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Abstract

Discontinuities in regression functions can reveal important insights. In

many contexts, like geographic settings, such discontinuities are multivariate

and unknown a priori. We propose a non-parametric regression method that

also estimates the location and size of discontinuities by segmenting the regres-

sion surface. In contrast to thresholding approaches, which are well-known to

misclassify discontinuities in settings with noise, we prove identification of and

convergence to the true location and size of the discontinuities for the proposed

method. We use the estimator to show that an internet shutdown in India

resulted in a reduction of economic activity by 25–35%, greatly surpassing pre-

vious estimates and shedding new light on the true cost of such shutdowns for

digital economies globally.
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1 Introduction

In many settings of interest, discontinuous changes in regression surfaces can reveal

fundamental insights into the underlying problem structure. In such cases, the loca-

tion and size of these discontinuities are fundamentally unknown to the researcher.

Often, these discontinuities are functions of many variables. Examples include, but

are not limited to, discontinuities induced by confidential or proprietary treatment

algorithms such as loan or financial aid disbursement (Argyle et al., 2020; Carneiro

et al., 2019), school admissions (Brunner et al., 2021), customer segmentation for

marketing (Kuo et al., 2002; Hartmann et al., 2011), or the bandit algorithms that

are used widely in the recommendation systems of tech companies (Li et al., 2010;

Narita et al., 2023); by tipping points (Lamberson and Page, 2012) in racial segre-

gation (Card et al., 2008), hospital stress (Kuntz et al., 2015), and complex systems

such as the climate (Scheffer et al., 2009) or financial markets (Hansen, 2017); as well

as geographic discontinuities induced by, for example, neighborhood-based segrega-

tion (Caetano and Maheshri, 2017), broadcast signal penetration (Sonin and Wright,

2022; Kern and Hainmueller, 2009; Olken, 2009) or epidemic spread (Ambrus et al.,

2020).

This article introduces a disciplined statistical method that estimates a regression

surface together with the location as well as the size of the discontinuities if they

exist. It does so by estimating and segmenting the regression surface into smooth

and discontinuous parts. Crucially, it does not require pointwise smoothness assump-

tions on the shape of the discontinuity set. For this approach, neither the location

nor the size of the discontinuity set need to be known a priori. In particular, the

segmentation is what sets this approach apart from other estimation procedures like

wavelet estimation or thresholding approaches. The segmentation not only provides

an approximation to the true regression, but does so while explicitly estimating the

location and size of the discontinuities, balancing smoothing and thresholding.

To this end, we cast ideas from the theory of free discontinuity problems (e.g.

Ambrosio et al., 2000) and computer vision, in particular the Mumford-Shah (MS)

functional (Mumford and Shah, 1989), in a statistical setting. The MS functional

was developed in the image processing literature to segment images into smooth and

discontinuous parts. As such, the functional addresses the shortcomings of more
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simplistic edge detection (gradient thresholding) (Canny, 1986) or “active contours”

approaches (Kass et al., 1988). It does so by jointly segmenting and denoising the im-

age, while using global information to incorporate spatial regularity into the segmen-

tation and avoid the spurious artifacts often generated by these simpler thresholding

methods (Chan and Shen, 2005, Ch. 7.2). Indeed, in the presence of noise, a simple

thresholding approach will almost surely mis-classify the discontinuities (Chan and

Shen, 2005, §7.2.1), which leads to severely biased estimates in a statistical setting.

Thus, such an approach would always require a pre-processing step to smooth out

noise. This is rather difficult, as one needs to pick the “correct” amount of smoothing

in finite samples. By contrast, the proposed estimates and segments the regression

surface in one step, which is more amenable to statistical analysis. For empirical re-

sults illustrating the superior performance of the MS functional compared to simpler

edge detection or denoising methods, see e.g. Wang et al. (2012); Chan and Vese

(2001); Lucas et al. (2022); Strekalovskiy et al. (2012).

The MS functional is not convex, so its critical points need not be global optima.

This poses a threat to the reproducibility of estimates of economic interest. To

circumvent this, we convexify the MS functional using the method of calibrations

(Alberti et al., 2003), which lifts the problem to a higher-dimensional space. This

convex relaxation provides global solutions and is efficiently implementable via a

primal-dual algorithm (Chambolle and Pock, 2011). It has been successfully applied

in a variety of settings in image recognition and computer vision (Pock et al., 2009,

2010), see Vogt et al. (2020) for a recent overview.

We extend this convexification of the MS functional to a statistical setting where

both the location as well as the outcome values of observations are random, which

we call the “Free Discontinuity Regression” (FDR) estimator. We define an empirical

estimator for this setting and provide identification as well as convergence results

in any dimension. These complement and extend recent mathematical results for

discrete approximations of the classical non-convex MS functional (Caroccia et al.,

2020; Ruf, 2019; Morini, 2002; Richardson, 1992) and related functionals (Chambolle

and Pock, 2021; Garćıa Trillos and Slepčev, 2016; Garćıa Trillos and Murray, 2017;

Hütter and Rigollet, 2016; Hu et al., 2022).

The resulting estimator is illustrated for simulated examples in 1D to 3D in Figure
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1. The figure shows the true underlying functions and randomly sampled, noisy point

clouds together with our resulting estimated functions and jump locations. In all

examples, our method accurately reproduces the true function and jump set. We

discuss these examples in more depth in Section 3.4 below.

We apply the proposed method to estimate the economic effects of an internet

shutdown in the state of Rajasthan in 2021. This one-day shutdown was implemented

across the state to prevent cheating on a state exam. The shutdown was induced di-

rectly at the device level, which leads to sharp discontinuities in the observed internet

connection signal. Its arbitrary nature provides a setting for estimating the effects of

internet shutdowns on economic activity. To proxy for economic activity, we estimate

anonymized mobile activity around economic points of interest like amenities, shops,

and offices. For that, we rely on the cached location data that mobile apps with

background location permissions collect from satellite data so that we can observe

limited mobile activity even inside the shutdown region. Along the boundary of the

shutdown region, we estimate effects that suggest a 25–35% reduction in economic

activity, greatly exceeding previous estimates. These results highlight the asymmetry

between internet expansion and internet shutdowns and call attention to the critical

importance of a reliable digital communications infrastructure in modern economies.

The proposed method is most closely related to change point detection literature.

Generally, existing detection methods have focused on estimating the location of

the unknown discontinuities and are less concerned with estimating jump sizes (e.g.

Page, 1954; Killick et al., 2012; Porter and Yu, 2015; Donoho and Johnstone, 1994;

Harchaoui et al., 2008). The estimation of structural breaks in time series is a well-

developed research area (Andrews, 1993; Bai and Perron, 2003; Delgado and Hidalgo,

2000), which has largely focused on functions with time as an input variable.

Recent papers have proposed extensions to functions on a multivariate domain,

under various assumptions. Park (2022) and Herlands et al. (2019) model the re-

gression surface using Gaussian processes; Zhu et al. (2014) consider a spatially vary-

ing coefficient model with jumps discontinuities without explicitly estimating those

discontinuities. Madrid Padilla et al. (2022) propose a functional binary seeded seg-

mentation algorithm for change point detection in multivariate domains but do not

estimate the regression function. Herlands et al. (2018) take a data-mining approach
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Figure 1: Simulations: 1D to 3D

Notes: figures depict, for 1D–3D; the true underlying function without noise, the random point
cloud with Gaussian noise (σ = 0.05), the estimated response function û and the estimated boundary
locations. 1D case also includes red shaded 95% confidence bands estimated by subsampling with
an estimated rate of convergence (Politis et al., 1999), and red dots below the plot to indicate jump
sizes that are different from 0 at 95% level. Hyperparameters for 1D, 2D chosen by SURE. Details:
1D jump sizes: 0.1286, 0.2133, 0.3192, -0.4220 (d = 0.2823, 0.4682, 0.7005,−0.9262), n=5,000, λ =
98.6712, ν = 0.0001. 2D jump size α = 0.1126 (d = 0.75), n=10,000; λ = 48.3921, ν = 0.0012 ; 3D
jump size α = 0.0738 (d = 0.5), n=50,000; λ = 10, ν = 0.008.
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to search for discontinuities in units’ treatment status in any dimension, but require

the treatment status to be observed, and do not establish the statistical consistency of

their algorithm. Several papers in economics have also proposed estimators for mul-

tivariate discontinuities when their location is known (Cheng, 2023; Narita and Yata,

2021; Abdulkadiroğlu et al., 2022; Cattaneo and Titiunik, 2022; Keele and Titiunik,

2015).

A more classical literature deals with estimating regression surfaces with jumps

(Qiu and Yandell, 1997; Korostelev and Tsybakov, 1993; O’Sullivan and Qian, 1994;

Muller and Song, 1994; Donoho, 1999; Li and Ghosal, 2017; Qiu, 1998). These papers

analyze multidimensional jump estimation under specific assumptions on the under-

lying process, such as that the number of partitions of the domain is known, or that

the domain is of a specific dimension (generally d ≤ 3). Finally, the “fused lasso”

literature deals with approximating piecewise constant functions on potentially mul-

tivariate domains by imposing sparsity of both the coefficients and their differences

in a high-dimensional means problem (Tibshirani et al., 2005; Rinaldo, 2009; Har-

chaoui and Lévy-Leduc, 2010). Our approach focuses on segmentation and estimates

both the jump locations and size under no additional smoothness assumptions on the

discontinuity set.

2 Free Discontinuity Regression

In this section, we introduce the regression framework and the statistical estimator

for our method. All mathematical notation is explained in Appendix A.

2.1 Regression framework

We assume we have n randomly sampled units indexed by i = 1, 2, . . . , n for which

we observe a potentially multivariate regressor Xi ∈ Rd, and an outcome of interest

Yi ∈ R. The regression model is

(1) Yi = f(Xi) + εi, E[εi|Xi] = 0,

where the εi are standard independent and identically distributed unobservable error

terms.
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Our goal is to estimate the regression surface f(x) including the location and jump

sizes of the discontinuity set Sf of f . Since the regressors can be multivariate, we

need to extend the notion of a univariate discontinuity to a multivariate setting; the

following definition (e.g. Ambrosio et al., 2000, Definition 3.67) provides this.

Definition 1 (Approximate jump points). Let u be locally integrable on X , that is

u ∈ L1
loc (PX), where PX denotes the law of X. We say that a point x ∈ X is an

approximate jump point of u if there exist constants a, b ∈ R and an orientation

ρ ∈ Sd−1 such that a ̸= b and

(2) lim
ε↓0

∫
B+

ε (x,ρ)
|u(x′)− a| dPX(x

′)

PX(B+
ε (x, ρ))

= 0, lim
ε↓0

∫
B−

ε (x′,ρ)
|u(x′)− b| dPX(x

′)

PX(B−
ε (x

′, ρ))
= 0,

where {
B+

ε (x, ρ) := {x′ ∈ Bε(x) : ⟨x′ − x, ρ⟩ > 0}
B−

ε (x, ρ) := {x′ ∈ Bε(x) : ⟨x′ − x, ρ⟩ < 0}

denote the two half balls, oriented by ρ, contained in the ε-ball Bε(x), and Sd−1 is the

unit sphere in Rd. The triplet (a, b, ρ), uniquely determined by (2) up to a permutation

of (a, b) and a change of sign of ρ, is denoted by (u+(x), u−(x), ρu(x)); with u+, u−

called the traces of u. The approximate discontinuity set contains all approximate

jump points and is denoted by Su.

In this definition, the univariate idea of approaching a function from the “left” or

“right” is generalized by means of an orientation ρ which is aligned with the boundary

and which orients two epsilon half-balls according to the angle between the balls and

the boundary, as illustrated in Figure 3.

Sf
xBε(x)

−

Bε(x)
+

ε
ρ

Figure 3: Discontinuity Set Sf for a Function f
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2.2 FDR as an estimator based on the Mumford-Shah Functional

We now introduce the statistical estimator. Recall that the idea is to estimate the

entire regression surface f(x) = E[Yi|Xi = x] including the location and size of the dis-

continuities, if they exist. For this, standard smoothing and thresholding approaches

are not well-suited for several reasons. First, smoothing approaches to not estimate

the size or location of the discontinuity, they simply provide an approximation to the

regression surface that preserves discontinuities as they would smooth over discon-

tinuities. Second, they yield downward-biased jump sizes in practice (e.g. Caroccia

et al., 2020, Fig. 7.1f). Third, simple thresholding approaches that estimate jump

locations by considering the steepness of the gradient are known to almost surely mis-

classify discontinuities, which leading to severely biased estimates (Chan and Shen,

2005). The MS functional approach circumvents these issues.

2.2.1 The Mumford-Shah Functional

The proposed estimator is based on the MS functional (Mumford and Shah, 1989).

Throughout, we assume that the random variable X has a density fX . Under this

assumption, the MS functional takes the following form:

(3)

E(u) = λ

∫
X
(f(x)− u(x))2fX(x) dx︸ ︷︷ ︸

Regression

+

∫
X\Su

|∇u(x)|2fX(x) dx︸ ︷︷ ︸
Roughness penalty

away from discontinuity

+ νH d−1 (Su)︸ ︷︷ ︸
Discontinuity regularity

penalty

,

which consists of three terms: 1) a non-parametric regression term, which minimizes

the mean-squared error between the true function f and its approximation u; 2)

a “roughness penalty”, which penalizes the size gradient of the estimated function

u away from the discontinuity set Su; 3) a “boundary regularity penalty”, which

penalizes the “size”, more formally the (d−1)-dimensional Hausdorff measure H d−1,

of the discontinuity set. The parameters λ, ν ≥ 0 control the smoothness of u and the

expressiveness of the boundary Su. The weight on the gradient term is normalized to

1; | · |2 denotes the squared Euclidean norm in Rd.
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2.2.2 Convexification Through Calibrations

The MS functional (3) is non-convex due to the inclusion of the second penalty term.

