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To preempt or not to preempt?
Clustering vs. single entry in an oligopoly

Abstract

In this work, we develop a real option model in continuous time in which

firms compete perfectly on market entry but compete oligopolistically after

having entered. We analytically show that in equilibrium, entry may be clus-

tered and that firms tend to enter in weakly larger clusters as the market

becomes more crowded. This equilibrium is unique up to a permutation of

players. We also show that with moderate market risk, higher volatility de-

lays entry and leads to larger groups. We explore the following special cases:

i) In Cournot competition with a linear demand function, we show that firms

always enter individually. ii) In Bertrand competition, a firm enters only for

finite market levels. iii) Firm profits follow an inverse exponential function of

the number of firms, and we find a closed-form solution in which the cluster

size remains constant over time and increases with risk.

JEL: C72, C73, D81, L13
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1 Introduction

Models of real options are commonly used to address questions of the timing of

investments or market entry and have been widely used in numerous applications

(for example, in natural resources (Paddock et al. (1988)), real estate (Bar-Ilan and

Strange (1996)), pharmaceuticals and R&D (Gunther McGrath and Nerkar (2004))).

Any real options model needs to make assumptions about the extent of competition,

first, over the option itself and, second, in the product market once a firm has entered.

The real options literature, starting with McDonald and Siegel (1986) and Dixit and

Pindyck (1994), first studied the case of a firm that has a monopoly over the option

to enter and faces a perfectly competitive market after entry. For example, this

description fits a firm with a license to operate a small mine, such that the firm is a

price taker when selling the mined material (Tufano (1996)).

Many natural applications of real options, however, fall outside this description.

Depending on the evolution of the market size, a firm may need to decide if and when

to enter a market that is served by the limited number of firms that have entered it

at some prior point in time. Several papers (Smets (1991), Grenadier (1996), Dutta

et al. (1995), Huisman and Kort (1999)) study such situations, assuming that a fixed

number of firms can potentially enter a market in which, once entered, they compete

with each other imperfectly. These models have a specific feature: as more firms

enter, fewer firms are left as potential entrants. This grants more market power over

the entry option to later entrants, leading to a monopoly over the entry option for

the last firm that has not yet entered. This assumption is convenient because the

model can be solved backward from the last potential entrant. However, the model

also becomes very complex since the value of the option itself changes as a function

of the remaining number of potential entrants. Equilibria are therefore difficult to
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characterize. Moreover, from a methodological point of view, one cannot explore the

limiting case of this model in which the number of potential entrants goes to infinity,

as the backward induction argument no longer applies straightforwardly.

The aim of this paper is to study a contestable market for the option to enter,

where firms that do enter compete imperfectly with each other in the product market.

This setting not only addresses the gap in the real option literature but also reflects

real-world situations. In a world without barriers, each time a firm evaluates entry

into a market, it considers other potential entrants. Therefore, there is never a

definitive “last firm” entering, as each potential entrant assesses the market dynamics

on the basis of the presence of other players.1

We model an infinite number of potential entrants, who can make costly and

irreversible entry decisions in continuous time. Firms that enter receive a profit

flow that evolves stochastically, for example, because of demand fluctuations. We

model imperfect competition in the product market by assuming that profit flow is

a decreasing and convex function of firms that are active in the market, as would

be the case, for example, in standard Cournot competition. When firms decide to

enter, they need to consider the following trade-off: If they enter, they face the risk

of downside losses if market demand decreases in the future. On the other hand, if

market demand increases, they can enjoy high profits until further entry potentially

increases competition and reduces profits again. Moreover, firms need to be aware

that other potential entrants may preempt them at any moment.

1Advancements in technology and regulations have decreased barriers to entry—either in terms
of know-how or accessing credit—in numerous sectors, leading to a continuous flow of potential
competitors who are ready to enter once the market reaches a certain size. Examples in which
new technologies reduce the barriers to entry are found in multiple sectors, from e-commerce to
transportation services and healthcare. For example, platforms such as Shopify, Etsy and, in
a certain way, Amazon favor the creation and development of independent businesses, whereas
platforms such as Google Play or Apple allow the easy launch and monetization of new apps.
YouTube and, in general, social media platforms have eased the rise of individual video creators.
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We prove the existence of an equilibrium that is unique up to a permutation of

firm identities and characterize the equilibrium entry decisions of firms. We show

that the time between successive entries increases with market size; i.e., as the market

grows over time, entry events become less frequent. This is because the downside

risk from entry does not change, but the additional profit from being in the market

is relatively low, given that there is already a larger number of competing firms.

Moreover, we show that entry may be clustered and that the size of clusters weakly

increases over time. We analytically characterize the exact size distribution for three

special cases. First, for Cournot competition with linear demand, we obtain clusters

of size one at each entry time. Second, in Bertrand competition, we have that only

one firm enters, and the rest enter only when the market is infinitely large. Third, if

profit flow is an exponentially decreasing function of the number of active firms, we

obtain clusters with multiple firms and constant cluster sizes.

These clustering results are consistent with empirical studies that have examined

the evolution of the number of firms in newly created markets (such as automo-

biles, computers, and tires). A consistent observation is that firms tend to enter

individually, and as the market matures, the rate of firm entry increases, resulting

in collective entries, referred to as temporal clustering (Agarwal and Bayus (2002),

Klepper and Simons (2000)). Intriguingly, in some cases, potential entrants opt to

abstain, even in the presence of lucrative profit margins (see, for example, Agarwal

and Gort (1996) and Klepper (2002)).

The findings regarding firm clusters link our paper to Leahy (1993) and Karatzas

and Baldursson (1996), who study the special case in which infinitely many entrants

compete perfectly after entry. They show that entry may be clustered such that

multiple firms enter as soon as the net present value of doing so is zero. However,

in those models, the profit flow is independent of the number of active firms, so
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the size of potential clusters is indeterminate. We endogenize the size of clusters by

linking profits to the number of active firms. Furthermore, we show that clustering

may occur even when product market competition is imperfect. In other words, the

driving force for clustering is the feature that the entry option is contestable. 2

We show that perfect competition for entry drives the value of the option of

waiting down to zero in equilibrium.3 This finding aligns with real option models

that incorporate perfect competition both in the option to invest and in the product

market, as discussed by Leahy (1993) and Karatzas and Baldursson (1996). This

result contrasts with models in which a finite number of firms have the option to

invest. Despite competition on entry reducing the option value, as shown by Smets

(1991), Grenadier (1996), and Dutta et al. (1995), the value of the option to invest

remains positive and varies with the number of firms that have not yet entered the

market (Huisman and Kort (1999)).

Risk emerges as the main determinant that impacts entry strategies, influencing

both the timing of entry and the patterns of clustering. We analytically show that

for moderate and low levels of risk, increasing risk induces firms to wait longer. With

more volatility, extreme demand levels—both higher and lower—occur with higher

probability, affecting a firm’s payoffs in two ways. First, the increased probability

of extreme values does not have a symmetric effect on the firm’s payoff: the upside

gains increase less than the downside losses do, as the upside potential is limited by

future new entries. Second, the expected time during which a firm enjoys a higher

profit margin decreases. For these reasons, firms wait longer before entering.

2Huisman and Kort (1999) assume that there are at most 3 potential entrants and show that
simultaneous entry is possible. This can be viewed as an edge case in which simultaneous entry of
2 firms can occur.

3A reduction in option value when the number of potential competitors increases is empirically
documented in Pavan et al. (2020). Using an exogenous shock in regulation in the gas industry in
Italy, they find that an increase in the number of potential competitors drives earlier entry.
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The fact that the greater the uncertainty is, the longer a firm waits to enter has

already been reported in traditional real option theory when the firm has a monopoly

on the entry option (McDonald and Siegel (1986) and Dixit and Pindyck (1994)).

The reasons for this, however, differ. In traditional real option theory, a firm waits

longer because the value of the option to invest increases in uncertainty. In our

model, the value of this option is constant and equal to zero, due to the perfect

competition faced at the entry decision. The lower prospect of high profits induces

the firm to wait longer.

This monotonic effect of risk on the timing of entry also differs from that in

the oligopolistic case. When a finite number of firms have the option to enter, the

last firm that enters has a monopoly on the entry option, and the greater the risk,

the longer it waits. The firm that enters before the last one might take advantage

of having this extra time and therefore enter earlier (Rossetto and Perotti (2004)).

This does not occur in our setting, as the option value is constant.

Risk also affects the cluster size. Higher volatility increases the likelihood of mar-

ket downturns, but it has a limited effect on the upside potential due to new entries.

This reduces the attractiveness of preempting, and clustering, that is, entering along

with other competitors for larger market size becomes preferable. Hence, we analyt-

ically show that when the risk is moderate or low, the cluster size increases as risk

increases.

Our model contributes not only to the literature on real options but also to the

literature on clustering. Previous studies explored clustering, usually considering

various forms of friction as explanatory factors. These include coordination failures

(Levin and Peck (2003)), positive network externalities (Mason and Weeds (2010)),

and informational spillovers (Chamley and Gale (1994)). Without assuming entry

frictions, Bouis et al. (2009) demonstrated that instances of simultaneous entry can
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occur when the number of potential entrants is three. To generalize this scenario,

Argenziano and Schmidt-Dengler (2014) extended the analysis to include settings

with a finite number of potential entrants. However, a key assumption in this model

is that investment costs decrease exogenously over time. Our model shows that even

without any form of friction and with constant investment costs, simultaneous entry

can occur. Given the simplicity of our assumptions, our model serves as a valu-

able benchmark for both theoretical and empirical investigations aimed at studying

market dynamics.

