Risk for Price: Using Generalized Demand System for Asset Pricing

Yu Li Shanghai Jiao Tong University

December, 2024

Consumption-CAPM

Introduction 00000

- Consumption quantity fails to explain asset returns
- Small volatility of consumption v.s. equity premium
- (Mehra and Prescott, 1985; Hansen and Singleton, 1983)
 - empirical: garbage (Savov, 2011), noise (Kroencke, 2017), non-marketable goods (Belo et al, 2021)
- Cross-section: covariance with consumption can't explain the returns
- (Mankiw and Shapiro, 1986)
 - supplementary to nondurable (Yogo, 2006)
- Old puzzle is unsolved

Price-CCAPM December, 2024 2/35

3/35

Observation

• Consumption prices + expenditure ⇒ consumer's utility from basket

Solution

- Detailed price improves measuring stochastic discount factor (SDF)
 - ⇒ Decompose consumer's marginal utility into prices

Yu Li Price-CCAPM December, 2024

New Finding: Price Explains Returns

- Use detailed price to describe SDF
 - ≥ 2 sectors within consumption ⇒ expenditure, prices (goods, services)
 - Estimate consumer's Euler Equation of asset holding
- Smaller pricing error across equity portfolios: $7.85\% \Rightarrow 0.39\%$
 - ► Testing assets: size, book-market, profitability, investment, momentum, earning-price

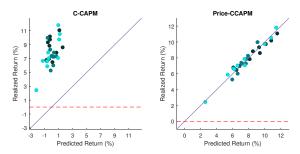


Figure 1: Fitness of Asset Pricing Models

Yu Li Price-CCAPM December, 2024 4 / 35

Solution using Detailed Prices

Theory

Introduction 000000

- Use indirect utility function to describe consumer preference Example:IDU
- SDF ⇒ prices and expenditure Decomposition of SDF is general
- Composition of consumption basket changes with expenditure
 - ⇒ Weights of price in SDF deviate CPI
 - ⇒ Consumption-CAPM cannot describe SDF
 - ⇒ Detailed price improves measuring SDF

Estimation

- Inference implementation is simple
- Flexible application for economy of multiple sectors

Price-CCAPM December, 2024 5/35 Introduction 000000

Estimation Outcome

Economy with goods and services, pricing kernel is

$$\mathrm{d} \tilde{m}_{t+1} pprox - b_e \cdot \underbrace{\left(\mathrm{d} e_{t+1} - \mathrm{d} p_{s,t+1}\right)}_{\mathrm{d} \tilde{e}, \; \text{Expenditure adjusted by Price of Services}} - b_g \cdot \omega_{g,t} \cdot \underbrace{\left(\mathrm{d} p_{g,t+1} - \mathrm{d} p_{s,t+1}\right)}_{\mathrm{d} \tilde{p}_g, \; \text{Relative Price of Goods}}, \tag{1}$$

- Small risk-aversion coefficient
 - Expenditure has risk price $\hat{b}_e = 28.80$
- Prices contribute to risk premium
 - Price of goods has risk price $\hat{b}_q = -71.29$
- Cross-section of expected returns
 - ► High explanation: small MAE 0.39%
- Extended estimation of 4 sectors: Food and non-food within goods and services
 - ▶ Smaller risk-aversion $\hat{b}_e = 14.70$.
 - Model fitness is improved to 0.18%.

Price-CCAPM December, 2024 6/35 Introduction 00000

- C-CAPM with heterogeneous commodities
 - ► (Piazzesi et al., 2007; Dittmar et al., 2020);
 - Durable (Yogo, 2006; Gomes et al., 2009; Belo, 2010; Yang, 2011; Eraker et al., 2016);
 - No suitable quantity index: (Ait-Sahalia et al., 2004; Lochstoer, 2009; Pakoš, 2011)

This paper: (1) accurate measure of SDF using dis-aggregated prices; (2) approximation is robust to multiple families of utility function

- · Asset pricing of commodity price
 - ► Consumer's price: (Lochstoer, 2009: Roussanov et al., 2021):
 - ▶ Other price: (Belo, 2010; Papanikolaou, 2011; Favilukis and Lin, 2016)
- Measuring systematic risk
 - Equity issuance cost shock (Belo et al., 2019), capital share risk (Lettau et al., 2019), firm entry-cost shock (Loualiche et al., 2016), fund flow (Dou et al., 2022)

This paper: impact of shocks over consumer's marginal utility ⇒ summarized by prices

Yu Li Price-CCAPM December, 2024 7/35

Guideline

- Introduction
- 2 Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- Summary

9/35

- \bullet Dynamic endowment economy with stream of consumption $\tilde{C} = \{\tilde{C}_i\}_{i \in \mathcal{T}}$
- Commodity market: sector j has price P_i
- Financial market: risky securities and risk-free bond
- Representative consumer decides
 - ightharpoonup consumption basket \vec{C}_t
 - risky securities $\vec{\theta}_{t+1}$ and risk-free bond B_{t+1}

Price-CCAPM December, 2024

Consumer's Preference

• Indirect utility function $V(\vec{P},E)$ over price \vec{P} and expenditure E is

$$V(\vec{P}, E) = \max_{\vec{C}} \quad \underbrace{u(C_1, C_2, \dots, C_J)}_{\text{direct utility function over quantities}}$$

$$s.t. \quad \sum_{j \in \mathcal{J}} P_j \cdot C_j \leq E. \tag{2}$$

- Impact of price over consumer's utility
 - $u(\vec{C}) \stackrel{\vec{P}}{\Rightarrow} \text{ optimal } \vec{C}^* \Rightarrow \text{ utility}$

$$V(\vec{P}, E) \Rightarrow \text{utility}$$

• Sufficient Statistic: consumption price \vec{P} and expenditure E describe consumer's utility.

Price-CCAPM December, 2024 10 / 35

Equivalent Problem with Expenditure

ullet Consumer maximizes the life-time utility with consumption basket $ec{C}$

$$\sup_{\tilde{C},\tilde{\theta},\tilde{B}} \quad \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^T \beta^t \cdot u(\vec{C}_t)]$$

s.t. Budget Constraint with $\sum_{j \in \mathcal{J}} P_{j,t} \cdot C_{j,t}$ and holding of financial assets $\vec{\theta}_{t+1}, B_{t+1}$, (3)

Other Constraints.

ullet Given commodity price $ec{P}\Rightarrow$ equivalent optimization problem of expenditure E

$$\sup_{\tilde{E},\tilde{\theta},\tilde{B}} \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^{T} \beta^{t} \cdot V(\vec{P}_{t}, E_{t})]$$
(4)

s.t. Budget Constraint with E_t and holding of financial assets $\vec{\theta}_{t+1}, B_{t+1},$ Other Constraints.

Dynamic Decision

Li Price-CCAPM December, 2024 11/35

Euler Equation

Consumer's marginal utility of expenditure equals shadow price of budget constraint.

Definition (SDF)

Define the real stochastic discount factor \tilde{M} as

$$\tilde{M}(\vec{P_t}, E_t) := \underbrace{\mathcal{D}_E V(\vec{P_t}, E_t)}_{\text{Marginal Utility of Expenditure}} \cdot \mathbf{P}_t. \tag{5}$$

where P_t is the consumer price index.

• Expected excess return is determined by the covariance to variation in real SDF.

u Li Price-CCAPM December, 2024 12 / 35

Price-Model of Consumption-CAPM

Theorem (Decomposition of SDF)

In the economy with consumption sectors \mathcal{J} , the first-order approximated change in real stochastic discount factor $\mathrm{d}\tilde{m} = \log(\frac{\tilde{M}_{t+1}}{\tilde{M}_t})$ is

$$d\tilde{m} = -\underbrace{b_e}_{\textit{Risk Price of Expenditure}} \cdot d\tilde{e} - \sum_{j \in \mathcal{J}} \underbrace{b_j}_{\textit{Risk Price of Price } P_j} \cdot \omega_j \cdot d\tilde{p}_j + o(h). \tag{6}$$

with high-order term o(h). The risk price vector \vec{b} is

$$b_e = \gamma; \quad b_j = -\gamma + \sum_{i \in \mathcal{J}} \eta_{j,i} - \sum_{k \in \mathcal{J}} \omega_k \cdot \sum_{i \in \mathcal{J}} \eta_{k,i}. \tag{7}$$

Notations

• $d\tilde{p}_i$ is change in price P_i adjusted by P_I , $d\tilde{e}$ for real expenditure.

Tu Li Price-CCAPM December, 2024 13/35

Explanation of Asymmetric Risk Price

- General situation: expenditure changes composition in consumption basket
- Decreased expenditure
 - ⇒ share of necessity commodity in consumption basket goes up
- Asymmetric risk price

$$b_n - b_\ell = \sum_{i \in \mathcal{J}} \eta_{n,i} - \sum_{i \in \mathcal{J}} \eta_{\ell,i}$$
 . (8)
Relative share $\frac{\omega_n}{\omega_\ell}$ w.r.t Expenditure

Example

Sketch-Marginal Utility

- High price of necessity commodity
 - ⇒ consumer's marginal utility increases more

Price-CCAPM December, 2024 14 / 35

Corollary (Euler Equation with Price)

For security k, the excess return R_{k-t+1}^e satisfies

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] \approx b_{e} \cdot \mathbb{E}_{t} \left[d\tilde{e}_{t+1} \cdot R_{k,t+1}^{e} \right] + \sum_{j \in \mathcal{J}} b_{j} \cdot \omega_{j,t} \cdot \mathbb{E}_{t} \left[d\tilde{p}_{j,t+1} \cdot R_{k,t+1}^{e} \right]. \tag{9}$$

- Expected excess return of financial assets is determined by the covariance between excess return and consumption prices.
- Risk price \vec{b} determines the contribution of each covariance term.
 - Explicitly estimate b_i for price of commodity j.

