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Abstract

To explain the observed stability in real GDP growth, endogenous growth the-

ories typically need a knife-edge degree of externality, which is not supported by

microlevel observations. We develop a model where a constant number of new

goods are introduced per unit of time and focus on the movement of prices and

quantities after introduction. In this environment, positive real GDP growth, as

measured by SNA statistics, does not necessarily mean exponential growth in the

quantity, quality, or variety of final outputs. We derive the conditions under which

measured growth can be sustained, which are less restrictive than typical knife-edge

assumptions.
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(b) Per Capita Real GDP, Linear Scale
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Figure 1: Long-term Evolution of Real GDP per Capita in the United States from 1830

to 2018 (2011 International Dollar). Source: Madison Project, Bolt and van Zanden

(2020).

1 Introduction

Since around the time the First Industrial Revolution was completed, the growth in real

GDP per capita has been surprisingly stable in the United States. Figure 1(a) depicts

the time series of the real GDP on a log scale, where the slope of the series represents the

growth rate. Although there have been short- to midterm fluctuations, the figure clearly

shows that the log of the real GDP per capita closely follows a linear trend, implying that

the long-term rate of per capita GDP growth is almost constant. Figure 1(b) shows the

time path of the U.S. real GDP per capita on a linear scale without taking the logarithm.

Given that the GDP growth rate is stable, it is commonly understood that the level of

real GDP per capita is increasing exponentially in the long run.

Given these findings, it is natural for existing studies on endogenous growth to explain

the phenomenon of long-term growth via models in which the per capita output con-

tinues to grow exponentially. Initially, this was an extremely challenging task because

reproducible inputs are subject to diminishing returns, which implies that the accumu-
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lation of those factors cannot explain the exponential growth by themselves. Seminal

studies in the endogenous growth theory thus overcame this challenge by assuming the

presence of strong intertemporal knowledge spillovers.

In variety-expansion models (e.g. Romer, 1990; Grossman and Helpman, 1991a), the

productivity of new R&D is assumed to increase as knowledge accumulates with the

past stock of R&D. To sustain economic growth, the elasticity of this spillover ϕ needs

to equal one. Similarly, in quality ladder models (e.g. Grossman and Helpman, 1991b;

Aghion and Howitt, 1992), the increment in quality by a successful new R&D depends

on the quality of the existing good, which is a result of the past stock of R&D. Sustained

growth requires the increments to be proportional to the existing quality, which means

that the elasticity of the externality should again be one. Finally, in AK-type growth

models (e.g. Romer, 1986; Rebelo, 1991), the elasticity of production with respect to all

reproducible factors and the elasticity of their externality effects must add up to one.1

In almost all endogenous growth models, long-term growth can be sustained only when

one such knife-edge condition is satisfied.2

Nevertheless, a puzzle still remains. Indeed, the externality and nonrivalry of knowl-

edge play essential roles in improving productivity (e.g. Griliches, 1998). However, if

we look at the spillover process more precisely, no concrete evidence supports any of

these assumptions. Klenow and Rodriguez-Clare (2005, Section 3) reviewed various AK-

type models. They concluded that such models are empirically implausible based on

the lack of a tight enough relationship between the investment rates and growth rates

in cross-country data. For the elasticity of spillover ϕ in R&D-driven growth models,

1When there are multiple sectors, at least one sector that produces a reproducible factor (typically

physical capital or human capital) must satisfy this restriction. For example, Lucas (1988) initially

introduced a human capital accumulation function ḣt = hϕtG(1 − ut) and then made the assumption

ϕ = 1, following Uzawa (1965). After doing so, he wrote, “the feature that recommends his formulation

to us is that it exhibits sustained per capita income growth,” which gives a clear example of a case where

such a knife-edge assumption is justified not by microlevel observations but rather by the aggregate

outcome. Lucas noted that “human capital accumulation is a social activity,” which suggests that the

elasticity ϕ = 1 includes the effect of externalities.
2Growiec (2007, 2010) formally proved that, with any generalization in functional form, exponential

growth cannot be explained without imposing at least one knife-edge assumption in the model.
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Jones (1995) clearly stated, “ϕ = 1 represents a completely arbitrary degree of increasing

returns and... is inconsistent with a broad range of time series data on R&D and TFP

growth.” He convincingly stated that ϕ = 0 is the most natural case, and while ϕ can

either be negative by the “fishing out effect” or positive by the “better tools effect,” it is

reasonable to assume that ϕ < 1. Bloom et al. (2020) estimated the degree of diminish-

ing returns (1− ϕ) in research productivity in various industries and reported that ϕ is

significantly less than one (even negative) for almost all industries. They concluded that

improving the quality of goods at a constant exponential rate is becoming more difficult.

A possible answer to this puzzle is semiendogenous growth theory with ϕ ∈ (0, 1),

where the long-term rate of growth is ultimately driven by population growth. However,

Jones (2022) predicted that economic growth will eventually come to an end, given

that there are upper limits on population, research intensity, and education attainment.

Under the natural assumption of ϕ = 0, this paper presents an alternative possibility, i.e.,

that the measured economic growth can continue indefinitely with a constant population,

by developing a new theory.

Overview of the mechanism

This paper presents a theory that explains the stability of the observed real GDP growth

rate by considering the vintages of products and their product lifecycle. In this setting,

we will show that the measured GDP growth rate becomes positive under more agreeable

conditions than a knife-edge level of externality, as assumed in existing endogenous

growth models. Note that the focus of the paper is measured GDP growth because the

notion of steady (or balanced) growth comes from the GDP data measured in System of

National Account (SNA) statistics (the NIPA in the U.S.).

Recall that we first presented the (log) level of GDP in Figure 1, and then discussed

real GDP growth. However, in SNA statistics, the GDP data are constructed in reverse

order. Statistical agencies first calculate the real GDP growth rate by comparing quan-

tities of various product groups in adjacent years, using the same set of prices for both
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years. Then, they construct the aggregate level of real GDP via the chain rule:

[
Real GDP at year T

]
=
[
Real GDP at reference year t0

]
×

T∏
t=t0+1

(1 + gt,t−1),

where gt,t−1 is the measured real GDP growth rate between year t and year t−1.3 There-

fore, the fact that the time series of measured per capita real GDP exhibits exponential

growth only means that the series of gt,t−1, from which the real GDP is calculated, is

stationary. Because the composition of final goods differs across time, it is not evident

whether the stationarity in the gt,t−1 series implies exponential growth in the quantity

or quality of any particular final good. In fact, the quantity or quality of no particular

good needs to grow exponentially to sustain the gt,t−1 series at a positive level. (See

Appendixes B.1 and B.2 for the two simplest examples.) Additionally, sustained growth

in the measured GDP does not necessarily correspond to similar improvements in utility

or welfare in the long run.4

Given that there is no need to explain the exponential increase in any good, less

restrictive assumptions are sufficient to explain the fact that the measured real GDP

has been growing steadily. To replicate the environment where the real GDP growth

rate is calculated by statistical agencies, we consider a stylized model in which new

final goods are gradually introduced and explicitly focus on their prices and quantities

over their lifecycle. In this multiproduct setting, we show that the measured GDP

growth rate becomes a positive constant when the following is true: (i) new goods (or

services) are continually introduced to the market; (ii) the quality-adjusted price of each

good decreases as they get older compared to newer goods; and (iii) the expenditure

share for very old goods is limited. Condition (i) does not require the number of goods

to increase exponentially. Conditions (ii) and (iii) state that the price and quantity

for each good should follow the well-observed pattern of the product lifecycle. This

type of economic movement does not require a knife-edge level of externality; this is

in contrast to existing endogenous growth models where some variables need to grow

exponentially. Nevertheless, knowledge externalities are crucial for growth, as they often

3The real GDP at reference year t0 can be set arbitrarily because this is simply an index.
4See Appendix B.3 for more discussion using examples.
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work behind the quality improvements and cost reductions of existing goods, and our

prototype endogenous model incorporates these. However, we show that the fall in

quality-adjusted prices does not need to occur at an exponential speed. As a result, a

weaker externality is sufficient for sustaining measured real GDP growth.

Some recent studies view long-term growth differently than an exponential increase

in final output at the rate of measured GDP growth. León-Ledesma and Moro (2020)

considered a two-sector model and calculated the growth rate via the methodology em-

ployed by the NIPA. They showed that the shift in the expenditure share from goods

to services explains cross-country growth. The current paper proposes that continual

shifts in expenditure shares from older goods and services to newer goods and services

are behind the stability in measured GDP growth. Aghion et al. (2019) examined the

possibility that the measured GDP growth rate underestimates the welfare gains from

creative destruction. In addition to their study, the current paper shows another fun-

damental reason why the measured GDP growth may not represent a similar increase

in welfare in the long run. Philippon (2022) suggested that a linear trend fits the TFP

data better than an exponential trend for periods ranging from several decades to a few

centuries. According his theory, long-term GDP growth can be sustained only when

there are occasional changes in the linear trend (e.g., by the arrival of general-purpose

technologies), and the slope of the linear trend needs to increase exponentially. This pa-

per explores a mechanism that does not require exponential increases and a knife-edge

degree of externalities, even in the very long run.

The rest of the paper is constructed as follows. Section 2 presents a stylized but fairly

general theory that provides the condition under which measured real GDP growth can

be sustained in a setting without exponential expansion. Based on this theory, Section

3 develops a prototype R&D-based endogenous growth model. Without requiring knife-

edge conditions, the model shows that innovation continues and that the measured GDP

growth remains positive. Section 4 generalizes the theory and the prototype model in

several directions to demonstrate that we can obtain a positive constant real GDP growth

rate in wider (even less restrictive) situations. Section 5 concludes the paper.
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2 Theory

This section theoretically derives the condition under which the real GDP growth rate,

as measured by the SNA, can be sustained. In a setting where new goods are continually

introduced, but not at an exponential speed, we show that the sustainability of measured

GDP growth depends on the pattern of changes in prices and quantities in the product

lifecycle. The results suggest various possibilities in constructing general equilibrium

models where measured GDP growth can be sustained under less restrictive assumptions

than typical knife-edge settings. A simple prototype model is presented in Section 3.

