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Abstract

This paper investigates forecast aggregation via the random subspace regressions method

(RSM) and explores the potential link between RS and the Shapley value decomposition

(SVD) using the US GDP growth rates. This technique combination enables handling high-

dimensional data and reveals the relative importance of each individual forecast. First, it

is possible to enhance forecasting performance in certain practical instances by randomly

selecting smaller subsets of individual forecasts and obtaining a new set of predictions based

on a regression-based weighting scheme. The optimal value of selected individual forecasts is

also empirically studied. Then, a connection between RSM and SVD is proposed, enabling

the examination of each individual forecast’s contribution to the final prediction, even when

there is a large number of forecasts. This approach is model-agnostic (can be applied to any

set of predictions) and facilitates understanding of how the aggregated prediction is obtained

based on individual forecasts, which is crucial for decision-makers.
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1 Introduction

Nowcasting and short-term forecasting of current economic activity is crucial for decision-makers

such as firms and governments. Over the last few decades, the amount of data used for (improving)

macroeconomic forecasting has been drastically increasing. This means one may have hundreds of

different forecasts of a given macroeconomic indicator, such as GDP. These individual predictions

may be derived from different methods or data sources. A natural question arises: how do we combine

and/or select numerous forecasts to produce a final prediction?

Another research aspect has lately focused on unraveling the black box critique of machine learning

(ML) models. Often, it is nearly impossible to study the relationship between the dependent and

independent variables within the ML framework or to explain why certain estimations are made. In

particular, the “interpretability” aspect is crucial for decision-makers in economics, when some sort

of a structure based on economic theory or intuition is desired for specific reasons.

Not only do economists and policymakers care about precision, but they strive to comprehend

the driving forces behind a given phenomenon. Forecasting models are supposed to motivate some

economic or public policies instead of producing an intractable yet often precise estimation (Burgess

et al., 2013). Additionally, even the “best” single model can sometimes produce imprecise estimations.

In theory, understanding a model’s mechanics allows for identifying and explaining its odd behaviors,

a task often unfeasible for some ML models.

The noticeable increase in using predictive ML in macroeconomics has driven researchers to try

adding some “interpretability” by introducing a universal method that explains the relative importance

of any given feature. The Shapley value decomposition (SVD) is one of the most popular tools,

allowing for decomposition into individual variable contributions. Despite its popularity, it has some

disadvantages. For example, SVD handles high-dimensional data poorly and demands considerable

computing time. Computational burdens force researchers to restrict their attention to fewer indicators

or shift to specific models for which shortcuts have been developed.

In this article, a framework is proposed that connects two seemingly independent fields: forecast

combination and model interpretability. First, a forecast combination approach is introduced based

on the random subspace regression method (RSM) proposed by Boot and Nibbering (2019), which

makes it possible to work within a linear framework even if the number of covariates (in this case,

individual forecasts) is huge. This aggregation scheme produces a new set of forecasts based on the

initial values. RSM helps smooth the distribution of predictions if there are severe outliers. The

forecasting performance of this aggregation method is then compared to standard benchmarks.

Additionally, a synergy between RSM and SVD is explored. Because SVD is easily computed in

a standard linear framework, one can decompose the prediction obtained by RSM into each forecast

contribution using well-known shortcuts. Furthermore, this union of the methods allows researchers
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to handle even high-dimensional data. Thus, with this framework, it is possible to circumvent the

challenges of using many variables while dealing with SVD. The main SVD advantage – the difference

between the final and the historical average predictions is fairly distributed among the covariates – is

fulfilled.

My contribution to the literature is twofold. First, the use of RSM as a forecast combination

method is introduced, unlike previous studies where RSM has been used solely to produce forecasts.

When used for forecast aggregation, RSM proves to be a powerful tool, demonstrating superior fore-

casting performance compared to both AR(1) models and the median of a given set of forecasts. The

number of individual forecasts included in one draw plays a critical role. Second, the proposed connec-

tion between RSM and SVD allows for the easy computation of each individual forecast’s contribution

to the final prediction, even when the number of forecasts is large. This enables real-time analysis

of the forecast decomposition, providing valuable insights into the dynamics of the target variable,

which is crucial for policymakers. Both RSM and SVD are model-agnostic approaches, applicable to

any arbitrarily large set of forecasts.

The paper is organized as follows. Section 2 provides the current state of the forecast combination

research avenues. Section 3 describes RSM and how it can be used to combine forecasts. Section 4 is

devoted to a feature selection problem and highlights the Shapley decomposition of forecasts and its

implementation within RSM. Section 5 describes the nowcasting model used for the study. Section

6 includes an empirical application of all the above-mentioned concepts by exploiting the FRED-MD

database. Finally, Section 7 concludes and provides an outlook for future research.

2 Forecast Combination

Researchers from various disciplines have analyzed different methods of forecast aggregation. In many

practical cases, multiple forecasts of the same variable have been obtained either by various methods or

by using different sources of information (Timmermann, 2006). It is assumed that combining different

individual predictions can improve accuracy. The aggregation strategy enables the incorporation of

much more available information, which may be more fruitful than seeking a “best” model. For a

review of the extensive literature on forecast combinations, see Wang et al. (2023). This section

describes methods dealing with point forecast combinations based on linear combinations. The focus

here is on this class of forecast aggregation because, as shown below, it is possible to merge the latter

with RSM. To conclude, a forecast combination puzzle is discussed.

2.1 Linear Combinations of Individual Forecasts

One of the most straightforward strategies for combining various forecasts is to assign weights to

each individual prediction: the more precise the forecast, the greater the weight. There are numerous
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different weighting schemes. Thus, it sounds feasible to construct a linear combination of the individual

forecasts and treat the OLS coefficients as weights.