Price-CCAPM 15/35 December, 2024

Guideline

- Introductio
- Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- Summary

- Economy with goods and services, set of sector is $\mathcal{J} = \{g, s\}$.
- The pricing kernel is approximated as

$$\begin{split} \mathrm{d}\tilde{m}_{t+1} &\approx -\,b_e \cdot \underbrace{\left(\mathrm{d}e_{t+1} - \mathrm{d}p_{s,t+1}\right)}_{\text{d}\tilde{e}, \text{ Expenditure adjusted by Price of Services}} \\ &- b_g \cdot \omega_{g,t} \cdot \underbrace{\left(\mathrm{d}p_{g,t+1} - \mathrm{d}p_{s,t+1}\right)}_{\text{d}\tilde{p}_g, \text{ Relative Price of Goods}}, \end{split} \tag{10}$$

• Sample moment of Euler Equation in risky asset k is

$$g_{\mathcal{T},k} = \mathbb{E}_{\mathcal{T}}[R_{k,t+1}^e + d\tilde{m}_{t+1}(\vec{b}) \cdot R_{k,t+1}^e]$$
(11)

• GMM estimates parameters $\vec{b} = (b_e, b_q)$.

Price-CCAPM December, 2024 17/35

- Main Data: NIPA Table 2.3.4, Table 2.3.5, 1964-2019 Annual
- Consumption sectors:
 - good: food grocery, apparel, other non-durable goods
 - service: food-away, recreation, health care, financial service, and other service
- Price index: price implied by chained quantity index (Fisher Index)
- Financial assets: 30 portfolios sorted by Size, Book-Market, Profitability, Investment, Momentum, Earning-price ratio.

Price-CCAPM December, 2024 18 / 35

Time-series Factors in Pricing Kernel

• Relative price of goods has weak correlation to consumption expenditure

Table 1: Descriptive Statistic

Panel	Panel (A): Time Series - Statistic				
$egin{array}{l} \mathrm{d} ilde{e} \ (s.e.) \ \mathrm{d} ilde{p}_g \ (s.e.) \end{array}$	Mean(pct) 1.27 (0.21) -1.33 (0.24)	SE(pct) 1.28 (0.13) 1.38 (0.23)	AR(1) 0.36 (0.12) 0.47 (0.13)		
Panel (B): Correlation					
$\begin{array}{c cccc} & & \mathrm{d}\tilde{e} & \mathrm{d}c_{nd} \\ Corr(z,\mathrm{d}\tilde{p}_g) & & 0.26 & & -0.17 \\ (s.e.) & & (0.18) & & (0.17) \end{array}$					

Yu Li Price-CCAPM December, 2024 19/35

Estimation Outcome

Table 2: Estimation of Pricing Kernel

		Risk Price
Expenditure	b_e	28.80
Price(Goods)	[t]	[1.95] - 71.29
	$egin{array}{c} b_g \ [t] \end{array}$	[-2.31]
	[-]	[]
	MAE(%)	0.39
	RMSE(%)	0.44
	J-pval	91.48
A second for home close.		

t-stat in bracket.

Asset-pricing equation for expected return

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] \approx b_{e} \cdot \mathbb{E}_{t} \left[d\tilde{e}_{t+1} \cdot R_{k,t+1}^{e} \right] + b_{g} \cdot \omega_{g,t} \cdot \mathbb{E}_{t} \left[d\tilde{p}_{g,t+1} \cdot R_{k,t+1}^{e} \right]. \tag{12}$$

MAE

Yu Li Price-CCAPM December, 2024 20 / 35

Other Asset Pricing Models

- CAPM, excess return of market portfolio
- FF-5, Fama-French 5-factor model
- C-ND, C-CAPM with nondurable quantity (index)

$$d\tilde{m}_{t+1} \approx -b_c \cdot dc_{nd,t+1}. \tag{13}$$

C-D, nondurable quantity + durable stock

$$d\tilde{m}_{t+1} \approx -b_{nd} \cdot dc_{nd,t+1} \underbrace{-b_{dur} \cdot dc_{dur,t+1}}_{\text{Quantity Change of Durable}}.$$
 (14)

- P-ND, Price-CCAPM in previous estimation
- P-D, durable stock affects marginal utility of non-durable expenditure,

$$d\tilde{m} \approx -b_e \cdot d\tilde{e} - b_g \cdot \omega_g \cdot d\tilde{p}_g - b_{dur} \cdot dc_{dur}.$$
(15)

▶ Simplified linear model P^L -ND, P^L -D: no time-varying share ω_a .

Price-CCAPM 21/35 December, 2024

Fitness of Models

• Fitness of model estimation is improved when we use model P-ND.

Table 3: Fitness of Asset Pricing Models

	Traded-Factors		Quantity		Price (Linear)		Price	
	CAPM	FF-5	C-ND	C-D	P^L -ND	P^L -D	P-ND	P-D
					-			
MAE(%)	1.67	1.20	7.85	1.68	1.15	1.10	0.39	0.27
RMSE(%)	2.32	1.96	8.01	2.15	1.43	1.42	0.44	0.36

Consumption-CAPM in literature: Simplified Estimation

Relax Assumption in Formal Estimation: Formal Estimation

Yu Li Price-CCAPM December, 2024 22 / 35
 Theory
 Empirical Examination
 Explanation
 Summary
 References

 0000000
 0000000
 0000000
 00
 00

Fitness of Models

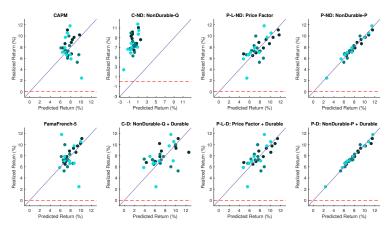


Figure 2: Fitness of Asset Pricing Models

X-axis is Model-Predicted Excess Return. Y-axis is Realized Average Excess Return.

Yu Li Price-CCAPM December, 2024 23 / 35

- Alternative testing assets
 - ► Size-BM 25
 - ► Industry 30
- Definition of price
 - Share-weighted price index
 - Simple-average price index
- Classification of consumption sector
- Long sample during 1935-2019 Subsample
- Sample including 2021-2022 Covid

Guideline

- Introductio
- Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- Summary

- Detailed prices help accurately measure the consumer's marginal utility
 - General description of consumer preference
 - Asymmetric risk prices
- Estimation of parameterized consumer preference
 - Quantity index (special case of homothetic preference)
 - ★ Improper weights assumed for detailed prices
 - Quantity of goods and quantity of services (non-homothetic preference)
 - * Stone-Geary Preference has inconsistent point estimate
 - Direct utility function is not tractable

Price-CCAPM December, 2024 26 / 35

Consumption-CAPM is for Special Situation

Analytical Example: Cobb-Douglas utility function

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\omega_g} \cdot C_s^{1 - \omega_g})^{1 - \gamma}, \tag{16}$$

Composite commodity is identical with quantity index,

$$\mathbf{C} = C_g^{\omega_g} \cdot C_s^{1-\omega_g} = \frac{E}{P_g^{\omega_g} \cdot P_s^{1-\omega_g}}.$$
 (17)

Consumption-CAPM using (Tornqvist) quantity index,

$$d\tilde{m} = -\gamma \cdot d\mathbf{c}. \tag{18}$$

Equivalently,

$$d\tilde{m} = -\gamma \cdot [de - \sum_{j \in \mathcal{J}} \omega_j \cdot dp_j]. \tag{19}$$

• Equivalence holds for CES and other homothetic preference.

Yu Li Price-CCAPM December, 2024 27 / 35

Comparison with Quantity Index

Table 4: Quantity Index

	C-ND	P-ND
b_c	51.16	-
[t]	[4.31]	-
b_e		28.80
[t]	-	[1.95]
$b_g \ [t]$	-	-71.29
[t]	-	[-2.31]
MAE(%)	0.71	0.39
RMSE(%)	0.87	0.44
J-pval ´	96.23	91.48

Model C-ND with quantity index

$$d\tilde{m} = -\gamma \cdot d\mathbf{c}. \tag{20}$$

Risk price b_c (risk-aversion γ) is estimated as 51.16.

• Model P-ND with price

$$d\tilde{m} = -b_e \cdot d\tilde{e} - b_g \cdot \omega_g \cdot d\tilde{p}_g.$$
 (21)

Risk price b_e (risk-aversion γ) is estimated as 28.80.

Model C-ND ⇒ P-ND

$$d\mathbf{c} \approx (de - dp_s) - \omega_g \cdot (dp_g - dp_s).$$
 (22)

Fitness is improved

Fisher index C-CAPM with large
$$\gamma$$

Seasonality Comparing Weights

Price-CCAPM December, 2024 28 / 35

Using Quantities to Describe Marginal Utility

- Describe consumer's marginal utility using quantities.
- Example: non-separable preference that generalizes (Ait-Sahalia et al., 2004).