2.1 Measuring GDP Growth with Vintages of Goods

Let us consider an economy with a constant population and many goods. While we follow

a convention in the variety-expansion model by calling them goods, it is more suitable

to think of each good in theory as a group of products or services based on the same

technology. Each good is indexed by i ∈ [0, Nt], where i = 0 is the oldest, and i = Nt

is the most recently introduced good. The number of goods Nt increases whenever new

goods are introduced.5

Let p̃t(i) and x̃t(i) denote the price and quantity of each good i at time t. We

normalize the price level at each instant to keep the nominal expenditure (per capita)

constant in the long run. As in SNA statistics, we define p̃t(i) and x̃t(i) as quality-

adjusted values. For example, if the quality of good i is doubled (so that consumers

receive the same utility from half the quantity), then our measure of x̃t(i) is doubled,

whereas that of p̃t(i) is halved.

In this stylized environment, we follow the SNA statistics methods to calculate the

real GDP growth rate. This can be done by comparing the values of all final outputs

between two consecutive years, e.g., year t− 1 and year t. Their values are measured via

the common set of prices, which is usually the set of observed prices in a given base year.

Because the base year is frequently updated in official statistics and because this paper

is interested in long-term dynamics, we suppose that there is no gap between the base

5Nt includes the number of goods that are no longer produced.
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Case 1: When x̃t(i) is always increasing in t.

i
index of varietiesNt

value of production
for each good i
at time t and t-1,
measured with
price at time t 

Nt-1

(a)

(b)

(c)
pt(i)xt-1(i)

xt(i)pt(i)

0

growh rate
=(a+b)/c

Case 2: When x̃t(i) decreases with t sometime after introduction.

i
index of varietiesNtNt-1

(a)

(b)

(c)
pt(i)xt-1(i)

xt(i)pt(i)

0

(d)
growth rate
=(a+b-d)/(c+d)

value of production
for each good i
at time t and t-1,
measured with
price at time t 

Figure 2: Calculation of the Real GDP Growth Rate: Two Cases.

year and the year in which the growth rate is computed.6 Then, the real GDP growth

rate between years t− 1 and t can be written as follows:

gt−1,t =

∫ Nt
Nt−1

p̃t(i)x̃t(i)di+
∫ Nt−1

0 p̃t(i) (x̃t(i)− x̃t−1(i)) di∫ Nt
0 p̃t(i)x̃t−1(i)di

. (1)

This equation is composed of the integrals of two functions: p̃t(i)x̃t(i) and p̃t(i)x̃t−1(i).

Figure 2 depicts the curves of these two functions against the index of varieties i for two

cases, i.e., when the quantity of existing goods always increases with time (Case 1) and

when the quantity of existing goods shrinks in some part of their lifecycle (Case 2). In

Case 1, area (a) represents the sum of the values of new goods introduced between time

t−1 and time t, evaluated by the prices at time t. Similarly, area (b) represents the value

of the increased production of goods that already existed at time t− 1. These two areas

6In the U.S., the NIPA computes the growth rate in two ways, i.e., by setting the base year to t and

by setting it to t − 1. Then, the agency calculates the geometric average of the two values. Here, we

only calculate the growth rate in which the base year is t; the difference disappears at the limit where

the period length approaches 0, as we see in the next subsection.
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measure how economic activity has increased from time t−1 to time t and correspond to

the two terms in the numerator of (1). Area (c) represents the value of total production

at time t − 1, evaluated again by the prices at time t. This area corresponds to the

denominator of Equation (1). In this way, the real GDP growth rate can be understood

as the ratio of area (a)+(b) to area (c), which measures the rate at which the economic

activity at time t increases from time t− 1.

This procedure can be generalized to the case where the output quantity x̃t(i) is not

monotonic in t. Case 2 in Figure 2 illustrates an example where the production of a

certain range of goods declines between periods t−1 and t. A portion of curve p̃t(i)x̃t(i)

then falls below curve p̃t(i)x̃t−1(i). In this case, the real GDP growth rate is given by

the ratio of area (a)+(b)−(d) to area (c)+(d).

2.2 Non-Exponential Steady State with Product Lifecycle

The fact that the measured U.S. real GDP growth rate has been stable for almost two

centuries suggests that Nt, p̃t(i), and x̃t(i) in Equation (1) may have some steady-state

properties in the long run. This subsection presents a simple notion of a steady state in

the environment explained thus far. In particular, we focus on the steady-state dynamics

where neither variety, quantity, nor quality expands exponentially. For ease of analysis,

we describe the economy in continuous time throughout the rest of the paper.

Suppose that, in the long run, Nt increases by a positive constant n per unit of time

as follows:

Ṅt → n > 0 as t→ ∞. (2)

Recall that existing variety-expansion models require a strong and exact degree of knowl-

edge spillover to maintain the exponential expansion of varieties, where Ṅt/Nt is con-

stant. In contrast, the linear increase in Nt in Equation (2) does not require such strong

knowledge spillovers within the R&D sector, as we will see in the general equilibrium

model in Section 3.

Let s(i) denote the time when good i is developed. It is convenient to label each

good by its age, τ = t − s(i), i.e., the time passed from its introduction. Given that n

new goods are introduced per unit of time, an age τ good is the nτth newest good. This
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means that the index of a good i and its age τ are related by the following:

i = Nt − nτ, or equivalently, τ = t− s(i) =
Nt − i

n
. (3)

With this notation, let us say that the economy has reached a steady state if every

good’s price and quantity follow the same time evolution with respect to τ . Formally,

the economy can be said to be converging to a steady state if there exist time-invariant

functions p(τ) and x(τ) such that

p̃t(i) → p(t− s(i)) ≡ p(τ), x̃t(i) → x(t− s(i)) ≡ x(τ) as t→ ∞. (4)

Let T > 0 denote the age beyond which the product is never produced. In typical

variety-expansion endogenous growth models, goods never retire from the market. In

this case, T = ∞. However, in practice, many products disappear after some time. Our

theory can be applied to both cases where T is finite or infinite. We assume that p(τ)

and x(τ) satisfy the following properties:

Assumption 1.

(i) Both p(τ) and x(τ) are nonnegative and continuous for all 0 ≤ τ ≤ T , where T is

such that x(τ) = 0 for all τ ≥ T . Additionally, they are differentiable for all 0 < τ < T .

(ii) T can be infinite, but p(τ) and x(τ) do not grow exponentially: limτ→∞ p′(τ)/p(τ) ≤ 0

and limτ→∞ x′(τ)/x(τ) ≤ 0 if T = ∞.7

(iii) The newest good’s price and quantity are both positive: p(0) > 0 and x(0) > 0.8

With Assumption 1(i), the present paper focuses on the continuous setting because

it is mathematically less demanding and does not sacrifice intuitions. Since x(τ) rep-

resents the quality-adjusted quantity, Assumption 1(ii), combined with Equation (2),

guarantees that neither quantity, quality, nor variety grows exponentially in this econ-

omy. Assumption 1(iii) is an obvious assumption. When a new good appears in the

market, it should imply that the expenditure for the good, p(0)x(0), is positive.

7 Note that the time derivative of the quantity in the steady state is ˙̃xt(i) =
d
dt
x(t−s(i)) = x′(t−s(i)) =

x′(τ). Therefore, x′(τ)/x(τ) = ˙̃xt(i)/x̃t(i) represents the growth rate of the quantity of age τ good, or

equivalently, that of index i = Nt − nτ good. Similarly, p′(τ)/p(τ) = ˙̃pt(i)/p̃t(i) in the steady state.
8In this paper, we use the term “positive” to mean greater than (not including) zero.
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price of
age     good
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Figure 3: Evolution of Prices and Quantities in a Non-Exponential Steady State.

Definition 1. A non-exponential asymptotic steady state is a situation in which the num-

ber of goods follows Equation (2), while the paths of quality-adjusted prices and quantities

of goods, i.e., p̃t(i) and x̃t(i), respectively, satisfy Condition (4) and Assumption 1.

In the remainder of the paper, we use the term “steady state” unless doing so leads

to confusion. Figure 3 intuitively depicts the evolution of the quality-adjusted prices

and quantities in the above definition of the steady state. The graphs can be viewed

in two ways, i.e., either drawn against the i-axis (index of goods) running from left to

right or drawn against the τ -axis (age of goods) running in the opposite direction. The

two variables, i and τ , are related according to Equation (3); however, the relationship

changes over time as Nt increases. At time t, the origin of the τ -axis coincides with the

point of i = Nt on the i-axis because the newest good i = Nt is age τ = 0 at time t. As

time passes, the origin of the τ -axis moves to the right with the speed of the introduction

of new goods, Ṅt = n, as does the position of the graph drawn against τ .

The upper panel of Figure 3 illustrates the schedule of quality-adjusted price p(τ),

assuming that it decreases with age τ either because a product becomes cheaper or has
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higher quality as time passes after its introduction. Then, p̃t(i) is increasing in i at any

given time t since the newer goods have a larger index i. The figure also explains the

movement of the price of each good p̃t(i) over time. Even in the steady state where

function p(τ) is stationary, the price of individual good p̃t(i) shifts downward to the

dotted curve because the position of function p(τ) continues to move to the right as new

goods are developed.9

The lower panel of Figure 3 explains the evolution of quality-adjusted quantities

of goods over time. The panel is drawn assuming that x(τ) is increasing in τ , which

naturally matches our example in which the older goods have lower quality-adjusted

prices. In this case, the demand for each good x̃t(i) increases over time as the x(τ)

function shifts to the right. Note that, however, Assumption 1(ii) rules out exponential

growth in the quantity of any good. Even when T = ∞, the growth rate of x(τ) must

be either zero or negative as τ → ∞.