The structure of the paper is as follows: In Section 2, we introduce the model, and

the impact of risk is discussed in Section 3. Section 4 examines three specific cases,

namely, Cournot with a linear demand function, Bertrand competition and profit

margins that exhibit exponential decline. Finally, our conclusions are presented in

Section 5. Detailed proofs are provided in the Appendix.

2 The Model

2.1 Setting

We consider a market with an infinite number of identical firms with an infinite time

horizon. Each firm can choose if and when to enter the market, which incurs an

irreversible cost, K. Once it has entered, the firm competes with the other firms

that have already entered the market and receives an instantaneous profit flow of

Dnθ (t). Dn is the profit margin, which is deterministic and varies with the number

n of firms in the market; θ(t) is the market size at instant t.

We assume the following: i) Dn > Dn+1; ii) Dn
Dn+1

≥ Dn+1

Dn+2
≥ 1; iii) limn→∞Dn =

0 and limn→∞ (Dn −Dn+1) = 0. These assumptions ensure that as the number of
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firms active in the market increases, the rate of profit flow decreases in a convex

way and that as the number of firms in the market tends toward infinity, the profit

flow and the reduction in profit flow due to new entrants tend toward zero. These

assumptions capture the idea that a market becomes increasingly competitive as

more firms enter.

The market size, θ(t), is stochastic and obeys a geometric Brownian motion:

dθ (t) = µθ (t) dt+ σθ (t) dz (1)

where µ is the drift parameter and σ is the volatility parameter. dt and dz are the

time and Wiener process increments, respectively. The geometric Brownian motion

assumption is standard in real option theory and implies that the demand and hence

the profit flows are always positive. Firms are risk-neutral value maximizers and

discount the future at the rate r. To ensure finite valuations, we assume that µ < r.

We assume that the initial θ(0) is low enough that it is not optimal for any firm

to enter immediately. At each point in time, a firm considers whether to enter or

not, taking into account the number of firms already in the market, the investment

strategy of its competitors and the impact of its (and its competitors’) investment

decisions on current and future profits. The future entry strategies of its competitors

are important because once each firm has entered, it competes with the other firms

in the market. Initially, a firm receives a profit flow that depends on the number of

firms in the market when it enters. If more firms enter in the future, however, the

firm’s profit flow will decrease. Competitors’ entry strategies affect the number of

firms in the market and hence the expected future cash flow from entering.

For more concise notation, we recognize that each firm’s strategy can be rep-

resented by its choice of entry thresholds (demand levels at which the firm would
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enter the market given the current market structure, i.e., the number of firms in the

market). Furthermore, since all the firms are identical, each firm follows the same

strategy, which consists of a set of potential entry thresholds. For this reason, we

omit the firm-specific index. We define an entry event as one in which any positive

number of firms enter the market, and we index the entry events by i, i = 1, 2, . . . ,

and set θi as the demand level at which entry event i occurs.4

At entry event i, j(i) ≥ 1 firms enter the market, bringing the overall number of

firms in the market to n(i). We call the event of only one firm entering (j(i) = 1)

a single entry, and a cluster entry occurs when multiple firms enter simultaneously

during entry event i, i.e., when j(i) > 1. As is standard in strategic real options,

we restrict our attention to symmetric pure strategies where no coordination failures

occur.5

After entry event i, all firms in the market receive instantaneous profit flows of

Dn(i)θ(t) until the market reaches the next entry event threshold, θi+1. At that point,

all active firms’ instantaneous profit flows drop to Dn(i+1)θ(t) until market demand

reaches θi+2, etc..6

The equilibrium concept adopted here is that of Markov subgame perfection.

Hence, an equilibrium is 1) a set of market demand thresholds, θ̂i, and 2) a set of

investment strategies, ŝ(i), for all firms in the industry at entry event i, i.e., the

number of firms ĵ(i) that enter in entry event i. This determines n̂(i), the number

of firms active in equilibrium after event i.

4We formally show that the first time the market reaches a specific level θi, entry occurs and
that entry event i+ 1 will occur only for a θ > θi.

5For a discussion of the possibility of coordination failure in the duopoly case, see Thijssen et al.
(2012).

6With some abuse of notation, the subscript indicates either the number of firms present in the
market or the event i.
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2.2 Optimal Entry

We first derive some general results related to 1) the value of an inactive firm, that

is, a firm that has not yet entered the market; 2) the value of an active firm, that

is, a firm that has entered the market; 3) how a firm’s optimal entry strategy varies

with the number of firms that are already in the market.

The key decision facing each inactive firm is when to enter the market, i.e., at

what demand level, θ, to enter. At each point in time, an inactive firm decides

whether to enter the market, knowing the entry strategy of its competitors, who

are not yet in the market: it can enter individually, preempting its competitors and

achieving abnormal profits for a limited period until the competitors optimally enter,

or it can enter later, knowing that other firms will enter at the same threshold.

We define Vi(θ; {θ̂l, l ≥ i+1}) as the value of an active firm after event i but before

event i + 1, when the current demand level is θ, and given the future equilibrium

entry events l at θ̂l. Similarly, Wi(θ; {θ̂l, l ≥ i + 1}) is the value of an inactive

firm after event i but before event i + 1. Note that each firm’s value depends on

the strategies (entry thresholds) of its competitors (and its own if it has not yet

entered). Therefore, initially, before any firm has entered the market, each firm’s

value is W0(θ; {θ̂l, l ≥ 1}) for θ ≤ θ̂1.

Lemma 1 The value of an inactive firm is Wi = 0.

Lemma 1 states that the value of an inactive firm is always zero. This result is an

implication of perfect competition in the market: even when the number of firms in

the market approaches infinity, there are still an infinite number of potential entrants.

In the limit, as the market is infinitely large, firms that have not yet entered will

enter as soon as the expected value of entering is positive. As the option to enter has
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zero value, all firms enter as soon as the value of being active net the investment cost,

Vi−K, becomes positive, irrespective of the market size and the existing number of

firms already operating in the market.

The fact that the number of potential entrants remains constant (and infinite)

allows us to reconcile two seemingly contradictory results in the real option literature.

On the one hand, some papers have studied situations in which firms compete

perfectly both on the option to enter and on the product market. There, as in our

case, the entry option has zero value (see Leahy (1993) and Grenadier (2002)).7

On the other hand, past studies have looked at the case in which firms compete

oligopolistically both at the entry level and in the product market (Smets (1991),

Rossetto and Perotti (2004) and Bouis et al. (2009)). In such a case, the number of

potential entrants is finite, and at each entry event, the number of potential entrants

falls; hence, the competition for the option to enter decreases. In the limit, when

only one firm with the option to enter is left, it will enter as in the standard real

option model, as discussed in McDonald and Siegel (1986) and Dixit and Pindyck

(1994). The value of the option to wait therefore decreases as the number of firms

that have not yet entered increases. Note that this approach does not lend itself to

the limit case in which n goes to infinity, as the backward induction argument cannot

be applied.

As such, our model cannot be considered a special case of the oligopoly case with

finite firms. In our model, the number of potential entrants is infinite, firms always

face perfect competition on the option to enter, and the number of potential entrants

remains infinite. This fundamentally changes the entry dynamics. An inactive firm

contemplating entry assesses the value of becoming active versus remaining inactive,

7Given the perfect competition in the market, these studies assume that the price, not the
market size, is stochastic.
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which invariably yields a value of 0 for the latter.

Lemma 2 Given the optimal entry at event i + 1, θ̂i+1, the value of an active firm

after the i-th entry event when there are n(i) firms in the market is

Vi(θ) =
Dn(i)

r − µθ + Aiθ
β1 0 ≤ θ ≤ θ̂i+1 (2)

where

Ai =

(
K − Dn(i)

r − µθ̂i+1

)
θ̂−β1i+1 (3)

=
∞∑
l=0

Dn̂(i+l+1) −Dn̂(i+l)

r − µ θ̂−β1+1
i+l+1 ≤ 0. (4)

β1 =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1 (5)

The value of an active firm depends only on the present profit flow and future

entry events. Past entry events do not play a role. This value can be divided into

two components. The first is the present value of profits if n(i) and only n(i) firms

remain in the market indefinitely,
Dn(i)
r−µ θ. The second component, Aiθ

β1 , represents

the impact of future market entry, which depends on all future entry thresholds,

{θ̂l, l > i}, and the number of firms that enter at each future entry event, {ĵl, l > i},
as shown in (4). Since the rate of profit flow decreases as more firms enter the market,

this term is negative; that is, Ai ≤ 0. The anticipation of future entry reduces the

value of an active firm relative to the capitalized value of its current rate of profits.

For this reason, Ai increases, that is, becomes less negative, for subsequent entry

events (see equation (4)).