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho g} + C_s^{\rho s})^{\frac{1 - \gamma}{\rho s}}, \tag{23}$$

- ullet $ho_q>
 ho_s$, larger share of goods in low-income state.
- Marginal utility of services is not a simple linear expression using quantities

$$d\tilde{m}^{s} \approx -\frac{\rho_{g}}{\rho_{s}} \cdot \left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} \cdot dc_{g} - \left\{\left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} + \gamma\right\} \cdot dc_{s}.$$
 (24)

Yu Li Price-CCAPM December, 2024 29 / 35

Estimation using Quantities is Inaccurate

Approximate linear pricing kernel with quantities of Goods & Services

$$d\tilde{m} \approx -b_{c_g} \cdot dc_g - b_{c_s} \cdot dc_s. \tag{25}$$

• Inaccurate point estimate in first stage estimation,

Table 5: Quantities

	Risk Price		
	1st-Stage	2nd-Stage	
$egin{array}{c} b_{c_g} \ [t] \ b_{c_s} \ [t] \end{array}$	45.04 [1.09] 6.34 [0.22]	37.22 [5.66] 10.61 [2.74]	
MAE(%) RMSE(%) J-pval	0.53 0.65	91.31	
n-bvai		91.31	

Li Price-CCAPM December, 2024 30 / 35

Stone-Geary Preference

Table 6: Habit Model

	Zero-Habit Sector		
	(1) (2)		
b_{cg}	182.54		
$egin{array}{c} [t] \ b_{c_s} \ [t] \end{array}$	[2.56]	33.79 [2.70]	
$b_{p_g} \\ [t]$	108.92 [1.60]	-13.12 [-0.81]	
	GMM Stats		
MAPE RMSE J-pval	2.91 4.04 95.91	0.53 0.64 95.73	

 Column (2): Zero-Habit in the sector of services, positive habit X_s in the sector of goods

$$u(C_g, C_s) = \frac{[(C_g - X_g)^{\overline{\omega}_g} \cdot C_s^{1 - \overline{\omega}_g}]^{1 - \gamma}}{1 - \gamma}$$
 (26)

pricing kernel is

$$d\tilde{m} \approx -\gamma \cdot dc_s - (1 - \gamma) \cdot \overline{\omega}_g \cdot (dp_g - dp_s).$$
 (27)

- Inaccurate point estimate of parameters
- Column (1): Alternative specification

$$u(C_g, C_s) = \frac{\left[C_g^{\overline{\omega}_g} \cdot (C_s - X_s)^{1 - \overline{\omega}_g}\right]^{1 - \gamma}}{1 - \gamma}$$
 (28)

 \bullet Abnormally large point estimate b_{c_q} for γ

Price-CCAPM 31/35 December, 2024

Other examples

Quantities

- Other examples of non-homothetic preference
 - (Muellbauer, 1976): expenditure changes consumption basket when there is price-habit,

$$V(\vec{P}, E) = \frac{1}{1 - \gamma} \cdot \left[\frac{E}{v(\vec{P})} \right]^{1 - \gamma} + \hat{h}(\vec{P}). \tag{29}$$

with $v(\vec{P}) = P_g^{\overline{\omega}g} \cdot P_s^{1-\overline{\omega}g}$ and price-habit $\hat{h}(\vec{P}) = \frac{\xi}{\epsilon} \cdot (\frac{P_g}{P_s})^{\epsilon}$.

▶ (Comin et al., 2021): quantities contribute to utility differently,

$$1 = C_q^{\rho} \cdot u^{-\rho g} + C_s^{\rho} \cdot u^{-\rho s}.$$

utility $u(C_g, C_s)$ is solution to a non-linear equation of quantities, generalized CES.

- Marginal utility of services is not a tractable function over quantities.
- Price-model allows for the flexible application for economy of heterogeneous sectors

Yu Li Price-CCAPM December, 2024 32 / 35

Guideline

- Introduction
- 2 Theory
- Empirical Examination
 - Description
 - Estimation
 - Comparison
- Explanation
 - Quantity Index
 - Quantities
- Summary

Summary

- This paper uses detailed price to describes consumer's marginal utility
 - o decomposition uses general indirect utility function
 - suits for multiple types of consumer preference
- Estimation in an economy of goods and services
 - o new pricing kernel explains the cross-section of expected return
 - o price of goods has negative risk price
 - o strong correlation between equity return and relative price
- Detailed consumption prices help measure SDF
 - theoretical prediction: price of necessity commodity has more negative risk price
 - empirical examination: asymmetric risk prices for different sectors

Reference

- Yacine Ait-Sahalia, Jonathan A Parker, and Motohiro Yogo. Luxury goods and the equity premium. The Journal of Finance, 59(6):2959–3004, 2004.
 Frederico Belo. Production-based measures of risk for asset pricing. Journal of Monetary Economics, 57(2):146–163, 2010.
- [3] Frederico Belo, Xiaoji Lin, and Fan Yang. External equity financing shocks, financial flows, and asset prices. The Review of Financial Studies, 32(9): 3500–3543, 2019.
- [4] Diego Comin, Danial Lashkari, and Martí Mestieri. Structural change with long-run income and price effects. Econometrica, 89(1):311-374, 2021.
- [5] Robert F Dittmar, Christian Schlag, and Julian Thimme. Non-substitutable consumption growth risk. Available at SSRN 3289249, 2020.
- [6] Winston Wei Dou, Leonid Kogan, and Wei Wu. Common fund flows: Flow hedging and factor pricing. Technical report, National Bureau of Economic Research, 2022.
- [7] Bjørn Eraker, Ivan Shaliastovich, and Wenyu Wang. Durable goods, inflation risk, and equilibrium asset prices. The Review of Financial Studies, 29 (1):193–231, 2016.
- [8] Jack Favilukis and Xiaoji Lin. Does wage rigidity make firms riskier? evidence from long-horizon return predictability. Journal of Monetary Economics, 78:80–95, 2016.
- [9] Joao F Gomes, Leonid Kogan, and Motohiro Yogo. Durability of output and expected stock returns. Journal of Political Economy, 117(5):941–986, 2009.
- [10] Lars Peter Hansen and Kenneth J Singleton. Stochastic consumption, risk aversion, and the temporal behavior of asset returns. Journal of political economy, 91(2):249–265, 1983.
- [11] Tim A Kroencke. Asset pricing without garbage. The Journal of Finance, 72(1):47-98, 2017.
- [12] Martin Lettau, Sydney C Ludvigson, and Sai Ma. Capital share risk in us asset pricing. The Journal of Finance, 74(4):1753–1792, 2019.
- [13] Lars A Lochstoer. Expected returns and the business cycle: Heterogeneous goods and time-varying risk aversion. The Review of Financial Studies, 22 (12):5251–5294, 2009.
- [14] Erik Loualiche et al. Asset pricing with entry and imperfect competition. Journal of Finance, forthcoming, 2016.
- [15] N Gregory Mankiw and Matthew D Shapiro. Risk and return: Consumption beta versus market beta. The Review of Economics and Statistics, pages 452–459, 1986.
- [16] Rajnish Mehra and Edward C Prescott. The equity premium: A puzzle. Journal of monetary Economics, 15(2):145–161, 1985.
- [17] John Muellbauer. Community preferences and the representative consumer. Econometrica: Journal of the Econometric Society, pages 979–999, 1976.
- [18] Michal Pakoš. Estimating intertemporal and intratemporal substitutions when both income and substitution effects are present: the role of durable goods. Journal of Business & Economic Statistics, 29(3):439–454, 2011.
- [19] Dimitris Papanikolaou. Investment shocks and asset prices. Journal of Political Economy, 119(4):639-685, 2011.
- [20] Monika Piazzesi, Martin Schneider, and Selale Tuzel. Housing, consumption and asset pricing. Journal of Financial Economics, 83(3):531-569, 2007.
- [21] Nikolai L Roussanov, Yang Liu, and Xiang Fang. Getting to the core: Inflation risks within and across asset classes. Jacobs Levy Equity Management Center for Quantitative Financial Research Paper, 2021.
- [22] Alexi Savov. Asset pricing with garbage. The Journal of Finance, 66(1):177-201, 2011.
- [23] Wei Yang. Long-run risk in durable consumption. Journal of Financial Economics, 102(1):45-61, 2011.
- [24] Motohiro Yogo. A consumption-based explanation of expected stock returns. The Journal of Finance, 61(2):539–580, 2006.