More formally, suppose an N -dimensional vector of h-step ahead forecasts ŷT+h|T is given. Addi-

tionally, an n-dimensional vector of past observations of the targeted variable yT is observed. Under

this framework, regression-based weights can be defined as follows (Granger and Ramanathan, 1984):

yT+h = wT+h|T,0 +w′
T+h|T ŷT+h|T + ϵT+h, (1)

where ŷT+h|T are past individual forecasts.

Some restrictions may still be imposed on w′
T+h|T . For instance, a constant term can be omitted,

and/or the weights can be adjusted so that their sum is one. In this study, the unrestricted specification

of Equation 1 is chosen, thus the weights correspond to unrestricted OLS estimations.

The use of regression-based weights for forecast combinations has a long history. Both advantages

and limitations of this approach have already been examined in the last century. One of the critiques

is shown in De Menezes et al. (2000). While exploiting the unrestricted regression, one should address

potential multicollinearity and serial correlation in forecast errors. These challenges are assumed to

be mitigated when combining this approach with RSM, as discussed later.

Upon establishing the unrestricted regression-based weighting method, another concern arises.

What if the total number of ŷT+h|T is exceptionally huge? In this case, a simple OLS estimation

becomes impractical, particularly when the number of forecasts (N) exceeds the number of observations

in the training set (n). It makes sense to use some variable selection methods, such as Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), to end up only with a few individual

forecasts.

Typically, when dealing with high-dimensional data (in the form of N > n), LASSO or other

penalized regressions have been extensively used for dimension reduction in many areas, including

economics. However, sometimes, it is necessary to use as much data as possible without excluding

variables by assuming non-sparsity. RSM can manage this level of selection ’strictness’ by utilizing all

the available data.

2.2 Forecast Combination Puzzle

Although various forecast combination methods have been proposed over the past few decades, the

simple average (thus assigning equal weights to each forecast) tends to perform similarly to (or even

better than) more sophisticated aggregation approaches. This fact has perplexed researchers, who

have been trying to find a prolific answer to this paradox. Stock and Watson (2004) studied this

phenomenon. In their paper, the term “forecast combination puzzle” was introduced.

Indeed, one should expect some gains in terms of forecast accuracy when using more rigorous

tools for forecast combination than just averaging. Moreover, theoretical results for some approaches
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have been formally derived, proving this initial claim. However, often, a simple mean overshadows

other weighting schemes. Again, Wang et al. (2023) present an excellent summary of why the “forecast

combination puzzle” holds empirically is presented. To summarize, one possible explanation is that the

weights are misspecified or wrongly computed due to, for instance, structural changes. Alternatively,

benefits from using a sophisticated combination may be relatively small. Thus estimation per se

overwhelms the potential gains.

However, if individual forecasts come from different sources or models, the variance can be high

due to some outliers. If the number of outliers is high and they are not equally distributed around

zero, then averaging over this forecasting set may be inefficient. Although taking a median can arise

as a potential method to produce a final prediction, as used in Stock and Watson (1999), it does not

indicate how varied the individual predictions are in the set.

Using RSM for forecast combination allows for relying on the mean even in the presence of outliers

in the initial set. This is achieved by obtaining a new set of forecasts based on the initial one,

which is supposed to be distributed so that taking a mean makes sense and provides good empirical

performance.

3 Random Subspace

Initially, RSMs appeared in the field of ML but had little application in macroeconomic forecasting.

Ho (1998) introduced this approach to train tree models. Later, Bay (1998) extended the same logic

to the nearest neighbor classifiers. Wichitaksorn et al. (2023) applied RSM to feature selection in

a logistic regression framework. Recently, random or complete1 subspace methods have become a

powerful tool used in macroeconomics (Elliott et al. (2013), Kotchoni et al. (2019), Pick and Carpay

(2022)) and finance (Meligkotsidou et al. (2021)). Some other examples of papers utilizing subspace

methods can be found in Boot and Nibbering (2020).

RSM is a randomized reduction method in which a small number of indicators are (randomly)

selected to estimate a lower dimensional problem. This procedure is repeated sufficiently to produce

many approximations to the initial – sometimes infeasible to calculate directly – model. Finally, the

forecasts from each low-dimensional model are combined (averaged). This allows for reducing forecast

variance while utilizing all available information.

More formally, suppose that the data-generating process (DGP) is defined as follows:

yt+1 = x′tβ + ϵt+1, (2)

for t = 1, · · · , T , x′t is a vector of predictors in RN , ϵt+1 ∼ iid(0, σ2).

1Complete subspace methods imply combining (averaging) a given set of predictors forecasts from all possible linear

regressions
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Initially, this model has been proposed to use observed time series to predict the target. Instead,

this approach is used for the forecast combination. To draw a parallel with previous sections and

align the notation, in Equation 2, x′t corresponds to the N -dimensional set of individual forecasts. In

contrast, the n-dimensional vector yt+1 is the final prediction of the independent variable.

As discussed previously, when the number of estimated coefficients is large, it is either impossible to

run OLS, or there is a high variance in the latter, which can significantly decrease the forecast accuracy.