Similar to Case 2 of Figure 2, we can also consider a steady state in which the quantity

may decrease with age, even though older goods are less expensive. Such a pattern will

emerge when consumers do not like outdated goods or if newer goods replace parts of

functions that are provided by older goods, as we discuss later in Subsection 4.1.

2.3 Measured Real GDP Growth Rate in the Steady State

Now, we examine whether the non-exponential steady state explained in Section 2.2

implies a positive and constant real GDP growth rate. Note that the conventional

definition of real GDP growth in Equation (1) gives the average growth rate between

two discrete periods. To map this definition to a continuous-time growth model, it is

convenient to consider the instantaneous growth rate gt at time t. This can be obtained

9Although this is a convenient way to explain the steady-state dynamics, note that the economic

environment, such as technology, preference, and market structure, first determines the evolution of the

price of individual goods p̃t(i) in equilibrium. Then, the long-term pattern of movement in p̃t(i) shapes

the stationary p(τ) function.
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by replacing t−1 in Equation (1) with t−∆ and taking the limit of ∆ → 0 in gt−∆,t/∆.10

gt = lim
∆→0

gt−∆,t

∆
=
Ṅt · p̃t(Nt)x̃t(Nt) +

∫ Nt
0 p̃t(i) ˙̃xt(i)di∫ Nt

0 p̃t(i)x̃t(i)di
. (5)

Suppose that the economy converges to a steady state, as defined in Definition 1.

The number of goods grows linearly, and the evolution of prices and quantity in terms

of age becomes stationary. Given that
∫ T
0 p(τ)x(τ)dτ is finite, the long-term growth rate

can be obtained by substituting Equations (2)-(4) into Equation (5).11

gt → g ≡ lim
T→T

np(0)x(0) + n
∫ T
0 p(τ)x′(τ)dτ

n
∫ T
0 p(τ)x(τ)dτ

as t→ ∞. (6)

The interpretation of the growth rate in Equation (6) is essentially the same as

that in Equation (1), except that growth is now represented in terms of age and in

continuous time. In the numerator, np(0)x(0) represents the value of newly introduced

goods, whereas n
∫ T
0 p(τ)x′(τ)dτ represents the value of changes in quantities of existing

goods given price function p(τ). Both terms are multiplied by n because there are n

goods per unit of age. The sum of these terms reflects the speed of increase in economic

activity. The denominator of Equation (6), n
∫ T
0 p(τ)x(τ)dτ , gives the total value of

10SNA statistics use the cumulative output of good i for a given period (e.g., a year or a quarter) when

constructing the growth rate between adjacent periods. Specifically, to match this definition precisely,

we need to integrate x̃t(i) for the duration of the period and apply the result to Equation (1). As we

take the limit where the duration of one period is almost zero, we confirm that this exact GDP growth

rate converges to the expression in Equation (5):
11Equation (6) can be obtained from Equation (5) as follows. First, we substitute p(τ) and x(τ) for

p̃t(i) and x̃t(i). Similarly, ˙̃xt(i) can be written as x′(τ) (see footnote 7). Next, we change the integration

variable from di in Equation (5) to dτ . By differentiating Equation (3) for a given t, we obtain di = ndτ .

We also need to change the integration interval. From Equation (3), i = 0 and i = Nt correspond

to τ = Nt/n and τ = 0, respectively, as illustrated in Figure 3. As t → ∞, Nt/n also approaches

∞. From these, limt→∞
∫ Nt

0
p̃t(i)x̃t(i)di = limt→∞

∫ 0

Nt/n
p(τ)x(τ)(−n)dτ → n

∫∞
0
p(τ)x(τ)dτ . However,

since x(τ) = 0 for τ ≥ T , the limit becomes n
∫ T
0
p(τ)x(τ)dτ . Similarly, the limit of the numerator of

Equation (5) is np(0)x(0)+n
∫ T
0
p(τ)x′(τ)dτ . If T is finite, then both limits are finite; therefore, we can

substitute these limits into Equation (5). However, when T = ∞, then the limits may be infinite. In

this case, we use a large but finite T in place of T before substituting them into Equation (5) and take

the limit of T → T = ∞ for the whole fraction, as shown in Equation (6):
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existing production, i.e., the nominal GDP of the economy given prices p(τ). The ratio

of the two yields the real GDP growth rate.

The following proposition provides a simpler formula for the long-term GDP growth

rate in the steady state.

Proposition 1. Suppose that the economy converges to a non-exponential asymptotic

steady state, as defined by Definition 1. Then, the real GDP growth rate gt asymptotes

to g in the long run, where g is given as follows:

(i) If
∫ T
0 p(τ)x(τ)dτ is finite (which is always true when T is finite), then12

g =
−
∫ T
0 x(τ)dp(τ)∫ T

0 p(τ)x(τ)dτ
. (7)

(ii) If
∫ T
0 p(τ)x(τ)dτ = ∞, then g = 0.

Proof. (i) When
∫ T
0 p(τ)x(τ)dτ is finite, we can take away limT→T in the RHS of Equa-

tion (6) and replace T with T . In its numerator, integration by parts implies that∫ T
0 p(τ)x′(τ)dτ = p(T )x(T ) − p(0)x(0) −

∫ T
0 p′(τ)x(τ)dτ , where p(0)x(0) cancels out.

When T is finite, p(T )x(T ) = 0. When T = ∞, the finiteness of
∫ T
0 p(τ)x(τ)dτ implies

that limτ→∞ p(τ)x(τ) = 0 (i.e., p(T )x(T ) = 0). Therefore, we obtain Equation (7).

(ii) In this case, T is necessarily ∞. If
∫∞
0 p(τ)x′(τ)dτ is finite, then the result directly

follows from Equation (6). Now, suppose that
∫∞
0 p(τ)x′(τ)dτ is either +∞ or −∞.

Since both the numerator and the denominator in Equation (6) are infinite, we apply

L’Hospital’s rule to Equation (6) to obtain the following:

g = lim
T→∞

p
(
T
)
x′
(
T
)

p
(
T
)
x
(
T
) = lim

T→∞

x′
(
T
)

x
(
T
) ≤ 0, (8)

where the last inequality follows from Assumption 1(ii). In the following, we show that

g < 0 does not occur by contradiction. For g to be strictly negative, x(τ) needs to

shrink exponentially, which also means that x′(τ) must shrink exponentially. However,

from limτ→∞ p′(τ)/p(τ) ≤ 0 in Assumption 1(ii),
∫ T
0 p(τ)x′(τ)dτ is finite since p(τ)x′(τ)

should shrink exponentially. Therefore, g < 0 contradicts the initial assumption that∫ T
0 p(τ)x′(τ)dτ is either +∞ or −∞.

12Note that
∫ T
0
x(τ)dp(τ) is equivalent to

∫ T
0
p′(τ)x(τ)dτ given that p′(τ) exists.
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Although Equation (7) has a simple form, it includes the contribution from the new

goods since it is mathematically equivalent to Equation (6) as long as
∫ T
0 p(τ)x(τ)dτ <

∞. Additionally, it accounts for any negative effect on g from disappearing goods when

T is finite.13 Proposition 1 immediately implies the requirements for positive long-term

GDP growth.

Corollary 1. The long-term real GDP growth rate g is a positive and finite constant if

and only if the following two conditions are satisfied:14

−
∫ T

0
x(τ)dp(τ) is positive and finite, and (9)∫ T

0
p(τ)x(τ)dτ is finite. (10)

The expression in Condition (9), −
∫ T
0 x(τ)dp(τ), is the numerator of Equation (7).

It represents the cumulative reduction in the quality-adjusted price of a good during its

product lifecycle. When the quality-adjusted price of goods declines, consumers have

more purchasing power, thus improving their utility. This income effect from price re-

ductions is more significant when the quantity of the good is greater. Therefore, in

Condition (9), the price reduction −dp(τ) is weighted by quantity x(τ) and then inte-

grated. The integrated sum gives the total income effect that one product generates over

its product lifecycle. The expression
∫ T
0 p(τ)x(τ)dτ in Condition (10) is the denominator

of Equation (7). It is the cumulative expenditure that one product attracts over its life-

cycle. Proposition 1 says that if every product follows the same lifecycle pattern, then

the real GDP growth rate in the economy is given by the ratio of the two. If both values

are positive and finite in a non-exponential steady state, as defined in Definition 1, this

indicates that the real GDP growth rate, as measured by the SNA, can be sustained even

when no variable grows exponentially. We first provide three examples in the following

13Note that Assumption 1(i) assumes that x(τ) is continuous in τ up to τ = T , where x(T ) = 0.

Therefore, x(τ) must fall continuously to zero at the end of its lifecycle. This negative effect on g is

included in the second term in the numerator of Equation (6) and hence in Equation (7).
14Note that

∫ T
0
p(τ)x(τ)dτ is always positive from Assumption 1; therefore, we require only finiteness

in Condition (10).
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subsection and then discuss the implications of Conditions (9) and (10) in more detail

in Subsection 2.5.

2.4 Graphical Examples

Proposition 1 shows that the real GDP growth rate depends only on functions p(τ) and

x(τ). We can represent the growth rate graphically via the shapes of these two functions.

Figure 4 provides three examples.

Example 1 shows the simplest case, where the quality-adjusted price (weakly) falls

with age throughout the product lifecycle. The left panel depicts the evolution of

{x(τ), p(τ)} in the x-p diagram. T is finite in this example. The good enters the market

at the point {x(0), p(0)} and continues to be produced until its age reaches T = τ3.

Then, the numerator, −
∫ T
0 x(τ)dp(τ), can be expressed by the area that is encompassed

by the locus of {p(τ), x(τ)} and the vertical axis in the x-p diagram (shown in blue). This

graphical representation can be interpreted as follows. Whenever the quality-adjusted

price falls by dp(τ), either through cost reductions or through quality improvements,

consumers can save the purchasing power by the amount of −x(τ)dp(τ). The blue area

shows the cumulative benefits of this good throughout its lifetime. The area is positive

and finite as long as p(0) < p(T ).15

The right panel shows the evolution of expenditure for a good against its age,

p(τ)x(τ). The area below the curve (shown in yellow) gives the denominator,
∫ T
0 p(τ)x(τ)dτ .