This is a threat to consistent estimation of the regression function, as minimization

routines need not converge to global optima. In practice, this expresses itself by

artifacts, meaning spuriously estimated boundaries and discontinuities (Brown et al.,

2012, Fig. 4-5; Pock et al., 2009, Fig. 5). A common approach for non-convex

objective functions is to re-estimate the model many times for various initializations

of the solution and pick the solution that delivers the smallest objective function or

some other goodness of fit measure. Apart from being computationally intensive,

such an approach is likely to fail for functional minimands or real-valued vectorial

minimands with dimension larger than 1, as then the set of potential initializations

is too large.

To circumvent this, we rely on the method of calibrations introduced in Alberti

et al. (2003) to convexify the MS functional. The idea is to lift the problem to a higher

dimension by considering the graph Γf of f and finding a vector field p : Rd+1 → Rd+1

on the lifted space which maximizes the flux through the graph.

Formally, the convex relaxation in our setting reads

E(u) = sup
p∈K

∫
X×R

p ·D1u

with a convex set

K =
{
p ∈ C0

(
X × R,Rd+1

)
:

pt(x, t) ≥ |px(x, t)|2

4fX(x)
− λfX(x)(t− f(x))2,

∣∣∣∣∫ t2

t1

px(x, s)ds

∣∣∣∣ ≤ ν, ∀t1, t2 ∈ R
}
.

The derivation is similar to the derivation of the calibration under Lebesgue measure

in Alberti et al. (2003) and is therefore omitted.

Here, t indexes the lifted dimension, 1u(x, t) is the indicator function of the sub-

graph of u(x), which is 1 if t < u(x) and 0 otherwise; D1u := (D11u, . . . , Dd+11u)

is a (d + 1)-dimensional Radon measure, C0

(
X × R,Rd+1

)
denotes the space of all

continuous functions from X ×R to Rd+1 that vanish at infinity, and p ·D1u denotes

the scalar product. px(x, t) denotes the first d dimensions of the vector p indexed by
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x and pt(x, t) denotes the last dimension.

Although the objective function is now convex, the set of indicator functions of

subgraphs of u over which we optimize is not. To make the problem fully convex, we

follow Pock et al. (2009) and further relax the problem by optimizing over general

functions mapping to the unit interval

v(x, t) ∈ C :=

{
v ∈ SBV (X × R, [0, 1]) : lim

t→−∞
v(x, t) = 1, lim

t→+∞
v(x, t) = 0

}
.

Here, SBV (X ×R, [0, 1]) denotes the space of special functions of bounded variation

on X × R mapping to the unit interval.

The class of functions of bounded variation is large and in particular includes

functions with discontinuities, which makes it well-suited for the purpose of estimating

regressions surfaces with discontinuities. With these definitions, we can state the

following optimization problem, which we define as the Free Discontinuity Regression

estimator.

Definition 2. The Free Discontinuity Regression estimator is the 0.5-level set of the

optimizer v∗ of the optimization problem

(4) inf
v∈C

E(v) := inf
v∈C

sup
p∈K

⟨p,Dv⟩ ≡ inf
v∈C

sup
p∈K

∫
X×R

p ·Dv.

The optimization problem (4) is well-behaved in the sense that it is a convex

problem; moreover, we now show that it always admits a solution v∗ if we assume

that |Dv| ≤ c for some c, i.e. that we only consider bounded variation functions.

This assumption is weak as v is an approximation of an indicator function, which by

definition has a variation of 1, see also the discussion below after Theorem 2.

Proposition 1. The optimization problem (4) admits a global solution v∗ in SBV (X×
R) ∩ {v : |Dv| ≤ c} for fixed c < +∞ if f ∈ SBV (X ).

The solution obtained will be a general function v that need not take the form of

an indicator function, although we prove below that it will, in a certain topology, do

so as λ → +∞ (Theorem 1).

We also observe in practice that, at least for the hyperparameters selected by

our automatic method introduced below—which usually sets λ large—the solution
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obtained is an indicator function. To obtain the underlying function u, we follow

Pock et al. (2009) and threshold v at the 0.5-level set. The choice of 0.5 is arbitrary

insofar as, if v is indeed an indicator function, we can use any value t ∈ (0, 1) to

threshold it; choosing the midpoint is natural in cases where the solution is not

exactly equal to an indicator function.

3 Statistical Properties

In this section, we provide mathematical and statistical properties of the optimization

problem (4). We only state the results and defer all proofs to Appendix B. First, we

show that for fixed ν > 0 and in the limit as λ → +∞ the solution to (4) picks out the

correct discontinuity set and jump sizes, under mild assumptions. Then we introduce

the empirical analogue of our population estimator in (4) and prove consistency as

the number of data points grows, in terms of Γ-convergence (Dal Maso, 2012) of the

functional defined by our estimator.

We also introduce a disciplined way to choose the tuning parameters λ, ν in prac-

tice based on Stein’s unbiased risk estimate (SURE). Finally, while the focus of this

article is on estimation, we quantify uncertainty in our setting by using a standard

subsampling routine (Politis et al., 1999) including an estimation of the rate of conver-

gence; this approach is often costly in terms of computational and data requirements,

especially in higher dimensions. Therefore, we also provide uncertainty quantifica-

tion via split conformal inference (Lei et al., 2018) which provides rather conservative

confidence intervals but is efficiently implementable in high dimensions. Theoretical

inference results for the proposed estimator are beyond the scope of this article: the

space of functions of bounded variations we consider implies a curse of dimensionality

even for significantly simpler estimators than ours (Hu et al., 2022) without strong

regularity restrictions on the shape of the discontinuity set, which is what we want

to explicitly avoid in this paper.

3.1 Identification of the Discontinuity Sets and Jump Sizes

By definition, the proposed functional provides a regularized approximation to the

true function f , even in the population. We now provide an identification result,

10



under mild regularity assumptions.

This result in particular implies that for fixed ν > 0 and as λ → +∞, the

solution to (4) picks out the correct discontinuity set as well as the correct jump

sizes. It complements fundamental results (Richardson, 1992; Morini, 2002) from

the free discontinuity literature that prove convergence of the estimated discontinuity

set via the classical Mumford-Shah problem towards the true discontinuity set. Our

proposed result is stronger as it guarantees not just convergence towards the correct

discontinuity set but also the corresponding jump sizes.

We require the following assumptions, which are the same as in Richardson (1992).

In the following, Sf denotes the discontinuity set of f , which includes the jump set

Jf and coincides with it H d−1-almost everywhere by the Federer-Vol’pert theorem

(Ambrosio et al., 2000, Theorem 3.78).

Assumption 1. The density fX is bounded above and below everywhere on its support

X , i.e. there is some 0 < k < +∞ such that 1
k
≤ fX(x) ≤ k for all x ∈ X . Further,

f ∈ SBV (X ) and there is a constant c > 0 such that |f(x)| ≤ c for Ld-almost every

x ∈ X . Moreover,
∫
X |∇f |2 dx+ H d−1(Sf ) < +∞.

Assumption 2. For any x ∈ Sf it holds H d−1 (Sf ∩Bρ(x)) > 0 for all ρ > 0.

Moreover, for any set A ⊂ X with dist(A, Sf ) > 0 there exists a constant L > 0 such

that |f(x)− f(y)| ≤ L|x− y| for any x, y ∈ A.

Assumption 1 includes standard boundedness assumptions of the functions. The

bound on f also puts a bound on the jump sizes of f . Assumption 2 imposes some

regularity on f away from and at the discontinuity set. The first part intuitively

implies that the graph discontinuity set is connected when measured with H d−1

on X ; in a 2-dimensional setting it implies that Sf does not have isolated points.

Importantly, it directly implies that H d−1((X ∩ S̄f ) \ Sf ) = 0; in words, it implies

that the closure S̄f coincides with Sf H d−1-almost everywhere (e.g. Ambrosio et al.,

2000, p. 337). Both parts are the same as the assumptions in Richardson (1992).

Theorem 1. Let Assumptions 1 and 2 hold. Then for fixed ν > 0 and in the limit as

λ → +∞ every sequence of solutions v∗(λ) to (4) satisfies limλ→+∞ ∇v∗(λ) = 0 Ld+1-

almost everywhere. Moreover, the jump set Jv∗(λ) converges in Hausdorff distance
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dH to the graph Γf , i.e.

lim
λ→+∞

dH (Jv∗(λ),Γf ) = 0.

In the statement, λ has to always diverge “fast enough”, meaning that for any

sequence {rn} converging to 0, we always pick a sequence {λn} such that λnrn → +∞.

This is not a restriction as we can set λ as large as we want. In practice, this means

that λ will in general need to be set large to identify the correct jump sizes, especially

in comparison to ν. This is exactly what our hyperparameter selection procedure

finds: λ is consistently set many orders of magnitude larger than ν, and the estimated

jump set and jump sizes converge to the truth as N grows large. We now turn to the

practical implementation and the corresponding estimator.

3.2 The Empirical Estimator and Convergence

In the following, we assume that we observe a random sample of independent and

identically distributed points {Xi, Yi}i=1,...,n from the joint distribution PY,X . More-

over, we assume that εi are independent and identically distributed draws from an

idiosyncratic error term ε.

Assumption 3. Let (Ω,A, P ) be a probability space and let (X, Y ) : Ω → Rd×R, and
ε : Ω → R be random variables with E [ε|X] = 0. Furthermore, let (Xi, Yi, εi)i=1,...,n

be independent and identically distributed copies of (X, Y, ε).

The random locations of the draws are the main complication for the estimation

procedure. Instead of having all the values arranged on a fixed lattice, like in com-

puter vision applications (Pock et al., 2009), observations can be located at arbitrary

points. Recent statistical approaches for the non-convex Mumford-Shah functional

that deal with this setting (Caroccia et al., 2020; Chambolle et al., 2017; Chambolle

and Pock, 2021) are not applicable, as the constraint set K requires a distinction be-

tween the different dimensions in Rd+1; in particular, it requires summation over one

dimension, which is not feasible to do in practice with Voronoi- or graph partitions,

but straightforward to accomplish with a rectangular grid setup.

We therefore discretize (4) on a grid to construct the estimator. For the discretiza-

tion we follow Pock et al. (2009) and use a regular (N1 × N2 × . . . × Nd) × S pixel
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grid which we overlay on top of the random point cloud {Xi}i=1,...,n. We define the

grid that discretizes X × R by

QN = {(k1, . . . , kd, s) : ki = 1, 2, . . . , Ni; . . . ; kd = 1, . . . Nd; s = 1, 2, . . . , S}.

where k1, . . . , kd, s are the discrete locations of each hyper-rectangle. To simplify

notation, we denote s := kd+1 and set N1, . . . , Nd+1 = N , hence assuming without

loss of generality that all dimensions, including the lifted one, are discretized in the

same manner. We also denote k := (k1, . . . , kd+1) and k− := (k1, . . . , kd). We define

the empirical analogue of v ∈ C as

v̂Nn(x) ≡ v̂Nn(x̃, t) :=
∑

1≤k1,...,kd+1≤N

vk1,...,kd+1
1
{
x ∈ Qk1,...,kd+1

}
where vk1,...,kd+1

≡ vk is a value that we assign to the center of the respective cube

Qk1,...,kd+1
≡ Qk. We define the empirical analogue pN of p ∈ K to take values on the

boundary of the respective cubes. That is, for each j = 1, . . . , d+1, the corresponding

value pk1,...,kj+ 1
2
,...,kd+1

lies on the boundary ∂Qk1,...,kj ,...,kd+1
∩∂Qk1,...,kj+1,...,kd+1

. It is in

this sense that duality is preserved in the empirical setting, as the empirical analogues

of p are defined on boundaries of the cubes, while the analogues of v are defined in

the center (Chambolle and Pock, 2021). Problem (4) becomes

(5)

min
v∈C̃N

ÊNn(v) := min
v∈C̃N

max
p∈K̂Nn

⟨p,DNv⟩N

C̃N = {v : v(k) ∈ [0, 1], v(k1, . . . , kd, 1) = 1, v(k1, . . . , kd, N) = 0}

K̂Nn =

{
p =

(
px, pt

)T
: pt(k) ≥ |px(k)|2

4 f̂X,Nn(k−)
− λ f̂X,Nn(k−)

(
kd+1

N
− f̂Nn(k−)

)2

,∣∣∣∣∣∣ 1N
∑

s1≤kd+1≤s2

px(k)

∣∣∣∣∣∣ ≤ ν

 ,

where DNv is the forward difference normalized by the grid side length; ⟨p,Dv⟩N
denotes the scalar product between two vectors,

⟨pN , DNvN⟩N =
∑

0≤k1,...,kd+1≤N

N
(
v↑k1,...,kd+1

− vk1,...,kd+1

)
pk1,...,kd+1

,
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with v↑k1,...,kj ,...,kd+1
:= vk1,...,kj+1,...,kd+1

the forward value of vk1,...,kj ,...,kd+1
for a given

dimension kj and p↑k = pk · e↑, where e↑ is the unit vector in the forward direction

for respective j. The difference to the deterministic case is that the constraint K̂Nn

is now random and depends on the number of data points n = Nd. Note that these

constraints hold for all possible combinations of grid points k = (k1, . . . , kd+1) since

they are discrete equivalents of functional constraints. Finally, the index s1 ≤ kd+1 ≤
s2 iterates over all possible combinations of indices s1, s2 with 1 ≤ s1 ≤ kd+1 ≤
s2 ≤ S, along the lifted dimension. In practice, we implement 5 using the primal-

dual algorithm of Chambolle and Pock (2011). Details on the implementation are

provided in the Online Appendix.

Since we want to estimate jump locations, we cannot use a standard smoothing

approach. We therefore estimate the function values f : Rd → R inside each grid

cube via

f̂Nn(x̄k−) =
∑

i:Xi∈Qk−

wiYi

where x̄k− is the center point of the d-dimensional cube Qk− and wi are the weights,

which satisfy
∑

i:Xi∈Qk−
wi = 1 for all k− = (k1, . . . , kd); recall that Yi are defined in

the (d + 1)-st dimension. In practice, uniform weights deliver excellent results. We

estimate the density fx via a standard smoothing or histogram estimator f̂X,Nn.