To overcome both potential challenges, following Boot and Nibbering (2019), it is possible to make a

projection of the N -dimensional vector xt onto a k-dimensional subspace using a permutation matrix,

denoted Ri ∈ RN×k, such that:

x̃′t = x′tRi (3)

A permutation matrix Ri is responsible for randomly selecting (without replacement) a subset of

k predictors of all N covariates. To illustrate this idea, imagine a simple example where there are

N = 5 total number of variables and k = 3 of those are drawn. One possible Ri can look like as follows

(Boot and Nibbering, 2020):

Ri =



0 1 0

0 0 0

1 0 0

0 0 1

0 0 0


(4)

Often, a scaling factor of
√

N
k is premultiplied to satisfy specific desirable statistical properties

(Drineas et al., 2006). However, these properties seem to be redundant in this setting, so this factor

will be omitted from now on2.

Notably, there are different methods to generate Ri. Instead of selecting a subset of covariates,

weighted averages can be used to construct a different set of predictions. Weights are chosen randomly

from a normal distribution. Moreover, the proposed specification of RSM implies that the selection

is carried out using a uniform distribution (the probability that a given variable is selected is equal

across the covariate set). It is also feasible to use importance sampling probabilities or leverage scores

(Mahoney et al., 2011)3.

Assigning an equal probability to each covariate can be partially explained by the following logic.

Suppose there is a concern that, for a given model, randomly selected covariates might be less relevant

than the rest of the pool. At the same time, most (if not all) of the time series used for macroeconomic

predictions are correlated. This fact hints at two possible conclusions. First, a “less” relevant covariate

is likely correlated with one that has more predictive power. Moreover, repeating this procedure –

2For instance, a similar approach has been used in Dinh et al. (2023).
3It is worth mentioning that leverage scores are commonly used when randomly selecting rows rather than columns.
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drawing variables randomly and averaging results over each iteration – makes the model less prone to

“uninformative” variable selection.

Conditional on a drawn Ri, a k-dimensional vector of OLS coefficients β̂i can be obtained as well

as a single aggregated forecast value of ŷt+1. Both statistics are of interest. First, by averaging

different ŷt+1, RSM could benefit forecast aggregation by providing better predictions compared to

more standard metrics. Later, the forecast performance of this method is demonstrated and compared

to benchmarks. Second, to set up the connection between RSM and SVD, a subspace estimation of an

OLS coefficient for a given variable xj is required. To achieve this, the mean of the OLS coefficients

for a variable xj across all iterations was used when xj was selected. That is, suppose that xj was

chosen nxj times. Thus, the following estimation can be obtained:

β̂xj =
1

nxj

nxj∑
r=1

β̂r
xj
, (5)

where β̂r
xj

corresponds to the OLS coefficient for a r-th iteration, when xj is selected.

4 Feature Importance

One common assumption is that ML can improve various research tasks, including forecasting while

handling high-dimensional data. However, often, the results obtained are somewhat difficult to explain.

Even though extensive literature suggests that ML is superior to more traditional approaches, the

inability to explain final estimations (the so-called black box critique) has been a significant obstacle

to adopting ML (Molnar, 2020).

Consequently, various approaches have been developed to interpret different ML estimations. Gen-

erally, the latter can be split into several subcategories:

• Model-specific/ Model-agnostic

• Local / Global

The first item refers to model selection. A valuable feature of model-agnostic interpretation ap-

proaches is that they can be applied to any ML model, unlike their counterpart (model-specific). Thus,

model-agnostic methods are significantly more flexible. In Ribeiro et al. (2016a), the advantages of

using model-agnostic models are summarized below:

• Model flexibility: The interpretation method is used with any ML model regardless of complexity.

• Explanation flexibility: One can choose a specific form of explanation, depending on the nature

of the problem.

• Representation flexibility: The explanation system should be capable of using various feature

representations.
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Interpretability models can also be either local or global. Local interpretation methods tend to

explain individual features or predictions. However, global ones are exploited when describing the

average behavior of an ML model, which is why they are particularly useful when a modeler wants to

understand the general mechanisms in the data (Molnar, 2020). However, as mentioned in Buckmann

et al. (2022), ML models are (highly) nonlinear, meaning a global measure can lead to inconclusive

results when evaluated across differing domains of the input space.

Thus, nearly every interpretation method falls into the intersection of the two previously mentioned

subcategories (model-agnostic/model-specific and local/global). For example, the partial dependence

plot illustrates the marginal effect of one or two features on the predicted outcome (Friedman, 2001).

This approach is model-agnostic and global. However, neural network layer visualization, as used

in Zintgraf et al. (2017), on the other hand, is model-specific (can be applied only to deep neural

networks) and global.

In this paper, the main focus is on the interpretation metrics, which are both model-agnostic and

local. This intersection allows one to obtain the contribution of each individual prediction to the

final forecast while maintaining the advantage of not being restricted to a specific model type. Two

potential candidates are Local surrogate models (LIME) (Ribeiro et al., 2016b) and Shapley values.

The latter is chosen because, as described later, Shapley values guarantee that the difference between

the final prediction and the historical average prediction is fairly distributed among the covariates,

which is not always true for LIME. This property is vital when using Shapley values for macroeconomic

forecasting. Moreover, Shapley values are associated only with the regression coefficients in linear

frameworks. Consequently, it is straightforward to connect Shapley values to RSM.

4.1 Shapley Value Decomposition

Upon applying the concept of feature importance to a macroeconomic forecasting setting, one may

explicitly ask how important a given variable is to producing a predicted value of a target series.

Interestingly, one possible answer to this question comes from a different field of study: game theory.

Shapley et al. (1953) introduced a solution to the problem of fairly dividing a joint pay-off across

all individual players in a cooperative game. For almost six decades, this concept has had nothing to

do with forecasting literature. This connection remained unexplored until Strumbelj and Kononenko

(2010) established a connection between players and variables used for forecasting, as well as the

pay-off and a final prediction.