According to Assumption 1, the expenditure for the good is positive at the time of intro-

duction, and it evolves in the nonnegative region during its lifetime. Since expenditure

p(τ)x(τ) falls to zero at finite T = τ3, this area is positive and finite. Proposition 1

says that the ratio of the blue area to the yellow area gives the real GDP growth rate.

Therefore, we can conclude that the real GDP growth rate in this example is positive

and finite.

Next, Example 2 considers a case where p(τ) is not monotonic. As shown in the left

panel, the quality-adjusted price begins to increase after τ3 years. When the price of the

good (relative to the newest good) rises during a part of its lifecycle (from τ = τ3 to τ6),

15p(0) < p(T ) requires the price to fall strictly with age in some part of a good’s life.
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Example 1: When T is finite and p(τ) is weakly decreasing

Example 2: When T is finite and p(τ) is nonmonotonic

Example 3: When T = ∞ and p(τ) is decreasing

Figure 4: Graphical Representation of the Real GDP Growth Rate. The growth rate is

measured by the ratio of the areas of the two panels.16



the area between this part of the x-p locus and the vertical axis (marked as (ii) and (iii))

represents the loss of the purchasing power of consumers. This area needs to be deducted

from the benefits of the fall in quality-adjusted prices from τ = 0 to τ3. Therefore, the

numerator, −
∫ T
0 x(τ)dp(τ), is given by area (i) minus area (iii) because area (ii) cancels

out. It can be either positive or negative but is always finite since T = τ6 is finite. The

yellow area in the right panel gives the denominator,
∫ T
0 p(τ)x(τ)dτ , which is positive

and finite. Therefore, the real GDP growth rate is finite, which is given by the ratio

of the blue minus red area to the yellow area. Additionally, note that the growth rate

becomes zero only by coincidence, only when the blue and red areas are the same size.

Finally, Example 3 shows a case in which the good stays in the market forever

(T = ∞). The price p(τ) (relative to the newest good) falls throughout the lifecycle,

and the quantity x(τ) remains positive as τ → ∞. For the yellow area to be finite, the

expenditure on very old goods has to shrink. More concretely, Condition (10) is satisfied

if expenditure for old goods is bounded by a polynomial function of age with a power of

less than −1:16

p(τ)x(τ) ≤ [constant] · τ−ξ for all τ ≥ τ , (11)

for some ξ > 1 and τ > 0. The dotted curve in the right panel gives an example of such

an upper bound. While we need a concrete model to determine whether Condition (11)

is satisfied, let us note that the condition does not require an exponential decrease in

expenditure. The RHS of Equation (11) decreases with age at the rate of ξ/τ for τ > τ .

The rate of decline in the quality-adjusted price, ξ/τ , can be arbitrarily close to zero

when we choose a large τ . Therefore, there is no minimum rate at which the expenditure

needs to decrease.

The blue area is positive, given that the quality-adjusted price falls throughout the

product lifecycle. Combined with Condition (11), the GDP growth rate is also positive.

The growth rate is finite if p(τ) is bounded away from 0 as τ → ∞.17 If p(τ) falls to

16Suppose that Condition (11) is satisfied. Then, the denominator of Equation (7) is
∫∞
0
p(τ)x(τ)dτ ≤∫ τ

0
p(τ)x(τ)dτ +

∫∞
τ

[constant] · τ ξdτ . The first term is finite, and the second term becomes [constant] ·

τ1−ξ/(ξ − 1), which is also finite:
17In this case, x(τ) must be finite as τ → ∞ since otherwise, p(τ)x(τ) becomes infinite, contradicting
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0 as τ → ∞, then the finiteness depends on the relationship between p(τ) and x(τ).

Specifically, if the quantity depends only on price, then the area becomes finite if the

price elasticity of the demand is less than one as the price approaches 0 from above.18

2.5 Discussion: Two Conditions for Sustained GDP Growth

The previous three examples illustrate that the measured real GDP growth rate in the

steady state becomes positive and finite in various scenarios. Here, we discuss more

generally when the two required conditions in Corollary 1 hold.

Condition (9): the quality-adjusted price falls during its product lifecycle

For this condition to be satisfied, p(τ) must fall with τ at least for a portion of its product

lifecycle. Recall that we normalize the price level so that the nominal expenditure in the

steady state is constant. This normalization also implies that the price of the newest

goods when they appear does not change over time in the steady state. Therefore,

Condition (9) only requires the quality-adjusted prices of older goods to decrease relative

to those of newer goods, and it is not essential for the prices of individual goods measured

in a currency to decrease. In terms of actual currencies, we can determine that p(τ) is

decreasing if the quality-adjusted currency prices of individual goods lag behind the

growth of the nominal per capita GDP.19

With this definition, the quality-adjusted price of a good may decrease with age for

Condition (11). Given this, the blue area is finite.
18Suppose that we can define a static inverse demand function P (x). Focusing on the case of x → ∞

and P (x) → 0, the blue area can be written as p(0)x(0) +
∫∞
x(0)

P (x)dx. If the price elasticity of the

demand as p→ 0 is less than one, then the elasticity of P (x) with respect to x as x→ ∞ is greater than

one. This means that P (x) is bounded by [constant] · x−ξ′x for some ξ′ > 1 for large x. Therefore, the

integral is finite.
19Suppose that the per capita nominal GDP growth rate in dollars is g$. Note that in price nor-

malization in our theory, nominal per capita expenditure is constant, which means that there is a g$

difference in the inflation rate between the prices in theory and in dollars. Then, in dollars, the rate of

price change of age τ good is p′(τ)/p(τ) + g$. Therefore, we can determine that p′(τ) is negative if the

quality-adjusted dollar prices of individual goods are increasing more slowly than g$.
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several reasons. For example, the cost of production falls through learning-by-doing and

knowledge spillovers. In this case, time and production experience will contribute to

price reduction. Apart from cost reduction, changes in the form of competition may also

lower prices because older goods are typically less protected from competition by patents

and trade secrets than newer goods are.

Price reductions also occur in the form of quality improvements. For example, the

effective price of computers has been declining for decades, not only because computers

have become cheaper but also because the average performance of computers has dras-

tically improved. SNA statistics record such changes as a decline in the quality-adjusted

price.

Notably, our theory does not require an exponential decrease in the quality-adjusted

price. If the quality improvements are exponential, then economic growth can easily

be maintained, e.g., as in usual quality-ladder models. According to “Moore’s law,”

the quality of computers has been improving at a constant rate; however, this trend

of exponential improvement is expected to slow. In fact, computers are a remarkable

exception in terms of continued improvements in performance. Most other products

experience tapering in the rate of productivity improvement as they mature. Our theory

shows that slowdowns in productivity increases in individual goods are consistent with a

sustained rate of measured GDP growth, as long as a constant number of new products

are introduced per unit time.

Finally, let us discuss the case in which the quality-adjusted price of the good increases

for some part of its lifecycle, as we discuss in Example 2 of Figure 4. Although we need

a concrete model to analyze how this happens and whether Condition (9) is satisfied, we

discuss two possibilities here. One possibility is when products have antique or scarce

value as they become very old. In this scenario, p(τ) increases only when x(τ) becomes

considerably smaller than when it is newer. Another possibility is that producing a good

in small lots costs more. This happens, for example, when a particular good continues

to be produced to meet a niche demand, typically near the end of the product lifecycle.

The numerator of the equation, −
∫ T
0 x(τ)dp(τ), is the weighted sum of the price

changes, dp(τ), where the weights are the quantities, x(τ). Therefore, if the quantity
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x(τ) tends to be small when p(τ) increases, then the negative effect of such movements

on the GDP growth rate is likely to be limited. Therefore, even when the price at the

end of the lifecycle p(T ) is higher than the initial price p(0), the lifetime contribution of

this good to the real GDP growth rate may well be positive, as in the case of Example

2.

Condition (10): The cumulative expenditure for a single good is finite

This condition requires the expenditure for older goods p(τ)x(τ) to decrease so that they

are effectively retired from the market in terms of expenditure share. The condition is

always satisfied if the representative good ceases to be produced at finite age T . Even

when the good stays in the market forever (T = ∞), the condition is satisfied if the

expenditure decreases with age reasonably quickly (condition 11). Notably, the decline

in the speed of expenditure does not need to be exponential.

The expenditure for the good can decrease with age for several reasons. One possi-

bility is that the price decreases when the price elasticity of demand is less than one, at

least for older goods. To illustrate this possibility, suppose that the demand for a good

is determined solely by its price p(τ), and the price falls toward zero. Even when the

good becomes almost free, it is unrealistic to expect consumers to demand an infinite

amount of any particular product. This consideration suggests that the price demand

elasticity of a product tends to be less than one when the price becomes sufficiently low,

and the expenditure for the good will eventually vanish as p(τ) → 0. Section 3 presents

a full endogenous growth model on the basis of this idea.

The expenditure for older goods can also decrease for other reasons. Sometimes,

consumers are attracted by the novelty of new goods, but they become less interested

as time passes. Advertisements for newer goods increase the speed of the obsolescence

of older goods. Changes in the underlying economic environment may also make older

goods useless. When these effects are present, Condition (10) may be satisfied regardless

of the elasticity of demand. We extend the model to include obsolescence in Subsection

4.1.
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3 A Prototype Non-Exponential Growth Model

This section presents a general equilibrium model that yields non-exponential steady-

state dynamics. While the theory in the previous section suggests many ways to construct

a model that achieves non-exponential growth while capturing various aspects of reality,

this section presents the simplest prototype model to convey the substance of the non-

exponential growth theory as clearly as possible. We discuss the generalizability of the

prototype model in Section 4.