Yu Li Price-CCAPM December, 2024 35 / 35

Special Case

• Zero price-habit $\hat{h}(\vec{P}) = 0$, the indirect utility function is

$$V(P_g, P_s, E) = \frac{1}{1 - \gamma} \cdot \left[\frac{E}{P_q^{\overline{\omega}_g} \cdot P_s^{1 - \overline{\omega}_g}} \right]^{1 - \gamma}$$
(30)

⇒ utility function is

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot \left[C_g^{\overline{\omega}_g} \cdot C_s^{1 - \overline{\omega}_g} \right]^{1 - \gamma}. \tag{31}$$

Price-CCAPM December, 2024 1/55

Calculating Example

- Calibration
 - \blacktriangleright tomorrow: boom and down states $\{h, d\}$
 - identical expenditure, prices are different
 - today: observed share is $\omega_a = 0.40$
 - boom state: $P_{q,h} = 1$ and $P_{s,h} = 1$
 - down state: $P_{g,d} = 1.02$ and $P_{s,d} = 0.9869$
- Identical Consumer Price Index,

$$\mathbf{P}_d = \mathbf{P}_h = 1. \tag{32}$$

• Identical quantity index,

$$\mathbf{C}_d = \mathbf{C}_h. \tag{33}$$

u Li Price-CCAPM December, 2024 2/55

Compare the Marginal Utility

- High price of goods in down state, low price of services
- High marginal utility in down state

$$(\underbrace{P_{g,d}^{\overline{\omega}g} \cdot P_{s,d}^{1-\overline{\omega}g}}_{\text{High}})^{-(1-\gamma)} \cdot E^{-\gamma} > (\underbrace{P_{g,h}^{\overline{\omega}g} \cdot P_{s,h}^{1-\overline{\omega}g}}_{\text{Low}})^{-(1-\gamma)} \cdot E^{-\gamma}. \tag{34}$$

- High stochastic discount factor $M_d > M_h$.
- $\gamma = 10$, $\overline{\omega}_g \omega_g = 0.2 \Rightarrow \log(\frac{M_d}{M_L}) \approx 6.8\%$.
 - $\qquad \qquad \textbf{Comparing the stochastic discount factor, } \ \frac{M_d}{M_h} = (\frac{P_{g,d}/P_{g,h}}{P_{g,d}/P_{g,h}})^{-(1-\gamma)\cdot(\overline{\omega}_g-\omega_g)}.$

3/55 Price-CCAPM December, 2024

Caveat in Quantity Index

- Identical quantity index $\mathbf{C}_d = \mathbf{C}_h$
- Different stochastic discount factor $M_d > M_h$
 - ▶ high price of goods ⇒ high stochastic discount factor
- Detailed prices provide the accurate measure for SDF

Yu Li Price-CCAPM December, 2024 4 / 55

Competitive Equilibrium

- Consumer has optimal decision
 - ightharpoonup given commodity price \vec{P} and security prices
 - chooses optimal stream of basket \tilde{C} and financial asset positions $\{\tilde{\theta}, \tilde{B}\}$.
- Commodity markets clear
 - consumer's demand equals the exogenous supply in each sector j.
- Financial asset markets clear
 - zero supply and demand in risk-free bond;
 - consumer owns all share of risky securities.

Return to Model Env.

Yu Li Price-CCAPM December, 2024 5/55

Consumer Problem with DU

Consumer maximizes the life-time utility with consumption basket $ec{C}$

$$\begin{split} \overline{U}_{0}(\vec{\theta}_{0}) &= \sup_{\vec{C}, \vec{\theta}, \vec{B}} \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^{T} \beta^{t} \cdot u(\vec{C}_{t})] \\ s.t. &\sum_{k} \theta_{k,t} \cdot (P_{k,t}^{s} + D_{k,t}) + B_{t} = \sum_{j} P_{j,t} \cdot C_{j,t} + \sum_{k} \theta_{k,t+1} \cdot P_{k,t}^{s} + \frac{B_{t+1}}{R_{f,t+1}}, \quad (P-DU)_{t} \\ C_{j,t} &\geq 0; \quad \sum_{k} \theta_{k,t+1} \cdot P_{k,t}^{s} + \frac{B_{t+1}}{R_{f,t+1}} \geq \underline{a}. \end{split}$$

Notations

- \triangleright Commodity price P_i and consumption quantity C_i
- Price P_k^s and payout D_k for financial security k
- ▶ Risk-free rate R_f

6/55 Price-CCAPM December, 2024

Consumer Problem with IDU

Consumer maximizes the life-time utility with consumption expenditure E

$$\begin{split} \overline{V}_0^{\text{New}}(\vec{\theta}_0) &= \sup_{\vec{E},\vec{\theta},\vec{E}} \ \lim_{T \to \infty} \mathbb{E}[\sum_{t=0}^T \beta^t \cdot V(\vec{P}_t, E_t)] \\ s.t. &\sum_k \theta_{k,t} \cdot (P_{k,t}^s + D_{k,t}) + B_t = E_t + \sum_k \theta_{k,t+1} \cdot P_{k,t}^s + \frac{B_{t+1}}{R_{f,t+1}}, \\ E_t \ge 0; &\sum_k \theta_{k,t+1} \cdot P_{k,t}^s + \frac{B_{t+1}}{R_{f,t+1}} \ge \underline{a}. \end{split} \tag{P-IDU}$$

Yu Li Price-CCAPM December, 2024 7/55

Equivalent Dynamic Problem

Lemma (Equivalence)

Optimization problem of quantities (P-DU) yields equivalent value as the optimization problem of expenditure (P-IDU). For each optimal policy C^* in problem (P-DU), E^* such that

$$E_t^* = \sum_{j \in \mathcal{J}} P_{j,t} \cdot C_{j,t}^*, \quad \forall t, z^t$$

is an optimal policy in the optimization problem (P-IDU).

return

LLI Price-CCAPM December, 2024 8/55

Decomposition (a)

• Roy Identity (Shephard's lemma)

$$\omega_j = -\frac{\mathcal{D}_j V(\vec{P}, E) \cdot P_j}{\mathcal{D}_E V(\vec{P}, E) \cdot E}.$$

• $\mathcal{D}_j V(\vec{P}, E)$ is the first-order partial derivative to price P_j .

return

u Li Price-CCAPM December, 2024 9 / 55

Decomposition (b)

• Indirect Utility Function is H.D.0 (Homogeneous of Degree Zero)

$$\mathcal{D}_E V(\vec{P}, E) \cdot E = -\sum_{j \in \mathcal{J}} \mathcal{D}_j V(\vec{P}, E) \cdot P_j.$$

- Replace the right-hand-side
 - ⇒ Marginal Utility of Expenditure for utility-flow is decomposed as

$$\begin{split} \mathrm{d}\log\mathcal{D}_{E}V(\vec{P},E) = & \sum_{j\in\mathcal{J}}\omega_{j}\cdot(\mathrm{d}p_{j}-\mathrm{d}e) \\ & + \sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{J}}\omega_{k}\cdot[\frac{\mathcal{D}_{k,j}V(\vec{P},E)}{\mathcal{D}_{k}V(\vec{P},E)}\cdot\frac{P_{j}}{E}]\cdot(\mathrm{d}p_{j}-\mathrm{d}e) + o(h). \end{split}$$

return

i Price-CCAPM December, 2024 10 / 55

Risk Price for Expenditure

Risk price for total consumption expenditure,

$$b_e = \underbrace{\gamma}_{ ext{Relative Risk-aversion Coefficient}}.$$
 (35)

ullet Expenditure share ω captures the quantitative importance of sector.

$$b_e = -\sum_{j \in \mathcal{J}} \omega_j \cdot \underbrace{b_j}_{\text{Risk Price for Price } P_j}.$$
 (36)

lacktriangle Same change in price \vec{P} and expenditure $E\Rightarrow$ utility is the same.

Price-CCAPM December, 2024 11/55

Shares in Consumption Basket

- \bullet Composition of consumption basket: $\omega_j = \frac{P_j \cdot C_j}{E}$, for each sector j
- Share elasticity ⇒ adjustment of shares to prices and expenditure

Lemma

Given consumption sectors n and ℓ , change in the relative share $S_{n,\ell} = \frac{\omega_n}{\omega_\ell}$ can be decomposed into the price effect and the expenditure effect,

$$ds_{n,\ell} = (1 - \eta_{n,n} + \eta_{\ell,n}) \cdot dp_n - (1 - \eta_{\ell,\ell} + \eta_{n,\ell}) \cdot dp_\ell - \sum_{i \neq n,\ell} (\eta_{n,i} - \eta_{\ell,i}) \cdot dp_i$$

$$+ \underbrace{\sum_{i \in \mathcal{J}} (\eta_{n,i} - \eta_{\ell,i}) \cdot de}_{\text{expenditure effect}} + o(h). \tag{37}$$

The $ds_{n,\ell}$ is the log-growth of relative share between sector n and ℓ . The term o(h) is a higher-order term.

Li Price-CCAPM December, 2024 12/55

Special Situation of Symmetric Risk Price

• Example with Constant Elasticity of Substitution

$$u(\vec{C}) = \frac{1}{1 - \gamma} \cdot (C_1^{\rho} + C_2^{\rho} \cdot \dots + C_J^{\rho})^{\frac{1 - \gamma}{\rho}}, \tag{38}$$

• No expenditure-effect in the relative share $\mathcal{S}_{k,j}=rac{\omega_k}{\omega_j}$ for all pairs (k,j),

$$ds_{k,j} = \frac{\rho}{\rho - 1} \cdot dp_k - \frac{\rho}{\rho - 1} \cdot dp_j, \tag{39}$$

Matrix of share elasticity,

$$\eta = (\gamma + \frac{1}{\rho - 1}) \cdot \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (40)

return

i Price-CCAPM December, 2024 13 / 55

Special Situation of Symmetric Risk Price

Example with Constant Elasticity of Substitution,

$$u(\vec{C}) = \frac{1}{1 - \gamma} \cdot (C_1^{\rho} + C_2^{\rho} \cdot \dots + C_J^{\rho})^{\frac{1 - \gamma}{\rho}}.$$
 (41)

- Use the CPI as price of numeraire
- Symmetric risk price across commodities $b_j = \gamma$,

$$d\tilde{m} = -\gamma \cdot [de - \sum_{j \in \mathcal{J}} \omega_j \cdot dp_j]$$
variation in CPI

• As if we consider the single-sector economy with composite commodity $(\sum_{j\in\mathcal{J}}C_j^\rho)^{\frac{1}{\rho}}$

return

Li Price-CCAPM December, 2024 14/55

Using Quantities to Describe Marginal Utility

Example: non-separable preference similar with (1).