Following Buckmann et al. (2022), it is possible to define a contribution of variable k in observation

xi and model f :

ϕS
k (xi; f) =

∑
x′⊆C(x)\{k}

|x′|!(|N | − |x′| − 1)!

|N |!
[f(xi|x′ ∪ {k})− f(xi|x′)], (6)

where C(x) \ {k} corresponds to the set of all possible combinations of variables excluding k, and |x′|
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is the number of variables included in the combination.

Like initial idea, SVD represents a weighted sum of marginal contributions of a given variable

(player) to all possible combinations excluding this variable. In this study, SVD is used for forecast

combinations. It means that a given variable, in this case, is an individual forecast. Therefore, the

contribution of an individual forecast to the final prediction can be obtained.

Buckmann et al. (2022) described obstacles when estimating Equation 6. There are two ma-

jor issues. As stated earlier, the number of possible combinations with l variables is 2l. Thus, it

grows exponentially. With sufficiently large l, evaluation of all possible combinations seems infeasible.

Additionally, estimating the term f(xi|x′) is typically challenging (unless a feature independence is

assumed). These problems, in principle, can be avoided if tree-based (see Lundberg et al. (2020)) or

linear frameworks are used. In the following subsection, SVD in a linear setting is described and a

connection is established between SVD and RSM.

4.2 SVD and RSM

In this subsection, the connection between RSM and SVD is introduced. In a linear framework:

f̂(x) = β0 + βx1x1 + · · ·+ βxNxN (7)

The contribution ϕj of a j-th feature xj on the total prediction f̂(x) is the difference between the

feature effect minus the average effect. More formally, one could express it as follows:

ϕj(f̂) = βxjxj − E(βxjXj) = βj [xj − E(Xj)] (8)

Let us combine this decomposition with RSM. Notably, to obtain ϕj , one only misses the OLS

coefficient βxj . However, directly obtaining βxj may be complicated in a high-dimensional case. RSM

can assist in addressing this issue.

To illustrate this idea, suppose a variable xj was selected 50 times within RSM. This implies

that one has 50 different estimations of βxj , each based on different subsamples. However, the term

[xj − E(Xj)] remains the same across all the iterations. Thus, it is possible to obtain an averaged

contribution of ϕj by averaging across different realizations of estimated βxj , as depicted below:

ϕ̄j = β̂xj [xj − E(Xj)], (9)

where β̂xj is the average OLS coefficient corresponding to different draws, defined in Equation 5.

Recall that under a standard linear framework, SVD possesses a valuable characteristic – the

difference between the final prediction and the historical average predictions is fairly distributed among

the covariates (individual forecasts). Maintaining this property is crucial when combining SVD with

RSM, as it is not inherently fulfilled by default.

The explanation is based on the following observation: β̂xj and the final prediction f̂(x) are

averaged across different numbers. That is, β̂xj is divided by the nxj , the number of times a variable
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has been selected. Meanwhile, f̂(x) is divided by M , where M is the number of iterations. To satisfy

the property, one should calculate the following value:

ϕRSM
j =

nxj

M
ϕ̄j (10)

It is possible to interpret ϕRSM
j as an (average) Shapley value corresponding to the variable xj in

the RSM aggregation framework. It is worth observing that if a variable xj is not selected in the r

iteration using the approach, this implies that the corresponding coefficient βr
xj

= 0. This means that

for any xj , there are nxj non-zero βr
xj

and M − nxj amount of coefficients, which equal to zero.

5 Data and Methods

For the empirical application, the monthly dataset FRED-MD provided by McCracken and Ng (2016)

to nowcast the quarterly US GDP growth rate was used.4 In total, this resulted in 117 monthly

indicators, which are used in the study. The evaluation period is Q4 1988–Q1 2023 (138 quarters).

Finally, an out-of-sample forecast is performed.

One of the main advantages of the proposed methodology is that it is model-agnostic. This indicates

that the nature of the set of predictions is not critical. A nowcasting model was applied based on a

generalized regression neural network labeled GRNN Holtemöller and Kozyrev (2024) to obtain a set

of individual predictions. First, the initial model is estimated to study the forecasting performance of

the GRNN approach. Later, a slightly modified variable selection method is exploited, as described

in Medeiros et al. (2021), to study the effect of reducing a set of forecasts on forecast quality. Then,

RSM was applied to carry out forecast aggregation. Finally, based on the RSM estimations, SVD and

its dynamics over time were analyzed.

GRNN is a variation of a radial basis neural network proposed by Specht et al. (1991). It relies

on the idea that a prediction for a given data point xi can be computed as a weighted average of all

previous values based on their proximity to xi. This model shares some similarities with the Nadaraya-

Watson Gaussian Kernel Regression estimator. To obtain a prediction, only two parameters need to

be defined: the number of lags (d) and a smoothing parameter (σ).

Suppose a training set consisting of n training patterns {x1, x2,. . . , xn} and corresponding targets

{y1, y2,. . . ,yn} are given. A corresponding weight wi could be expressed as follows:

wi =
exp(− ||x−xi||2

2σ2 )∑n
l=1 exp(−

||x−xl||2
2σ2 )

, (11)

where || · || is the Euclidian distance.

4All three months within a quarter of each time series are assumed to be known. It means, in this paper, the ragged

edge problem, which appears with differences in publication lags among the variables is not considered. This assumption

seems less restrictive for the US case than for other countries.
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The forecast is a weighted sum of training target outputs:

ŷ =
n∑

i=1

wiyi, (12)

where yi is the target output for training data xi.

