

DEV (n)(P⃗ ∗, E(n),∗)
· DjV

(n)(P⃗ ∗, E(n),∗).

(109)

The first equality substitutes the formula DjV (P⃗ ∗,E∗;α) with equation (107). The second

equality substitutes the formula α(n)

DEV (P⃗ ∗,E∗;α)
with equation (108).

Therefore, absolute expenditure share of artificial consumer V (P⃗ ∗,E∗;α) is simplified as

ωj(P⃗
∗,E∗;α) = − 1

N
·
∑
n∈N

DjV
(n)(P⃗ ∗, E(n),∗)

DEV (n)(P⃗ ∗, E(n),∗)
· Pj

E∗ . (110)

By construction of E∗, ∑
m∈N

E(m),∗ = N · E∗,

Replacing ω
(n)
j (P⃗ , E(n)) = − DjV

(n)(P⃗ ,E(n))

DEV (n)(P⃗ ,E(n))
· Pj

E(n) , I close the proof with

ωj(P⃗
∗,E∗;α) =−

∑
n∈N

P ∗
j∑

m∈N E(m),∗ · DjV
(n)(P⃗ ∗, E(n),∗)

DEV (n)(P⃗ ∗, E(n),∗)

=
∑
n∈N

P ∗
j∑

m∈N E(m),∗ · ω(n)
j (P⃗ ∗, E(n),∗) · E

(n),∗

P ∗
j

=
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω(n)

j (P⃗ ∗, E(n),∗).

Theorem 2. In the economy where price system (P,M) and quantity system ({c̃(n)}n∈N , {ℓ̃(n)}n∈N )
constitute a Competitive Equilibrium for N heterogeneous consumers with preference {⪰(n)},
there exists a Representative Consumer with preference ⪰N such that

� price system (P,M) and quantity system (
∑

n∈N c̃(n),
∑

n∈N ℓ̃(n)) constitute a Competi-
tive Equilibrium for N homogeneous consumers with preference ⪰N .
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The indirect utility function of the Representative Consumer is V (P⃗ ,E;α) with the Negishi
weight constructed in equation (90). Along the equilibrium path, the Representative Consumer
has identical marginal utility of expenditure with the Benchmark Consumer

DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗), (91)

and the absolute expenditure share of artificial consumer V (P⃗ ∗,E∗;α) is identical with observed
aggregate expenditure share,

ω⃗(P⃗ ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω⃗(n)(P⃗ ∗, E(n),∗) (92)

Proof. The construction of representative consumer is completed after I verify the Lemma E.2
and the Lemma E.3.

Corollary 6. First-Order Approximated change of Marginal Utility M̃(n) is

dm̃(n) = −
J∑

j=1

bj(n) · ωj(n) · (dpj − dpJ)− be(n) · (de(n)− dpJ) + o(h). (95)

with high-order term o(h) for h = max{{dpj}j, de(n)}. The coefficient vector b(n) is

bj(n) =− [γ(n)− 1] +
J∑

i=1

ηj,i(n)−
J∑

k=1

ωk(n)
J∑

i=1

ηk,i(n),

be(n) =γ(n).

(96)

Proof. We apply the decomposition recipe in Theorem 1, by generalizing γ as consumer (n)’s
curvature γ(n), ω as consumer (n)’s absolute expenditure share ω(n), and η as consumer (n)’s
intra-temporal elasticity matrix η(n).

Lemma E.1. For (static) Effective Representative Consumer with the curvature γ(α) satis-
fying equations below

γ(α) =
∑
n∈N

E(n),∗

E∗ · 1

γ(n)
. (98)

This (static) Effective Representative Consumer is dynamically consistent on the equilibrium-
path.
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Proof. Consider the equation below,

1

N
·
∑
n∈N

f (n)(
M

α(n)
) = E. (111)

where f (n)(λ) is the inverse-function of consumer (n)’s marginal utility given price vector P⃗ ,

DEV
(n)(P⃗ , f (n)(λ)) = λ. (112)

One can derive the fact below,

ḟ (n)(λ) =
1

HEEV (n)(P⃗ , E)
. (113)

for E(n) solving the equation DEV
(n)(P⃗ , E(n)) = λ. From the equation (111), we can arrive to

the first-order differential with respect to (dM, dE),

1

N
·
∑
n∈N

ḟ (n)(
M

α(n)
) · M

α(n)
· dM
M

= dE. (114)

Recall the endogenous Negishi weights α∗ implied in the equilibrium outcome satisfies the
equation below,

α∗(n) =
DEV

(1)(P⃗ ∗, E(1),∗)

DEV (n)(P⃗ ∗, E(n),∗)
=

M∗

DEV (n)(P⃗ ∗, E(n),∗)
. (115)

As such, the consumer (n)’s expenditure E(n),∗ solves the equation below,

DEV
(n)(P⃗ ∗, E(n),∗) =

M∗

α∗(n)
. (116)

Therfore, we can replace

ḟ (n)(
M∗

α∗(n)
) =

1

HEEV (n)(P⃗ ∗, E(n),∗)

and M∗

α∗(n)
= DEV

(n)(P⃗ ∗, E(n),∗), so we end up with

1

N
·
∑
n∈N

1

HEEV (n)(P⃗ ∗, E(n),∗)
· DEV

(n)(P⃗ ∗, E(n),∗) · dM
M

= dE. (117)
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After further organization, we find the expenditure-weighted inverse curvature similar with
asset-pricing literature,

1

N
·
∑
n∈N

E(n),∗

E∗

E(n),∗ · HEEV (n)(P⃗ ∗,E(n),∗)

DEV (n)(P⃗ ∗,E(n),∗)

· dM
∗

M∗ =
dE∗

E∗ . (118)

Denote the new term as

1

be(α∗)
=

1

N
·
∑
n∈N

E(n),∗

E∗

E(n),∗ · HEEV (n)(P⃗ ∗,E(n),∗)

DEV (n)(P⃗ ∗,E(n),∗)

.