The following result provides the consistency of the proposed approach. It is the

first result in the mathematical and statistical literature that provides consistency of

the finite approximation (either deterministic or random) to the population problem

of the convexified Mumford-Shah (Pock et al., 2009, 2010). We uphold the following

condition:

Assumption 4. The density fX has compact support X and is bounded away from

zero. Also, f(x) ∈ BV (X ) is bounded on X .

Note that the assumption on f is very weak, in particular, it does not require

smoothness of the shape of the discontinuity set. We now prove convergence of the

estimated v̂Nn towards its population counterpart v. The topology in the convergence

result for the functions vN is the weak∗-convergence of functions v ∈ SBV (X × R)
mapping to [0, 1]. The estimator depends on both the number of data points n and

the sidelength N−1 of each cube Qk in the grid QN .
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Theorem 2. Let Assumptions 3 and 4 hold and suppose that N(n) → +∞ with
n
N

→ +∞ as n → +∞ and λ, ν > 0 are fixed. Then ÊNn(v) Γ-converges in the

weak∗-topology in P probability to

E(v) :=

supp∈K
∫
X×R p ·Dv if v ∈ C

+∞ else.

The limit is deterministic, which follows from the fact that we smooth out the

randomness in each grid element in the limit. To obtain convergence of the minimizer,

Γ-convergence needs to be complemented with the following compactness result. It

follows by restricting v ∈ C ∩ {v ∈ SBV (X × R) : |Dv| ≤ c} for some constant c,

which is natural since v is an approximation of an indicator function, which implies

c = 1.

Corollary 1. Let Assumptions 3 and 4 hold with N(n) → +∞ and n
N

→ +∞ as n →
+∞ and let v̂Nn be minimizers of ÊN,n(v) with v ∈ C∩{v ∈ SBV (X×R) : |Dv| ≤ 1}.
Then v̂Nn → v in the weak∗-topology in P probability, where v is a minimizer of the

deterministic E(v).

Corollary 1 implies that the estimated functions ûNn which we obtain by comput-

ing the 0.5-isosurface of v̂Nn converge to u∗ in P probability, which is the 0.5-level

set of the optimal v∗ in the population. This follows from the fact that v̂Nn → v in

L1(X × R) in P probability by Corollary 1 and the definition of weak∗-convergence.

Proposition 3.1 in Camilli (1999) then implies that the level sets converge in prob-

ability in the sense that if |v̂Nn − v|L1(X×R) ≤ ηn in P probability with ηn → 0 as

n → ∞, then

Ld

(
1

{
v̂Nn =

1

2

}
∆1

{
v =

1

2

})
≤ ρn

in P probability with ηn
ρn

→ 0. Here A∆B is the symmetric difference of the sets A

and B.

Theorem 2 implies that for fixed λ, ν > 0, the regression surface converges to a

pseudo-true value, which approximates the true regression function f(x) by a piece-

wise smooth version u(x). This is one of the main uses of the Mumford-Shah func-

tional in image recognition, to approximate images by a “cartoon version”. That is

15



why Theorem 1 is crucial, as it shows that as λ → +∞, the estimator recovers the

true f(x), including the discontinuities of the correct location and size.

We estimate the jump set Ŝu in practice by thresholding the estimated function

uNn as follows,

Ŝu :=
{
x : |∇ûNn(x)| ≥

√
ν
}
,

which at the limit has to be satisfied by the true u, Su that solve (3) (Strekalovskiy

and Cremers, 2014).

We construct confidence bands for the regression function û and the jump set

Ŝu by subsampling (Politis et al., 1999, Ch.8). We opt for subsampling because the

inherently non-smooth nature of our estimator suggests that standard consistency

results for the bootstrap need not hold. For more details on our subsampling imple-

mentation as well as a computationally efficient but more conservative alternative via

conformal prediction, see the Online Appendix.

3.3 Data-Driven Choice of Hyperparameters by SURE

Theorem 1 establishes that the solution to the population problem (4) estimates the

correct jump locations and sizes as λ grows for fixed ν. In finite samples, the optimal

choice of hyperparameters depends on the data. Therefore, we now provide a data-

driven foundation for this choice.

We pick λ, ν to minimize Stein’s unbiased risk estimate (SURE) (Stein, 1981),

which under some regularity conditions is an asymptotically unbiased estimate of

the mean-squared error (MSE) of the true function f(x). In the image processing

literature, SURE has recently been applied to a variety of settings, including the clas-

sical (non-convex) Mumford-Shah problem (Lucas et al., 2022). The benefit of using

SURE for hyperparameter selection in our setting is that it has lower computational

and data requirements compared to other methods such as cross-validation.

The main condition for the unbiasedness of SURE is that the error terms εi in (1)

are Gaussian, i.e. εi ∼ N(0, σ2) ∈ Rn, such that E[Yi|Xi] ∼ N(0, σ2) as well. Given

an estimator ûθ(Y ) for the image u, which depends on the data Y := (Y1, . . . , Yn) and

hyperparameters θ = (λ, ν), the Stein estimator of the mean squared error (MSE) is,

(6) η(ûθ(Y )) =
1

N
|Y − ûθ(Y )|2 − σ2 + 2σ2 divY ûθ(Y ),
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where divY ûθ(Y ) :=
∑N

i=1
∂ûθ,i(Yi)

∂Yi
is the (weak) divergence operator of the estimator

with respect to the data. Stein’s lemma famously proves that if ûθ is a continuous

and bounded operator with a well-defined divergence (Ramani et al., 2008, p.1542),

then η(ûθ) is an unbiased estimator of

MSE(ûθ(Y )) :=
1

N
|ûθ(Y )− f |2.

Thus, we choose λ, ν to minimize (6). Since our estimator does not have a closed-form

expression for divY ûθ(Y ), we compute it using an asymptotically unbiased (Ramani

et al., 2008, Theorem 2) Monte-Carlo approximation by perturbing the data with a

vector of random noise b ∼ N(0, 1),

divY ûθ(Y ) = lim
δ→0

Eb

{
b′
(
ûθ(Y + δb)− ûθ(Y )

δ

)}
.

We follow Lucas et al. (2022) in further averaging the resulting SURE estimator

ηδ,b(r)(ûθ(Y )) out over R draws of b(r), leading to the “Monte Carlo averaged SURE”,

η̄R(ûθ(Y )) := 1
R

∑R
r=1 ηδ,b(r)(ûθ(Y )). Following Ramani et al. (2008), we set δ = 0.01

in practice and note that the results are robust to choosing δ smaller. Next, we show

with Monte Carlo simulations that the hyperparameters chosen by SURE give correct

results.

3.4 Simulations

We illustrate the theoretical results from the previous sections with various simula-

tions. Throughout, we scale the jumps by the standard deviation of the raw data away

from the jumps, also known as Cohen’s d. In line with the literature, we consider

a jump with a Cohen’s d of 0.25 to be small, 0.5 medium, and 0.75 large (Stommes

et al., 2023). Throughout, we set the noise standard deviation to σ = 0.05 and esti-

mate the hyperparameters λ, ν by doing a grid search over the averaged MC-SURE

with R=3 on a 20 × 20 grid of values sampled from two uniform distributions. In

line with Lucas et al. (2022), we search for λ on the interval [1, 500], and for ν on

the interval [5e10−4, 0.1], but our results are robust to the choice of these intervals.

Following Pock et al. (2009), we discretize the lifted dimension at 32 points. The
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convergence tolerance for the algorithm is set to 5e10−5.

Table 1: Monte Carlo Simulations

(a) 1D

n MSE MSE τFD Bias τFD FNR FPR

500 0.0789 0.0358 -0.084 -0.0437 0.1933
1000 0.0461 0.0305 -0.0659 0 0.1099
5000 0.0012 0.0099 -0.053 0 0.018

SURE: λ = 98.6712, ν = 0.0001

(b) 2D

d = 0.25

n α α̂ MSE MSE τFD Bias τFD FNR FPR

1000 0.0375 0.0698 0.0022 0.0027 0.0323 0.0098 0.6757
5000 0.0375 0.0351 0.001 0.0002 -0.0024 0.0735 0.2319

10000 0.0375 0.0297 0.0009 0.0001 -0.0078 0.269 0.0391

SURE: λ = 65.6470, ν = 0.0010
d = 0.50

n α α̂ MSE MSE τFD Bias τFD FNR FPR

1000 0.075 0.0859 0.0025 0.0021 0.0108 0.0159 0.561
5000 0.075 0.056 0.0011 0.001 -0.0191 0.0848 0.0837
10000 0.075 0.0545 0.001 0.0007 -0.0206 0.1476 0.0072

SURE: λ = 107.6274, ν = 0.0019
d = 0.75

n α α̂ MSE MSE τFD Bias τFD FNR FPR

1000 0.1126 0.0953 0.003 0.0027 -0.0173 0.0093 0.5902
5000 0.1126 0.0732 0.0016 0.0036 -0.0394 0.0588 0.1676

10000 0.1126 0.078 0.0012 0.0027 -0.0346 0.0901 0.0181

SURE: λ = 209.4585, ν = 0.0020

Note: table shows averaged results from Monte Carlo simulations of 1D and 2D (300 and 100 per
row, respectively) smoothly varying functions with jumps and additive Gaussian noise (σ = 0.05)
in Figures 2a and 2c. The functions have varying true jump sizes for 1D (see the notes in Figure 1)
and jump sizes of Cohen’s d 0.25, 0.5, 0.75 with true jump sizes indicated by α for 2D. We uniformly
sample random point clouds from these functions, where N denotes the sample size, and estimate
the function using our FDR estimator based on those point clouds. α̂ denotes the estimated jump
size, MSE is the mean squared error with respect to the true noise-free image, MSEτFD is the MSE
with respect to the true jump sizes, Bias τFD is the bias of the estimated jump sizes, FNR and FPR
are the false negative and false positive rate of the estimated jump locations. Hyperparameters λ, ν
are estimated using a finite-difference Monte-Carlo approximation of Stein’s unbiased risk estimate
(SURE) with R = 3 simulations on a 20 × 20 grid (Ramani et al., 2008), as in Eq. (6). N = 1

20n
for 1D simulations, N = 2

3n for 2D simulations, where n is the raw sample size and N the number
of grid cells along each dimension.
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Figure 1 further above depicts the simulated examples for the 1D to 3D case.

In the top panel, we show the raw data as a scatterplot, with the true underlying

function in a solid blue line and our estimated function û in solid red. We simulated

5,000 noisy samples of a smoothly varying function with various jumps ranging from

small to large in terms of Cohen’s d, reported in the figure notes. The estimated

jump locations are indicated by vertical dashed lines. The 95% confidence bands

on û are depicted in transparent red, while the jump locations that are significant

at the 95% level are indicated by red dots on the x-axis. The confidence band were

obtained from 500 subsamples for each of 4 different subsample sizes, which were used

to estimate a rate of convergence of close to
√
n (Politis et al., 1999), see the Online

Appendix for more details. As shown, the estimated function closely tracks the true

underlying function, and the estimated jump locations overlap exactly with the true

jump locations. Moreover, all estimated jumps are significant at the 95% level.

Next, we depict the 2D and 3D simulated examples in the middle and lower panels.

From left to right, we show in; (b/f) the true, smoothly varying functions that jump

on the perimeter of a circle and sphere, respectively, with a jump size of 0.75 and

0.5 in terms of Cohen’s d, and the function values indicated by the color intensity;

(c/g) the corresponding point clouds with n = 10, 000 and n = 50, 000; (d/h) the

corresponding estimated function û; (e/i) and the corresponding jump sets in white.

As for the 1D example, the estimated functions closely reproduce the true underlying

functions, and the estimated jump sets almost perfectly overlap with the true jump

sets.

Finally, we report Monte Carlo simulations for the 1D and 2D cases in Table 1, for

various jump sizes. We report the mean squared error (MSE) of the entire function

as well as the jump sizes (MSEτFD
), the bias of the jump sizes, and the false negative

and positive rates (FNR and FPR) of the jump locations. Across simulations, the

measures converge to zero, suggesting convergence of the true function as well as the

jump sizes and locations to the truth, as we established theoretically in Sections 3.1

and 3.2. The FNR increases slightly, but this is mechanical as pixels are more likely

to overlap only marginally with the boundary as the pixel size decreases. Lastly, as

mentioned above, the selected hyperparameters align well with the result in Theorem

1, since the selected λ is orders of magnitude larger than ν.
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4 Application: The Economic Effects of Internet

Shutdowns in India

Internet shutdowns, which are deliberate disruptions of internet or electronic commu-

nications, rendering them inaccessible or effectively unusable, have recently attracted

international attention, as their number reached a record high in 2022 (Rosson et al.,

2023). India, with its burgeoning digital economy, has shut down the internet at

least 646 times between 2018 and 2023 (Software Freedom Law Center, 2024), more

than any other country in that period, mainly to prevent or shut down protests and

communal violence and to prevent cheating in examinations (Human Rights Watch,

2023). In this section, we exploit the geographic discontinuities induced by such

internet shutdowns to estimate their effect on economic activity.

The FDR estimator is ideally suited for this task: the precise areas exposed to

the shutdown, which induced a discontinuous drop in internet connectivity, were a

priori unknown. Furthermore, the multidimensional nature of the method allows

us to estimate the discontinuities directly, circumventing the common practice of

collapsing the setting to a univariate setting using “distance from the boundary”.