3.1 Consumers

Consider an economy with infinitely lived representative consumers of constant popula-

tion L. At each point in time, each consumer supplies one unit of labor. The wage level

is normalized to one.20

The lifetime utility function of the representative consumer is given by the following:∫ ∞

0

[∫ Nt

0
u(c̃t(i))di

]
e−ρtdt, (12)

which is separable across both time and goods. Note that the subutility function is

symmetric across goods; thus, we do not consider the obsolescence of older goods in this

simplest prototype model.

When demand depends only on price, as discussed in Example 3 of Section 2.4,

positive GDP growth requires the price elasticity of demand for individual goods to be

less than one, at least for older and cheaper goods. This setting is reasonable when the

price is close to zero because it is not realistic for the expenditure for a single good to

become infinite, as p → 0. At the same time, it is reasonable to assume that the price

elasticity is greater than one when the price is very high. Otherwise, the expenditure

for a single good increases without bound as p → ∞, which is also unrealistic. To

incorporate these considerations in the simplest way, we consider a subutility function

20In the steady state where the fraction of consumption out of labor income is constant, this nor-

malization implies that the nominal expenditure is constant, which is consistent with the theory in the

previous section.
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in which the elasticity changes at a threshold level ĉ > 0:

u(c̃t(i)) =


c̃t(i)1−1/ε

1−1/ε + u for c̃t(i) ≥ ĉ, (0 < ε < 1)

u c̃t(i)
1−1/ε̂

1−1/ε̂ for 0 ≤ c̃t(i) < ĉ, (ε̂ > 1)

(13)

where we specify parameters u = ĉ1/ε̂−1/ε > 0 and u = (1/(1−1/ε̂)+1/(1/ε−1))ĉ1−1/ε >

0 so that both u(c) and u′(c) are continuous at c = ĉ. Note that u(c) is an increasing,

continuously differentiable, and concave function of c, originating from u(0) = 0.21

The dynamic budget constraint of the representative consumer is given by the fol-

lowing:

k̇t = rtkt + 1−
∫ Nt

0
p̃t(i)c̃t(i)di. (14)

In equilibrium, the aggregate asset holding, Lkt, should equal the value of all firms in the

economy. Consumers maximize their lifetime utility (12) subject to the budget constraint

(14), given interest rate rt, prices of goods p̃t(i) for i ∈ [0, Nt], initial asset holding k0,

and the standard non-Ponzi game condition.

From the above, we obtain a piecewise isoelastic demand function for individual

goods by the representative consumer:

c̃t(i) =


λ−εt p̃t(i)

−ε if p̃(i) ≤ ĉ−1/ε/λt,

(λt/u)
−ε p̃t(i)

−ε̂ if p̃(i) > ĉ−1/ε/λt.

(15)

The shadow price of the budget constraint λt evolves according to the Euler equation

λ̇t = (ρ−rt)λt. Its initial value is determined so that the transversality condition limt→∞

e−ρtλtkt = 0 is satisfied given the evolution of kt in Equation (14).

3.2 R&D and Production Technologies

Each consumer works either as a production worker or as a researcher. A researcher

succeeds in developing a new good with a Poisson probability of a per unit of time.

21In the following analysis, we focus mostly on the case in which all existing goods satisfy c̃t(i) ≥ ĉ.

Nevertheless, having the second line in Equation (13) is theoretically important. If the elasticity of

u(c) is 0 < ε < 1 for all c ≥ 0, then u(0) will necessarily be −∞. This would be incompatible with a

variety-expansion model, where the range of the integration (0-Nt) changes endogenously.
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Let LRt denote the number of researchers in the economy, which is to be determined in

equilibrium. Over time, the number of goods increases according to the following:

Ṅt = aLRt . (16)

Equation (16) is similar to standard variety expansion models, except that there is no

spillover term from the stock of past R&D.

Once developed, each individual good is produced with a linear production technology

that requires only labor. The output of good i is given by the following:

x̃t(i) = q̃t(i)l̃t(i), (17)

where l̃t(i) is the labor input and q̃t(i) is the marginal product of labor in producing

good i. Alternatively, we can interpret x̃t(i) as the quality-adjusted output and q̃t(i) as

the quality of good i. In this case, one unit of labor produces one unit of good i with

quality q̃t(i). In either interpretation, we call q̃t(i) the productivity for good i.

When any good is first developed, the productivity is normalized to 1. Then, as the

production of this good proceeds, the productivity increases according to22

˙̃qt(i) = I(x̃t(i)) · βq̃t(i)ψ, 0 < ψ < 1, (18)

where I(x̃t(i)) is an indicator function that takes a value of 1 when x̃t(i) > 0 and 0

otherwise. This means that productivity increases as long as production takes place.

The specification in Equation (18) has a similarity to those in quality ladder models.

There are knowledge spillovers from the past productivity of technology to the current

productivity increments. Parameter ψ ∈ (0, 1) specifies the degree of such spillovers.

While quality ladder models need to assume that ψ = 1 to achieve an exponential

increase in productivity (or quality), we do not make this knife-edge assumption. For

the moment, we consider the case of ψ ∈ (0, 1) and later compare the result to the case

22For simplicity, we assume that only experience in terms of time matters for productivity improvement.

Alternatively, we can consider experience in terms of the cumulative production amount. Horii (2012)

analyzed a model in the latter setting and derived a GDP growth rate defined in the same way as in

Equation (1); however, it is a semiendogenous growth model that requires an exponentially growing

population (c.f. Jones, 1995):
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of ψ = 1. The parameter β > 0 represents other possible factors that affect the speed at

which the productivity increases.

As long as x̃t(i) > 0, then Equation (18) is an autonomous differential equation in

q̃t(i). Similar to Section 2, let τ ≡ t−s(i) denote the age of the good. Then, the solution

to the differential Equation (18) can be written as follows

q(τ) = κ1 (τ + κ0)
θ , (19)

where θ ≡ 1/(1−ψ) > 1, κ0 ≡ θ/β > 0, and κ1 ≡ (β/θ)θ > 0. Given that ψ ∈ (0, 1), the

productivity improvement is less than exponential. The rate of increase in productivity

is given by the following:

gq(τ) =
q′(τ)

q(τ)
=

θ

τ + κ0
=

β

(1− ψ)βτ + 1
. (20)

In this specification, gq(τ) takes the highest value at the time of introduction (gq(0) = β)

and then then falls to 0 as a good becomes older (gq(∞) = 0). This rules out the trivial

possibility that the exponential increase in the productivity of individual goods explains

the sustained GDP growth.

3.3 Behavior of Firms

Let us now turn to the behavior of production firms. While any product is protected by

a patent forever, the patent breadth is limited (e.g. O’Donoghue, Scotchmer, and Thisse,

1998). This means that while other producers are prohibited from using the identical

technology as the original inventor, they are allowed to produce similar products if they

use a technology that is sufficiently different from the original. Alternatively, we may

also think that a part of the technology is kept secret by the inventor and that the

outsiders need to rely on less efficient technologies. In either case, outsiders face lower

productivity than the original firm does.

To formalize this idea, let us assume that there are potentially many outside firms.

These firms have partial access to the technology of the original inventor q̃t(i) to produce

the same good i. However, their productivity is 1/(1 + µ) times lower, where parameter

µ represents the patent breadth or the strength of the trade secret. For simplicity, we
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assume that 0 < µ < 1/(ε̂− 1). In this case, the profit-maximizing strategy is to set the

limit price, which is (1+µ) times higher than the marginal cost.23 Given the production

function (17) and the fact that the wage is normalized to one, the pricing by a firm that

has τ years of experience is as follows:

p(τ) =
1 + µ

q(τ)
. (21)

3.4 Steady-State Equilibrium

Now, we derive the long-term property of the equilibrium dynamics in this prototype

model. The following defines a notion of long-term equilibrium suitable for our model.

Definition 2. An equilibrium path that satisfies the following properties as t → ∞ is

called the asymptotic steady-state equilibrium (ASSE).

1. The speed of the introduction of new goods converges to a positive and finite con-

stant: Ṅt → n∗ > 0.

2. The Lagrange multiplier of the budget constraint, λt, converges to a positive and

finite constant: λt → λ∗ > 0.

In the steady state, the equilibrium output of an age τ good is determined by Equa-

tions (15) and (21) with λt = λ∗ and does not depend on t:

x(τ) =


D(λ∗)q(τ)ε if q(τ) ≥ (1 + µ)λ∗ĉ1/ε,

D̂(λ∗)q(τ)ε̂ if q(τ) < (1 + µ)λ∗ĉ1/ε,

(22)

where demand shifters D(λ) = L((1+µ)λ)−ε and D̂(λ) = L((1+µ)λ/u)−ε̂ are decreasing

functions of λ. The following lemma gives the condition under which the production of all

existing goods is determined by the first line of Equation (22), where the price elasticity

of demand is ε < 1.

23If the patent breadth was infinite, then the firms would choose monopoly pricing. In that case, the

profit-maximizing markup would be 1/(ε̂−1) if the demand elasticity is ε̂ > 1 and infinity if the elasticity

is ε < 1. Since µ is lower than both, the firms set the limit price.
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Lemma 1. Suppose that ĉ is smaller than
(
aµL

∫∞
0 q(τ)ε−1e−ρτdτ

)−1. Then, in the

ASSE, q(τ) ≥ (1 + µ)λ∗ĉ1/ε for all τ ≥ 0.

Proof: In Appendix A.1.

In the main text, we focus on the simple case where ĉ is sufficiently small so that

the assumption in Lemma 1 is satisfied; we leave the analysis of the general case for

Appendix A.2. Then, the profit of an age-τ firm is

π(τ) = µD(λ∗)q(τ)ε−1. (23)

The equilibrium values of n∗ and λ∗ are determined by the free entry condition for

R&D and the labor market clearing condition. Let us first focus on the R&D condition.