The reciprocal of right-hand-side is the standard harmonic risk-aversion in literature,

1

γ(α)
=

1∑
n∈N

E(n),∗

E∗ · 1
γ(n)

. (119)

Corollary 4. Given invariant distribution of Negishi-weight {α∗(n)}n along the equilibrium
path, the log-change in real marginal utility of expenditure for the representative consumer
approximately equals

dm̃ = −
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ) + o(h). (57)

where α is the artificial Negishi-weight, ω⃗ is the aggregate expenditure share, e is the (log)
aggregate total consumption expenditure, and the vector b(α) is written with aggregate expen-
diture share ω⃗ and representative consumer’s elasticity η

bj(α) =− [γ(α)− 1] +
J∑

i=1

ηj,i(α)−
J∑

k=1

ωk ·
J∑

i=1

ηk,i(α),

be(α) =γ(α).

(58)

Proof. Recall Lemma E.2,

DEV (P⃗ ∗,E∗;α) = DEV
(1)(P⃗ ∗, E(1),∗).

Recall the benchmark consumer’s interior expenditure decision implies,

DEV
(1)(P⃗ ∗, E(1),∗) = M.
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Therefore, the financial market SDF {Mt(z
t)} can be measured by the marginal utility of

constructed aggregate consumer,

Mt(z
t) = DEV (P⃗ ∗

t (z
t, {zt(n)}),E∗

t (z
t, {zt(n)});α)

Recall the definition of real SDF,

d log(M̃) = d log[DEV (α) · PJ ]. (120)

First-order approximation of log[DEV (α) · PJ ] is similar with the analysis of representative
consumer. From Lemma E.3, it is legitimate to replace the expenditure share implied by the
artificial-consumer with

ω⃗(P⃗ ∗,E∗;α) =
∑
n∈N

E(n),∗∑
m∈N E(m),∗ · ω⃗(n)(P⃗ ∗, E(n),∗),

at each time-state node along the equilibrium path. So I close the proof.

Corollary 5. Given the process of effective Negishi-weight distribution {α(n)}n along the
equilibrium path, the log-change in real marginal utility of expenditure for the representative
consumer approximately equals

dm̃ =−
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ)

+
1

N
·
∑
n

s(n) · d log[α(n)] + o(ĥ).

(59)

where dα is the directional derivative of Negishi-weight distribution, ω⃗ is the aggregate ex-
penditure share, e is the (log) aggregate total consumption expenditure, and the vector b(α)
is defined in the Corollary 4, the expenditure-ratio s(n) is the ratio of consumer-expenditure

and aggregate-expenditure E(n),∗

E∗ in the equilibrium. The perturbation term is the norm of

perturbation term ĥ = max{h, 1
N
· dα}.

Proof. Recall we use the Envelope Theorem in the proof of Aggregation-Lemma E.2,

DEV (P⃗ ∗,E∗;α) =
1

N
·
∑
n∈N

α∗(n) · E
(n),∗

E∗ · DEV
(n)(P⃗ ∗, E(n),∗) (121)

Now we extend the parameter as â = (a, α) with a = (p⃗, e), the change of parameter as

ĥ = max{{dpj}j, de, {dαn}n}
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The term Dm̃(â) · ĥ− dpJ is decomposed as below,

Dm̃(â) · ĥ− dpJ = Dam̃(â) · h+Dαm̃(â) · dα− dpJ

Recall the first-order derivative of composition satisfies

Dαn [
1

N
·
∑
n∈N

αn · f(a;n)] =
1

N
· f(a;n).

Hence, we arrive to the directional change as

Dαn log
[
DEV (P⃗ ∗,E∗;α)

]
=

1

DEV (P⃗ ∗,E∗;α)
· E

(n),∗

E∗ · DEV
(n)(P⃗ ∗, E(n),∗)

For succinct notation, I denote DEV (n) = DEV
(n)(P⃗ ∗, E(n),∗). Therefore, we arrive to the

new decomposition of effective RA’s marginal utility as below

dm̃ =−
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ)

+
1

N
·
∑
n

E(n),∗

E∗ · DEV (n)

DEV (α)
· dα(n) + o(ĥ).

Notice dα(n) is the absolute term of changes, and DEV (n)
DEV (α)

is α∗(n) by construction. Convert
the equation into the log-change,

dm̃ =−
J∑

j=1

bj(α) · ωj · (dpj − dpJ)− be(α) · (de− dpJ)

+
1

N
·
∑
n

E(n),∗

E∗ · d log[α(n)] + o(ĥ).
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