We study a shutdown imposed by the Rajasthan state government on Septem-

ber 26, 2021, that aimed to prevent cheating on the Rajasthan Eligibility Exam for

Teachers. This exam paves the way for employment as a public school teacher. Such

teaching positions are coveted as they come with generous benefits in many Indian

states. Moreover, the exam had not been held since 2018, as it was scheduled on a

discretionary basis before a change of rules led it to be held yearly from 2023 onward

(Yeung et al., 2021). As a result, hundreds of thousands of candidates sat for the

exam, increasing the likelihood of cheating, which had become a high-profile issue

after several cheating scandals received nationwide media attention in previous years

(Purohit, 2022). In response to these concerns, various Rajasthan district govern-

ments announced, in the days prior to September 26, a shutdown of mobile internet

connectivity between 6 am and 6 pm.1

In addition, several other Rajasthan districts shut down their telecom services

1Specifically, the District Magistrates or Divisional Commissioners of the following districts
issued official orders mandating the temporary suspension of telecom services: Ajmer, Jhunjhunu,
Kota, Bundi, Baran, Jhalawar, and Udaipur (other than Lasadiya and Kotda) (Mishra, 2021).
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without official warning, leaving an estimated 25 million people affected (Yeung et al.,

2021). The lack of clarity around which areas would be affected induced jumps in

the mobile signal at unknown locations. Furthermore, while the telecom circle (also

known as License Service Area) for Rajasthan state does roughly overlap with the

state boundaries, mobile device connectivity is a diffuse process that is in no way

guaranteed to overlap with administrative boundaries, as it is determined by the

interplay of service providers, points of connection (telecom masts), and points of

contact (mobile phones). As a result, the September 26 shutdown is marked by

uncertainty in both the precise set of districts as well as which areas within each

district were exposed to the shutdown.

At the same time, those areas that were exposed to the shutdown were discon-

nected completely, as local governments effectively exercised total control over the

service providers. Those, in turn, can implement the shutdown at the point of con-

tact (the mobile phone), not just the transmission points (the masts). This implies

that the signal disruption induced discontinuities because individuals could not con-

nect to other masts outside the shutdown area. Together, these factors generated

unknown, discontinuous jumps in mobile connectivity.

Although the shutdown only targeted mobile connectivity, this was in effect equiv-

alent to a near-complete shutdown of the internet, as Wi-Fi made up only 0.08% of

wireless connectivity in India in 2022, while only 3.74% of total internet subscribers

had wired connections (Telecom Regulatory Authority of India, 2023). This near-

total internet shutdown affected the economy through a variety of channels. It was

estimated to have led to the closure of 80,000 shops in Jaipur, Rajasthan’s capital,

alone (The Economist, 2021). Many shops and restaurants rely on United Payments

Interface, an Indian mobile payments platform, or similar platforms such as Google

Pay, to process payments. Cash payments are commonly accepted, though less pre-

ferred: the ubiquity of mobile payments means few people carry cash, and even very

small transactions are settled with mobile payments (Mashal and Kumar, 2023). As

a result, many ATMs were reported to have run dry during similar shutdown episodes

(The Times of India, 2023). Moreover, a large share of retail and hospitality sales

that happen through mobile applications get disrupted by shutdowns.

More generally, internet shutdowns directly disrupt the digital economy – the
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share of the economy dependent on digital services – which was estimated to make

up 22% of Indian GDP in 2019 while continuing to grow rapidly. While wired con-

nections were not disrupted, a disruption of mobile connectivity still affects business

operations outside of the office setting, such as supply-chain tracking systems, process

automation systems, distribution networks, remote working, and customer support

services. Moreover, small businesses and businesses in rural areas often rely entirely

on mobile internet for their in-office operations (Kathuria et al., 2018, p.55).

The prevalent framework for quantifying the cost of internet shutdowns was devel-

oped by West (2016).2 It relies on a back-of-the-envelope quantification that combines

estimates from statistical offices and the academic literature of the size of the digi-

tal economy, the degree of mobile penetration, and the “digital multiplier” (Quelch,

2009). While this approach provides a transparent way to illustrate the costs associ-

ated with internet shutdowns, it cannot claim to capture true local economic effects.

To our knowledge, there exist no estimates of the economic costs of internet shut-

downs in the academic literature, despite their global prominence. There is, however,

a rich literature in development economics that has studied the economic effects of

digital communication infrastructure rollouts. A seminal paper by Röller and Wa-

verman (2001) used a cross-country production function approach to estimate that

every percent increase in mobile penetration led to around 0.15% increase in economic

growth on average. Other papers have found that mobile phone expansion and subsi-

dies led to welfare improvements, cost of living reductions, and increased employment

(Jensen, 2007; Björkegren and Karaca, 2022; Couture et al., 2021; Zuo, 2021; Hjort

and Poulsen, 2019). More generally, the digitization of the economy has been found

to lower search, replication, transportation, tracking, and verification costs (Goldfarb

and Tucker, 2019).

An internet shutdown can disrupt all of these cost-reduction and welfare-improvement

channels and is thus likely to have ripple effects across various dimensions of the

economy, not just its explicitly digitized parts. On the other hand, there is clearly

a distinction between the initial expansion of connectivity and its disruption once

telecommunications channels have been put in place: the former expands the produc-

tion possibilities set, while the latter tends to disrupt certain modes of production

2See also Top10VPN (2023) and https://netblocks.org/projects/cost.
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altogether, to the extent that digital communications technologies, after they have

been rolled out, play “an ‘enabling function’ across all critical infrastructure sectors”

(CISA, n.d.). Thus, the effects of an internet shutdown will not be symmetric to the

effects of an internet expansion. In that sense, our findings are complementary to the

existing literature.

Finally, the use of mobile device data to proxy socioeconomic activity has been

well-established in various literatures that study human mobility, such as remote

sensing, network science, and complex systems (Šćepanović et al., 2015; Kung et al.,

2014; Frias-Martinez and Virseda, 2012; Eagle et al., 2010; Blumenstock et al., 2015),

as well as in industry (Naef et al., 2014) and government (World Bank Group, 2022).

Recently, several papers in the social sciences have applied similar methods to study

questions in economics (Kreindler and Miyauchi, 2021) and public policy (Van Dijcke

et al., 2023).

4.1 Data

Anonymized device-level location data from data provider Veraset allow us to assess

the effects of the shutdown at a fine spatio-temporal granularity. The data consist

of “pings”, timestamped GPS locations shared by the device with a mobile app.

Veraset cleans and aggregates such data from thousands of “Software-Development

Kits” (SDK), packages of tools that supply the infrastructure for most mobile appli-

cations. Location data from the same device can be recombined from various SDKs

by use of an anonymized device ID. Inside our sample area, which is a bounding box

around the state of Rajasthan, we observe 126 million unique pings on the four Sun-

days of September 2021 between 6 am and 6 pm, emanating from 3.8 million unique

devices. With an estimated smartphone penetration of 60.63% in India in 2021 and

a population in Rajasthan of around 80 million, this means we capture a little under

10% of all mobile devices in the area.

Mobile Signal. To capture the disruption to all mobile signal, we define,

(7) Pingsi :=
Pingsit0

1
3

∑t0−1
t=t0−3 Pingsit

,
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where i indexes a 5×5km grid cell in a grid overlaid on top of a bounding box around

Rajasthan; t0 indexes September 26, 2021, between 6 am and 6 pm, the shutdown

period; and t0 − 3, . . . , t0 − 1 index the same time window on the three previous

Sundays. Pingsit is a count of the number of mobile device pings observed in grid

cell i in period t. The normalization by the average number of pings on Sunday

in the previous month should remove regional differences in absolute activity levels,

which should help make the underlying process continuous away from the jumps, as

required by our assumptions. This measure of mobile activity combines the effects of

the shutdown on both the mobile signal and the underlying activity it is supposed to

transmit, which likely also drops in response to the shutdown. Conversely, the signal

disruption is possibly understated due to satellite-based location caching, as further

discussed below.

Finally, the reason some devices still emit a signal from within Rajasthan even

during the shutdown is that mobile devices do not, in fact, require a mobile connection

to measure their geographic location, but only a satellite connection, which was not

shut down. Some mobile applications will cache users’ locations when the device is

offline and upload them when the internet connection is restored. This requires that

users grant the applications permission to continuously collect background location.

Economic Activity. To further estimate the effect of the shutdown on economic

activity, we recompute our Pingsi measure for the subset of devices that emitted a

signal during both the shutdown period and the three Sundays prior. This separates

the effect of the signal disruption from that of the disruption to daily activities caused

by the shutdown, both of which are captured by the raw Pingsi measure. As we

discuss below, devices that emit a signal during the shutdown period almost certainly

have continuous background location collection activated, which means their signal

should not be meaningfully disrupted by the shutdown. As a result, by restricting

the pre-shutdown sample to those devices and normalizing by the average signal in

that sample, we can remove the effects of the signal disruption.

In order to capture “economic activity”, we focus on the activity of the restricted

sample of devices around “economic areas”. That is, we classify a ping as being related

to economic activity if it originates from within a 150-meter radius around a Point

of Interest (POI) in SafeGraph Places, or an OpenStreetMaps (OSM) POI related
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to commercial or public use. SafeGraph Places is a proprietary machine-generated,

human-verified data product that contains precise building footprints of millions of

commercial POIs around the world. In India, it mostly consists of global brands such

as McDonald’s, Toyota, or Adidas. We complement this dataset with a snapshot

of OSM for India in September 2021, filtering on commerce-related POIs.3 OSM

is an open-source geographic platform that aggregates POI information from user

contributions. It has broader coverage of local, non-brand stores than SafeGraph

Places, but is generally less accurate, often providing only the lat-long of a place

rather than its precise footprint. By combining both datasets, we obtain a large

and accurate sample of around 108 thousand “economic” POIs in our bounding box

around Rajasthan.

We cast our measure of economic activity within each grid cell i, Econi, to a

coarser grid than the mobile signal data, of 40×40km, to increase the number of

observations within each cell and avoid artificial left-censoring of the data due to the

lower signal. We also further smooth the data by intersecting the grid cells with the

200+ municipalities (Urban Local Bodies) in our sample area and taking the average

of our economic measure across the intersected areas.

Few other data sources can proxy for economic activity at the fine spatiotemporal

granularity we consider: night lights data are not suited for such rapid temporal

variations in economic activity that happen during daytime; credit card penetration

is low in India (around 5%); and data from neither Google Pay nor UPI were being

sold to third parties at the time of this paper’s writing.

Our device-based measure should be a good proxy of economic activity under two

assumptions: 1) the economic activity of the restricted device sample is representative

of the wider population; 2) the set of apps that cached devices’ background location

for the duration of the shutdown was not in some way skewed so as to collect geoloca-

tion information at different rates in economic areas during the shutdown. To point

1), though information on location-sharing behavior by Indian smartphone users is

sparse, one recent poll of Android users suggests 66.78% have background location

enabled, and Android makes up 95.21% of the smartphone market share in India (An-

3In particular, we consider all OSM POIs classified as amenity, shop, office, industrial area, craft,
and all areas classified to have a primary land use related to retail, commercial, or industrial activity.
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Figure 4: Internet Shutdown: Mobile Data Effects

Notes: Plots depict in- and outputs of FDR estimation of effects of internet shutdown in Rajasthan
state, India, on September 26, 2021, on mobile device signal, as measured by Pingsi (see (7))
which is a measure of the total mobile device pings per 5 × 5km between 6 am and 6 pm on the
day of the shutdown relative to the average in the same time window on the preceding 3 Sundays.
λ = 91.2474, ν = 0.0656 selected by SURE. (a) Shows the raw input data with the fill color of
each cell indicating the value of Pings. The outline of Rajasthan state is indicated by black lines.
(b) shows the estimated regression function in color, with the estimated jump set Su indicated in
black. (c) shows the effect curve τFD(x) for those areas that have a jump induced by the shutdown
(dropping the discontinuity in the north-east), with the z-axis indicating the magnitude of the drop
in terms of Pingsi.
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droid Authority, 2022; Statcounter, 2023).4 This is further supported by the fact that

even after filtering on economic areas for our restricted device sample, we still retain

around 68 million unique pings compared to the 126 million total pings. To point

2), our location data comes from 1, 000+ different mobile applications which allows

location tracking across a wide variety of platforms and thus areas and behaviors.

Additionally, as mentioned, background location collection happens continuously so

it should not be meaningfully affected by people’s differential app usage during the

shutdown.

Finally, one might expect there to be selection effects on economic activity around

the discontinuity, if people near the border cross state lines to avoid the shutdown.

We can, in fact, test for the presence of such selection effects, by counting the number

of devices that are observed crossing the state boundaries during the shutdown and

comparing it to the average in the preceding month.5 The idea is illustrated in Figure

2 in the Online Appendix, which plots the pings emanating from a 40km band around

the Rajasthan state boundary. We then calculate the share of these devices that

appeared in one of the neighboring states during the shutdown period and compare

this share to its average in the month prior.

That way, we find that 2.66% of devices near the discontinuity cross it between 6

am and 6 pm on the day of the shutdown, while on average 3.57% do so in the same

time window the month prior. Thus, there do not appear to be any self-selection

effects associated with the localized internet shutdown. In fact, the lower share of

devices that cross suggests that some crossing behavior was disrupted due to the shut-

down, likely because of the associated disruption of mobile-based navigation services.

This does not contradict the fact that location apps may still be caching devices’

location, as route calculation and live navigation require full mobile connection, not

just satellite-based geo-positioning. Relatedly, we do not expect mobile phones near

the Rajasthan border to connect to telecommunications masts across the border, as

the shutdown was implemented at the point of contact (the mobile phone) and not

just the transmission points (the masts), as mentioned above.

4This poll was conducted after the release of Android 10 in September 2019, which introduced
explicit permission prompts for background location tracking.

5We focus on self-selection around the state boundary as it was not announced prior to the
shutdown that the island of connectivity we discovered inside the Rajasthan borders would remain
connected, so there was limited room for self-selection there.
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Figure 5: Internet Shutdown: Economic Effects

Notes: Plots depict in- and outputs of FDR estimation of effects of internet shutdown in Rajasthan
state, India, on September 26, 2021, on economic activity, as measured by Econi (see the “Economic
Activity“ paragraph) which is a measure of the share of mobile device pings per 40 × 40km that
fell within a 150m radius of a commerce-related Point of Interest between 6 am and 6 pm on the
day of the shutdown relative to the average in the same time window on the preceding 3 Sundays.
λ = 4.9813, ν = 0.0754 selected by SURE.
(a) Shows the raw input data with the fill color of each cell indicating the value of Econi. The
outline of Rajasthan state is solid black. (b) shows the estimated regression function in color, with
the estimated jump set Su indicated in black if the jump size is significantly different from 0 at the
95% level based on 4×200 subsamples with estimated rate of convergence of approx.