Recall that the Euler equation is λ̇t/λt = ρ− rt. Since λt is stationary in the ASSE, the

interest rate necessarily converges to rt → ρ. Using interest rate rt = ρ and the profit

function (23), we can calculate the present value of a new firm just after it has succeeded

in developing a new good:

V (λ∗) = µD(λ∗)

∫ ∞

0
q(τ)ε−1e−ρτdτ. (24)

From the R&D function (16), the expected cost of developing a new good is 1/a.

Therefore, given that there is a positive flow of R&D, n > 0, and that the financial

market is complete, the value of the new firm (24) should be equalized to the expected

cost of development: V (λ∗) = 1/a. This condition gives the equilibrium value of D(λ∗)

in the ASSE:

D(λ∗) =
1

aµ

(∫ ∞

0
q(τ)ε−1e−ρτdτ

)−1

≡ D∗. (25)

By substituting Equation (19) into Equation (25), we can calculate the value for D∗,

which is always positive and finite.24 We also obtain λ∗ = 1
1+µ (L/D

∗)1/ε from the

definition of D(λ) = L((1 + µ)λ)−ε.

24Let Γ(·, ·) denote the upper incomplete Gamma function, defined as Γ(s, z) ≡
∫∞
z
ts−1e−tdt. The

values of Γ(s, z) are available in most programming platforms. The function Γ(s, z) is positive and finite

for all s ∈ (−∞,∞) and z ∈ (0,∞). By changing the variable of integration from τ to τ̃ = (τ + κ0)/ρ

and utilizing Equation (19), Equation (25) implies the following:

D∗ =
κ1−ε
1 ρ1+θ(1−ε)

aµeρκ0Γ(1− θ(1− ε), ρκ0)
> 0, (26)
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Next, let us turn to the labor market. First, Equation (16) implies that the number

of research workers in the ASSE is LR∗ = n∗/a. Second, according to functions (17) and

(22), the aggregate demand for production workers in the ASSE is as follows:25

LP∗ = lim
t→∞

∫ Nt

0
l̃t(i)di→ n∗

∫ ∞

0

x(τ)

q(τ)
dτ = n∗D∗

∫ ∞

0
q(τ)ε−1dτ. (27)

The labor supply is given by population L. Therefore, the labor market clearing condition

is as follows:

L = LR∗ + LP∗ =
n∗

a
+ n∗D∗

∫ ∞

0
q(τ)ε−1dτ. (28)

From Equation (19), the integral in the RHS,
∫∞
0 q(τ)ε−1dτ , becomes finite if and only

if θ(1 − ε) > 1. Using the definition θ ≡ 1/(1 − ψ), the condition reduces to ψ ∈ (ε, 1),

where ψ is the degree of knowledge spillover from past productivity to its increments. If

ψ < ε, then the integral is infinite; therefore, Equation (28) implies that n∗ = 0. Since

we are interested in the ASSE with n∗ > 0, the remaining analysis focuses on the case

of ψ ∈ (ε, 1).

Then, from Equation (28), we obtain the equilibrium research intensity in the ASSE

as follows:

n∗ =
aL

1 + aD∗
∫∞
0 q(τ)ε−1dτ

. (29)

From (29), LR∗ = n∗/a and LP∗ = L − LR∗ are also obtained. We can calculate

the explicit value of n∗ as follows. Using Equation (25) and then Equation (19), the

equilibrium ratio of the two types of labor is as follows:(
LP

LR

)∗

=

∫∞
0 q(τ)ε−1dτ

µ
∫∞
0 q(τ)ε−1e−ρτdτ

, (30)

the value of which can be expressed via the Gamma function.26 Using
(
LP /LR

)∗, the

ASSE research intensity can be written as follows:

n∗ = aLR∗ =
aL

1 + (LP /LR)∗
, (32)

25In Equation (27), the variable of integration is changed from i to τ via Equation (3).
26Using Equation (26), the value of (30) can be calculated as follows:(

LP

LR

)∗

=
κ
1−θ(1−ε)
0 ρ1+θ(1−ε)

µ(θ(1− ε)− 1)eρκ0Γ(1− θ(1− ε), ρκ0)
if ψ > ε,

(
LP

LR

)∗

= ∞ otherwise. (31)
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which becomes a positive and finite constant given that ψ ∈ (ε, 1).

The pair of D∗ = D(λ∗) in Equation (25) and n∗ in Equation (32) characterizes the

long-term equilibrium of this economy. These equations also explain how parameters

affect long-term dynamics. For example, a larger µ means that the breadth of patents is

wider (or that trade secrets are better maintained). A higher value of a means that R&D

requires less labor. In these cases, innovation intensity n∗ increases because of greater

profitability, whereas the output of each good, proportional to D∗, decreases because

there are more production firms to which the aggregate labor needs to be divided.27 The

opposite occurs when the time preference ρ is greater because it raises the interest rate,

reducing the present value of profits.

When population L is larger, the research intensity n∗ is multiplied proportionally to

L. However, the production of each good (proportional to D∗) does not change because

both the number of products introduced each year and the number of total production

workers are multiplied by the same factor. This outcome resembles the mechanism of the

second-generation endogenous growth models, where the horizontal number of sectors is

adjusted proportionally to the total population.28

Before closing this subsection, let us briefly compare those results against the case

of ψ = 1. When ψ = 1, the solution to the differential equation (18) is exponential:

q(τ) = eβτ . Then, we can calculate n∗ and D∗ in the ASSE as follows:

n∗ =
µ(1− ε)βaL

(1 + µ)(1− ε)β + ρ
, D∗ =

(1− ε)β + ρ

aµ
. (33)

The comparative static properties with respect to µ, ρ, L and a are the same as those

in the case of ψ ∈ (ε, 1). Therefore, the exponential growth in productivity (ψ = 1) can

be viewed as a particular case of our model, although we do not focus on it because it is

a knife-edge case.

27The derivative of the upper incomplete Gamma function with respect to the second argument,

∂Γ(s, z)/∂z = −zs−1e−z, is always negative. Using this, the properties in the text can be confirmed

from Equations (26), (31) and (32).
28However, note that the long-term growth in these models is typically maintained by the exponential

increase in the productivity (or quality) in each sector, whereas this paper focuses on the case where

such exponential improvements cannot be sustained (ψ < 1 in Equation 18).
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3.5 Measured Real GDP Growth Rate

Now, we are ready to examine the long-term GDP growth rate, as measured as by the

SNA, in this prototype model.29 In this subsection, we assume that ψ ∈ (ε, 1) so that

the economy has an ASSE with finite n∗ > 0 and λ∗ > 0. This ASSE satisfies the

definition of a non-exponential asymptotic steady state in Definition 1. In this definition

(in Section 2), prices are normalized so that the per capita expenditure is constant. We

can confirm that the per capita expenditure in the ASSE is also constant.30 In addition,

using Equations (19), (21) and (22), we can confirm that p(τ) and x(τ) satisfy Conditions

(9) and (10) given that ψ ∈ (ε, 1).31 Therefore, we can apply Proposition 1 to calculate

the measured real GDP growth rate in the ASSE. The result is as follows:32

g∗ =
−
∫∞
0 p′(τ)x(τ)dτ∫∞
0 p(τ)x(τ)dτ

=
ψ − ε

1− ε
β for ε < ψ ≤ 1. (34)

Note that Equation (34) also applies to the special case of ψ = 1, where the output of

all goods increases exponentially at the rate of β (g∗ = β).

Equation (34) shows that the measured growth rate takes a positive and finite value

whenever ψ ∈ (ε, 1]. The requirement ψ > ε can be understood in terms of Condition

(10) in Corollary 1. Given that ψ < 1, the expenditure for an age τ good in the ASSE

can be written as p(τ)x(τ) = [constant] · (τ + κ0)
−(1−ε)θ. For

∫∞
0 p(τ)x(τ)dτ to be

finite, the power of (τ + κ0)
−(1−ε)θ must be less than −1. This is a particular case of

29We continue to focus on the case where ĉ is sufficiently small so that Lemma 1 holds. We examine

the general case in Appendix A.3 and show that the measured GDP growth rate becomes positive under

the same conditions as in the main text.
30 The per capita expenditure in the ASSE is

∫∞
0
p̃t(i)c̃t(i)di → (n∗/L)

∫∞
0
p(τ)x(τ)dτ =

(n∗D∗/L) (1 + µ)
∫∞
0
q(τ)ε−1dτ . Using the definitions of q(τ) in Equation (19) and θ ≡ 1/(1− ψ) > 1,

it becomes (n∗D∗/L) (1+µ)(1−ψ) κ1−(ψ−ε)/(1−ψ)
0 /(ψ− ε), which is a positive and finite constant given

that ψ ∈ (ε, 1).
31 Similar to the calculation in footnote 30, we find that the denominator of the formula is∫∞

0
p(τ)x(τ)dτ = D∗(1 + µ)(1 − ψ)κ

1−(ψ−ε)/(1−ψ)
0 /(ψ − ε). Using p′(τ) = −(1 + µ)gq(τ)/q(τ) and

Equation (20), the value of the numerator is −
∫∞
0
p′(τ)x(τ)dτ = D∗(1 + µ)κ

−(ψ−ε)/(1−ψ)
0 /(1− ε). Both

are positive and finite given that ψ ∈ (ε, 1).
32The calculations from footnote 31 Implies that −

∫∞
0
p′(τ)x(τ)dτ/

∫∞
0
p(τ)x(τ)dτ = (ψ − ε)/(1 −

ε)(1− ψ)κ0. Using definitions κ0 ≡ θ/β and θ ≡ 1/(1− ψ), we obtain Equation (34).
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Condition (11) in Section 2. Intuitively, for the expenditure on existing goods to be

finite, the expenditure for a single good must decline reasonably fast with age. In this

prototype model environment, the condition is accomplished if the degree of spillover

in the productivity increase, ψ, is greater than ε. Otherwise,
∫∞
0 p(τ)x(τ)dτ becomes

infinite, and Proposition 1 implies that the long-term GDP growth rate is zero.