We define the incremental value of entering at the i-th entry event, Si(θ), for
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a generic demand level θ as the net present value of the future cash flows when

entering at event i, Vi(θ), minus the investment costs K and the value Wi−1 of

remaining inactive:

Si(θ) = Vi(θ)−K −Wi−1(θ) (6)

Corollary 1 The incremental value, Si(θ), of entering at the i-th entry event is:

Si(θ) = Aiθ
β1 +

Dn(i)

r − µθ −K, θ ≤ θ̂i+1 (7)

where Ai ≤ 0 is given by (3).

Upon entering, the firm pays the initial investment cost K, foregoes the option of

investing later Wi−1, and receives the present value of the ongoing stream of profits,

accounting for optimal future entry by its competitors, Vi. In practice, since the

option of investing later has zero value, the incremental value is equivalent to the

net present value (NPV), considering the entry of future competitors.

Since Dn(i) ≥ 0, Ai ≤ 0 and β1 > 1, the net value from entering Si(θ) is a concave

function of θ. It initially increases from Si(0) = −K < 0, reaches a maximum and

then decreases, with limθ→∞ Si(θ) = −∞. It follows that Si(θ) crosses the θ axis

at most twice. Specifically, ∂Si(θ)
∂θ
≥ 0 at the smaller of the two intersections, and

∂Si(θ)
∂θ

< 0 at the larger intersection. For a visual representation, refer to Figure 1,

where Si is depicted as a solid line.

Firms enter at the demand level θ̂i, when the incremental value of entry becomes

positive. In other words, they enter when the value of being active, Vi, exceeds the

investment costs, K, from below. The optimal entry point, θ̂i, corresponds to the

smallest θ for which Si(θ) ≥ 0. Thus, it must satisfy the condition ∂Si(θ)
∂θ

∣∣∣
θ=θ̂i
≥ 0. As

the value of the entry option at any entry event is always zero, the second solution of
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0

No-entry NPV

Lower bound

 θ̂i θ0n θ̂i +1
θβ1

β1 − 1 θ0n

Si

Si

Figure 1: Stylized graph of Si as a function of θ, with the discounted profit stream assuming no
further entry (upper dashed line) and the lower bound for Si (lower dotted line).

Si = 0 is the optimal entry threshold of event i + 1, θ̂i+1. From the value-matching

condition of optimal entry (see condition (26) of the proof of Lemma 1), θ̂i+1 is also

a solution of Si(θ) = 0. Since the i-th and i + 1-th entry events are distinct by

definition, it follows that θ̂i < θ̂i+1 and ∂Si(θ)
∂θ

∣∣∣
θ=θ̂i+1

< 0, where θ̂i+1 is a summary

statistic used to represent the next entry event.8

The underlying rationale for this outcome can be described as follows: consider

an inactive firm contemplating entry into the market, with the knowledge that at a

8We use this condition to determine the optimal entry characteristics for each event i, viz., the
number of firms entering and the entry threshold.
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specific market size, θ̂i+1, there will be a certain number of firms, n̂(i+ 1). The firm

faces a choice between entering earlier or later. Should it choose to enter, it stands

to benefit temporarily from higher profit margins due to limited competition, i.e.,

Dn(i) > Dn(i+1). However, it also faces potential losses if the market size decreases,

i.e., if θ decreases. On the other hand, if the firm opts to wait, it forgoes the short-

term additional profit flow, Dn(i)θ, but avoids exposure to downside risks. When

market demand is very low, i.e., θ is low, the downside risk outweighs the temporary

profit gain. As θ increases, the temporary profits begin to offset the downside risk.

Beyond a certain demand threshold, the expected temporary profits start to decrease

because of the rising likelihood of a future entry event. Therefore, the firm decides to

enter only when the incremental profit margin and the expected time during which

it will enjoy these extra profits are substantial enough to outweigh the potential

downside losses.

The entry threshold for event i represents the point where the incremental value

function for event i increases, going from negative to positive values. This means

that the value of becoming active exceeds the value of remaining inactive. However,

as the market demand θ approaches the level where other firms are about to enter

the market at event i+ 1, the firm’s value decreases since the anticipation of future

entry reduces the expected profit margin. At this point, the value of the firm starts

to decrease in θ.

When there are n firms in the market and no further entry occurs in the future,

the value of the firm is Dn
µ−rθ(t). We define the “no-entry” zero-NPV threshold,

θ0
n = K(µ−r)

Dn
, as the entry threshold in such a situation.
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Corollary 2 If θ̂i < θ̂i+1, then

θ0
n ≤ θ̂i <

β1

β1 − 1
θ0
n (8)

Figure 1 provides a graphical representation of the corollary above, illustrating

the boundaries within which the incremental value curve resides. The dashed line

corresponds to the discounted profit flow minus the investment cost when there are

n(i) firms in the market,
Dn(i)
µ−r θ−K. This is the “no-entry” NPV, which ignores the

potential impact of future entries. This line crosses the horizontal axis at θ0
n, the

“no-entry” zero-NPV threshold at which n firms are in the market and no further

entry is to occur in the future.

The lower dotted line represents the theoretical lower boundary of Si(θ), which

touches the axis at a single point, specifically β1
β−1

θ0
n(i). This line represents the incre-

mental value of a firm entering the market under conditions of perfect competition

in the product market, as discussed in Leahy (1993) and Grenadier (2002) and re-

viewed in Dixit and Pindyck (1994). β1
β−1

θ0
n denotes the entry threshold in such a

competitive environment.

The solid line in the graph represents the incremental value of a firm entering

at event i, denoted as Si. It falls within the range defined by the “no-entry” NPV,

i.e., the dashed line, and the incremental value under perfect competition, i.e., the

dotted line.

The i-th entry threshold, θ̂i, is depicted as the lower point where Si intersects

the horizontal axis (indicating ∂Si
∂θ

> 0). Conversely, the i + 1-th entry threshold,

θ̂i+1, is the higher point where Si crosses the axis (and where ∂Si
∂θ

< 0). It follows

that any preemptive threshold θ̂i must fall between the “no-entry” threshold, θ0
n(i),

and β1
β1−1

θ0
n(i) (where Si(θ) touches the axis only once).
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We can also derive some features of the expected length of time between entry

events.

Lemma 3
θi+1

θi
≤ θi+2

θi+1

(9)

This lemma states that as the market expands, the expected time interval be-

tween successive entry events also widens. The expected time between entries is

1
µ− 1

2
σ2 ln θi+1

θi
when µ > 1

2
σ2 and ∞ otherwise. With market growth, new entries

occur, causing a reduction in profit margins. As firms enter when the NPV becomes

positive, the time gap between entry events increases.

The regularity of the expected time between entry events is new in real option

theory. In conventional finite oligopolistic real option models, this finding is not

demonstrated analytically. The challenge in that case is that the option value differs

depending on the number of potential entrants. In our context, where firms engage

in perfect competition for the entry option, the payoff remains constant and equals

zero.

2.3 Individual vs. Cluster Entry

To complete the characterization of the equilibrium, we need to find the equilibrium

number of firms, ĵ(i + 1), that participate in each entry event i + 1. The proof

proceeds in two steps. We first identify the potential candidates for ĵ(i + 1); then,

among these candidates, we focus on the choices that do not induce any deviations

by other firms.

Lemma 2 indicates that θ̂i+1 and n̂(i + 1) depend on future but not past entry

events. This implies that at θ̂i+1, event i+ 1 occurs and that after this event, there
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will be n̂(i+1) firms in the market. We need to find the equilibrium number of firms

that enter at entry event i + 1, ĵ(i + 1). This corresponds to finding the number of

firms that are present in the market after event i, that is, n(i) = n(i+ 1)− j(i+ 1).

From corollary 1, we know that the incremental value of a firm entering at event

i, Si, crosses the horizontal axis at θi and θi+1, with θi < θi+1. Hence, the following

definition is obtained:

Definition 1 j is a feasible number of firms to enter at entry event i + 1 if the

optimal entry θ̂n̂(i+1)−j < θ̂n̂(i+1).

Given the number of firms in the market after event i+1, n(i+1), each candidate

j corresponds to a value of n(i) = n(i + 1)− j, a value of Dn(i) and an incremental

value of the firm entering at event i. For this reason, we adapt the notation to include

the possibility of having different incremental values of the firm depending on j. We

define Sn̂(i+1)−j,j as the incremental value of event i when there are n̂(i+ 1)− j firms

in the market and when j firms will enter at event i + 1. By definition, if j is the

equilibrium number of firms entering, i.e., ĵ(i + 1), then Sn̂(i+1)−ĵ,ĵ = Si. Denote

θ̂n̂(i+1)−j,j as the other solution of Sn̂(i+1)−j,j in addition to θ̂(i+ 1).

Proposition 1 For each entry event, i+ 1, the number of firms that enter together

at θ̂i+1, ĵ(i+ 1), is the smallest feasible j, i.e., the smallest j s.t.

∂Sn̂(i+1)−j,j

∂θ

∣∣∣∣
θ̂i+1

< 0 (10)

The proof follows two steps. We first find the feasible number of firms that can

enter at entry event i + 1, j(i + 1). We then show that the equilibrium number of

firms that enter at event i+ 1 is the smallest feasible j.
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The intuition of the proof is as follows. First, note that Sn̂(i+1)−j,j has the same

characteristics as Si; that is, it is a concave function of θ and equals 0 at no more

than two values of θ, one of which is θ̂i+1 (see Fig. 1). For j to be a feasible number

of firms to enter at θ̂i+1, θ̂i+1 must be the largest solution of Sn̂(i+1)−j,j = 0. It

follows that the other solution is smaller than θ̂i+1 and is the candidate optimal

entry threshold of event i. A necessary and sufficient condition for θ̂i+1 to be the

largest solution is that at θ̂i+1, the value function is decreasing; then, j is feasible if

and only if
∂Sn̂(i+1)−j,j(θ|θ̂i+1)

∂θ

∣∣∣
θ̂i+1

< 0, and otherwise, j is not feasible.