√
n (Politis

et al., 1999) and grey otherwise. (c) shows the effect curve τFD(x) for those areas that have a jump
induced by the shutdown (dropping the discontinuity in the north-east), with the z-axis indicating
the magnitude of the drop in terms of Econi.
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4.2 Results

We apply the FDR estimator to the data described above, starting with the mobile

device signal in Figure 4.

Mobile signal The raw data is shown in Figure 4a, with the outline of Rajasthan

depicted in black. The 5×5km grid cells provide a highly granular picture of the

signal. Warmer colors indicate that the signal was stronger relative to its average on

the previous 3 Sundays in the same time window, with an index of 100 corresponding

to a greyish blue color. Areas without signal before the shutdown are normalized

to 100 (no change).6 The figure shows a stark drop-off in the signal which almost

perfectly overlaps with the state boundary. Moreover, there is an unexpected pocket

of activity in the northwest of the state that intersects, but does not overlap with,

the districts of Jaisalmer, Jodhpur, and Nagaur.7 It is unexpected in the sense that

there are no official documents or news reports that suggested the shutdown would

not affect this area. In the areas with a signal that is not affected by the shutdown,

it is, on average, 130% of the September mean. This higher-than-average signal is

partly mechanical since the low spatial granularity naturally leads to noisy data, as

also evidenced by the dark blue dots scattered throughout the non-shutdown area.

Moreover, the Indian economy was seeing a post-COVID rebound at the time, with

the Indian chief scientist of the World Health Organization declaring that India is

“learning to live with the virus” on August 25, 2021 (Bhaduri, 2021). Additionally,

preparations for the festive season, which lasts from October to December, usually

kick off around late September.

In Figure 4b, we depict the estimated regression function û, using the same color

scale as for the raw data, and the estimated jump set Su in black. For the hyperpa-

rameter selection, we searched over λ ∈ [1, 100], ν ∈ [0.001, 0.1] to account for the

large amount of noise. We also winsorized the mobile and economic data at the 90th

percentile to smooth out outliers. Some areas see an unusually high number of pings

due to an infrequent congregation of people (e.g. sports events or concerts), such

6These are the country of Pakistan to the west of the Rajasthan border, the Great Rann of
Kutch salt marsh in the southwest, the Kuno national park in the east, and China and Nepal in the
northeast.

7For reference, we provide a street map and satellite view of Rajasthan in Figure 4 in the Online
Appendix.
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that our normalization with respect to the monthly baseline cannot account for it.

Finally, we set fX to the uniform distribution for simplicity as explicitly estimating

it delivers similar results.

The resulting regression function is smooth on the two partitions of the space: the

shutdown area and elsewhere. The estimated jump set is highly detailed and overlaps

almost perfectly with the Rajasthan state boundary. It also picks out the island of

activity in the northwest of the state, which extends into Pakistan in the west, where

we normalized the index to 100. Comparing the estimated jump set with the raw

data, we can see that it correctly picks out the entire shutdown region.

Looking at the effect curve, we estimate an average drop in the mobile device

signal of 100 percent relative to the average in the month before, with the areas

bordering the states of Gujarat in the south and Madhya Pradesh in the southeast

seeing relatively higher drops in connectivity. Nonetheless, approximately 25% of

the monthly average signal remains in the shutdown area because of satellite-based

location caching, as explained above. Overall, we estimate that the shutdown was

highly effective in its goal of disrupting connectivity, inducing a large drop in the

mobile device signal throughout the shutdown area.

Economic activity Turning to the effect on economic activity, we depict the input

data, estimated regression function and jump set, and effect curve in Figure 5. As in

the 1D simulations, we construct 95% confidence bands around the function gradient

using a subsampling approach, where we resample the raw pings data 200 times for

each of 4 different subsample sizes, which we use to estimate a rate of convergence of

approximately
√
n. Then, we say that a jump size is significantly different from zero

whenever either the largest lower bound on the two elements of the gradient vector

is above 0, or the smallest upper bound is below 0. To pick the hyperparameters, we

search over λ ∈ [1, 5], ν ∈ [0.075, 0.15] to account for the non-smooth data as well as

the coarser grid.

Though the grid is coarser, economic activity is disrupted in almost exactly the

same locations as mobile device activity: the jump set overlaps almost perfectly with

the Rajasthan border, barring some missed curvature due to the coarse signal. It also

picks out the island inside the state. In addition, one small patch of reduced signal

near the Nepalese border is picked out as well, which is likely related to it falling in
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the Himalayas region.

Looking at magnitudes, we find that, outside the shutdown area, economic ac-

tivity had increased less than overall activity, relative to the monthly average, by

approximately 0-5%. This aligns with India-wide estimates of weekly GDP growth

in the same period (Woloszko, 2020). The corresponding average drop in economic

activity caused by the shutdown is estimated to be around 35% of the monthly av-

erage in the eastern part of the shutdown area and 60% in the western part. The

signal in the western part is sparse and it borders Pakistan. Moreover, the effects in

the eastern part do not exhibit substantial heterogeneity. As a result, we conclude

that our economic index dropped by around 35% in response to the shutdown. We

can account for the fact that mobility data is not perfectly predictive of economic

activity by scaling this estimate by the correlation between mobility data and GDP.

The lowest estimate of this correlation from studies in countries around the world

is 0.7 (Dong et al., 2017; Frias-Martinez and Virseda, 2012; Spelta and Pagnottoni,

2021), which gives an estimated drop in economic activity of around 25%. Even this

lower bound is still 50% larger than the largest prevalent estimate of the costs of a

day-long internet shutdown in India, which is around 16.4% of annualized GDP.8

One possible explanation for this large discrepancy is that these previous estimates

are primarily based on estimates of the share of the economy that is digitized and

its multiplier effects, but disruptions to communications technology can affect critical

infrastructure across many non-digitized sections of the economy as well. Relatedly,

the methodology behind these estimates relies on a single global digital multiplier

estimate that dates from 2009 (Quelch, 2009). It seems very likely that 1) this mul-

tiplier has drastically increased in the last decade, and 2) it is larger for India, one of

the world’s largest developing digital economies in 2021.

Implications of these results Taken together, our estimates reveal that the short-

term economic damage inflicted by arbitrary internet shutdowns is much larger than

previously thought. Of course, one can expect part of the damage induced by a

day-long shutdown to be mitigated by a temporary economic overshooting in the

following days. Nonetheless, while there appears to be some moderate increase in

8Calculated using the interactive application at https://netblocks.org/cost/, which is based
on West (2016) using updated estimates.
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mobile activity in the hours after the shutdown in Figure 3 in the Online Appendix,

there is no visual evidence of such an increase in the day following the shutdown.

Similarly, one may expect the long-term costs of extended shutdowns to be lower

as people adapt to the new reality. This does not undermine the fact that our es-

timates are much larger than comparable short-term damage estimates. That, in

turn, further underscores the vital importance of digital communications infrastruc-

ture to the well-being of citizens in digitized economies and the need for states to

refrain from shutting this infrastructure down (United Nations High Commissioner

for Human Rights, 2022).

Finally, our findings highlight the asymmetry between internet expansion and

internet shutdowns. They confirm the critical role digital communications infrastruc-

ture plays in a digitized economy after it has been rolled out, and emphasize the

urgency to not just expand internet access to citizens across the globe, but also to

safeguard its continued reliability.

5 Conclusion

This article introduces a new statistical method for estimating a regression func-

tion with unknown and potentially multivariate discontinuities. The idea is to non-

parametrically estimate the entire regression surface and segment it into smooth

and discontinuous parts. The method is an extension of a convex relaxation of the

Mumford-Shah functional to a statistical setting with random data points. We prove

identification and statistical convergence results. For the practical implementation,

we use the primal-dual algorithm from Chambolle and Pock (2011) and pick the

hyperparameters via Stein’s unbiased risk estimate.

The focus of this article is on estimation under minimal regularity assumptions.

For uncertainty quantification in low-dimensional settings with many data points, we

use subsampling methods while estimating the rate of convergence of the estimator.

In higher-dimensional settings, we recommend conformal prediction bands. Those

are larger than classical confidence bands, as they focus on the randomness of the

outcome variable and not the conditional mean, but are efficiently implementable in

any dimension. Other inference methods for this setting are of interest but require

strong assumptions on the regularity of the discontinuity set, which we explicitly
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avoid in this article.

We apply the method to estimate the effect of internet shutdowns on economic

activity in the state of Rajasthan, India. We find that the shutdown resulted in a

short-term reduction of economic activity by 25−35%, considerably exceeding previ-

ous estimates. This points to a large asymmetry in the effects of internet expansions

and shutdowns, calling attention to the critical role of a robust and reliable commu-

nications infrastructure in a digitized economy.
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‘Mobile phone call data as a regional socio-economic proxy indicator’, PLOS One

40



10(4), e0124160.

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V.,

Held, H., Van Nes, E. H., Rietkerk, M. and Sugihara, G. (2009), ‘Early-warning

signals for critical transitions’, Nature 461(7260), 53–59.

Software Freedom Law Center (2024), ‘Internet shutdowns in india’, https://

internetshutdowns.in/.

Sonin, K. and Wright, A. L. (2022), ‘Information operations increase civilian security

cooperation’, The Economic Journal 132(643), 1179–1199.

Spelta, A. and Pagnottoni, P. (2021), ‘Mobility-based real-time economic monitoring

amid the COVID-19 pandemic’, Scientific Reports 11(1), 13069.

Statcounter (2023), ‘Mobile operating system market share India’, https://gs.

statcounter.com/os-market-share/mobile/india.

Stein, C. M. (1981), ‘Estimation of the mean of a multivariate normal distribution’,

The Annals of Statistics pp. 1135–1151.
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A Notation and Definitions

This section contains notation and definitions of mathematical objects used in the

main text. These are standard and we refer to Ambrosio et al. (2000) for further

reading.

A Radon measure µ is an inner regular and locally finite Borel measure. We

denote

−
∫
A

f(x) dµ(x) :=

∫
A
f(x) dµ(x)

µ(A)
.

We denote the space of (k-times) continuously differentiable functions on X by Ck(X ).

C0(X ), the space of all continuous functions that vanish eventually, is the closure in

the sup-norm of Cc(X ), the space of all continuous functions on X with compact

support.

The k-dimensional Hausdorff-measure H k(A) of a set A ⊂ Rd, for k ∈ [0,+∞),

is defined as (e.g. Ambrosio et al., 2000, Definition 2.46)

H k(A) := lim
δ↓0

πk/2

2kΓ(1 + k/2)
inf

{∑
i∈I

(diam(Ai))
k : diam(Ai) < δ,A ⊂

⋃
i∈I

Ai

}

with Γ(x) being Euler’s Gamma function, diam(A) the diameter of the set A, and

where the sums are taken over finite or countable covers of A.

We use the following definition of functions of bounded variation.

Definition 3 (Functions of bounded variation and SBV). (Ambrosio et al., 2000,

Def. 3.1) Let u ∈ L1(X ); we say that u is a function of bounded variation in X ⊂ Rd

if the distributional derivative of u, Du, is representable by a finite Radon measure

in X . i.e. if

(8)

∫
X
u divφdx = −

d∑
i=1

∫
X
φidDiu ∀φ ∈ C1

i (X ).

for some Rd-valued Radon measure Du = (D1u. . . . Ddu) in X and all continuously

differentiable test functions φ. The vector space of all functions of bounded variation
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in X is denoted by BV (X ). If the Cantor part Dcu of the decomposition of Du is zero,

then u is called a special function of bounded variation and denoted as u ∈ SBV (X ).

We define the weak∗-topology in the standard way (Ambrosio et al., 2000, Defini-

tion 3.11): Consider some u ∈ BV (X ) and a sequence {un} ⊂ BV (X ). Then we say

that {un} converges to u in the weak∗-topology, or un
∗
⇀ u, if un converges to u in

L1(X ) and the corresponding Dun converge in the weak∗-topology to Du, i.e.

lim
n→∞

∫
X
ϕ dDun =

∫
X
ϕ dDu for all ϕ ∈ C0(X ).

For two non-empty subsets A,B ⊂ M of some metric space (M,d), we define their

Hausdorff distance as

dH(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
,

where dist(a,B) := infb∈B d(a, b) is the distance of a from B.

B Proofs

B.1 Proof of Proposition 1

Proof. We work in the weak∗-topology (Ambrosio et al., 2000, Definition 3.11). Since

all v have a uniformly bounded variation by c < +∞ and since all v map to [0, 1] and

are hence uniformly bounded, it follows from Theorem 4.8 in Ambrosio et al. (2000)

that C ∩{v : |Dv| ≤ c} is compact in the weak∗-topology. Since C0 is a Banach space

with respect to the supremum norm, Corollary 6.40 in Aliprantis and Border (2006)

implies that the objective function of (4) is jointly continuous as the total variations

are bounded by c < +∞. Therefore, Berge’s Maximum theorem (Aliprantis and

Border, 2006, Theorem 17.31) proves the existence claim. The fact that the solution

is a global minimum follows from the convexity of C ∩ {v : |Dv| ≤ c}.

B.2 Proof of Theorem 1

Proof. We first show that if we set v∗(x, t) = 1f (x, t), then E(v∗) < +∞ for any

λ ≥ 0 and also as λ → +∞. In fact, since f ∈ SBV (X ) by assumption, fixing the
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rotation via the inward normal to the graph, the objective function in (4) can be

written as (Alberti et al., 2001, Lemma 2.10)

E(1f ) = sup
p∈K

∫
X

[
px(x, f(x)) · ∇f(x)− pt(x, f(x))

]
dx+∫

Sf

[∫ f+

f−
px(x, t) dt

]
· ρf (x) dH d−1(x),

where px denotes the first d dimensions of the vector field p and pt denotes the lifted

dimension. f−(x) and f+(x) denote the respective traces corresponding to the inward

normal orientation ρf (x) of the graph of f at the point x ∈ Sf . Note that when using

f(x), the constraint set K implies under Assumption 1 that

pt(x, f(x)) ≥ |px(x, f(x))|2

4fX(x)
≥ 0

independently of λ and ν. Moreover, by Assumption 1 it holds that
∫
X |∇f |2 dx <

+∞. This, by an application of Hölder’s inequality for vector-valued functions in

conjunction with the fact that p ∈ K – and thus pt cannot be negative – and ν < +∞
implies that the first term on the right-hand side is finite for all p ∈ K. For the second

term on the right-hand side note that by assumption H d−1(Sf ) < +∞. Furthermore,

since p ∈ K, the integrand over px(x, t) is bounded by ν < +∞, so that the overall

E(1f ) < +∞ for all λ ≥ 0 and also as λ → +∞.