Given that the markup ratio µ is constant and that Condition (10) is satisfied, the

growth formula (7) in the ASSE can also be represented as follows:

g∗ =

∫ ∞

0
gq(τ)σ(τ)dτ, where σ(τ) = p(τ)x(τ)∫∞

0 p(τ ′)x(τ ′)dτ ′
(35)

is the expenditure share for age τ goods, and gq(τ) is the rate of productivity increase

for those products, as defined in Equation (20). The growth formula in this form clarifies

that real GDP growth is the weighted average of the rate of productivity increase among

goods of various ages. Recall that, in our specification of the technology, the newest goods

have the fastest rate of productivity improvement, β, whereas the rate of improvement

is lower for the older goods because g′q(τ) < 0 (see Equation 20). In particular, the

rate of productivity improvement gq(τ) is almost zero for very old goods with large τ .

Therefore, it is natural that the aggregate GDP growth rate in Equation (34) is between

zero and β because the economy consists of goods of all ages.

Now, it is clear why the growth rate g∗ in Equation (34) is decreasing in the price

elasticity of demand, ε. Recall that ε also represents the elasticity of substitution across

goods. With a higher ε, consumers spend more on old and low-priced goods and less

on new and expensive goods. Since the rate of productivity increase in Equation (20) is

lower for older goods (with high age τ), the weighted average will also be low.

Equation (34) also shows that the growth rate g∗ increases with ψ, the degree of

knowledge spillover in production. When ψ ≤ ε,
(
LP /LR

)∗ in Equation (30) becomes

infinity, which means that n∗ = 0. Without introducing new goods, the distribution

of product ages simply moves up, and the growth rate decreases to gq(∞) = 0. As ψ

increases between ε and 1, the schedule of the gq(τ) function in Equation (20) moves up,

as does the real GDP growth rate. When ψ reaches 1, the long-term growth rate increases

to β. This is an anticipated result; when ψ = 1, the productivity of all goods, both the

new and the old, increases with a common constant exponential rate of β. Therefore,
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the case of ψ = 1 corresponds to conventional growth theory, where labor productivity

increases exponentially and uniformly. However, the main finding is that even when the

productivity of each product does not rise exponentially (i.e., with ψ < 1), the economy

as a whole can exhibit a constant measured growth rate, although it is lower than β.

Finally, ψ > 1 is unrealistic because it means that the productivity of individual goods

increases more than exponentially and that gq(τ) → ∞ as τ → ∞.

Notably, in this simple prototype setting, the equilibrium long-term rate of growth

in Equation (34) does not depend on the equilibrium values of n∗ and D∗ as long as

they are positive.33 When the research intensity n∗ is high, more economic activity is

added per unit of time. However, at the same time, there is also proportionally more

“stock” of existing activities. The real GDP growth rate expresses the ratio between the

two, which is unchanged.34 Similarly, when D∗ is larger, each good has more demand.

This means that the production of new goods, as well as the increase in the production

of other goods as time passes, is greater. At the same time, however, the total value of

existing products is also higher, exactly canceling out the effects on g∗.35 As a result,

even when changes in population L, R&D productivity a, or patent policy µ affect n∗

and D∗, they do not affect the real GDP growth rate. This result contrasts with the

implications of existing R&D-based growth models, where g∗ follows directly from n∗.

Although this result depends on the simplified specification of the prototype model, it

might provide a possible interpretation of why the measured GDP growth rates in the

U.S. and some other developed countries have been relatively stable, even though the

33This property depends on the simplistic settings in this prototype model. For example, when the

aggregate R&D intensity n∗ has some positive spillovers on the rate of productivity increases in individual

goods gq(τ), then n∗ will affect g∗. Additionally, when the amount of production has some effect on

gq(τ), g∗ will depend on D∗.
34Nonetheless, it is essential that there is a positive flow of new innovations n∗ > 0, since otherwise,

g∗ becomes 0.
35This can also be seen in Example 3 of Figure 4. When D∗ is increased, the left panel is stretched

horizontally (along the x(τ) axis), whereas the right panel is stretched vertically (along the p(τ)x(τ)

axis) by the same magnification ratio. As a result, the growth rate, given by the ratio of the two areas,

is unaffected.
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underlying parameters seem to have significantly changed over long periods.

3.6 Aggregate Variables and Balanced Growth

The ASSE in this model works very differently from the balanced growth path (BGP)

in existing growth models. Nonetheless, we show that when aggregate variables are

measured in a conventional way, this model exhibits balanced growth in those measured

aggregate variables.

Note that the total labor income for production is LP∗ since the wage rate is nor-

malized to one. All goods are sold at (1+µ) times the labor cost, as shown in Equation

(21). Therefore, the aggregate value of production, which equals the aggregate value of

consumption, is C∗ = (1 + µ)LP∗. In our model, investments take the form of R&D,

and the total value of R&D outputs is I∗ = n∗V (λ∗) = LR∗. The GDP in our model

can be calculated as the sum of the value of production and the value of investments:

Y ∗ = C∗+ I∗ = (1+µ)LP∗+LR∗. Similarly, we can derive the steady-state value of ag-

gregate capital, K∗, which is defined as the value of all firms in the economy (knowledge

capital).36

Note that those aggregate variables are measured under the price normalization of

our model, in which the nominal wage is set to 1. We now calculate their real values

in the same spirit as the SNA.37 Let t be the reference year, and let Y $
t

be the dollar

value of the GDP in year t, which we assume is known to the researcher. Since the real

GDP growth rate is constant at g∗ in the ASSE, the real GDP level in t is as follows:

36K∗ can be calculated as the sum of the present value of the future profits from all firms that exist

today. In v years from now, the present value of the profit from those firms will be e−ρv
∫∞
v
π(τ)n∗dτ ,

since the profits from firms less than v years old at that time will not be part of the value of today’s firm.

By aggregating all v and using the profit function (23), we have K∗ = µn∗D∗ ∫∞
0
e−ρv

∫∞
v
q(τ)ε−1dτdv,

which is constant under price normalization in the model.
37The NIPA publishes two series of real GDP. One is the quantity index, which is 100 in the reference

year (2012 as of the time of writing). The values for other years are obtained by chaining the real

GDP growth rate. The other is the chained (2012) dollar series, the values of which are calculated as

the product of the quantity index and the 2012 current dollar value of the corresponding series divided

by 100. See U.S. Bureau of Economic Analysis, ”Table 1.1.6. Real Gross Domestic Product, Chained

Dollars.” In this paper, we use the latter.
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Y real
t = Y $

t
eg

∗(t−t). Since the ratios among Y ∗, C∗, I∗ and K∗ are constant, their real

values increase in the same proportion. Specifically,

Creal
t =

C∗

Y ∗Y
real
t =

1 + µ

1 + µ+ (LR/LP )∗
Y $
t
eg

∗(t−t), (36)

Ireal
t =

I∗

Y ∗Y
real
t =

1

(1 + µ) (LP /LR)∗ + 1
Y $
t
eg

∗(t−t), (37)

where
(
LR/LP

)∗ is given by the inverse of Equation (30).

The interest rate r∗ = ρ is also defined under our normalization of prices. Since

the nominal GDP growth rate in the steady state is zero, the steady-state inflation rate

is −g∗ in our price normalization. Then, the real interest rate in the steady state is

rreal = r∗ + g∗ = ρ + g∗. We can also derive other real aggregate variables in similar

ways, and their growth rates are constant. Therefore, if the statistical agency were to

measure the aggregate variables in our model economy, then those observed variables

would grow exponentially along the BGP, even though neither the quantity, quality, nor

the variety of individual goods were growing exponentially.

3.7 Welfare

Finally, let us discuss the welfare of the representative consumer in the ASSE. As shown

by Equation (12), the welfare (lifetime utility) of the consumer is
∫∞
0 Ute

−ρtdt, where

Ut =
∫ Nt
0 u(c̃t(i))di is the instantaneous utility. Using Equations (13), (22) and c(τ) =

x(τ)/L, the instantaneous utility in the ASSE can be written as follows:

Ut = n∗ut− εn∗

1− ε

(
L

D∗

)(1−ε)/ε ∫ t

0
q(τ)ε−1dτ. (38)

When t → ∞, the second term converges to a finite value.38 Therefore, asymptotically,

the instantaneous utility increases by n∗u per unit time. This result can be interpreted

as follows. In the ASSE, the schedule for consumption against the age of goods does

not change with t, with the only difference being that the economy at time t + 1 has

n∗ more oldest goods than at time t. When t → ∞, the quality-adjusted amount of

consumption for each of those oldest goods approaches infinity (c(τ) → ∞ as τ → ∞).

38When the ASSE exists (i.e., when ψ ∈ (ε, 1)), the integral
∫∞
0
q(τ)ε−1dτ becomes a finite constant.
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Therefore, the difference in the instantaneous utility is n∗c(∞) = n∗u. According to

Equation (34), n∗ is not related to the long-term real GDP growth rate g∗. Nonetheless,

Equation (38) demonstrates that R&D and innovations are important for improving the

welfare of consumers.

4 Generalizations

This section generalizes the prototype model and the underlying theory to show that

positive and steady long-term GDP growth, as observed in SNA data, can be explained

under more relaxed conditions. In the first subsection, we introduce obsolescence to the

prototype model and show that sustained GDP growth does not require ε < 1. In the

second subsection, we extend the non-exponential growth theory of Section 2 to include

multiple types of goods that follow different patterns of p(τ) and x(τ).

4.1 Obsolescence

In the prototype model of Section 3, we considered an environment where goods stay in

the market forever (T = ∞) and consumers have symmetric preference across goods (12).

Sustained growth in the measured GDP then requires the price elasticity of demand ε to

be less than one, at least when the price is very low. The condition ε < 1 was necessary

to induce consumers to spend less on older (and cheaper) goods. However, even without

such an assumption, consumers may spend more on new goods simply because they

prefer them to older ones. Here, we show that condition ε < 1 can be relaxed once we

include obsolescence.