Some adjustments are proposed to apply a univariate GRNN approach to mixed-frequency and

multivariate settings. First, GRNN cannot predict an observation that is out of range of previous

observations. Thus, the additive and exponential data transformations are introduced, see Mart́ınez

et al. (2022). Then, actual (level) values of monthly time series from the FRED-MD yt,n, n = 1, . . . , N

are aggregated to match the quarterly frequency of GDP. The aggregated time series is denoted as

yQt,n, and a set of the aggregated time series Syt = {yQt,1, y
Q
t,2, ..., y

Q
t,N}. Additionally, ỹQt,n is defined as

follows:

ỹQt,n =
yQt,n

GDPt
∀yQt,n ∈ Syt (13)

Each element ỹQt,n ∈ Sỹ is separately predicted by a univariate GRNN model.5 The obtained now-

cast and a set of all ”bivariate” nowcasts are denoted as ˆ̃yQt,n and Sˆ̃y = {ˆ̃yQt,1, ˆ̃y
Q
t,2....

ˆ̃yQt,N}, respectively.

Lastly, it is possible to retrieve GDP nowcasts by using the following relation:

ĜDP t,n =
yQt,n
ˆ̃yQt,n

(14)

Thus, one ends up with N different ”bivariate” GDP nowcasts for a given quarter t. All the

nowcasts are collected in a set SGDP = {ĜDP t,1, ĜDP t,2...ĜDP t,N}. It is shown that a median of

this set can produce a reliable GDP nowcast for Germany (Holtemöller and Kozyrev, 2024).

To summarize, the following algorithm is proposed:

• Obtain any set of individual forecasts (in this case, by applying a univariate GRNN model);

• Apply RSM with different k and fixed M .

• Estimate ϕRSM
j to analyze the contribution of each individual forecast to the final prediction.

6 Empirical Results

6.1 GRNN Nowcasting and Variable Selection

First, it is investigated whether nowcasting the GDP using GRNN could improve forecast precision

compared to an AR(1) benchmark6. The forecasting performance of the models is evaluated by using

5The selection of d, σ, and how to deal with non-stationary data is described in Mart́ınez et al. (2022).
6Again, it is possible to use any other model for obtaining many individual forecasts because both RSM and SVD are

model-agnostic.
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two measures, i.e., Relative Mean Absolute Forecast Error (rMAFE) and Relative Root Mean Squared

Forecast Error (rRMSFE). Both metrics are defined as follows7:

rMAFEh =

∑N
i=1 |yi,t+h − ŷGRNN

i,t+h|t |∑N
i=1 |yi,t+h − ŷ

AR(1)
i,t+h|t|

=
MAFEGRNN

h

MAFE
AR(1)
h

rRMSFEh =

√∑N
i=1(yi,t+h − ŷGRNN

i,t+h|t )
2√∑N

i=1(yi,t+h − ŷ
AR(1)
i,t+h|t)

2
=

RMSFEGRNN
h

RMSFE
AR(1)
h

,

(15)

The second and the third columns in Table 1 depict the forecasting performance relative to AR(1)

of the GRNN approach. As shown, both rMAFE and rRMSFE are below one, indicating that

GRNN outperforms AR(1) regarding forecast accuracy. The notable difference between rMAFE and

rRMSFE means that the AR(1) is more sensitive to outliers or that there are significant deviations

from standard behavior. Intuitively, this could be explained by the relatively large evaluation period,

which includes a few periods when GDP dynamics were far from being “normal” (to name some, the

financial crisis of 2008, the COVID recession, and the recovery afterward).

Model Amount rMAFE rRMSFE

Multiplicative Full 0.710 0.429

Additive Full 0.696 0.428

Multiplicative Reduced 0.699 0.426

Additive Reduced 0.700 0.455

Table 1: The Best RSM Aggregated Models (ranked by rMAFE)

Even though the introduced approach can handle sufficiently large datasets, it may seem partic-

ularly instrumental in eliminating some of the most irrelevant (redundant) forecasts. For instance, a

similar idea is described in Ding et al. (2023), where a superior subgroup of forecasts was to be dis-

covered. However, this path is not followed in this study because the relationships between variables

may not hold over time. It is impossible to know in advance what kind of data would be useful to

predict the GDP growth rate within a quarter. This means that relying on the historical accuracy of

the individual forecast does not guarantee its relevance, especially during different shocks. Therefore,

only irrelevant forecasts for a given quarter are eliminated.

The variable selection method used in this study is similar to that employed in Bai and Ng (2008)

for target predictors and in Medeiros et al. (2021) for complete subset regressions. Given the close

relationship between complete subset regressions and RSM, using similar variable selection methods

is reasonable. The variable selection could be described as follows:

7Note, when nowcasting h = 0
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1. Run bivariate regressions of each individual forecast (without any additional lags or another

covariate) on the observed values.

2. Store the t-statistics of each variable and rank them by absolute value.

3. Select only those variables that are significant at the 1% level.

The last step is modified compared to Medeiros et al. (2021). When using complete subset regres-

sions, having a small number of indicators is crucial. Which is why, initially, only ñ variables with

the highest t-statistics were chosen. However, since RSM overcomes the problem of high-dimensional

data, it is possible to be less strict and select every statistically significant forecast. This procedure

is applied for each period in the evaluation set. That means that the number of forecasts used under

the variable selection procedure differs occasionally.

The third and the fourth columns in Table 1 show the forecasting performance of the GRNN

approach relative to AR(1) based on the reduced dataset. The forecasting performance is almost

unchanged. That is why, it is possible to alter the amount of forecasts while preserving or even

improving the forecasting performance.