It follows that an optimal entry threshold θ̂(i + 1) is the crossing point of two

successive incremental value functions, Sn̂(i+1)−j(θ|θ̂i+1) and Sn̂(i+1)(θ|θ̂i+1). This

proposition indicates that Sn̂(i+1)−j(θ|θ̂i+1) crosses θ̂(i + 1) when it is decreasing

while Sn̂(i+1)(θ|θ̂i+1) is increasing.

Figure 2 shows a graphic representation of the different incremental value func-

tions at subsequent entry events given the subsequent entry of the other firms. Each

incremental value function crosses the horizontal axis, i.e., the value of the option

to remain inactive, for two values of θ, one of which is in common with the next

entering firms.

Intuitively, for each demand level, i.e., θ, an inactive firm considers preempting

or not, knowing that at the next entry event i + 1, there will be n(i + 1) firms.

At each θ, a firm decides to preempt at event i or enter at event i + 1, trading

off the additional profits from preempting against the associated downside risk. If

the differential in profit flow, Dn(i) − Dn(i+1), is large enough, the firm preempts.

Conversely, if the differential is not large enough, the firm prefers to wait until event

i + 1. This trade-off determines the minimum number of firms that enter at event

i+ 1.
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Figure 2: Sequential entry

The final step is to show that among all the feasible j values, the smallest is

the equilibrium value. To provide an intuition of this result, consider a scenario

in which one fewer firm, the equilibrium number ĵ(i + 1), attempts to enter. This

means that one extra firm preempts, as n(i) = n(i + 1) − ĵ(i + 1) + 1. Therefore,

the temporary profit flow stemming from event i is lower. If these firms decide to

enter the market at the same demand level, the expected future cash flows will not

be sufficient to offset the downside risk. These firms do not want to enter earlier to

avoid the downside risk, and they will opt to enter at higher market demand levels.

These demand levels will be equal to or greater than θ̂i+1. On the other hand, a

scenario in which more firms enter than ĵ(i + 1) also fails to establish equilibrium.

In this case, the increased cash flows make it appealing for these firms to enter at

lower demand levels. However, this prompts inactive firms to preempt their entry

and join the market before event i + 1, which, in turn, reduces the expected cash

flows. Consequently, this scenario cannot be an equilibrium for event i.

Having found the optimal number of firms that enter at each entry event, we
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summarize our results in the following theorem.

Theorem 1 For each entry event i + 1, the number of firms that enter together at

θ̂i+1, ĵ(i+ 1), is the smallest j such that

β1

β1 − 1
θ0
n̂(i+1)−j < θ̂i+1 (11)

θ̂i is then given by the smallest solution to

Aiθ
β1 +

Dn̂(i)

r − µθ −K = 0 (12)

where n̂(i) = n̂(i+ 1)− ĵ(i+ 1) and

Ai = Ai+1 +

(
Dn̂(i+1) −Dn̂(i)

r − µ

)
θ̂−β1+1
i+1 (13)

Equation (11) determines the number of firms that will enter at the i+ 1st entry

event, ĵ(i + 1), and thus the number of firms that will be in the market after the

preceding entry event i, n̂(i) = n̂(i + 1) − ĵ(i + 1). The number of firms that enter

to increase the number of active firms to n̂(i), ĵ(i), is determined by the smallest j

s.t. θ0
n̂(i)−j

β1
β1−1

< θ̂i. The remainder of Theorem 1 gives the equations required for

calculating successive thresholds and value functions.

The next step is to study the regularities in the number of firms entering:

Theorem 2 ĵ(i) ≤ ĵ(l) for i < l.

Theorem 2 shows that the number of firms entering exhibits a weakly increasing

trend. As market demand increases, the number of firms present in the market also

increases. Suppose that j(i) enters at event i and that the same number of firms
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enter at the subsequent event; then, the extra profits from preempting decrease as

D(n) is convex in n. Consequently, considering that at event i + 1, when ĵ(i + 1)

firms enter, bringing the total number of firms in the market to n(i + 1), firms

contemplating entry at event i encounter a critical trade-off. They must decide

whether to enter immediately, incurring a downside risk and securing temporary

extra profits. However, if j(i) = ĵ(i+1), the differential in temporary profits becomes

more substantial, meaning that D(n(i+ 1)− 2× ĵ(i+ 1))−D(n(i+ 1)− ĵ(i+ 1)) >

D(n(i + 1) − ĵ(i + 1)) − D(n(i + 1)). This increased profit differential, when it is

substantial, leads to condition (11) holding for a smaller j.

The findings from Theorems 1 and 2 together suggest that in markets that are

still limited in size and hence involve a limited number of firms, the optimal strategy

for successive entrants is to enter sequentially. However, as the market expands, firms

deviate from sequential entry patterns, opting for simultaneous entry in waves, with

each wave accommodating an increasing number of entering firms. As the market

evolves, the increased presence of firms leads to reduced profit margins and expected

firm values, compelling firms to wait and increasingly prefer entering alongside other

firms. Hence, as the number of firms in the market increases, so does the number of

entering clusters, and entry events become less frequent.

These implications diverge from those of earlier models that examine situations

characterized by limited potential entrants and a constrained number of firms in

the market (e.g., Smets (1991), Grenadier (1996), and Rossetto and Perotti (2004)).

In such settings, individual entry is the norm. In Huisman and Kort (1999), clus-

tered entry can occur. However, under the assumption that the number of potential

entrants is limited to three, no regularities in cluster size can be identified.

The assumption of perfect competition in the market for entry allows us to show

how the pattern of market entry can evolve as the market expands. This enables
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us to make comparisons with other studies that consider perfect competition both

before and after market entry. Similar to Leahy (1993) and Grenadier (2002), we find

that the value of a potential entrant in our context is zero because the option to enter

has a zero value. Consequently, firms enter the market as soon as the NPV reaches

zero. At the same time, however, in perfect competition, firms are price takers, and

thus, each time the market reaches the same price threshold, a new firm enters. In

these markets, however, the price is exogenous, so no implications for clustering can

be derived.

Therefore, our findings serve as a unifying link between two distinct branches of

the real option literature: one focused on imperfect competition in both the option

to enter and in the market, and the other focused on perfect competition in both the

option to enter and the market.

3 Effect of risk on the entry decision

Risk affects the entry dynamics. To analyze the effect of risk on entry, we first look

at what happens when volatility changes marginally so that the number of firms

entering is not affected. We then look at the effect of risk on the number of firms

entering together.

Proposition 2 If j(i) is constant and β1 ≥ 2, θ̂i increases as σ increases.

When volatility changes marginally, the cluster size can be considered constant:

∂j(i)
∂σ

= 0. The above proposition states that, for a constant number of firms entering

simultaneously (∂j(i)
∂σ

= 0), the entry threshold increases as the risk increases.

As the risk increases, more extreme market values are reached with a higher

probability. In such a case, when deciding whether to enter the market earlier or
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later, a firm considers the timing of subsequent entry events. If the next entry event

will occur at sufficiently higher demand levels, the firm will decide to enter at higher

demand levels as well to reduce the risk of extremely low market values. In the

above proposition, we show that for moderate risk levels, specifically when β1 ≥ 2,

this behavior arises.9

Our result differs from those of standard real option models, in which firms face

oligopolistic competition. In those models, the effect of risk on entry cannot be

characterized analytically.

We now look at what happens when the change in risk is so large that the cluster

size can be affected.

Proposition 3 If the entry threshold increases as risk increases, the cluster size also

increases with risk. If, instead, the entry threshold decreases with risk, the cluster

size decreases. That is: if ∂θi
∂σ

R 0, then ∂j(i)
∂σ

R 0.

An increase in risk has two effects. On the one hand, it increases the probability

of reaching more extreme demand values, and on the other hand, we know from the

previous lemma that firms tend to enter later for moderate and low levels of risk. As

the risk increases, entering earlier than the competitors does not guarantee higher

profits for a long enough period to compensate for the higher probability of lower

demand levels, so the incentive to enter earlier decreases. Firms therefore prefer to

enter in larger clusters rather than individually.10

Combining Propositions 2 and 3, we can conclude that for moderate risk levels,

as the risk increases, firms tend to enter later and tend to enter in larger clusters.

9In the next section, we show that the same result holds for any risk level in certain specific
functional forms of the demand margins, Dn.

10Again, these results hold in the general case for moderate and low risk levels. In the special
cases analyzed below, we are able to show this result for all risk levels.
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Notably, unlike the standard real option model, the valuation of a firm when it

enters does not change with risk. The option value is always zero regardless of the

level of risk. Therefore, firms opt to enter the market when the level of demand

aligns with the point at which the net value of entry equals zero.