We now show that in the limit as λ → +∞ and for fixed ν > 0, it holds that

∇v∗(λ) = 0 Ld+1-almost everywhere. To prove this, consider any v ∈ C. Since

v ∈ SBV (Rd+1) it holds by definition that

Dv = ∇vLd+1 + (v+ − v−)ρvH
d Jv,

where Jv is the set where v(x, t) jumps, ρv is a corresponding orientation, and Ld+1

denotes the (d+1)-dimensional Lebesgue measure. Note that by the Federer-Vol’pert

theorem (Ambrosio et al., 2000, Theorem 3.78) Jv coincides with Sv H d-almost

everywhere, so that we focus on Jv. It therefore holds that∫
p ·Dv =

∫
p · ∇v dLd+1 +

∫
Jv

(v+ − v−)p · ρv dH d.
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Since v ∈ C, it cannot be constant everywhere because the limits as t → ±∞ are

different for all x ∈ X . On the other hand, as λ → +∞, the range of pt converges to

R, which implies that for every η > 0 and every v ∈ C such that ∇v ̸= 0 on a subset

of Rd+1 of positive Ld+1-measure, there exists a large enough λ and a corresponding

p ∈ K such that
∫
p ·∇v dx > η. This implies that no v for which ∇v is not constant

on a set of positive Ld+1 measure can be a solution to (4) as λ → +∞. Therefore, in

the limit as λ → +∞, the only changes in v must lie in Jv.

We now prove the rest of the theorem. First, we prove that if v ∈ C is such that

for some η > 0

(9) Γf ̸⊂ Jη
v (λ),

where Aη := {x′ ∈ X : dist(x′, A) ≤ η} is the η-enlargement of A, then it cannot be

a solution to (4) in the limit as λ → +∞. Then we prove that if for some η > 0

(10) Jv(λ) ̸⊂ Γη
f

then it cannot be a solution to (4) in the limit as λ → +∞.

Showing (9) leads to a contradiction.

The idea is to show that limλ→+∞ E(v(λ)) = +∞ for any sequence {v(λ)} ⊂ C that

satisfies (9). So suppose that {v(λ)} ⊂ C is some sequence that satisfies (9). This

implies that in the limit as λ → +∞, it holds that there is some (x′, t′) ∈ Γf such

that dist((x′, t′), Jv(λ)) > η > 0.

This can happen in two ways. Either, x′ ̸∈ Sf or x′ ∈ Sf . Recall that under the

first part of Assumption 2 it holds that H d−1(S̄f \ Sf ) = 0, where S̄f is the closure.

We now consider each case one by one.

First subcase. In the first case, it follows that there is some δ > 0 such that

dist(x′, Sf ) > δ. We now use the Lipschitz assumption on f to show that H d(Γf \
Jv) > 0. In fact, it holds that Bδ(x

′)∩Sf = ∅. Now by the second part of Assumption

2 there exists a Lipschitz constant L < +∞ such that

|f(x′)− f(x′′)| ≤ L|x′ − x′′| ≤ Lδ
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for all x′′ ∈ Bδ(x
′) ⊂ X . Now we pick δ > 0 small enough such that the set Z :=

Bδ(x
′) × BLδ(f(x

′)) has diameter η. The diameter of Z is diam(Z) = δ
√
2 + L2, so

that if we define δ < η√
2+L2 , then diam(Z) < η. We can do this under Assumption 2.

This implies in particular that Z ∩ Jv = ∅.
Now the fact that H d(Z∩Γf ) = H d((Z∩Γf )\Jv) > 0 follows from an application

of the area formula since Γf is a Lipschitz graph. In fact, we get (e.g. Ambrosio et al.,

2000, p. 88)

H d(Z ∩ Γf ) =

∫
Bδ(x′)

√
1 + |∇f |2 dLd > 0.

Denote

W := {(x, t) ∈ Jv : x ∈ Bδ(x
′)} .

We have just shown that Jv does not contain Z ∩ Γf on a set Bδ(x
′) of positive d-

dimensional Hausdorff measure, which implies that for H d-almost every (x, t) ∈ W ,

t ̸= f(x). Moreover, by definition |v+(x, t)− v−(x, t)| > 0 for H d-almost all (x, t) ∈
Jv. Since f ∈ SBV (X ) it holds by definition that Jv is measurable with respect to

H d. Therefore,

(11) lim
λ→+∞

sup
p∈K

∫
Jv

(v+ − v−)p · ρv dH d

= lim
λ→+∞

sup
p∈K

[∫
W

(v+ − v−)p · ρv dH d +

∫
Jv\W

(v+ − v−)p · ρv dH d

]
.

Now note that it must hold that H d(W ) > 0. In fact, since v ∈ SBV (X × R), it
holds that Jv is countably H d-rectifiable (e.g. Ambrosio et al., 2000, chapter 4). Since

Bδ(x
′) is compact, W is also compact. This directly implies by Proposition 2.66 in

Ambrosio et al. (2000) that H d(W ) ≥ Ld(πX (W )), where πX is the projection onto

X . But πX (W ) = Bδ(x
′), which is of positive Ld measure. The first term on the right

hand side of (11) diverges to +∞ because the range of pt increases to R as λ → +∞
and t′′ ̸= f(x′′) for Ld-almost every x′′ ∈ Bδ(x

′). This implies that such a v cannot

be a solution to (4) in the limit as λ → +∞.

Second subcase. We now suppose x ∈ Sf . Since x ∈ Sf , we now have to work

with the points (x, f+(x)) and (x, f−(x)). Without loss of generality focus on the

former and suppose that dist((x, f+(x)), Jv(λ)) > η for all λ > 0 and as λ → +∞.
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By Assumption 1, we know that H d−1(Sf ) < +∞, so that (e.g. Mattila, 1999,

Theorem 4.7) Ld(Sf ) = 0 on X . The first part of Assumption 2 implies that Ld(S̄f ) =

0 since it implies H d−1(S̄f \ Sf ) = 0. This further implies that the projection

πX (Bη((x, f
+(x)))) is such that it intersects X \ S̄f in such a way that

Ld(πX (Bδ((x, f
+(x)))) ∩ (X \ S̄f )) > 0.

Moreover, by Assumption 2 we know that f(x) is Lipschitz away from S̄f , which di-

rectly implies that there must be points (x′, f(x′)) inBδ((x, f
+(x))) with dist((x′, f(x′)), Jv) >

0. This brings us back to the first subcase above and we can derive a contradiction

this way and proves that (9) cannot be a solution in the limit as λ → +∞.

Showing (10) leads to a contradiction.

Suppose (10) holds and denote Zη := Jv\Γη
f for some fixed η > 0. By our assumption,

we know that Zη is not empty, so there is some (x, t) ∈ (X × R) ∩ Zη. As before

Jv must be countably H d-rectifiable since v ∈ SBV (X × R). This implies (e.g.

Mattila, 1999, Lemma 15.5 (2)) that Zη is countably H d-rectifiable. One direction

of a theorem based on results by Besicovitch-Marstrand-Mattila (Ambrosio et al.,

2000, Theorem 2.63) implies that

θd (Z
η, (x, t)) = 1 H d-almost every (x, t) ∈ X × R,

where

θd (A, y) := lim inf
r↓0

H d (Br(y))

ωdrd

is the lower density of the Hausdorff measure with respect to the volume of the d-

dimensional unit ball ωd. We may hence assume that there exist some r0 > 0 and

c > 0 such that

H d(Zη ∩Br((x, t))) ≥ crd, (x, t) ∈ Z, 0 < r < r0.

Recall that for any (x, t) ∈ Zη ∩Br((x, t)) it must hold that t ̸= f(x). Since Zη is
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by definition H d-measurable, it holds by the same argument as in (11) that

(12)

lim
λ→+∞

sup
p∈K

∫
Jv

(v+ − v−)p · ρv dH d

= lim
λ→+∞

sup
p∈K

[∫
Zη∩Br((x,t))

(v+ − v−)p · ρv dH d +

∫
Jv\(Zη∩Br((x,t)))

(v+ − v−)p · ρv dH d

]
.

Now focus on the first term on the right and recall that we only consider the limit as

λ → +∞. Hence, for every constant M > 0 and every r > 0 there exists λ > 0 such

that the first term on the right hand side of (12) is greater than M . This means that

the first term on the right hand side of (12) diverges to +∞ as λ → +∞ because we

can always pick a large enough λ for every r and because the range of pt increases to

R as λ → +∞, and t ̸= f(x) for every (x, t) ∈ Z. This shows the contradiction to

(10) for every η > 0 and proves that limλ→+∞ dH(Jv,Γf ) = 0 for λ that diverges fast

enough.

B.3 Proof of Theorem 2

We split the proof of Theorem 2 into two parts. In the first part, we prove conver-

gence for a deterministic analogue of the problem, for which the estimators f̂Nn and

f̂X,Nn are known functions whose values are given in the center of each pixel. We do

this for two reasons. First, it simplifies the proof for the statistical setting. Second,

it provides a novel convergence result in the mathematical literature on image recog-

nition, complementing recent convergence results (Caroccia et al., 2020; Chambolle

and Pock, 2021; Ruf, 2019). Throughout, we assume that v ∈ [0, 1]d+1 without loss of

generality since all functions are defined on a compact subset of Rd+1 by Assumption

4. The deterministic part is captured in the following lemma.

Lemma 1. Let Assumption 4 hold, let f̂Nn ≡ f be a fixed function whose values are

given in the center x̄k of each cube Qk, and set fX(x) ≡ 1 everywhere on X . Then

EN(v) Γ-converges in the weak∗-topology to

E(v) :=

supp∈K
∫
[0,1]d+1 p ·Dv if v ∈ C

+∞ else
.
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To prove Lemma 1, we need another lemma, which relates the discrete problem

to the approximation of the continuous problem via cubes. In the following, and to

lighten the notational burden in proofs, we define

v↑k1,...,kj ,...,kd+1
:= vk1,...,kj+1,...,kd+1

the forward value of vk1,...,kj ,...,kd+1
for a given dimension kj. As in the main text,

we write k := k1, . . . , kd+1, and hence vk := vk1,...,kd+1
. We write vjk if we want to

emphasize one specific dimension j = 1, . . . , d+1, otherwise the dimension is defined

by the context.

Lemma 2. For the empirical analogues DvN of Dv and pN of p as defined in the

main text, it holds that ∫
[0,1]d+1

p ·DvN =
1

Nd+1
⟨pN , DNvN⟩N ,

with

⟨pN , DNvN⟩N =
∑

0≤k1,...,kd+1≤N

N
(
v↑k1,...,kd+1

− vk1,...,kd+1

)
p↑k1,...,kd+1

.

Proof of Lemma 2. Note that vN ∈ SBV
(
[0, 1]d+1

)
for all N ∈ N, since it is a piece-

wise constant function and the partition QN is a Cacciopolli partition by Theorem

4.16 in Ambrosio et al. (2000) in combination with Theorem 4.5.11 in Federer (2014).

We can therefore write∫
[0,1]d+1

p ·DvN =
∑

0≤k≤N

∫
Qk

p · ∇vk dx+
∑

0≤k≤N

∫
∂Q↑

k∩∂Qk

(
v↑k − vk

)
p · s dH d,

where the orientation s ∈ Sd+1 is chosen in the “forward direction”, i.e. from j to j+1,

which means that it takes the form of unit vectors ej ∈ Rd+1 with zeros everywhere

except a 1 in one of the j positions. Since vk is constant on Qk it holds that ∇vk = 0

on Qk, so that the first term vanishes.

For the second term, we have

∑
0≤k≤N

∫
∂Q↑

k∩∂Qk

(
v↑k − vk

)
pk · s dH d =

∑
0≤k≤N

(
v↑k − vk

)
p↑k

1

Nd
,
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where we define p↑k = pk · e↑, where e↑ is the unit vector in the forward direction

for respective j. The inequalities follow because pk is constant on the boundary of

the respective cube where it is defined and since the Hausdorff measure of a face of

the hypercube in d + 1 dimensions with sidelength 1
N

is 1
Nd . Also recall that the

orientation s is in terms of forward differences, so that pk in the above expression is

the one that lies on the boundary of Qk and the corresponding Q↑
k.

We therefore have∫
[0,1]d+1

p ·DvN =
1

Nd

∑
0≤k≤N

(
v↑k − vk

)
p↑k

=
1

Nd+1

∑
0≤k≤N

N
(
v↑k − vk

)
p↑k

≡ 1

Nd+1
⟨pN , DNvN⟩N .

With this result, we are ready to prove Lemma 1.

Proof of Lemma 1. In the following, we denote weak∗-convergence by
∗
⇀. To prove

Γ-convergence we need to show (Dal Maso, 2012, Proposition 8.1)

(i) for every v ∈ C and every sequence vN ∈ C̃N with vN
∗
⇀ v it holds that

E(v) ≤ lim inf
N→∞

EN(vN)

and

(ii) for every v ∈ C there exists a sequence vN ∈ C̃N with vN
∗
⇀ v such that

E(v) ≥ lim sup
N→∞

EN(vN).

Part (i): Let vN
∗
⇀ v and assume lim infN→+∞ EN(vN) < +∞. Let p ∈ C∞

c ([0, 1]d+1,Rd+1)∩
K.

As in the main text, the discrete approximation of p is achieved by decomposing

[0, 1]d+1 into hypercubes of sidelength 1
N
. We define p

j+ 1
2

k as the average flux through
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the boundary of two adjancent hypercubes Qj+1
k and Qj

k, i.e.

p
j+ 1

2
k = Nd

∫
∂Qj+1

k ∩∂Qj
k

p · s dH d,

where s ∈ Sd is the orientation chosen in the direction from j towards j+1. We then

define

pN =
∑

0≤k≤N

pk.