6.2 RSM Aggregation Performance

As shown previously, taking a median of the individual forecasts is useful when nowcasting using

GRNN. However, can better estimations be achieved using a less “naive” approach? Figure 1 presents

a histogram of GRNN predictions (for Q1 2023) to illustrate the intuition and why it may be the case.
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Figure 1: Histogram of GRNN predictions
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Figure 2: Histogram of RSM predictions

Figure 1 shows that even though the majority of the individual forecasts lie within the “usual”

GDP growth rate bounds (e.g., between -2 and 2), there are some outliers. Due to these outliers,

taking a mean of the set becomes uninformative. Although the median works empirically better than

the selected benchmark, as described in the previous section, there appears to be room to improve
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the forecasts. To further clarify, Figure 2 depicts the distribution of the forecasts using RSM for the

same set of individual forecasts.

The distribution mentioned in Figure 2 looks similar to a normal one with almost no severe outliers.

Thus, the RSM approach can serve to smooth the initial forecasts’ distribution (if necessary, as in

this case). That is why one should not be concerned with taking a mean of these forecasts as they

are all centered around it. Undoubtedly, decision-makers would likely prefer working with normally

distributed forecasts rather than seeking various methods to exclude potential outliers.

To study RSM for forecast aggregation, 50 different models are run, varying across different char-

acteristics. More specifically, different combinations of the following features were estimated:

• Model specification: GRNN Additive or GRNN Multiplicative

• Type of data: Level or growth rates. Since nowcasting using GRNN aims to predict the level

value of a target variable, it is possible to convert level data to the corresponding growth rates.

Intuitively, it is more useful to decompose the difference between the final and the historical

average predictions using growth rates since many indicators (including GDP) depict a linear or

exponential trend.

• Amount of data: Full or reduced according to a variable selection procedure, as described in

Section 6.1.

• The number of indicators k: 5, 10, 20, 30, 40.

Table 2 presents the best RSM aggregated models across various model specifications, data selec-

tions, and values of k in terms of rMAFE and rRMSFE. Notably, the RSM aggregation method

manages to achieve lower values for rMAFE and rRMSFE for selected specifications.

Model Type Amount Selected k rMAFE rRMSFE

Additive Growth rates Reduced 10 0.556 0.299

Multiplicative Growth rates Reduced 10 0.557 0.302

Additive Growth rates Full 10 0.561 0.321

Additive Level Reduced 10 0.568 0.3

Additive Growth rates Reduced 5 0.570 0.334

Multiplicative Growth rates Reduced 5 0.572 0.34

Additive Growth rates Reduced 20 0.581 0.332

Multiplicative Level Reduced 10 0.583 0.306

Additive Level Reduced 20 0.584 0.306

Table 2: The Best RSM Aggregated Models (ranked by rMAFE)
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Based on Table 2, the results can be summarized as follows:

• Model: Both additive and multiplicative specifications perform relatively well. However, ad-

ditive specifications seem to be slightly superior. The best model is GRNN Additive. When

growth rates are used as input data, data is reduced, and k = 10 are taken for each iteration.

However, GRNN Multiplicative with the same choices selected is the second best model with a

slight decrease in both forecasting error statistics.

• Type of data: Forecasting the GDP growth rate based on growth data is a more appealing

strategy rather than using level values. Correspondingly, this makes it possible to use growth

rates because SVD is more tractable while explaining the discrepancy, as mentioned above.

• Amount of data: The forecasting performance based on a reduced dataset outperforms the

same model trained by using the entire dataset. This potentially indicates that redundant

forecasts exist, and the introduced variable selection scheme can detect and eliminate those for

any quarter.

• Selected k: The results suggest that taking fewer individual forecasts for RSM aggregation may

increase the forecasting performance. These findings contradict those mentioned in Boot and

Nibbering (2019). They suggest that the dimension of the subspace should be chosen relatively

large. This discrepancy between the results can be explained by two observations. First, RSM

aggregation is performed on an evaluation set, which is rather small for effectively estimating

OLS using a relatively large k. The second reason may be related to the type of data used.

Initially, RSM is constructed using actual observations rather than derived forecasts based on

these observations. That is, on average, most of the forecasts are assumed to be close to the

observed values of the independent variable. Thus, a lower amount of covariates is required to

undercover the dynamics of the target variable.

6.3 OLS Coefficients

Before analyzing SVD, some points should be mentioned regarding the distribution of OLS coefficients

for a given variable under RSM aggregation. To my knowledge, the statistical properties of β̂xj , as

defined in Equation 5, have not been well-studied. Buckland et al. (1997) derived an expression for the

variance of the estimator under a couple of strong assumptions. However, no studies were conducted

regarding the distribution or the bias of β̂xj . In this subsection, the distributions of β̂xj , based on

different subsamples, are described empirically.

For this purpose, using the best-performing model, the most and the least volatile distributions,

that arise from predictions of the Q1 2023 US GDP growth rate (the last period in the evaluation

sample) are selected. Some other distributions can be seen in Appendix A. Figure 3 depicts the
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distribution of OLS coefficients of the Total Nonfarm Payroll, denoted as PAYEMS. This is a measure

of the number of U.S. workers in the economy that excludes proprietors, private household employees,

unpaid volunteers, farm employees, and the unincorporated self-employed8. Figure 4 illustrates the

same distribution for Reserves of Depository Institutions9, denoted as TOTRESNS.
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Figure 3: PAYEMS OLS coefficients
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Figure 4: TOTRESNS OLS coefficients

Figure 3 shows that in some cases β̂xj may indeed be volatile. The variance of β̂xPAY EMS across

different iterations is 0.649. However, this volatility is seemingly caused by some outliers, whose pro-

portion to the total number of estimations is relatively small. Most of β̂xPAY EMS , as observed, are

between zero and one. However, in seven out of 137 cases, β̂xPAY EMS was estimated to be greater than

two. This may occur when randomly selected variables, apart from PAYEMS, are less informative.