4 Special Cases

4.1 Cournot Competition with Linear Demand

A typical special case that is often used in industrial organization is that in which

firms compete à la Cournot, facing a linear demand function. We then consider the

profit function to be D(n) = 1
(n+a)b

with a ≥ 0 and b > 1.11 As assumed in the

model, this profit function is decreasing and convex in the number of firms present

in the market.

Lemma 4 If Dn = 1
(n+a)b

with a ≥ 0 and b > 1, firms always enter individually.

When firms engage in Cournot-style oligopolistic competition, the profits exhibit

an inverse relationship with the number of firms participating in the market. When

the reduction in profit flow resulting from the entry of additional firms is not as

substantial, the firm’s upside potential profit flow is not as heavily reduced. Con-

sequently, even if the firm faces the same downside losses, it is more inclined to

preempt its competitors by entering the market ahead of them rather than waiting

and entering jointly later. As a result, firms in this setting consistently opt to enter

the market individually.

11This is the textbook example with linear demand functions a = 1 and b = 2 (Tirole (1988)).
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4.2 Bertrand competition

Another textbook case is competition /‘a la Betrand. In the equilibrium outcome

in this setting, prices are set so that firms do not make profits (Tirole (1988)). It

follows that the profit function is D1 > 0 when there is only one firm in the market

and Dn = 0. Therefore, if limθ→∞,n→∞D(n)θ = K, one firm can preempt and enjoy

monopoly profits until the market is infinitely large. As the market tends to become

infinitely large, n firms will enter, and limθ→∞D(n)θ = K.

4.3 Exponential profit margins

We now consider the special case in which Dn = e−n. The interesting feature of this

functional form of profit margins is that we are able to find a closed-form solution

and derive more general conclusions for the comparative statics.12

Lemma 5 If Dn = e−n, then the number of firms jointly entering at θ̂i is constant

at each entry event i and is given by:

ĵ(i) =

⌈
ln

β1

β1 − 1

⌉
(14)

The threshold for each entry event is

θ̂i = en̂(i) = eĵi (15)

The value of a firm after the i-th entry event is given by

Vi =
Dn̂(i)

r − µθ −K + Aiθ
β1 (16)

12Note that qualitatively identical results are obtained for more generic functional forms of the
type Dn = ae−bn + c.
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where

Ai =
(1− ej)

(1− eβ1n)

eβ1(n−j)

(r − µ)
(17)

Corollary 3 When demand is more volatile, the number of firms entering jointly at

each entry event, ĵ(i), increases. Moreover, entry is delayed (θ̂i increases).

When profit margins are exponentially decreasing in the number of firms, we

obtain
Di−Di+j

Di+j−Di+2j
= exp(j). This simplifies the analysis and facilitates the derivation

of an explicit solution.

Because profit margin ratios are constant, we can investigate each entry event

in isolation without needing to account for subsequent entries. Additionally, we

can infer that the number of firms entering during each event remains constant, as

captured in equation (14).

This special case also yields an explicit expression for the entry thresholds. As

equation (15) shows, each entry threshold is an exponential function of the number

of active firms after the entry event occurs. Consequently, the more firms are active

in the market upon entry, the later firms choose to enter.

In line with the results of the previous section, the number of firms entering at

each event increases with the risk. In other words, greater risk is associated with

larger clusters of firms entering the market. The intuition of this conclusion relies on

the fact that higher market volatility exposes entering firms to greater downside risk

while simultaneously capping their upside potential due to future competitors’ entry.

Consequently, firms tend to prefer entering with other firms to avoid downside risk

rather than entering early. Following a similar line of reasoning, firms tend to delay

their entry as profits become more volatile; this is a strategic response to mitigate

the effects of downside risk.
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5 Conclusion

We model investment decisions under uncertainty in situations where firms face an

infinite number of potential entrants to a market and thus compete perfectly on the

entry decision. Moreover, product market competition is imperfect since, in gen-

eral, only a finite number of firms are in the market. This setting differs from those

of existing models, which consider either a fixed and finite number of potential en-

trants (Bouis et al. (2009) and Argenziano and Schmidt-Dengler (2014)) or an infinite

number of firms both outside and inside the market (Leahy (1993) and Grenadier

(2002))).

As in Leahy (1993) and Grenadier (2002)), owing to perfect competition in the

market for entry, the value of the option to wait is zero. However, oligopolistic

competition in the product market means that the profit flow varies with the number

of firms in the market and thus creates an asymmetry in the level of profit flow

depending on whether demand decreases or increases, since increased demand will

induce further entry and lead to reduced profit flows in the future. Thus, when the

number of firms in the market is sufficiently small, there is an incentive for firms to

preempt, and thus, in contrast to (Leahy (1993) and Grenadier (2002)), the entry

thresholds vary depending on the number of firms in the market.

The preemption motive is similar to that of models with a finite number of po-

tential entrants (Bouis et al. (2009) and Argenziano and Schmidt-Dengler (2014)).

However, unlike these authors, we find that if the number of firms in the market is

sufficiently large, the benefits of preempting alone are no longer sufficient, and firms

prefer to wait and enter together with other firms. For convex decreasing demand

functions, the minimum number of firms (weakly) increases with the number of firms

in the market.
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Most economic models of competing firms either consider a restricted number of

firms competing oligopolistically or consider the limit of an infinite number of firms

and perfect competition. Our results provide a link between these two extremes.

Owing to the special cases considered, this model offers a tractable solution to

a very generic competition setting in continuous time and can be applied in various

settings. In addition, this model can be extended to the case of exit. Thus far, it is

not clear whether clustering can also occur at the exit level. The study of entry and

exit at the same time can explain sector dynamics.
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A Appendices

Proof of Lemma 1:

Following the standard steps of Dixit and Pindyck (1994), we apply Ito’s lemma

and Bellman’s principle of optimality to find the value of an active firm, Vi(θ), and

the value of an inactive firm, Wi(θ), after the i-th entry event. It is found that they

must satisfy the following differential equations:

1

2
σ2θ2∂

2Wi

∂θ2
+ µθ

∂Wi

∂θ
− rWi =0 (18)

1

2
σ2θ2∂

2Vi
∂θ2

+ µθ
∂Vi
∂θ
− rVi +Dn(i)θ =0. (19)

These equations have the following general solutions:

Wi = aiθ
β1 + biθ

β2 Vi = Aiθ
β1 +Biθ

β2 +
Dn(i)

r − µθ (20)

where β1 and β2 are the positive and negative solutions of the characteristic equation:

β1 =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1 (21)

β2 =
1

2
− µ

σ2
−
√(

µ

σ2
− 1

2

)2

+
2r

σ2
< 0 (22)
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and the constants ai, bi, Ai, Bi need to be found together with the optimal entry

thresholds, θ̂i, as the solutions to the following boundary conditions:

Wi(0) = 0 0 ≤ i (23)

Vi(0) = 0 1 ≤ i (24)

Wi−1(θ̂i) = Vi(θ̂i)−K 1 ≤ i (25)

Vi−1(θ̂i) = Vi(θ̂i) 2 ≤ i (26)

Wi−1(θ̂i) = Wi(θ̂i) 1 ≤ i (27)

lim
n,θ→∞

Wi(θ) = 0 (28)

lim
n,θ→∞

Vi(θ) = K (29)

These conditions are needed to define the firm value when the firm is (in)active.

Conditions (23) and (24) are obtained by observing that if θ ever equals zero, it

always remains at zero, and hence, the firm value is zero. Equation (25) is a value-

matching condition for the investment decision at the i-th entry event: at θ̂i, the

value obtained on entry, Vi(θ) − K, equals the value of the option to invest later,

which is foregone: Wi−1(θ). Equations (26) and (27) capture the standard value-

matching condition; that is, at the i-th entry event, the value of remaining (in)active

does not jump. Conditions (28) and (29) set the boundary conditions when the

market is infinitely large. As the market demand tends toward infinity, the market

tends toward perfect competition: the number of firms in the market is so large that

the value of an active firm tends toward the investment costs, Vi → K, and the

value of an inactive firm, which equals the value of the option to choose the timing

of future investment, reduces to zero.

From condition (23), we see that bi = 0 for all i. Hence, condition (27) yields
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ai = ai−1 for all i. Finally, condition (28) yields limi→∞ ai = 0, and hence, ai = 0 for

all i.

Proof of Lemma 2

From condition (24), we see that Bi = 0 for all i and hence obtain equation (2).

Condition (29) implies that limi→∞Ai = 0. Rearranging condition (26) yields:

Ai = Ai+1 + θ̂−β1+1
i+1

Dn(i+1) −Dn(i)

r − µ (30)

Rearranging Vi(θ̂i+1) = K via (2) yields (3), whereas iterating (30) yields (4).

Entry events are distinct, so n(i) < n(i+1); hence, Dn(i) > Dn(i+1), which implies

that Ai < Ai+1. This, combined with limi→∞Ai = 0, yields Ai ≤ 0 for all i.

Proof of Lemma 3

We first present a set of preliminary lemmas.

Lemma 6
Ai+1

Ai
<
Dn(i+1)

Dn(i)

(31)

Proof Define the θ value at which Si(θ) is maximized as θmax(i). As ∂Si(θ)
∂θ

∣∣∣
θ̂i+1

< 0

and ∂Si+1(θ)
∂θ

∣∣∣
θ̂i+1

> 0, θmax(i) < θmax(i+1).