Now we need to analyze the above constructed pN in terms of K̃, which consists

of two constraints. Let us start with the first. Each pk is a (d+1)-dimensional vector,

and we have to distinguish between the first d entries of this vector and the last entry.

To do this, we will write pxk as the vector consisting of the first d entries and ptk as

the last entry of pk. Furthermore, for the cube Qk we denote its centerpoint by xk.

We can now analyze

(13)

∣∣∣∣∣∣ 1N
∑

κ1≤kd+1≤κ2

pxk

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1N

∑
κ1≤kd+1≤κ2

pxk + px(xk)− px(xk)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1N
∑

κ1≤kd+1≤κ2

pxk − px(xk)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1N

∑
κ1≤kd+1≤κ2

px(xk)

∣∣∣∣∣∣
for κ1, κ2 ∈ {1, . . . , N}. Since p is smooth and in particular Lipschitz, we can bound

the first term in terms of the Lipschitz constant and the endge length. Let L < +∞
be the Lipschitz constant and note that the Euclidean distance between xk and the

center of one of the boundaries of Qk is 1
2N

. We can hence bound the first term as∣∣∣∣∣∣ 1N
∑

κ1≤kd+1≤κ2

pxk − px(xk)

∣∣∣∣∣∣ ≤ 1

N

∑
κ1≤kd+1≤κ2

|pxk − px(xk)|

≤ 1

N

∑
κ1≤kd+1≤κ2

L

2N

≤ L

2N
.

The second term in (13) is bounded above by ν + o(1) since p ∈ K and a Riemann
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sum argument. So overall, we have

1

N

∣∣∣∣∣∣
∑

κ1≤kd+1≤κ2

pxk

∣∣∣∣∣∣ ≤ ν + o(1) +
L

2N
.

So for pN ∈ K̃ we would have to normalize each pxk as

p̃xk = pxk
ν

ν + o(1) + L
2N

.

Let us now analyze the second part of the constraint K̃. Recall that the constraint

for K reads

|px(x, t)|2 ≤ 4
(
pt(x, t) + λ(t− f(x))2

)
.

By Assumption 4 the term in square brackets is bounded for all t and x. We now

analyze

|pxk|
2 ≤ (|pxk − px(xk)|+ |px(xk)|)2 ,

where xk is again the center point of the cube Qk. The first term can be bounded in

the same way as above:

|pxk − px(xk)| ≤
L

2N
.

By the fact that p ∈ K the second term satisfies

|px(xk)| ≤2

√
pt(xk) + λ (tk − f(x̃k))

2

≤2

√
|pt(xk)− ptk|+ ptk + λ (tk − f(x̃k))

2

≤2

√
L

2N
+ ptk + λ (tk − f(x̃k))

2,

where we define xk ≡ (x̃k, tk) ∈ Rd+1 and the second line follows from (a−b) ≤ |a−b|.
Note that f is a bounded function by Assumption 4, which in our discretization

scheme is approximated in the center of each cube. Putting both terms together

gives

|pxk|
2 ≤

(
L

2N
+

√
2L

N
+ 4

(
ptk + λ (tk − f(x̃k))

2))2
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≤

(
L

2N
+

√
2L

N
+
√

4
(
ptk + λ (tk − f(x̃k))

2))2

=

(
L

2N
+

√
2L

N

)2

+ 2

(
L

2N
+

√
2L

N

)√
4
(
ptk + λ (tk − f(x̃k))

2)+
4
(
ptk + λ (tk − f(x̃k))

2)
:= Cp,

where we used the inequality
√
a+ b ≤

√
a+

√
b in the second line.

So in order to make p̃N ∈ K̃N , we would need to normalize

p̃xk = pxk

(
ν

ν + o(1) + L
2N

)
and p̃xk = pxk

√
4
(
ptk + λ (tk − f(x̃k))

2)
Cp

.

Taking the minimum of these two expressions for p̃xk, and calling this minimum 0 ≤
m(N) ≤ 1 we have p̃xk = m(N)pxk ≤ pxk with m(N) → 1 as N → ∞. It also follows

that
1

Nd+1
⟨pN , DNvN⟩N ≤ m(N)EN(vN).

We now show the convergence of the liminf using the information we have just

derived. First, since vN
∗
⇀ v is holds by definition of weak∗-convergence that∫

[0,1]d+1

p ·Dv = lim
N→∞

∫
[0,1]d+1

p ·DvN = lim
N→∞

1

Nd+1
⟨pN , DNvN⟩N ,

where the second inequality follows from Lemma 2. From the above argument, letting

N → +∞ and then taking the supremum over p we get

E(v) ≡ sup
p∈K

∫
[0,1]d+1

p ·Dv ≤ lim inf
N→∞

EN(vN).

Note that the Neumann boundary conditions of the population problem are pre-

served in the finite sample version and consistency for those follows immediately by

construction. This shows the first part of Γ-convergence.

Part (ii): For the second part we have to construct a recovering sequence (Dal Maso,

2012; Chambolle and Pock, 2021), which is a sequence vN of discrete functions of the
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form

ṽN(x) :=
∑

0≤k≤N

ṽk1{x ∈ Qk}

with ṽN
∗
⇀ v and

lim sup
N→∞

EN(ṽN) ≤ E(v).

By Ambrosio et al. (2000, Theorem 3.9) we can approximate v ∈ BV ([0, 1]d+1) by

a sequence vN ∈ C∞
c ([0, 1]d+1) of mollifiers in L1 with

lim
N→∞

∫
[0,1]d+1

|∇vN | dx = |Dv| .

We then construct the ṽN by

ṽN(x) =
∑

0≤k≤N

vN(xk)1{x ∈ Qk},

where xk is the center point of the corresponding cube Qk. But note that

lim
N→∞

|ṽN − vN |L1([0,1]d+1)

= lim
N→∞

∫
[0,1]d+1

∣∣∣∣∣ ∑
0≤k≤N

vN(xk)1 {x ∈ Qk} − v(x)

∣∣∣∣∣ dx
≤ lim

N→∞

∫
[0,1]d+1

∣∣∣∣∣ ∑
0≤k≤N

vN(xk)1 {x ∈ Qk} − vN(x)

∣∣∣∣∣ dx+ o(1)

= lim
N→∞

∫
[0,1]d+1

∣∣∣∣∣ ∑
0≤k≤N

vN(xk)1 {x ∈ Qk} −
∑

0≤k≤N

vN(x)1 {x ∈ Qk}

∣∣∣∣∣ dx+ o(1)

≤ lim
N→∞

∑
0≤k≤N

∫
Qk

|vN(xk)− vN(x)| dx+ o(1)

≤ lim
N→∞

∑
0≤k≤N

LN + o(1)

2N

1

Nd+1
+ o(1)

≤ lim
N→∞

∑
0≤k≤N

LN + o(1)

2Nd+2
+ o(1)

≤ lim
N→∞

LN + o(1)

2N
+ o(1) = 0,
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where we used the mean-value inequality and

LN :=

∫
[0,1]d+1

|∇vN | dx,

which we know converges to a bounded quantity since v ∈ BV ([0, 1]d+1). This shows

that ṽN → v in L1([0, 1]d+1).

Now we need to show that ṽN
∗
⇀ v, for which we have to show that supN∈N |DṽN | <

+∞. Since vN → v in L1([0, 1]d+1), it holds that

|DvN | =
∫
[0,1]d+1

|∇vN | dx < +∞

for N large enough (Ambrosio et al., 2000, Theorem 3.9). By construction, for any

N ∈ N it holds that∫
[0,1]d+1

p ·DṽN =
∑

0≤k≤N

∫
Qk

p ·DṽN

=
∑

0≤k≤N

∫
Qk

p · ∇ṽN +
∑

0≤k≤N

∫
∂Q↑

k∩∂Qk

(
ṽ↑k − ṽk

)
p · s dH d

=
∑

0≤k≤N

(
ṽ↑k − ṽk

)
p↑

1

Nd

≤ 1

Nd

∑
0≤k≤N

L

N
p↑,

where p↑ is the value of p on the boundary of one of the forward directions. Since p

is continuous and [0, 1]d+1 is compact, it follows

sup
N∈N

sup
p∈C0([0,1]d+1)

∫
[0,1]d+1

p ·DṽN ≤ sup
N∈N

sup
p∈C0([0,1]d+1)

1

Nd

∑
0≤k≤N

L

N
p↑ < +∞,

which shows that supN∈N |DṽN | < +∞. This in turn implies that that ṽN
∗
⇀ v, which

shows that ṽN is the required recovering sequence, since the Neumann boundary

conditions are also preserved as before.

With these lemmas, we can now prove Theorem 2.

Proof of Theorem 2. The proof follows along the same lines as the proof of Lemma
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1, except that we have to account for the randomness of the estimators f̂Nn(x̃k) and

f̂X,Nn(x̃k). The only random element in the optimization problem is one constraint

in K̃, and this is what we analyze. All the other arguments are the same as in the

deterministic case and are omitted.

Recall that the constraint for K̃Nn reads

|px(x, t)|2 ≤ 4f̂X,Nn(x̃k)

(
pt(x, t) + λf̂X,Nn(x̃k)

(
t− f̂Nn(x̃k)

)2)
.

As before we analyze

|pxk|
2 ≤ (|pxk − px(xk)|+ |px(xk)|)2 ,

where xk is again the center point of the cube Qk. The first term can be bounded in

the same way as above:

|pxk − px(xk)| ≤
L

2N
.

By the fact that p ∈ K the second term satisfies

|px(xk)| ≤2

√
f̂X,Nn(x̃k)pt(xk) + λf̂ 2

X,Nn(x̃k)
(
tk − f̂Nn(x̃k)

)2
≤2

√
f̂X,Nn(x̃k) |pt(xk)− ptk|+ f̂X,Nn(x̃k)ptk + λf̂ 2

X,Nn(x̃k)
(
tk − f̂Nn(x̃k)

)2
≤2

√
f̂X,Nn(x̃k)

L

2N
+ f̂X,Nn(x̃k)ptk + λf̂ 2

X,Nn(x̃k)
(
tk − f̂Nn(x̃k)

)2
,

where we define xk ≡ (x̃k, tk) ∈ Rd+1 and the second line follows from (a−b) ≤ |a−b|.
The difference to the deterministic case is that f̂Nn and f̂X,Nn are random estimators

of f(x) and fX(x), which in our discretization scheme are imputed in the center of

each cube. Putting both terms together gives

|pxk|
2 ≤

(
L

2N
+

√
f̂X,Nn(x̃k)

2L

N
+ f̂X,Nn(x̃k)ptk + λf̂ 2

X,Nn(x̃k)
(
tk − f̂Nn(x̃k)

)2)2

.

Just as in the discrete case, we bound this further by

57



|pxk|
2 ≤

(
L

2N
+

√
f̂X,Nn(x̃k)

2L

N

)2

+ 2

(
L

2N
+

√
f̂X,Nn(x̃k)

2L

N

)√
4f̂X,Nn(x̃k)

(
ptk + λf̂X,Nn(x̃k)

(
tk − f̂Nn(x̃k)

)2)
+ 4f̂X,Nn(x̃k)

(
ptk + λf̂X,Nn(x̃k)

(
tk − f̂Nn(x̃k)

)2)

Let us consider the two terms f̂X,Nn(x̃k) and f̂Nn(x̃k) one by one. By definition,

f̂X,Nn(x̃k) is a standard kernel smoothing (i.e. Nadaraya-Watson) or histogram es-

timator and by assumption, we have n
N

→ ∞. Therefore, since the Xi are iid ran-

dom draws from X which has a density fX which is bounded away from zero on

its compact support, we can use a standard law of large numbers in the sense that

f̂X,Nn(x̃k) = fX(x̃k) + oP (1), where oP (1) denotes a vanishing term in probability as

n → ∞. The Continuous Mapping Theorem (e.g. van der Vaart and Wellner, 1996,

Theorem 1.3.6) implies that f̂ 2
X,Nn(x̃k) also converges.

A similar argument holds for f̂Nn by assumption that E[εi|Xi] = 0 and Var(εi) =

σ2 < +∞. The law of large numbers implies that f̂Nn(x) → f(x) in probability. The

continuous mapping theorem and Slutsky’s theorem (e.g. van der Vaart and Wellner,

1996, Example 1.4.7) implies that the entire expression converges in probability as

n → ∞, which is what we wanted to show. Now the argument is exactly the same as

in the proof of Lemma 1, only that the bounds are now

p̃xk = pxk

(
ν

ν + o(1) + L
2N

)
and p̃xk = pxk

√
S2

R2 + 2RS + S2
,

with

R :=
L

2N
+

√
2L

N
and S :=

√
4f̂X,Nn(x̃k)

(
ptk + λf̂X,Nn(x̃k) (tk − f(x̃k))

2
)
,

and one needs to account for the convergence in probability throughout.
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C Uncertainty Quantification

C.1 Subsampling

Algorithm 1 Subsampling

1: Input: Data (Xi, Yi) , I := {1, . . . , n}, miscoverage level α ∈ (0, 1), regression
algorithm A

2: Output: Confidence band, over x ∈ QN−

3: û = A({(Xi, Yi) : i ∈ I})
4: for j = 1 to J do
5: Randomly sample I into K subsets I1, . . . , Ik of size b1, . . . , bK
6: u∗

j,k := A({(Yi, Xi) : i ∈ Ik})
7: Z[j, k] = max{|u∗

j,k − û|}
8: end for
9: ȳk := 1

L

∑L
ℓ=1 log

[
G∗−1

bk
(tℓ)−G∗

bk
−1 (sℓ)

]
, the mean of L log differences of the

empirical quantile functions G∗−1
b (t) at quantiles sℓ, tℓ

10: β̂ := − cov{ȳk,log(bk)}
var{log(bk)}

the rate of convergence
11: For some k ∈ 1, . . . , K:

12: Z∗ = bβ̂k ·max{|u∗
k − û)|} with u∗

k = (u∗
1,k, . . . , u

∗
J,k)

13: zα := sort(Z∗)[(J + 1) · (α)] the critical value
14: return Csub(x, α) = [û(x)− zα/n

bk , û(x) + zα/n
bk ], for all x ∈ QN−

We construct uniform confidence bands by way of a subsampling approach with

an estimated rate of convergence (Politis et al., 1999, Ch.8). The only assumption

required for this approach to be consistent is that the limiting distribution exists and

is non-degenerate for the rate of convergence we estimate. Under this assumption,

we construct uniform confidence bounds using Algorithm 1, where QN− is the grid

on the domain only, that is, without the lifted dimension. Note that, since we aim to

construct confidence bands around a non-parametric estimate û on a grid of size N ,

we keep the grid size fixed when calculating the subsampled estimates u∗
j,k. With this

algorithm, we obtain the confidence bands and 95% significant jump sets depicted

in Figures 1 and 5. To obtain confidence bands on the jump sizes, we simply repeat

lines 8–14 in Algorithm 1 for the forward difference of û and of the subsampled u∗s

and conclude that a jump at point x ∈ Su is significant at the α% level if either

max{y : y ∈ CD
sub, lower(x, α)} > 0, or min{y : y ∈ CD

sub, upper(x, α)} < 0, where

CD indicates the confidence bands for the forward differences and “lower”, “upper”
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indicate whether we consider the upper or lower bound. We take the max and min

since in practice we set the jump size equal to the largest forward difference along

any of the axes.