- It is difficult to describe consumer's marginal utility using quantities.

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho g} + C_s^{\rho s})^{\frac{1 - \gamma}{\rho_s}}, \tag{43}$$

 $\rho_a>\rho_s$: larger share of goods in low-income state.

Marginal utility of services: no simple linear expression using quantities

$$d\tilde{m}^{s} \approx -\frac{\rho_{g}}{\rho_{s}} \cdot \left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} \cdot dc_{g} - \left\{\left[\gamma - (\rho_{s} - 1)\right] \cdot \frac{\frac{\omega_{g}}{\rho_{g}}}{\frac{\omega_{g}}{\rho_{g}} + \frac{\omega_{s}}{\rho_{s}}} + \gamma\right\} \cdot dc_{s}.$$
 (44)

 $\bullet \ \ \, \frac{C_g^{\rho g}}{C_g^{\rho g} + C_s^{\rho g}} \ \, \text{is reduced as expression of shares} \ \, \frac{\frac{\omega g}{\rho g}}{\frac{\omega g}{g} + \frac{\omega s}{s}}.$

15 / 55

Derive Marginal Utility using Quantities: CES

• Example: Constant Elasticity of Substitution (CES).

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\rho} + C_s^{\rho})^{\frac{1 - \gamma}{\rho}}, \tag{45}$$

Marginal utility of quantity in services,

$$\mathrm{d}\tilde{m}^s \approx -\gamma \cdot \underbrace{\left(\omega_g \cdot \mathrm{d}c_g + \omega_s \cdot \mathrm{d}c_s\right)}_{\text{weighted change in quantities}} - \underbrace{\omega_g \cdot (\rho - 1) \cdot \left(\mathrm{d}c_g - \mathrm{d}c_s\right)}_{\text{CPI v.s. } P_s}. \tag{46}$$

 \bullet Substitute $C_g=rac{\omega_g \cdot E}{P_g}$, the real pricing kernel (numeraire price as CPI) is,

$$d\tilde{m} = -\gamma \cdot [de - d\log(\mathbf{P})]. \tag{47}$$

Yu Li Price-CCAPM December, 2024 16 / 55

Equivalent Pricing Kernel using Quantities

Analytical Example: Cobb-Douglas utility function

$$u(C_g, C_s) = \frac{1}{1 - \gamma} \cdot (C_g^{\omega_g} \cdot C_s^{1 - \omega_g})^{1 - \gamma}, \tag{48}$$

Composite commodity is,

$$\mathbf{C} = C_g^{\omega_g} \cdot C_s^{1-\omega_g}. \tag{49}$$

Consumption-CAPM,

$$d\tilde{m} = -\gamma \cdot d\mathbf{c}. \tag{50}$$

• Equivalent pricing kernel using quantities,

$$d\tilde{m} = -\gamma \cdot \left[\sum_{j \in \mathcal{J}} \omega_j \cdot dc_j \right]. \tag{51}$$

• Other homothetic preference: pricing kernel has the same approximated variation

Yu Li Price-CCAPM December, 2024 17/55

Chained quantity index

- Chained quantity index is similar with the (Tornqvist) quantity index.
- Change of chained quantity index is

$$\frac{E_{g,t+1} \cdot \frac{P_{g,t_0}}{P_{g,t+1}} + E_{s,t+1} \cdot \frac{P_{s,t_0}}{P_{s,t+1}}}{E_{g,t} \cdot \frac{P_{g,t_0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}} = \sum_{j \in \{g,s\}} \frac{E_{j,t} \cdot \frac{P_{j,t_0}}{P_{j,t}}}{E_{g,t} \cdot \frac{P_{g,t_0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}} \cdot \frac{E_{j,t+1}/P_{j,t+1}}{E_{j,t}/P_{j,t}}$$
(52)

Prices are normalized as 1 in bench-year t_0 .

- Weight for quantities,
 - $\qquad \qquad \textbf{ Chained quantity index: price-adjusted expenditure } \frac{E_{j,t} \cdot \frac{P_{j,t0}}{P_{j,t}}}{E_{g,t} \cdot \frac{P_{g,t0}}{P_{g,t}} + E_{s,t} \cdot \frac{P_{s,t_0}}{P_{s,t}}}$
 - \blacktriangleright (Tornqvist) quantity index: nominal expenditure $\frac{E_{j,t}}{E_{g,t}+E_{s,t}}.$
- Chained quantity index: easy comparison to bench-year t_0 .

Return to Example R

Return to Tornavist index

u Li Price-CCAPM December, 2024 18 / 55

Indirect Utility Function - Durable

ullet suppose the durable stock K affects the utility flow

$$u = u(\vec{C}, K).$$

the indirect utility function is

$$V(\vec{P}, E; K) = \max_{\vec{C} \in \mathcal{X}} \quad u(C_1, C_2, \dots, C_I; K)$$

$$s.t. \quad \sum_{i \in \mathcal{I}} P_i \cdot C_i \le E.$$

Marginal utility of nondurable expenditure changes with the state variable of durable stock K.

return

i Price-CCAPM December, 2024 19 / 55

Time-series Factors in Pricing Kernel

Figure 3: Time Series of Economic Outcomes

Price of goods and (total) expenditure are adjusted by price of services.

Poturn to Description

Yu Li Price-CCAPM December, 2024 20 / 55

Estimation Outcome

Table 2: Estimation of Pricing Kernel

	Subgro	ups of Testin	g Assets	ALL				
	Size-BM	Profit-IK	MoM-EP	Mix-30				
		Risk Price						
b_e	25.15	40.79	27.12	28.80				
[t]	[2.05]	[2.74]	[1.34]	[1.95]				
b_g	-71.94	-62.93	-74.44	-71.29				
[t]	[-3.11]	[-1.90]	[-1.97]	[-2.31]				
MAE(%)	0.33	0.36	0.36	0.39				
RMSE(%)	0.41	0.42	0.37	0.44				
J-pval	25.15	45.57	40.40	91.48				

t-stat in bracket.

Return to Robustness Estimation

Yu Li Price-CCAPM December, 2024 21/55

Fitness of Estimation

- Evaluation of model fitness
 - MAE (Mean Absolute Error).

$$\text{MAE} = \frac{1}{K} \sum_{k} \left| \underbrace{\frac{1}{T} \cdot \sum_{t=1}^{T} R_{k,t+1}^{e}}_{\text{Realized Average Excess Return}} - \underbrace{\left[\frac{1}{T} \cdot \sum_{t=1}^{T} -\text{d}\tilde{m}_{t+1}(\vec{b}^{*}) \cdot R_{k,t+1}^{e}\right]}_{\text{Model-Predicted Excess Return}} \right|. \tag{53}$$

► RMSE (Root Mean Square Error)

RMSE =
$$\sqrt{\frac{1}{K} \sum_{k} \left| \frac{1}{T} \cdot \sum_{t=1}^{T} (1 + d\tilde{m}_{t+1}^*) \cdot R_{k,t+1}^e \right|^2}$$
 (54)

Return to Estimation Outcome

Return to Comparison

Yu Li Price-CCAPM December, 2024 22 / 55

Weights of Prices in SDF

• Price of goods: SDF 101% (CPI 40%)

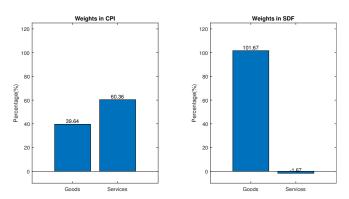


Figure 4: Weights of Prices

Time-series average weights during 1965-2019.

Yu Li Price-CCAPM December, 2024 23/55

Robust Estimation

- Estimation using Size-BM 25 and Industry 30
 - Point estimates are similar
 - Fitness is good

Table 7: Estimation using Other Testing Assets

	Specification of Testing Assets							
	Mi	× 30	Size-	BM 25	Indus	Industry 30		
	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage		
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	28.80 [1.95] -71.29 [-2.31]	30.75 [14.08] -72.26 [-15.89]	30.05 [2.61] -68.26 [-2.90]	33.72 [13.06] -63.83 [-11.68]	33.27 [4.38] -69.95 [-3.04]	33.88 [24.98] -67.92 [-17.21]		
MAE(%) RMSE(%) J-pval	0.39 0.44	91.48	0.38 0.51	81.48	0.84 0.99	94.03		

Li Price-CCAPM December, 2024

24 / 55

Supplementary Estimation

Robust Estimation when using Size-BM 25

- Estimation using Size-BM 25
 - Point estimates are similar
 - model P-ND has small error

Table 8: Estimation Outcome using Quantity Index

	C-ND	P-ND
b_c	50.88	_
[t]	[4.74]	-
b_e	-	30.05
[t]	-	[2.61]
b_g	-	-68.26
[t]	-	[-2.90]
MAE(%)	0.79	0.38
RMSÈ(%)	0.95	0.51
J-pval `	95.51	81.48

Miss 20

Li Price-CCAPM December, 2024 25 / 55

Estimation of Quarterly Frequency

- Estimation using consumption data of quarterly frequency
 - seasonality exacerbates the weak correlation

Estimation Outcome using Quantity Index

	Quarter-1	Quarter-2	Quarter-3	Quarter-4				
		Panel (A): Risk Price						
$b_c \\ [t]$	136.63 [1.20]	16.47 [0.17]	74.42 [2.13]	132.82 [4.53]				
		Panel (B): Stats						
MAE(%) RMSE(%) J-pval	0.35 0.42 88.64	0.48 0.65 83.30	0.83 1.02 88.32	0.39 0.47 84.52				

Return is quarterly frequency.