θmax(i) =

(
− Dn(i)

β1Ai(r − µ)

) 1
β1−1

<

(
− Dn(i+1)

β1Ai+1(r − µ)

) 1
β1−1

= θmax(i+1) (32)

Rearranging, we obtain (31).

Lemma 7
θmax(i)

θmax(i+1)

<
θ̂i

θ̂i+1

(33)

34



Si(θ)

Si+1(θ)

θ
i

θiθ

i θ


i+1 θ


i+2

θ

-K

Si

Figure 3: Graphic representation of the relationships among θi, θ̂i, θ̂i+1, θ̄i+1 and θ̂i+2.

Proof The proof condition (33) is equivalent to proving

Ai+1

Ai

Dn(i)

Dn(i+1)

<

(
θ̂i

θ̂i+1

)β1−1

(34)

θ̂i >

(
Ai+1

Ai

Dn(i)

Dn(i+1)

) 1
β1−1

θ̂i+1 ≡ θi (35)

As Si(θ) is concave, a necessary and sufficient condition for proving the lemma

is that at θ = θi, Si(θ) < 0 and θi < θ̂i+1 (see Fig. 3 for a graphic representation).

From the boundary conditions of Lemma 1, we know that Si(θ̂i+1) = 0 and thus

that Si(θi) < 0 is equivalent to Si(θi) < Si(θ̂i+1); that is,

Aiθ
β1
i +

Dn(i)

r − µθi −K < Aiθ̂
β1
i+1 +

Dn(i)

r − µθ̂i+1 −K

Aiθ
β1−1
i

θi

θ̂i+1

+
Dn(i)

r − µ
θi

θ̂i+1

< Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ

Substituting equation (35), the above relationship is equivalent to:

Ai
Ai+1

Ai
θ̂β1−1
i+1

Dn(i)

Dn(i+1)

θ̂β1−1
i+1

θi

θ̂i+1

+
Dn(i)

r − µ
θi

θ̂i+1

< Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ
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(
Ai+1θ̂

β1−1
i+1

Dn(i)

Dn(i+1)

+
Dn(i)

r − µ

)
θi

θ̂i+1

< Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ(
Ai+1θ̂

β1−1
i+1 +

Dn(i+1)

r − µ

)
θi

θ̂i+1

<
Dn(i+1)

Dn(i)

Aiθ̂
β1−1
i+1 +

Dn(i+1)

r − µ
K

θ̂i+1

θi

θ̂i+1

<
Dn(i+1)

Dn(i)

K

θ̂i+1

θi

θ̂i+1

<
Dn(i+1)

Dn(i)(
Ai+1

Ai

Dn(i)

Dn(i+1)

) 1
β1−1

<
Dn(i+1)

Dn(i)

Ai+1

Ai

Dn(i)

Dn(i+1)

<

(
Dn(i+1)

Dn(i)

)β1−1

Ai+1

Ai
<

(
Dn(i+1)

Dn(i)

)β1
(36)

As β1 > 1, from lemma 6, we know that this is always the case. As Ai+1

Ai

Dn(i)
Dn(i+1)

< 1,

it follows that θi < θ̂i < θ̂i+1; hence, condition (33) holds.

Lemma 8
θ̂i+1

θ̂i+2

<
θmax(i)

θmax(i+1)

(37)

Proof Proving condition (37) is equivalent to proving the following:

(
θ̂i+1

θ̂i+2

)β1−1

<
Ai+1

Ai

Dn(i)

Dn(i+1)

(38)

θ̂i+1 <

(
Ai+1

Ai

Dn(i)

Dn(i+1)

) 1
β1−1

θ̂i+2 ≡ θ̄i+1 (39)

As Si(θ) is concave, a sufficient condition for obtaining θ̂i+1 < θ̄i+1 is that

Si(θ̄i+1) < 0 and dSi(θ)
dθ

∣∣∣
θ=θ̄i+1

< 0 (see Fig. 3 for a graphic representation).

1) Proof that Si(θ̄i+1) < 0.
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From the boundary conditions of lemma 1, we know that Si+1(θ̂i+2) = 0. Thus,

showing that Si(θ̄i+1) < 0 is equivalent to showing that Si(θi+1) < Si+1(θ̂i+2);

that is,

Aiθ̄
β1
i+1 +Dn(i)θ̄i+1 < Ai+1θ̂

β1
i+2 +Dn(i+1)θ̂i+2

Dn(i)
Ai+1

Dn(i+1)

θ̂β1−1
i+2 θ̄i+1 +Dn(i)θ̄i+1 < Ai+1θ̂

β1
i+2 +Dn(i+1)θ̂i+2

Dn(i)
Ai+1

Dn(i+1)

θ̂β1−1
i+2

θ̄i+1

θ̂i+2

+Dn(i)
θ̄i+1

θ̂i+2

< Ai+1θ̂
β1−1
i+2 +Dn(i+1)(

Ai+1θ̂
β1−1
i+2 +Dn(i+1)

) θ̄i+1

θ̂i+2

<
(
Ai+1θ̂

β1−1
i+2 +Dn(i+1)

) Dn(i+1)

Dn(i)

θ̄i+1

θ̂i+2

<
Dn(i+1)

Dn(i)(
Ai+1

Dn(i+1)

Dn(i)

Ai

) 1
β1−1

<
Dn(i+1)

Dn(i)

From equation (36), we know that this is always the case.

2) We prove that dSi(θ)
dθ

∣∣∣
θ=θ̄i+1

≤ 0:

dSi(θ)

dθ

∣∣∣∣
θ=θ̄i+1

= β1Aiθ̄
β1−1
i+1 +Dn(i)

= β1Ai+1

Dn(i)

+Dn(i+1)

(
θ̄i+1

)β1−1
+Dn(i)

This is negative, as Ai+1θ̄
β1−1
i+1 +Dn(i+1) < 0.
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From Lemmas 7 and 8, we can conclude the following:

θ̂i+1

θ̂i
<
θmax(i+1)

θmax(i)

<
θ̂i+2

θ̂i+1

(40)

Proof of Proposition 1

To prove this proposition, we proceed in two steps. First, we find the feasible j

values, and then we find the equilibrium j.

Lemma 9 Given θ̂i+1 and n̂(i + 1), a sufficient condition for j firms to enter at

event i+ 1 is that

θ̂n(i+1)−j,j < θ̂i+1 ⇔ ∂Sn̂(i+1)−j,j(θ|θ̂i+1)

∂θ

∣∣∣∣∣
θ̂i+1

< 0 (41)

Proof of Lemma 9

When j firms enter at entry event i+1 with threshold θ̂i+1, n = n̂(i+1)− j firms

are present after event i. From corollary 1, the incremental value function for a firm

entering at i when j firms enter at the next entry event, Sn,j, is as follows:

Sn̂(i+1)−j,j(θ|θ̂i+1) =
Dn̂(i+1)−j

r − µ θ + An̂(i+1)−j(θ̂i+1)θβ1 −K (42)

where

An̂(i+1)−j(θ̂i+1) =

(
K − Dn̂(i+1)−j

r − µ θ̂i+1

)
θ̂−β1i+1 (43)

= Ai+1 +

(
Dn̂(i+1) −Dn̂(i+1)−j

r − µ

)
θ̂1−β1
i+1 (44)
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Note that Sn̂(i+1)−j,j(θ|θ̂i+1) has the same characteristics as Si(θ) discussed above;

it is a concave function with Sn̂(i+1)−j,j(0) < 0, which crosses the axis at at most two

values of θ, one of which is θ̂i+1. If it crosses twice, then
∂Sn̂(i+1)−j,j

∂θ
≥ 0 at the lower

value of θ, and
∂Sn̂(i+1)−j,j

∂θ
< 0 at the higher.

Lemma 10 If j′ > j, then

∂Sn̂(i+1)−j′,j′

∂θ

∣∣∣∣
θ̂i+1

<
∂Sn̂(i+1)−j,j

∂θ

∣∣∣∣
θ̂i+1

.

Proof
∂Sn̂(i+1)−j′,j′

∂θ

∣∣∣∣
θ̂i+1

=
Dn̂(i+1)−j′

r − µ + β1An̂(i+1)−j′ θ̂
β1−1
i+1

Inserting equation (43) and rearranging yields:

∂Sn̂(i+1)−j′,j′

∂θ

∣∣∣∣
θ̂i+1

=
Dn̂(i+1)−j′

r−µ (1− β1) + β1
K

θ̂i+1

∂Sn̂(i+1)−j′,j′

∂θ

∣∣∣∣
θ̂i+1

<
Dn̂(i+1)−j

r−µ (1− β1) + β1
K

θ̂i+1
=

∂Sn̂(i+1)−j,j
∂θ

∣∣∣
θ̂i+1

as 1− β1 < 0 and Dn̂(i+1)−j′ > Dn̂(i+1)−j.