In this case, PAYEMS has a greater weight than all other covariates. However, this occurs not often

because, on average, all chosen variables are supposed to be more or less relevant for predicting the

independent variable. Eventually, some other employment-related variables possess huge volatility

regarding OLS coefficients. Thus, All Employees, Manufacturing10, denoted MANEMP, and All Em-

ployees, Durable Goods11, denoted DMANEMP, provide the third and the fourth most volatile OLS

estimations (0.467 and 0.185, respectively).

On the other hand, one may notice that the distribution depicted in Figure 4 appears similar to

Normal distribution with low variance (5.746 × 107). For most individual forecasts, the distribution

of OLS coefficients behaves similarly. The average variance of OLS estimations across all variables

is 0.04. This fact, along with the bell-curved distribution, suggests that, on average, almost all β̂r
xj

and β̂q
xj for r ̸= q (OLS coefficients associated with different iterations) are strongly correlated, as

8https://fred.stlouisfed.org/series/PAYEMS
9https://fred.stlouisfed.org/series/TOTRESNS

10https://fred.stlouisfed.org/series/MANEMP
11https://fred.stlouisfed.org/series/DMANEMP
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expected.

In conclusion, based on the empirical evidence, β̂xj is assumed to behave in a plausible way to use

them for SVD.

6.4 SVD

In the previous sections, RSM aggregation is shown to improve forecasting performance per se. How-

ever, this forecast combination method also allows analysis of each individual forecast contribution to

the final prediction. This may be particularly interesting for various decision-makers since SVD can

determine the relative importance of a given forecast. Importantly, the more covariates are used for

predictions, the less the corresponding contribution will be. Even though the proposed mechanism

allows for the use of arbitrarily large numbers of individual forecasts, in many practical cases, this

amount can be limited to a much smaller number (for instance, by prior knowledge).

In this study, all available forecasts (upon variable selection) are used to be more flexible. As

previously mentioned, it is impossible to know in advance which indicator will be most beneficial for

nowcasting GDP in a given quarter. That is why, it is expected that ϕRSM
j is typically close to zero.

Below, ϕRSM
j over the entire evaluation sample is presented for two different individual forecasts,

based on industrial production: Total Index12, denoted INDPRO, and Average Weeks Unemployed13,

denoted UEMPMEAN, to study the potential differences in the underlying dynamics. These values

were obtained by the best-performing model (GRNN Additive, reduced data set of growth rates,

k = 10). Similar plots for some other variables can be found in Appendix B.
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In Figure 5, ϕRSM
INDPRO is presented. Industrial production is a crucial variable for assessing current

economic activity see, for instance, Eraslan and Götz (2021). That is why, it is unsurprising that the

forecasts based on this specific variable have been chosen for each quarter over the evaluation set.

12https://fred.stlouisfed.org/series/INDPRO
13https://fred.stlouisfed.org/series/UEMPMEAN
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Recall that Shapley values, defined in Equations 9 and 10, depend on the feature effect minus the

average effect. Thus, the contribution of the individual forecast is high when this difference is high

(given that OLS coefficients are relatively small, which is usually the case).

A couple of extreme values become clear from the graph: they took place during 2008-2009 and

the first quarters of 2020. These ϕRSM
INDPRO align with what was occurring during these periods. In

2009, there was a recession after the financial crisis, and in the first quarter of 2020, the COVID

pandemic caused a significant decrease in production. Thus, the contribution of industrial production

was negative during that time. Moreover, the negative ϕRSM
INDPRO observed for 2001 can be attributed

to a recession that occurred in that year (Brown, 2009). Meanwhile, a rebound in economic activity

was observed in the second quarter of 2020, reflected in the industrial production forecast. Overall, it

is possible to notice that, on average, industrial production contributes quite significantly.

Meanwhile, Figure 6 shows ϕRSM
UEMPMEAN . Compared to the previous case, the first difference is

that UEMPMEAN was not selected until 2009. It may hint at the fact that previously this variable did

not provide reliable forecasts. Furthermore, as shown on the y-axis, the contribution of the forecast

based on UEMPMEAN is almost negligible. This indicates that UEMPMEAN typically reflects an

average GDP growth rate for any given quarter, thus failing to capture various fluctuations of GDP

over time.

Additionally, one can examine the ϕRSM
j across different covariates for some of the most challenging

quarters, that is Q1 2009 and Q2 2020 to study the relative variable importance. In Figure 9, SVD for

Q1 2009 is presented. The most negative contribution came from the forecasts, derived by production-

related variables (IPDMAT14 (Industrial Production: Durable Goods Materials), INDPRO, IPMAT15

(Industrial Production: Materials), IPMANSICS16 (Industrial Production: Manufacturing).
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Figure 8: SVD for Q2 2020

14https://fred.stlouisfed.org/series/IPDMAT
15https://fred.stlouisfed.org/series/IPMAT
16https://fred.stlouisfed.org/series/IPMANSICS
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Figure 10 presents the same decomposition for Q2 2020. Some industrial production variables are

depicted here in a way that is similar to the 2009 recession. However, more labor-related forecasts

negatively contributed to (PAYEMS, SRVPRD17 (All Employees, Service-Providing), UEMP5TO1418

(Number Unemployed for 5-14 Weeks), UEMPLT519 (Number Unemployed for Less Than 5 Weeks).