Annual

Yu Li Price-CCAPM December, 2024 26 / 55

Estimation Outcome: Other Sample Periods

Table 9: Fitness of Asset Pricing Models: 1935-2019

		Sample Period						
	1935	-1989	1950	-2004	1965	1965-2019		
	1st-Stage	2nd-Stage	Panel (A): 1st-Stage	Risk Price 2nd-Stage	1st-Stage	2nd-Stage		
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	31.56 [3.69] -47.41 [-2.68]	31.64 [26.79] -45.67 [-11.06]	35.41 [3.19] -65.65 [-2.85]	39.59 [12.49] -62.79 [-13.66]	30.05 [2.61] -68.26 [-2.90]	33.72 [13.06] -63.83 [-11.68]		
			Panel (B): Stats				
MAE(%) RMSE(%) J-pval	0.70 0.95	82.51	0.32 0.38	96.93	0.38 0.51	81.48		

Return to Robustness Estimatio

Yu Li Price-CCAPM December, 2024 27 / 55

Estimation Outcome: Covid-period included

Table 10: Fitness of Asset Pricing Models: 1965-2022

		Specification of Model						
	Traded	Factor	Qua	ntity	Pr	ice		
	CAPM	FF-5	C-ND	C-D	P-ND	P-D		
MAE(%)	1.39	0.62	1.27	0.46	0.54	0.19		
RMSE(%)	1.98	1.14	1.53	0.66	0.71	0.29		
J-pval	90.70	76.76	95.34	92.88	89.06	92.60		

Return to Robustness Estimation

Formal Estimation: Fitness of Models

ullet Risk price $ec{b}$ in nonlinear model is identified using equation general expectation process

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = -\mathbb{E}_{t}\left[d\tilde{m}_{t+1}(\vec{b}) \cdot R_{k,t+1}^{e}\right]. \tag{55}$$

Both the time-varying expectation and unexpected innovation contribute,

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = -\mathbb{E}_{t}[\mathrm{d}\tilde{m}_{t+1}] \cdot \mathbb{E}_{t}[R_{k,t+1}^{e}] - \mathbb{E}_{t}\left[(\mathrm{d}\tilde{m}_{t+1} - \mathbb{E}_{t}[\mathrm{d}\tilde{m}_{t+1}]) \cdot R_{k,t+1}^{e}\right]. \tag{56}$$

Table 11: Fitness of Asset Pricing Models

	Traded-Factors		Quantity		Price	
	CAPM	FF-5	C-ND	C-D	P-ND	P-D
MAE(%)	1.58	0.79	0.71	0.66	0.39	0.27
RMSE(%)	2.20	1.37	0.87	0.83	0.44	0.36

Price-CCAPM 29 / 55 December, 2024

Simplified Estimation: Linear Factor Models

ullet Risk price $ec{b}$ in linear model $\mathrm{d} ilde{m}_{t+1} = -ec{b}\cdotec{f}_{t+1}$ is identified using equation

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = \frac{\vec{b}}{1 + \tilde{R}_{f}} \cdot \mathbb{E}_{t} \left[(\vec{f}_{t+1} - \underbrace{\mathbb{E}_{t}[\vec{f}_{t+1}]}_{\text{Assumed to be Constant}}) \cdot R_{k,t+1}^{e} \right]. \tag{57}$$

- ullet Demeaned factors $\mathbb{E}_t[ec{f}_{t+1}] \equiv ec{g}_f$: covariance of slow-moving component $\mathbb{E}_t[ec{f}_{t+1}]$ is not considered
 - $ightharpoonup rac{1}{1+\mathbb{E}_t[\mathrm{d}\tilde{m}_{t+1}]}$ measured using the gross risk-free rate \tilde{R}_f .
- Model C-ND has large MAE 7.85%: slow-moving component $\mathbb{E}_t[\mathrm{d}c_{t+1}]$ exacerbates the failure.
- Model P^L-ND has MAE 1.15%
 - ▶ analogous linear model of price factor (simplified version from Model P-ND) $\mathrm{d} \tilde{m} \approx -b_{e,L} \cdot \mathrm{d} \tilde{e} -b_{q,L} \cdot \mathrm{d} \tilde{p}_{q}.$

Specification of Model							
Traded	Factor	Quar	ntity	Price (Linear)			
CAPM	FF-5	C-ND	C-D	P^L -ND	P^L -D		
1.67	1.20	7.85	1.68	1.15	1.10		
2.32	1.96	8.01	2.15	1.43	1.42		
	1.67	Traded Factor CAPM FF-5 1.67 1.20	Traded Factor Quar CAPM FF-5 C-ND 1.67 1.20 7.85	Traded Factor CAPM Quantity C-ND 1.67 1.20 7.85 1.68	Traded Factor Quantity Price (L CAPM FF-5 C-ND C-D P^L -ND 1.67 1.20 7.85 1.68 1.15		

eturn to Estimation Summary 📗 Return to Robustness Estimatior

Yu Li Price-CCAPM December, 2024 30 / 55

Simplified Estimation: Linear Factor Models

ullet Risk price $ec{b}$ in linear model $\mathrm{d} ilde{m}_{t+1} = -ec{b}\cdotec{f}_{t+1}$ is identified using equation

$$\mathbb{E}_{t}[R_{k,t+1}^{e}] = \frac{\vec{b}}{1 + \tilde{R}_{f}} \cdot \mathbb{E}_{t} \left[(\vec{f}_{t+1} - \underbrace{\mathbb{E}_{t}[\vec{f}_{t+1}]}_{\text{Assumed to be Constant}}) \cdot R_{k,t+1}^{e} \right]. \tag{58}$$

ullet Demeaned factors $\mathbb{E}_t[ec{f}_{t+1}] \equiv ec{g}_f$: covariance of slow-moving component $\mathbb{E}_t[ec{f}_{t+1}]$ is not considered

- Testing assets: Size-BM 25 portfolios.
- Model C-ND has large MAE 9.53%: slow-moving component $\mathbb{E}_t[\mathrm{d}c_{t+1}]$ exacerbates the failure.
- $\bullet \ \operatorname{\mathsf{Model}}\ P^L\text{-}\operatorname{\mathbf{ND}}\ \operatorname{\mathsf{has}}\ \operatorname{\mathsf{MAE}}\ 1.07\%$
 - ▶ analogous linear model of price factor (simplified version from Model P-ND) $\mathrm{d}\tilde{m} \approx -b_{e,L} \cdot \mathrm{d}\tilde{e} b_{g,L} \cdot \mathrm{d}\tilde{p}_{g}$.

	Specification of Model								
	Traded Factor CAPM FF-5		Quantity C-ND C-D		$\begin{array}{cc} Price\; (Linear) \\ P^L\text{-}ND & P^L\text{-}D \end{array}$				
MAPE RMSE	2.48 3.27	1.05 1.36	9.53 9.81	1.79 2.27	1.07 1.50	1.13 1.46			

Return to Estimation Summary

Li Price-CCAPM December, 2024 31/55

Comparison with Quantity Index, Large γ

Table 12: Quantity Index, Simplified Estimation

	C-ND	P^L -ND
b_c	106.47	-
[t]	[1.98]	-
$b_{e,L}$	-	47.49
[t]	-	[0.63]
$b_{p,L}$	-	-93.67
[t]	-	[-3.17]
MAE(%)	9.53	1.07
RMSE(%)	9.81	1.50
J-pval ´	89.60	93.34

Return to Formal Estimation

• Model C-ND with quantity index

$$\mathrm{d}\tilde{m} = -\gamma \cdot \mathrm{d}\mathbf{c}.\tag{59}$$

Risk price b_c (risk-aversion γ) is estimated as 51.16.

 \bullet Linear Model $P^L\text{-}\mathbf{ND}$ with price factor

$$d\tilde{m} = -b_{e,L} \cdot d\tilde{e} - b_{g,L} \cdot d\tilde{p}_g.$$
 (60)

- testing assets: Size-BM25
 - ▶ Benchmark: Mix-30 of anomalies
- estimation assumes constant expected growth

Price-CCAPM December, 2024 32 / 55

Comparison: other models

Table 13: Risk Price, Fama-French 5-Factor Model

·	Specification of Testing Assets							
	Mi	× 30	Size-l	BM 25	Indus	stry 30		
	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage	1st-Stage	2nd-Stage		
b_{MKT}	2.38	2.51	2.51	2.65	2.64	2.78		
[t]	[3.77]	[10.82]	[4.39]	[10.04]	[4.02]	[7.94]		
b_{Size} [t]	1.72 [2.15]	1.64 [5.36]	1.28 [1.32]	1.20 [2.92]	0.88 [0.69]	0.68 [1.45]		
b_{BM}	-3.44	-3.06	-2.24	-1.82	-5.86	-4.88		
[t]	[-2.05]	[-4.45]	[-1.07]	[-2.99]	[-2.13]	[-6.31]		
b_{Profit}	6.56	6.69	5.79	6.28	5.18	5.30		
[t]	[4.28]	[11.59]	[2.39]	[9.33]	[2.96]	[10.62]		
b_{Invest}	7.42	7.33	6.97	7.37	9.36	8.21		
[t]	[4.36]	[9.10]	[3.16]	[10.67]	[2.05]	[6.91]		
MAE(%)	0.79		0.65		1.09			
RMSÈ(%)	1.37		0.81		1.37			
J-pval 🗋		81.07		59.85		84.45		