Given the definition of ĵ(i + 1) as the smallest j s.t.
∂Sn(i+1)−j,j

∂θ

∣∣∣
θ̂i+1

< 0, if

j′ < ĵ(i+ 1), then
∂Sn(i+1)−j′,j′

∂θ

∣∣∣
θ̂i+1

≥ 0, so θ̂n̄(i+1)−j′,j′ = θ̂i+1; i.e., j′ is not feasible. If

j′ > ĵ(i+1), then
∂Sn(i+1)−j′,j′

∂θ

∣∣∣
θ̂i+1

<
∂Sn(i+1)−ĵ(i+1),ĵ(i+1)

∂θ

∣∣∣
θ̂i+1

< 0, so it is worthwhile to

enter at θ̂n(i+1)−j′,j′ if the next entry is at θ̂i+1; i.e., j′ is feasible. However, if the next

entry event will be at θ̂i+1, then it is also worthwhile for other firms to enter at the

higher threshold θ̂n̂(i+1)−ĵ(i+1),ĵ(i+1), which is between θ̂n(i+1)−j′,j′ and θ̂i+1. Therefore,

entry at θ̄n(i+1)−j′,j′ is not credible.

Proof of Theorem 1
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From Proposition 1, ĵ(i+ 1) is the smallest j for which

∂Sn̂(i+1)−j,j

∂θ

∣∣∣∣
θ̂i+1

=
Dn̂(i+1)−j

r − µ (1− β1) + β1
K

θ̂i+1

< 0 (45)

Rearranging and substituting θ0
n̂(i+1)−j = K(µ−r)

Dn̂(i+1)−j
yields (11).

Proof of Theorem 2

ĵ(i+ 1) is defined as the smallest j such that

∂Sn̂(i+1)−j

∂θ

∣∣∣∣
θ̂i+1

< 0 (46)

Using (44), this is equivalent to

(1− β1)Dn̂(i+1)−j + β1Dn̂(i+1) + β1(r − µ)Ai+1θ̂
β1−1
i+1 < 0 (47)

or

Dn̂(i+1)−j

Dn̂(i+1)

>

(
β1

β1 − 1

)(
1 +

(r − µ)Ai+1θ̂
β1−1
i+1

Dn̂(i+1)

)
(48)

Dn̂(i+1)−j >

(
β1

β1 − 1

)
K

θ̂i+1

(49)

We know that
Dn̂(i+1)−j
Dn̂(i+1)

decreases (and is convex) as n increases. Moreover, the right-

hand side increases as θ̂i+1 decreases. Hence, the condition becomes less binding as

i decreases.

Proof of Proposition 2

Note that σ affects the model through β1 and
dβ1

dσ
< 0.
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To prove this proposition, we first prove some intermediate results.

Lemma 11 When
dj(i)

dβ1

= 0,

dθi
dβ1

≤ 0 ⇐⇒ dAi
dβ

+ Ai ln θi ≥ 0 (50)

Proof

From the boundary conditions of lemma 1, we know that:

Aiθ̂
β1
i +Diθ̂1 = K (51)

It follows that

dAi
dβ1

θ̂β1i + β1Aiθ̂
β1−1
i

dθ̂i
dβ1

+ Aiθ̂
β1
i ln θ̂i +Di

dθ̂i
dβ1

= 0

dθ̂i
dβ1

= −

dAi
dβ1

+ Ai ln θ̂i

β1Aiθ̂
β1−1
i +Di

θ̂β1i (52)

The denominator is the slope of Si at θ̂i and hence positive. It follows that:

dθ̂i
dβ1

≤ 0 ⇐⇒ dAi
ddβ1

+ Ai ln θ̂i ≥ 0 (53)

Lemma 12 For real numbers x1 and x2 such that 1 < x1 < x2, we have

lnx1

lnx2

>
x1 − 1

x2 − 1
(54)
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Proof

lim
x2−>x1

lnx1

lnx2

− x1 − 1

x2 − 1
= 0 (55)

d lnx1
lnx2

dx2

= − 1

x2

lnx1

lnx2

(56)

dx1−1
x2−1

dx2

= − 1

x2 − 1

x1 − 1

x2 − 1
(57)

Given the result of (55),

d lnx1
lnx2

dx2

>
dx1−1
x2−1

dx2

∀x2 > x1 ⇐⇒ −
1

x2

>
1

x2 − 1
(58)

This is always the case, as x2 > 1.

Lemma 13 The following holds:

θ̂i+1 − θ̂i
θ̂i

=
θ̂β1−1
i+1 − θ̂β1−1

i

β1θ̂
β1−1
max(i) − θ̂

β1−1
i+1

(59)

Proof From condition (26), we know:

Aiθ̂
β1
i+1 +Diθ̂i+1 = Aiθ̂

β1
i +Diθ̂i

θ̂i+1

θ̂i

(
Ai
Di

θ̂β1−1
i+1 + 1

)
=
Ai
Di

θ̂β1−1
i + 1

θ̂i+1

θ̂i

(
− θ̂β1−1

i+1

θ̂max(i)

+ β1

)
= − θ̂β1−1

i

θ̂max(i)

+ β1

θ̂i+1

θ̂i
=
β1θ̂max(i) − θ̂β1−1

i

β1θ̂max(i) − θ̂β1−1
i+1

θ̂i+1

θ̂i
− 1 =

β1θ̂max(i) − θ̂β1−1
i

β1θ̂max(i) − θ̂β1−1
i+1

− 1
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(60)

Equation (59) follows.

Lemma 14 Keeping j(i) constant, if β ≥ 2 and
dθ̂(i+1)

dβ1

≤ 0, then
dθ̂i
dβ1

< 0.

Proof From lemma 11, we know that
dθ̂i
dβ1

< 0 iff
dAi
dβ1

+ Ai ln θ̂i ≥ 0.

From equation (3), we can obtain:

dAi
dβ1

=
dAi+1

dβ1

+ (Di −Di+1) (β1 − 1) θ̂−β1i+1

dθ̂i+1

dβ1

+ (Di −Di+1) θ̂
−(β1−1)
i+1 ln θ̂i+1 + Ai ln θ̂i

=
dAi+1

dβ1

+ (Di −Di+1) (β1 − 1) θ̂−β1i+1

dθ̂i+1

dβ1

+ (Di −Di+1) θ̂
−(β1−1)
i+1 ln θ̂i+1 + Ai ln θ̂i

+ Ai+1 ln θ̂i+1 − Ai+1 ln θ̂i+1

=
dAi+1

dβ1

+ Ai+1 ln θ̂i+1 − Ai ln θ̂i+1 + Ai ln θ̂i + (Di −Di+1) (β1 − 1) θ̂−β1i+1

dθ̂i+1

dβ1

=
dAi+1

dβ1

+ Ai+1 ln θ̂i+1 − Ai ln
θ̂i+1

θ̂i
+ (Di −Di+1) (β1 − 1) θ̂−β1i+1

dθ̂i+1

dβ1

Using equation (52), we substitute
dθ̂i+1

dβ1

and obtain:

=− Ai ln
θ̂i+1

θ̂i
+

dAi+1

dβ1

+ Ai+1 ln θ̂i+1

β1Ai+1θ̂
β1−1
i+1 +Di+1

θ̂β1i+1

(
β1Ai+1θ̂

β1−1
i+1 +Di+1 − β1Di +Di + β1Di+1 −Di+1

)

=− Ai ln
θ̂i+1

θ̂i
+

dAi+1

dβ1

+ Ai+1 ln θ̂i+1

β1Ai+1θ̂
β1−1
i+1 +Di+1

θ̂β1i+1

(
β1

K

θ̂i+1

−Di (β1 − 1)

)

=− Ai ln
θ̂i+1

θ̂i
+

dAi+1

dβ1

+ Ai+1 ln θ̂i+1

β1Ai+1θ̂
β1−1
i+1 +Di+1

θ̂β1i+1

(
β1Aiθ̂i+1 +Di

)
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=− Ai ln
θ̂i+1

θ̂i
− Ai+1 ln

θ̂i+2

θ̂i+1

β1Aiθ̂
β−1
i+1 +Di

β1Ai+1θ̂
β−1
i+1 +Di+1

+

(
dAi+2

dβ1

+ Ai+2 ln θ̂i+2

)
β1Ai+1θ̂

β1−1
i+2 +Di+1

β1Ai+2θ̂
β1−1
i+2 +Di+2

β1Aiθ̂
β1−1
i+1 +Di

β1Ai+1θ̂
β1−1
i+1 +Di+1

If
dθ̂i+2

dβ1

< 0, the last part is always positive. A sufficient condition for
dθ̂i
dβ1

< 0 is

therefore:

−Ai ln
θ̂i+1

θ̂i
− Ai+1 ln

θ̂i+2

θ̂i+1

β1Aiθ̂
β−1
i+1 +Di

β1Ai+1θ̂
β−1
i+1 +Di+1

≥ 0

ln
θ̂i+1

θ̂i
≥ −Ai+1

Ai

β1Aiθ̂
β−1
i+1 +Di

β1Ai+1θ̂
β−1
i+1 +Di+1

ln
θ̂i+2

θ̂i+1

ln
θ̂i+1

θ̂i

/
ln
θ̂i+2

θ̂i+1

≥
θ̂β−1
i+1 − θβ−1

max(i)

θβ−1
max(i+1) − θ̂

β−1
i+1

(61)

From lemma 3, we know that 1 < θ̂i+1

θ̂i
< θ̂i+2

θ̂i+1
. From lemma 12, we know that:

ln
θ̂i+1

θ̂i

/
ln
θ̂i+2

θ̂i+1

>
θ̂i+1 − θ̂i

θ̂i

/
θ̂i+2 − θ̂i+1

θ̂i+1

(62)

Hence, a sufficient condition for equation (61) is as follows:

θ̂i+1 − θ̂i
θ̂i

≥
θ̂β−1
i+1 − θβ−1

max(i)

θβ−1
max(i+1) − θ̂

β−1
i+1

θ̂i+2 − θ̂i+1

θ̂i+1

(63)

Applying Lemma 13, the above relationship is equivalent to:

θ̂β1−1
i+1 − θ̂β1−1

i

β1θ̂
β1−1
max(i) − θ̂

β1−1
i+1

≥
θ̂β−1
i+1 − θβ−1

max(i)

θβ−1
max(i+1) − θ̂

β−1
i+1

θ̂β1−1
i+2 − θ̂β1−1

i+1

β1θ̂
β1−1
max(i+1) − θ̂

β1−1
i+2
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θ̂β1−1
i+1 − θ̂β1−1

i

θ̂β−1
i+1 − θβ−1

max(i)

≥ θ̂β1−1
i+2 − θ̂β1−1

i+1

θβ−1
max(i+1) − θ̂

β−1
i+1

β1θ̂
β1−1
max(i) − θ̂

β1−1
i+1

β1θ̂
β1−1
max(i+1) − θ̂

β1−1
i+2

(64)

If β = 2, Si, θ
β−1
max(i+1) − θ̂

β−1
i+1 = θ̂β−1

i+2 − θβ−1
max(i+1). If β > 2, Si is skewed to the right,

and θβ−1
max(i+1) − θ̂

β−1
i+1 > θ̂β−1

i+2 − θβ−1
max(i+1). Hence, the left-hand side of equation 64 is

greater than 2, the first part of the right-hand side is smaller than 1
2
, and the second

part is smaller than 1. Hence, the above relationship is always true for β ≥ 2.

As limi→∞
dθ̂(i+1)

dβ1

= 0, from Lemma 14, it follows that
dθ̂(i)

dβ1

< 0 when β1 ≥ 2.

Proof of Proposition 3

The number of firms that enter at i+ 1 is the smallest j such that:

∂Sn(i+1)−j,j(θ|θ̂i+1)

∂θ

∣∣∣∣∣
θ̂i+1

= β1Ai+1θ̂
β1−1
i+1 − β1

Dn(i,j) −Dn(i+1)

r − µ +
Dn(i,j)

r − µ < 0 (65)

We also know that if j(i+ 1) increases, j(i) cannot decrease; i.e., it can increase

or remain constant. Hence, it is sufficient to show that j(i) remains constant or

increases while keeping j(i+ 1) constant, that is, keeping D(i+ 1) constant.

j weakly increases as σ increases, and if j is constant, then
∂
∂Sn(i+1),j(θ)

∂θ

∂β1
< 0; that

is:
∂
∂Sn(i+1),j(θ)

∂θ

∂β1

= β1

dAi+1θ̂
β1−1
i+1

dβ1

+ Ai+1θ̂
β1−1
i+1 −

Dn(i+1−j) −Dn(i+1)

r − µ < 0 (66)

A sufficient condition for satisfying condition (66) is that:

β1

dAi+1θ̂
β1−1
i+1

dβ1

+ Ai+1θ̂
β1−1
i+1 ≤ 0 (67)

Lemma 15 If

β1

dAi+1θ̂
β1−1
(i+2)

dβ1

+ Ai+1θ̂
β1−1
(i+2) ≤ 0, (68)
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β1

dAi+1θ̂
β1−1
i+1

dβ1

+ Ai+1θ̂
β1−1
i+1 ≤ 0. (69)

Proof
dAi+1θ

β1−1

dβ1

=
dAi+1

dβ1

θβ1−1 + Ai+1θ
β1−1 ln θ (70)

As θ increases, the above derivative decreases. It goes to +∞ for θ → 0 and goes to

−∞ as θ →∞.

Finally, note that i→∞, Ai+1θ̂
β1−1
i+1 →∞ for dj(i)

dβ
≥ 0.

Proof of Lemma 4

From condition (49), we know that the optimal number of firms entering at i+ 1

is the smallest j that satisfies the following condition:

Dn̂(i+1)−j

Dn̂(i+1)

>
β1

β1 − 1

K

Dn̂(i+1)θ̂i+1

(71)

lim
n→∞

K

Dn̂(i+1)θ̂i+1

= 1 (72)

lim
n→∞

(n+ a− 1)b

(n+ a)b
>

β1

β1 − 1
(73)

This is always the case. From Theorem 2, we know that the cluster size is weakly

larger for later entry events. Hence, in this case, firms always enter individually.

Proof of Lemma 5

From corollary 1, we know that Si(θ̂i) = Si(θ̂i+1) = 0.
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Lemma 16 Given j(i+ 1) and θ̂i+1,

θ̂i =
Dn(i)

Dn(i+1)

θ̂i+1 (74)

= e−j(i+1)θ̂i+1 (75)

Dn(i+1)

r − µ θ̂i+1 =
Dn(i)

r − µθ̂i (76)

Aiθ
β1−1
i = Ai+1θ

β1−1
i+1 (77)

Proof To prove this lemma, we check whether θ̂i = e−ĵ(i+1)θ̂i+1 is the solution of

our system. Given the functional form of Dn, we have:

Dn(i+1) = be−n−j(i+1) = Dn(i)e
−j(i+1) (78)

Dn(i+1)

r − µ θ̂i+1 =
Dn(i)

r − µe
−j(i+1)θ̂i+1 (79)

=
Dn(i)

r − µe
−j(i+1)θ̂ie

j(i+1) (80)

=
Dn(i)

r − µθ̂i (81)

From equation (25), we know that:

Aiθ̂
β1
i +

Dn(i)

r − µθ̂i =Ai+1θ̂
β1
i+1 +

Dn(i+1)

r − µ θ̂i+1 (82)

Aiθ̂
β1
i =Ai+1θ̂

β1
i+1 (83)

Ai+1 = Ai

(
θ̂i

θ̂i+1

)β1

= Aie
−j(i+1)β1 (84)

The final step is to check that for θ̂i = e−j(i+1)θ̂i+1, condition (26) holds. Thus far,
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we know that

Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ = Ai+1θ̂
β1−1
i+1 +

Dn(i+1)

r − µ (85)

Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ = Ai
θ̂β1i

θ̂β1i+1

θ̂β1−1
i+1 +

Dn(i+1)

r − µ (86)

Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ = Ai
θ̂β1i

θ̂β1i+1

θ̂β1−1
i+1 +

Dn(i+1)

r − µ (87)

Aiθ̂
β1
i+1 +

Dn(i)

r − µθ̂i+1 = Aiθ̂
β1
i +

Dn(i)

r − µe
−j(i+1)θ̂i+1 (88)

Aiθ̂
β1
i +

Dn(i)

r − µθ̂i = Aiθ̂
β1
i +

Dn(i)

r − µe
−j(i+1)θ̂i+1 (89)

Dn(i)

r − µθ̂i =
Dn(i)

r − µe
−j(i+1)θ̂i+1 (90)

θ̂i = e−j(i+1)θ̂i+1 (91)

Lemma 17 When Dn(i) = e−n(i), j(i) is constant for every i and is the smallest

integer such that:

ej >
β1

β1 − 1
(92)

Proof From Lemma 2, we know that j(i) ≤ j(i + 1). Therefore, to prove the

lemma, it is sufficient to show that if j(i) < j(i+ 1), then condition (10) holds.

Given equations (84) and (79), condition (10) can be written as:

β1Aiθ̂
β1−1
i+1 +

Dn(i)

r − µ (93)

ej(i+1)

(
β1Ai+1θ̂

β1−1
i+2 +

Dn(i+1)

r − µ

)
< 0 (94)

The second part of equation (94) is the condition (10) of event (i + 2). Therefore,
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the above condition is negative for the same condition, and hence, j is the same as

in the i+ 2 case.

To compute how many firms enter at each event, we check what happens as the

number of firms tends toward infinity. We know that condition (10) can be written

as:

Dn(i) >
β1

β1 − 1

(
Dn(i+1) + Ai+1θ

β1−1
i+1

)
(95)

lim
n−>∞

A1θ
β1−1
i+1 = 0 (96)

lim
n−>∞

Dn(i+1)e
j(i+1) >

β1

β1 − 1

(
Dn(i+1)

)
(97)

Hence, j is the smallest integer such that:

ej >
β1

β1 − 1
(98)

It follows that θ̂i = en(i), and from equation (4), we have:

Ai =
∞∑

n(i)=0

−e−n(i)+e−n(i)−j

r − µ
(
en(i)+j

)−β1+1
(99)

=
∞∑

n(i)=0

−e−n(i) (1− e−j)
r − µ e(n(i)+j)(−β1+1) (100)

=
∞∑

n(i)=0

−(1− e−j)
r − µ e−β1(n(i)+j) (101)

= −1− e−j
r − µ

∞∑
n(i)=0

e−β1(n(i)+j) (102)
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= −1− e−j
r − µ e−β1j

∞∑
n(i)=0

e−β1n(i) (103)

When β1 ≥ 1 and n ≥ 1, e−β1n(i) ≤ 1; hence, the sum of the geometric series

converges, and we can write:

Ai = − 1− e−j
1− e−β1n(i)

e−β1j

r − µ (104)

=
(1− ej)

(1− eβ1n)

eβ1(n−j)

(r − µ)
(105)
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