Some other extreme values of ϕRSM
j over the evaluation set are presented in Appendix C.

7 Conclusion

In this study, an opportunity to use a forecast aggregation method based on RSM is explored, and

the connection between RSM and SVD is provided. First, a potential implementation of RSM for

forecast combination is analyzed. When the number of individual forecasts is relatively large, it is

possible to randomly and uniformly draw much smaller subsets of them to estimate lower dimensional

problems. This method circumvents high dimensionality and enables working with non-sparse data.

Forecasting performance can be improved using RSM rather than taking a median of the initial set.

Moreover, the introduced method allows for an average of the newly produced forecasts to be taken.

Alternatively, it is possible to transform a set of individual predictions in a way that makes taking an

average sensible, even if initially it does not produce a reliable estimation. Thus, this contributes to

the “forecast combination puzzle” literature.

A potential connection between RSM and SVD is addressed. It is possible to implement SVD

into the framework of RSM aggregation to study the relative importance of individual forecasts, thus

adding some interpretability to the final estimation. By decomposing the final prediction, one can

analyze each forecast contribution, which makes this method appealing to governments and institu-

tions. Specifically, SVD for the recession, which took place in 2009, as well as the COVID-19 recession,

are studied. The results indicate that both industrial production variables and different employment

covariates contribute the most.

There are some additional research questions not covered in this paper. Seemingly, there is evidence

that some indicators are more important than others. Thus, it may sound intuitive to assign greater

probabilities to those covariates that possess more forecasting power. Then, if one can first select a

smaller subset of forecasts to start with the corresponding SVD values – the relative importance –

may be increased in absolute terms. Finally, more research can be conducted on the distribution of

OLS coefficients within the RS method.

17https://fred.stlouisfed.org/series/SRVPRD
18https://fred.stlouisfed.org/series/UEMP5TO14
19https://fred.stlouisfed.org/series/UEMPLT5
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Appendices

A Different Distributions of OLS estimations

The distributions of OLS estimations based on different subsamples are further explored.The focus

is on the most and least volatile distributions. Figure 9 illustrates the OLS estimations of New

Privately-Owned Housing Units Started: Total Units in the Midwest Census Region20 (HOUSTMW).

Meanwhile, Figure 10 represents the same statistics for CLAIMSx. Both distributions are among the

least volatile ones.
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Figure 9: HOUSTMW OLS coefficients

The distribution of CLAIMSx OLS coefficients
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Figure 10: CLAIMSx OLS coefficients

The distribution of DMANEMP OLS coefficients
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Figure 11: DMANEMP OLS coefficients

The distribution of NDMANEMP OLS coefficients
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Figure 12: NDMANEMP OLS coefficients

Both of these distributions belong to the least volative ones (their respective variances are 1.53

20https://fred.stlouisfed.org/series/HOUSTMW

22



×106 and 3.25 ×106). As argued earlier, most covariates have a similar distribution with almost no

outliers, which may potentially affect the mean estimation.

Conversely, Figure 11 and Figure 12 display the distributions with the highest variance (DMANEMP

and All Employees, Nondurable Goods21 (NDMANEMP), respectively). As mentioned in the text, the

most volatile distributions correspond to employment-related variables for a given period. As shown,

the number of outliers is lower compared to the PAYEMS case, indicating that the role of such outliers

is indeed negligible when dividing by the number of iterations.

21https://fred.stlouisfed.org/series/NDMANEMP
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B Different ϕRSM
j over Time

Additional ϕRSM
j values are depicted to analyze the potential differences across different variables.

Figure 13 presents SVD for Retail and Food Services22 (RETAILx). Forecasts, based on this indicator,

seem to be essential for nowcasting the US GDP growth rate. Consequently, this covariate has a long

history of being selected in the SVD analysis. The same conclusion holds for All Employees, Retail

Trade23 (USTRADE), as shown in Figure 14.
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Figure 14: ϕRSM
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Figure 15: ϕRSM
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Recall, that the variable selection method proceeds to choose a different set of covariates for a given

quarter. Therefore, a given indicator may or may not be selected. This implies that if ϕRSM
j values

are plotted over time, there might be gaps when this variable was not selected for nowcasting the US

GDP growth rate These irregularities are depicted in Figure 15 for the SVD values of FEDFUNDS

and in Figure 16, which presents the contributions of All Employees, Government24 (USGOVT) are

22https://fred.stlouisfed.org/series/RSAFS
23https://fred.stlouisfed.org/series/USTRADE/1000
24https://fred.stlouisfed.org/series/USGOVT
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presented. It is particularly noteworthy that FEDFUNDS rarely reflects the dynamics of the US GDP

growth rate according to the variable selection procedure. It was selected only for seven quarters out

of 138. However, it was notably selected during the period leading up to the infamous 2011 United

States debt-ceiling crisis. During that period, the contribution of FEDFUNDS seems to be significant.
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C Lowest and Highest ϕRSM
j over Time

Lowest ϕRSM
j Highest ϕRSM

j

Variable Value Period Variable Value Period

PAYEMS -1.97 Q2 2020 DPCERA3M086SBEA 0.47 Q3 2020

FEDFUNDS -0.58 Q4 2010 MANEMP 0.13 Q1 1991

CLAIMSx -0.35 Q1 2020 INDPRO 0.13 Q4 1994

IPDMAT -0.32 Q1 2009 USGOOD 0.13 Q1 1993

CP3Mx -0.24 Q2 2010 RETAILx 0.13 Q2 2022

Table 3: Some of the lowest and highest ϕRSM
j
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