Yu Li Price-CCAPM December, 2024 33/55

Sufficient Statistic for Systematic Risk

- Multiple fundamental shocks ⇒ fluctuation in prices and expenditure
- Sufficient statistic ⇒ small improvement when supplementing a proxy of shock,

$$d\tilde{m} \approx -b_e \cdot d\tilde{e} - b_g \cdot \omega_g \cdot d\tilde{p}_g - b_x \cdot \underbrace{x}_{\text{Shock proxy}}.$$
(61)

Table 14: Estimation with Supplementary Proxy of Shock

		Specification of Additional Shock Proxy							
	MKT	Size	Value	Profit	Invest	MoM			
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	32.15	23.80	31.15	26.21	30.94	27.05			
	[3.05]	[1.05]	[2.35]	[1.51]	[2.36]	[2.55]			
	-58.75	-82.35	-69.70	-73.76	-68.68	-72.72			
	[-3.70]	[-1.64]	[-2.41]	[-2.23]	[-2.51]	[-2.69]			
$egin{array}{c} b_x \ [t] \end{array}$	0.26	-0.55	-0.40	0.53	-0.53	0.10			
	[0.38]	[-0.58]	[-0.72]	[0.69]	[-0.53]	[0.18]			
MAE(%)	0.35	0.31	0.28	0.37	0.32	0.38			
RMSE(%)	0.41	0.39	0.38	0.43	0.40	0.44			
J-pval	88.68	89.82	89.19	88.99	88.90	88.99			

IST

Li Price-CCAPM December, 2024 34/55

Shock extracted from Prices

- Investment-Specific Technology shock from (Papanikolaou, 2011): 1965-2008
- Other proxies: 1965-2019

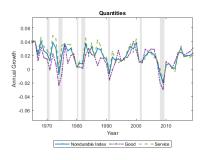
Table 15: Estimation with Supplementary Proxy of Shock

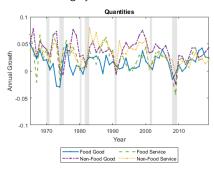
	Specification of Additional Shock Proxy					
	Price				Quantity	
	IST	Equipment	Durable	Energy	Hour	Unf-C
$egin{array}{c} b_e \ [t] \ b_g \ [t] \end{array}$	32.13	32.34	34.24	28.21	40.87	29.85
	[4.17]	[3.18]	[3.69]	[1.75]	[3.92]	[1.20]
	-55.94	-62.82	-63.48	-66.34	-59.33	-74.99
	[-4.46]	[-3.65]	[-3.81]	[-3.17]	[-2.71]	[-3.95]
$b_x \ [t]$	9.16	-6.25	11.36	-0.91	-8.74	-1.96
	[0.73]	[-0.41]	[0.43]	[-0.33]	[-0.82]	[-0.13]
MAPE	0.42	0.36	0.35	0.38	0.37	0.38
RMSE	0.51	0.48	0.46	0.49	0.42	0.44
J-pval	92.28	74.36	75.68	75.38	89.70	89.62

Note: Unf-C is for Unfiltered consumption quantity (index).

Sectors within Consumption

Quantity of goods & quantity of services: correlation is high, but not synchronized




Figure 5: Time Series of Quantity Outcomes.

Return to Estimation

Li Price-CCAPM December, 2024 36 / 55

Food within Consumption Sectors

Food-category and non-food behave differently.

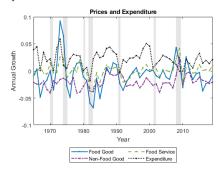


Figure 8(a): Quantities.

Figure 8(b): Prices and Expenditure.

Return to Estimation

u Li Price-CCAPM December, 2024 37 / 55

Food within Consumption Sectors

Descriptive Statistic				
	Mean(pct)	SE(pct)	AR(1)	
$de - dp_{sn}$ $(s.e.)$ $dp_{gf/sn}$ $(s.e.)$ $dp_{gn/sn}$ $(s.e.)$ $dp_{sf/sn}$ $(s.e.)$	2.17 (0.23) -0.76 (0.44) -2.03 (0.20) 0.02 (0.20)	1.51 (0.16) 2.72 (0.48) 1.20 (0.17) 1.32 (0.20)	0.27 (0.13) 0.39 (0.11) 0.29 (0.12) 0.25 (0.16)	

Return to Estimation

Yu Li Price-CCAPM December, 2024 38 / 55

Food within Consumption Sectors

	Correlation		
$\begin{array}{l} Corr(de-\mathrm{d}p_{sn},z) \\ (s.e.) \\ Corr(\mathrm{d}p_{gf/sn},z) \\ (s.e.) \\ Corr(\mathrm{d}p_{gn/sn},z) \\ (s.e.) \end{array}$	$\mathrm{d}p_{gf/sn}$ 0.41 (0.12)	$dp_{gn/sn}$ 0.06 (0.16) 0.32 (0.12)	$dp_{sf/sn}$ 0.34 (0.16) 0.74 (0.07) 0.51 (0.16)

Return to Estimation

Yu Li Price-CCAPM December, 2024 39 / 55

Cross-section of Risk Exposure

- ullet Fama-Macbeth Regression using time-series factors $ec{f}_{t+1}=(\mathrm{d} ilde{e}_{t+1},\mathrm{d} ilde{p}_{g,t+1})$
 - ▶ 1st step: $R_{k,t+1}^e = a_k + \vec{\beta}_k \cdot \vec{f}_{t+1}$ ▶ 2nd step: $\mathbb{E}_t[R_{k,t+1}^e] = \vec{\beta}_k \cdot \vec{\lambda}$
- Model **P-ND** has dispersed $\vec{\beta}$ in 1st step of Fama-Macbeth regression.

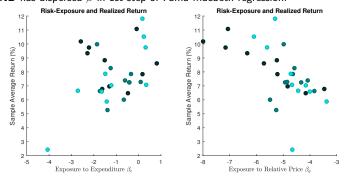


Figure 6: Risk Exposure to Time-series Factors

Li Price-CCAPM December, 2024 40 / 55

Cross-section of Risk Exposure

• Value and small firms have larger risk exposure to relative price of goods.

Table 16: Distribution of Risk Exposure

	Estimation Outcomes in 1st Step						
ВМ	Growth	2	3	4	Value		
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-1.63	-1.30	0.17	0.81	-0.09		
	[-0.71]	[-0.64]	[0.08]	[0.36]	[-0.03]		
	- 3.46	-4.83	-5.22	-5.72	- 7.07		
	[-1.59]	[-2.51]	[-2.64]	[-2.66]	[-2.76]		
$\mu \sigma$	6.78	6.97	7.84	8.61	11.08		
	19.47	16.96	16.37	18.48	20.72		
Size	Small	2	3	4	Big		
$\beta_e \\ [t] \\ \beta_g \\ [t]$	-2.58	-2.22	-2.29	-1.51	-0.48		
	[-0.77]	[-0.80]	[-0.91]	[-0.66]	[-0.23]		
	- 7.99	-7.16	-6.34	-5.24	- 4.16		
	[-2.51]	[-2.73]	[-2.65]	[-2.40]	[-2.08]		
μ σ	10.18	9.75	9.34	8.84	6.48		
	28.53	22.83	20.69	19.24	17.06		

Yu Li Price-CCAPM December, 2024 41/55

Cross-section of Risk Exposure: Industry portfolios

- Service such as Meals (Restaurant) and Games (Recreation) have larger risk exposure to relative price of goods.
- Merchandise commodities with weaker risk exposure.

Table 17: Distribution of Risk Exposure

		Estimation Outcomes in 1st Step							
	Meals	Games	Fin	Carry	Autos	ElcEq			
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-2.14 [-0.60] -7.84 [-2.32]	-1.88 [-0.60] -7.79 [-2.63]	0.39 [0.15] -7.46 [-2.95]	-0.71 [-0.22] -7.37 [-2.40]	-5.61 [-2.01] -7.00 [-2.64]	-1.57 [-0.55] -6.95 [-2.54]			
	Beer	Food	FabPr	Oil	Steel	Paper			
$\begin{array}{c} \beta_e \\ [t] \\ \beta_g \\ [t] \end{array}$	-1.16 [-0.41] -4.97 [-1.86]	-1.46 [-0.61] -4.84 [-2.14]	-0.22 [-0.10] -3.91 [-1.82]	1.93 [0.87] -3.59 [-1.70]	2.16 [1.00] -3.54 [-1.72]	-1.33 [-0.70] -3.42 [-1.90]			

return

Li Price-CCAPM December, 2024 42 / 55

Inferred Risk Premium

• 2nd step estimation: negative risk premium $\lambda_g = -1.64\%$.

Table 18: Risk Premium

	Risk Premium			
$egin{array}{l} \lambda_e \ [t] \ \lambda_g \ [t] \ lpha \ [t] \end{array}$	0.54 [1.26] -1.64 [-3.91]	0.65 [1.55] -1.11 [-2.05] 2.90 [0.93]		
$\begin{array}{l} {\sf OLS-}R^2 \\ {\sf GLS-}R^2 \end{array}$	0.43 0.15			
COLS- R^2 CGLS- R^2		0.53 0.15		

t-stat in bracket.