C.2 Conformal Inference

As a computationally efficient, though more conservative, alternative to quantifying

the uncertainty of the function û and the jump set Su, we rely on distribution-free

conformal prediction methods developed for the non-parametric regression setting

(Lei et al., 2018). Conformal prediction, originally, is a method for constructing bands

around predictions produced by machine learning methods. Its appeal lies in the fact

that it can produce prediction bands for any general estimator without requiring

assumptions about its properties or about the distribution of the data-generating

process. In particular, we construct confidence bands around u and |∇u| using the

Split Conformal Prediction Algorithm 2 proposed in Lei et al. (2018, Algorithm 2),

The authors show that, for (Xi, Yi)i=1,...,n i.i.d. and assuming that the residuals Ri, i ∈

Algorithm 2 Split Conformal Prediction (Lei et al., 2018)

1: Input: Data (Xi, Yi), i = 1, . . . , n, miscoverage level α ∈ (0, 1), regression algo-
rithm A

2: Output: Prediction band, over x ∈ Rd

3: Randomly split {1, . . . , n} into two equal-sized subsets I1, I2

4: µ̂ = A ({(Xi, Yi) : i ∈ I1})
5: Ri = |Yi − µ̂ (Xi)| , i ∈ I2

6: d(α) = the kth smallest value in {Ri : i ∈ I2}, where k = ⌈(n/2 + 1)(1− α)⌉
7: return Csplit(x, α) = [µ̂(x)− d(α), µ̂(x) + d(α)], for all x ∈ Rd

I2 have a continuous joint distribution, which is guaranteed in the limit under the

Gaussian assumption for the SURE,

P (Yn+1 ∈ Csplit (Xn+1, α)) ≤ 1− α +
2

n+ 2
.

Thus, Csplit delivers prediction bands for every grid point x ∈ QN− on which we

estimate û(x).

In practice, we adapt Algorithm 2 to our grid-based setting as follows. Keeping

the hyperparameters λ, ν and the grid QN fixed, randomly split {1, . . . , n} into equal
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subsets I1, I2 and cast (Xi, Yi), i ∈ I1 onto QN as in Section 3.2. Solve problem (5)

on the grid, and then calculate Ri as the difference between Yi and the prediction

û(X ′
i) for the grid point X ′

i ∈ QN− closest to Xi. This gives prediction bands for the

outcome variable Yi. To obtain prediction bands for the jump set Jf , we also calculate

the residual vector RJ
i for the implied predictions Dû by computing DY ′

i where Y ′
i is

the outcome value corresponding to the data point Xi closest to the grid point X ′
i.

Inference on the jump set then proceeds identically to the subsampling case. Finally,

we stress that these prediction bands allow us to do inference on Y , but not on the

conditional mean f(X). Confidence bands for the latter will always be smaller than

prediction bands for the former, so this approach provides a computationally efficient

but very conservative hypothesis test regarding f(X) and the corresponding jump

set Jf . If the goal is to do inference on f(X), we recommend using the subsampling

approach described in the previous section.

D Implementation

We solve (5) using a primal-dual algorithm (Chambolle and Pock, 2011). At each step,

we need to project the iterand vn, which denotes the estimated primal function v at

the n-th iteration of the algorithm, onto the sets C and K. We now discuss how these

projections are implemented, before presenting the algorithm. The implementation

follows those of Strekalovskiy et al. (2012) and Bauer (2016).

D.1 Projection Onto Constraint Sets

Projection Onto C The projection onto C can be done using a straightforward

clipping,

(14) vn+1 = min{1,max 0, vn},

where vn is the n-th iteration of the discretized function v. We also need to impose the

discretized limits from C, by setting vn+1(k1, . . . , kd, 1) = 1 and vn+1(k1, . . . , kd, N) =

0.
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Projection Onto K The projection onto K is more involved. The first constraint,

(15) K1 =

{
pt(k) ≥ |px(k)|22

4
− λ

(
k

S
− f(k1, . . . , kd)

)2
}
,

constitutes a pointwise projection onto a parabola, which can be rewritten as an

optimization program. To see this, let α > 0, px ∈ Rd, pt ∈ R and p = (px, pt)
T ∈

Rd×R. Assume that pt0 < α |px0 |
2
2 holds for a point p0 ∈ Rd×R. The projection of p0

onto the parabola α |px0 |
2
2 can then be written as the following optimization program:

minp∈Rd×R
1
2
|p− p0|22

subject to pt ≥ α |px|22 ,

where α = 1

4f̂X,Nn (k1,...,kd)
and we leave out the constant λf̂X,Nn(. . .)

(
k
N
− f(. . .)

)2
for

ease of notation. The first-order conditions of the corresponding Lagrangian are,

(16)


px − px0 + µ2αpx

pt − pt0 − µ

α |px|22 − pt

 = 0.

Solving for µ and recombining gives the cubic equation,

t3 + 3bt− 2a = 0

with a = 2α |px0 |
2
2 , b =

2
3
(1− 2αpt0) and t = 2α |px|22 , which can be solved analytically

as (McKelvey, 1984),

px =


px0 if pt0 ≥ α |px0 |

2
2

w
2α

px0

|px0 |22
if pt0 < α |px0 |

2
2 and px0 ̸= 0

0 else

and

pt =

pt0 if pt0 ≥ α |px0 |
2
2

α |px|22 else
,
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where

d =

a2 + b3 if b ≥ 0(
a−

√
−b

3
)(

a+
√
−b

3
)

else

and

w =


0 if c = 0

c− b
c

if d ≥ 0 and c > 0

2
√
−b cos

(
1
3
arccos a√

−b
3

)
else

,

with c =
3
√

a+
√
d.

The second constraint, we decouple from the first by way of Lagrange multipliers

(Strekalovskiy et al., 2012). This lets us avoid the Dykstra projection originally

used in Pock et al. (2009), which requires nested iterations (outer loop: primal-dual

algorithm, inner loop: Dykstra’s algorithm) and is thus computationally costly. In

particular, we introduce a set of auxiliary variables ss1,s2 :=
∑

s1≤kd+1≤s2
px(k) and of

Lagrange multipliers µs1,s2 ∈ Rd and write the second constraint set as,

(17) K2 =

|ss1,s2| ≤ ν s.t. ss1,s2 =
∑

s1≤kd+1≤s2

px(k)

 ,

with corresponding Lagrangian,

(18)

L(v, µ, p, s) =

⟨p,DNv⟩N +
S∑

s1=1

S∑
s2=k1

〈
µs1,s2 ,

∑
s1≤kd+1≤s2

px(k)− ss1,s2

〉
.

Then, let (v∗, p∗) be the solution to (5) and (v∗, p∗, µ∗
s1,s2

, s∗s1,s2) the solution to,

(19) min
v∈C
µs1,s2

max
p∈K1

|ss1,s2 |≤ν

L(u, µ, p, s).

We have that,

(20) ⟨p∗, DNv
∗⟩N = L (v∗, µ∗, p∗, s∗) ,
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because p ∈ K implies p ∈ K2 and hence the Lagrange constraint ss1,s2 =
∑

s1≤kd+1≤s2
px(k)

always holds with equality at the optimum.

D.2 Algorithm

Putting everything together, we solve the discretized problem using a primal-dual

gradient descent-ascent algorithm (Chambolle and Pock, 2011). To calculate the

gradient updates, we just need the derivatives with respect to the Lagrangian above,

which are,

(21)

∂L(u, µ, p, s)
∂u

= DT
Np

∂L(u, µ, p, s)
∂ss1,s2

= −µs1,s2

∂L(u, µ, p, s)
∂µs1,s2

= px(k)− ss1,s2

∂L(u, µ, p, s)
∂p

= DNu+ p̃,

where

(22) p̃ =


∑l

s1=1

∑S
s2=l µ

1
s1,s2∑l

s1=1

∑S
s2=l µ

2
s1,s2

0

 .

We get the following algorithm, It was proved in Chambolle and Pock (2011, Thm.1)

that v → v∗ for this algorithm as the number of iterations n goes to infinity, under

the condition that the step sizes satisfy τσL2 < 1, where L = |K| := max{|Kx| : x ∈
X with |x| ≤ 1} with K the continuous linear operator on the primal variable.

D.3 Computational Details and Code

We implement the described algorithm in PyTorch, a modern deep learning framework

that offers native support for GPU acceleration. Running the algorithm on a GPU,

as opposed to a CPU, provides several advantages. GPUs are inherently designed for

high-throughput parallelism, enabling the simultaneous processing of thousands of
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Algorithm 3 Primal-Dual Algorithm

1: Choose (v0, p0, µ0, s0) ∈ C × Kp × Rd×N1×...×Nd×I × Rd×N1×...Nd×I and let v̄0 =
u0, µ̄0 = µ0 = 0, p0 = 0.

2: Set τv = σp =
1

4(d+1)
and τµ = 1/I, σs = 1.

3: For each n ≥ 0:
4: 

pn+1 = ΠKp (p
n + σp (DN v̄

n + p̃n))
sn+1
s1,s2

= Π|·|≤ν

(
sns1,s2 − σsµ̄

n
s1,s2

)
vn+1 = ΠC (vn − τvD

∗
Np

n+1)

µn+1
s1,s2

= µn
s1,s2

+ τµ

(
sn+1
s1,s2

−
∑

s1≤kd+1≤s2
px,n+1(k)

)
v̄n+1 = 2vn+1 − vn

µ̄n+1
s1,s2

= 2µn+1
s1,s2

− µn
s1,s2

,

where ΠD(x) denotes the projection of x onto the set D, I := S2+S
2

the number
of K constraints, and D∗

N = DT
N := N ·DT := −N ·div the adjoint of the discrete

gradient operator.a

5: return v∗

aImplemented in practice as backward differences with a Neumann boundary condition.

matrix operations. PyTorch offers native support for the whole spectrum of GPU ar-

chitectures, including NVIDIA, Apple Silicon (for late 2020 Apple computers onward),

and Intel GPUs. This ensures that researchers and practitioners with varied hard-

ware setups can readily apply our estimator. For efficient computation of the SURE,

which requires solving the algorithm a large number of times, we rely on the hyperpa-

rameter tuning suite in Ray, an open-source distributed computing framework that

supports parallel and fractional GPU processing. This can drastically speed up the

hyperparameter selection by efficiently allocating jobs across multiple partitions of a

single GPU on a local machine or multiple GPUs on a high-performance computing

cluster.

The accompanying Python library can be found at https://github.com/Davidvandijcke/

fdr. A fully developed Python package as well as extensions to R and STATA are

in progress. Though the package is compatible with all major GPU architectures,

researchers without GPUs on their local machines can refer to our Google Colab

notebooks, which provide free access to cloud-based machines with GPU support.

The current implementation of the algorithm takes 69.37 seconds on a Nvidia Tesla

A100 Tensor Core GPU to converge on a 2D dataset with the number of raw data
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points n = 90, 000, the number of grid points N = 12, 750 (25%), and the discretiza-

tion of the lifted dimension S = 32. This computation time can be further improved

by approximating the objective function using “sublabel-accurate” relaxations (Mol-

lenhoff and Cremers, 2017). As this requires further extensions of our statistical

convergence arguments, we leave this to future work.

E Additional Results

E.1 Figures

u +

u −

Sv

Su

νSv

v(x, t)

x

t

Figure 6: Convex Relaxation Through Functional Lifting
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Figure 7: Catchment Area for Estimating Degree of Selection

Note: Figure plots pings inside 40km band within Rajasthan around the state boundary during
the shutdown period. The degree of self-selection is estimated by comparing the share of devices
associated with these pings that cross into neighboring states with its average in the prior month.
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0 25 50 75 100 125 150 175 200

Index (Average on Previous 3 Sundays=100)

(a) Mobile: Raw Data, Day Of, 6 pm – Mid-
night

0 25 50 75 100 125 150 175 200

Index (Average on Previous 3 Sundays=100)

(b) Mobile: Raw Data, Day After, 6 am – 6
pm

Figure 8: Post-Shutdown Activity

Note: Plot shows the raw mobile device data on a 5x5km grid with the fill color of each cell indicating
the value of Pings, for the hours between 6 pm and midnight on the day of the shutdown in (a)
and for the time spanning the shutdown window the day after the shutdown in (b). The outline of
Rajasthan state is indicated by black lines.

(a) Esri Satellite Imagery (b) OpenStreetMap

Figure 9: Rajasthan: Terrain View

Note: 9a shows the satellite view of Rajasthan, obtained from Esri; 9b shows the street map of
Rajasthan obtained from OpenStreetMap. The outline of Rajasthan is depicted in black.
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