Yu Li Price-CCAPM December, 2024 43 / 55

- Spread portfolio return correlates with systematic risk measured by price-model.
- Example: anomalies of Momentum

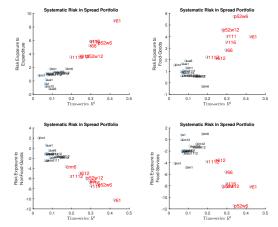


Figure 7: Estimation Outcome for Spread Portfolio

X-axis reports R^2 for regression $R^s_{k,t+1}=a_k+\vec{\beta}_k\cdot\vec{f}_{t+1}.$ Y-axis reports $\vec{\beta}_k.$

Li Price-CCAPM December, 2024 44/55

Infer SDF with Aggregate Outcome

- Sufficient Statistic: aggregate consumption outcome describes SDF heterogeneous-consumer economy given the complete financial market.
 - ightharpoonup aggregate share $\vec{\omega}$
 - aggregate expenditure E
 - ⇒ Reconstruct the effective representative consumer.

⁷u Li Price-CCAPM December, 2024 45/55

46 / 55

- Multiple consumers with preference $V(\vec{P},E)$.
- ullet In equilibrium, we observe the consumer's expenditure distribution $\{E^{(n),*}\}$.
- Equilibrium-implied Negishi Weight (Welfare Weight) is constructed period-by-period as $\alpha^*(n) = \frac{\mathcal{D}_e V(\vec{P}, E^{(1),*})}{\mathcal{D}_e V(\vec{P}, E^{(n),*})}.$ with consumer (1) as the unconstrained financial market investor.
- Construct the representative consumer's IDU implied by the equilibrium,

$$V(\vec{P}, \mathbf{E}; \alpha^*) \equiv \max_{E} \quad \frac{1}{N} \cdot \sum_{n \in \mathcal{N}} \alpha^*(n) \cdot V(\vec{P}, E(n))$$

$$s.t. \quad \frac{1}{N} \cdot \sum_{n \in \mathcal{N}} E(n) \le \mathbf{E}.$$
(62)

- Stationary welfare weights $\alpha^* \Rightarrow$ Time-invariant representative consumer
- Change of individual consumer's marginal utility is identical with representative consumer.
- Decomposition of SDF uses $V(\vec{P}, \mathbf{E}; \alpha^*)$.

Li Price-CCAPM December, 2024

Representative Consumer: Analytical Example

Individual consumer has identical indirect utility function,

$$V(\vec{P}, E(n)) = \frac{1}{1 - \gamma} \cdot \left[\frac{E(n)}{v(\vec{P})} \right]^{1 - \gamma} + \hat{h}(\vec{P}).$$
 (63)

- Stationary welfare weights $\{\alpha^*(n)\}_n$
- Representative consumer has different preference

$$V(\vec{P}, \mathbf{E}; \alpha^*) = \frac{1}{1 - \gamma} \cdot \left[\frac{\mathbf{E}}{v(\vec{P})}\right]^{1 - \gamma} + \frac{1}{\Phi(\alpha^*)} \cdot \hat{h}(\vec{P}).$$
 (64)

with multiplier coefficient as

$$\Phi(\alpha^*) = \left[\sum_{n \in \mathcal{N}} \alpha^*(n)^{\frac{1}{\gamma}}\right]^{\gamma} \cdot \sum_{n \in \mathcal{N}} \frac{1}{\alpha^*(n)}.$$

- Price-CCAPM: SDF is derived using $V(\vec{P}, \mathbf{E}; \alpha^*)$ return
- Caveat: we cannot use per-capita expenditure E and individual consumer's function to calculate the SDF.
- Special case of $\hat{h}(\vec{P})=0$: collective preference identical with individual

47 / 55 Price-CCAPM December, 2024

Guideline

- Motivating Example
- Formal Derivation
- Estimation
 - Baseline Estimation
 - Supplementary Estimation
 - Sufficient Statistic
 - Description of Sectors
- Risk Exposure
- Multiple Consumers
- Further Application
- Discussion of Risk Price
 - Time-varying Consumer
 - Classic Theories

Yu Li Price-CCAPM December, 2024 48 / 55

Pricing Kernel in a Four-sector Economy

- Price-CCAPM can be extended for multiple sectors.
 - Detailed prices better capture the risk exposure across equity assets.
- 4 sectors: food goods, non-food goods, food services, non-food services
 - Product-level data: NIPA Table 2.4.4, 2.4.5.
 - lacktriangle Estimates $(b_{gf}, b_{gn}, b_{sf}, b_e)$ in extended pricing kernel,

$$\begin{split} \mathrm{d}\tilde{m} &\approx -b_{gf} \cdot \omega_{gf} \cdot \underbrace{\left(\mathrm{d}p_{gf} - \mathrm{d}p_{sn}\right) - b_{gn} \cdot \omega_{gn} \cdot \underbrace{\left(\mathrm{d}p_{gn} - \mathrm{d}p_{sn}\right)}_{\text{Non-Food Goods}} \\ &- b_{sf} \cdot \omega_{sf} \cdot \underbrace{\left(\mathrm{d}p_{sf} - \mathrm{d}p_{sn}\right) - b_{e} \cdot \left(\mathrm{d}e - \mathrm{d}p_{sn}\right)}_{\text{Food Services}} - b_{e} \cdot \left(\mathrm{d}e - \mathrm{d}p_{sn}\right). \end{split} \tag{65}$$

with non-food services as the numeraire.

⁷u Li Price-CCAPM December, 2024 49/55

Estimation in a Four-sector Economy

Table 19: Detailed Consumption Sectors

		Risk Price
Expenditure	$rac{b_e}{[t]}$	14.70 [1.74]
Prices:		
Food Goods	$b_{gf} \\ [t]$	-78.10 [-2.60]
Non-Food Goods	$b_{gn} = [t]$	-88.46 [-2.44]
Food Services	$egin{array}{c} [t] \ b_{sf} \ [t] \end{array}$	302.37 [2.02]
	MAE(%) RMSE(%)	0.18 0.21
	J-pval	88.08

- Estimated risk-aversion is 14.70
 - ▶ Prices ⇒ variation in SDF
- Goods: similar risk price.
- Food goods and services
 - Grocery is necessity.
 - Dining service is luxury.
- Fitness of estimation is improved.

Price-CCAPM December, 2024 50 / 55

Explanation of Zoo of Anomalies

- Post 1960s: zoo of cross-section anomalies
- Estimation using 114 groups of anomaly portfolios during 1968-2019
- Price-CCAPM provides explanation for most of groups

Table 20: Average Fitness of Asset Pricing Models

	Traded Factor		Quar	Quantity		Prices	
	CAPM	Q-5	C-ND	C-D	P-ND	P-D	
(Average) MAE(%)	2.20	0.24	0.73	0.67	0.22	0.21	
(Average) RMSE(%)	2.74	0.30	0.92	0.86	0.27	0.26	

Return to Summar

i Price-CCAPM December, 2024 51/55

What determines Asymmetric Risk Price?

- Asymmetric risk price ⇒ Price-CCAPM works better than CCAPM
- What explains (observed) asymmetric risk price?
- Consumer preference: share elasticity
- Classical asset pricing theories
 - Limited stock market participation
 - Epstein-Zin preference and long-run-risk

Price-CCAPM December, 2024 52 / 55

Infer SDF with Aggregate Outcome

- Generalization: observed representative consumer is time-varying, when financial market is incomplete due to borrowing constraints or transaction restriction.
- Fundamental Shocks:
 - \rightarrow the fluctuation of consumption price is observed,
 - \rightarrow the welfare redistribution across consumers simultaneously occurs.
- Time-varying representative consumer \Rightarrow excessive risk price in consumption prices.

Yu Li Price-CCAPM December, 2024 53 / 55

Time-varying Representative Consumer

- Intuition: decomposing the variation from (\vec{P}, \mathbf{E}) and the welfare weights α^* .
 - \blacktriangleright High fitness in estimation suggests high correlation between prices \vec{P} and welfare weights α^* .

Corollary (Time-varying Representative Consumer's SDF)

Given the effective Negishi-weight distribution $\{\alpha(n)\}_n$ along the equilibrium path, the change in real marginal utility of expenditure for the representative consumer approximately equals

$$d\tilde{m} = -\underbrace{\sum_{j \in \mathcal{J}} b_{j}(\alpha) \cdot \omega_{j} \cdot (dp_{j} - dp_{J})}_{\text{Direct Channel}} - b_{e}(\alpha) \cdot (d\mathbf{e} - dp_{J})$$

$$+ \underbrace{\frac{1}{N} \cdot \sum_{n} s(n) \cdot d \log[\alpha(n)]}_{\text{Indirect Channel}} + o(\hat{h}).$$
(66)

where $d\alpha$ is the directional derivative of welfare weight, $\vec{\omega}$ is the aggregate expenditure share, e is the (log) aggregate total consumption expenditure, and the vector $b(\alpha)$ is in similar construction with stationary representative consumer. The expenditure-ratio s(n) is the ratio of consumer (n)'s -expenditure and aggregate-expenditure.

> 54 / 55 Price-CCAPM December, 2024

Explanation from Classical Asset Pricing Theories

- Limited stock market participation
 - Fitness improvement: high prices also increases stockholder's marginal utility
 - Point estimates (NIPA): b_e is over-estimated, b_a is under-estimated.
 - ⇒ Empirical challenge in observing the unconstrained consumer.
- Path-dependent preference and long-run-risk
 - $lackbox{ Point estimates: high price of goods predicts low quantities growth in the long-run <math>\Rightarrow$ large $|b_g|$.
 - ⇒ No direct empirical evidence.

u Li Price-CCAPM December, 2024 55 / 55