We now consider a generalized version of the lifetime utility function (12):∫ ∞

0

[∫ Nt

0

[
δ(t− s(i))u(c̃t(i)) + (1− δ(t− s(i)))û

]
di

]
e−ρtdt, (39)

where t−s(i) = τ is the age of good i. The function δ(τ) is decreasing in τ with δ(0) = 1

and δ(T ) = 0, where T > 0 can be either finite or infinite. Its steepness represents the

speed of obsolescence, or equivalently, consumers’ taste for recently developed goods.

Obsolescence may occur for different reasons and will have varied effects on the utility of

individuals. The constant û ∈ [0, u] controls for those differences, although it does not
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affect the following analysis.39 Alternatively, we may specify obsolescence as a function

of Nt − i, i.e., the number of goods newer than i. In the ASSE, where n∗ new goods

are developed per unit time, δ(Nt − i) becomes δ(n∗τ), which shows that obsolescence

is faster when R&D is more active. Since the implications are similar, we focus on the

simpler case of Equation (39).40 We keep all other settings in Section 3 except that we

allow any ε > 0 in the subutility function (13). If ε > 1, then we can choose ĉ = 0 so

that the price elasticity of demand is constant for all c̃t(i) > 0. If ε ≤ 1, we again assume

that ĉ is small enough that all existing goods satisfy c̃t(i) ≥ ĉ.

In this setting, the ASSE exists if and only if
∫ T
0 δ(τ)εq(τ)ε−1dτ is finite.41 In the

ASSE, the expenditure for an age τ good is e(τ) = p(τ)x(τ) = (1 + µ)D∗δ(τ)εq(τ)ε−1.

This equation illustrates that even when ε > 1, expenditures for older goods decrease

with age if obsolescence is fast enough. Proposition 1 continues to apply in an envi-

ronment with obsolescence, and the formula for the GDP growth rate (35) shows that

the growth rate becomes a positive constant, given that
∫ T
0 e(τ)dτ is finite, which is

equivalent to the finiteness of
∫ T
0 δ(τ)εq(τ)ε−1dτ .

When goods retire from the market at a certain age (i.e., when T is finite),
∫ T
0 δ(τ)εq(τ)ε−1dτ

is obviously finite. Therefore, we always obtain a positive long-term GDP growth rate.

When T is infinite and the rate of obsolescence is constant at δ > 0 per year, function δ(τ)

can be expressed as exp(−δτ). In this case,
∫∞
0 δ(τ)εq(τ)ε−1dτ becomes finite because

39When û = 0, Ut may remain constant on the ASSE while g∗ > 0. This specification is suitable, for

example, when considering fashion cycles. Such cycles may generate positive measured economic growth

but do not necessarily improve the utility of consumers in the long run. In some other scenarios, the

utility of consumers may increase as older goods become obsolete. One example is when newer products

replace some of the functionalities of older goods almost for free. In this case, û = u (= u(∞)) would be

appropriate.
40An additional implication when obsolescence is a function of Nt − i is that policies that promote

horizontal R&D may increase the measured GDP growth rate. A higher n∗ will make function δ(n∗τ)

steeper as a function of τ . As we show below, faster obsolescence accelerates measured growth.
41Similar to the derivation of Equation (25), we obtain D∗ =

(
aµ

∫ T
0
δ(τ)εq(τ)ε−1e−ρτdτ

)−1

, which

is always positive and finite because of the e−ρτ term. Using this value of D∗, the speed of innovation is

n∗ = aL
(
1 + aD∗ ∫ T

0
δ(τ)εq(τ)ε−1dτ

)−1

. The value of n∗ is positive if and only if
∫ T
0
δ(τ)εq(τ)ε−1dτ is

finite.

35



δ(τ)ε is falling exponentially and q(τ)ε−1 is not growing exponentially. Therefore, a con-

stant rate of obsolescence always sustains positive measured GDP growth regardless of ε.

Positive GDP growth can also be maintained with slower, non-exponential obsolescence.

Consider an example where δ(τ) is a negative power function of τ : δ(τ) = δω0 (τ + δ0)
−ω

where ω and δ0 are positive constants.42 Then,
∫∞
0 δ(τ)εq(τ)ε−1dτ becomes finite if and

only if43

ε <


ψ

1−ω(1−ψ) if ω < 1
1−ψ (≡ θ) ,

∞ if ω ≥ 1
1−ψ .

(40)

In a particular case of δ0 = κ0, where κ0 is defined in Equation (19), we obtain an explicit

expression for the long-term GDP growth rate:44

g∗ =
ψ − ε+ (1− ψ)εω

1− ε+ (1− ψ)εω
β, (41)

which is positive when Condition (40) holds. Figure 5 depicts the relationship between

ε and g∗ for various values of ω. As we have seen in Section 3, sustained GDP growth

requires ε < ψ when obsolescence is not present. With ω = 0, Condition (40) and Equa-

tion (41) reduce to Equation (34). When obsolescence is faster (ω is higher), Condition

(40) is easier to satisfy. In particular, when ω > 1, the first line of Condition (40) is

larger than one, which means that ε < 1 is not necessary for g∗ > 0. When ω is greater

than 1/(1− ψ), the long-term GDP growth rate g∗ is positive regardless of ε.45

42We need a constant δ0 > 0 in (τ + δ0)
−ω because otherwise, τ−ω cannot be defined when τ = 0 and

ω > 0. The δω0 term normalizes the δ(τ) function so that δ(0) = 1.
43Using Equation (19),

∫∞
0
δ(τ)εq(τ)ε−1dτ = δεω0 κε−1

1

∫∞
0

(τ + δ0)
−ωε(τ + κ0)

θ(ε−1)dτ . The integral

becomes finite if and only if the sum of the powers of the integrand, −ωε+ θ(ε− 1), is less than minus

one. From θ = 1/(1− ψ), this condition is equivalent to Condition (40).
44Equation (41) is obtained from formula (35), which shows that the GDP growth rate is the

expenditure-weighted average of gq(τ), where gq(τ) is the rate of productivity increase for individual

goods. When ψ is larger, gq(τ) is higher given age τ . Nevertheless, Equation (41) shows that g∗ is

decreasing in ψ if ε > 1. When ε > 1, a larger ψ will induce consumers to spend more on cheaper, older

goods. As a result, the expenditure is skewed more toward older goods, where gq(τ) is small, reducing

the expenditure-weighted average of gq(τ):
45Interestingly, the measured GDP growth rate increases with ε when ω > 1/(1−ψ). A higher ε means
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Figure 5: Price Elasticity of Individual Goods and the Measured Long-term GDP Growth

Rate Under Different Speeds of Obsolescence.

Figure 5 also shows that when ω is increased, the entire curve for g∗ moves upward.

Faster obsolescence not only makes sustained GDP growth more likely but also acceler-

ates the measured rate of economic growth. Intuitively, obsolescence skews expenditures

toward newer goods. Since newer goods have more margins for productivity increases,

the overall growth rate increases with obsolescence. This result has important policy

implications. When the government tries to protect obsolete companies (or industries),

it will reduce the GDP growth rate, not only because of efficiency loss but also because of

the way the GDP growth rate is calculated. Conversely, advertisements and marketing

practices that attract consumers to newer goods enhance GDP growth, even when the

attractiveness of the newer goods is illusionary.

4.2 Multiple sectors

In the non-exponential growth theory, we define the steady state as the situation wherein

the paths of quality-adjusted prices and quantities, p(τ) and x(τ), follow the same pattern

that consumers are more willing to move from old and obsolete goods to newer goods, thus enhancing

the positive effect of obsolescence on growth.

37



in terms of their age (See Definition 1 in Section 2.2). This definition allows the prices

and quantities of individual goods at a given time to differ depending on their age. In

this sense, our definition of the steady state is more flexible than in most endogenous

growth models where goods are symmetric in the steady state. Nevertheless, once we

look at the data, it is immediately apparent that goods in different categories follow

distinct lifecycle patterns. For example, while the product lifecycle is relatively fast in

electronics, some basic goods (e.g., grains) show little sign of lifecycle movements.

In this subsection, we further extend the notion of the steady state by allowing p(τ)

and x(τ) to follow different patterns. We categorize goods into groups (which we call

sectors) so that goods in a sector have the same pattern of movements in terms of quality-

adjusted price and quantity with respect to their age, at least in the long run. More

specifically, suppose that there are J > 0 sectors (or categories) of goods and label each

by j ∈ {1, . . . , J}. Nj,t denotes the index of the newest good in sector j ∈ {1, . . . , J}.

The number of new goods introduced per unit time, Ṅj,t ≥ 0, can differ across sectors.

The quality-adjusted price of the ith good in sector j and its quality-adjusted quantity

are denoted by p̃j,t(i) and x̃j,t(i). In this setting, we define the asymptotic steady state

as follows.

Definition 3. A non-exponential asymptotic steady state with multiple sectors is the

situation where Ṅj,t, p̃j,t(i) and x̃j,t(i), for all j ∈ {1, . . . , J}, satisfy the following

conditions:

(a) Ṅj,t converges to a constant, i.e., Ṅj,t → nj ≥ 0.

(b) p̃j,t(i) and x̃j,t(i) converge to time-invariant functions of τ = t− s(i), i.e., p̃j,t(i) →

pj(τ) and x̃j,t(i) → xj(τ).

(c) Assumption 1 holds, where p(τ), x(τ) and T are replaced by pj(τ), xj(τ) and Tj,

respectively.

(d) The expenditure share of the sector, which is defined by

αj,t =

∫ Nj,t
0 p̃j,t(i)x̃j,t(i)di∑J

j′=1

∫ Nj′,t
0 p̃j′,t(i)x̃j′,t(i)di

, (42)

converges to a constant value, i.e., αj,t → αj ≥ 0.

Definition 3 says that the economy is in a steady state if the composition of sectors in
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terms of expenditure share is stationary, and each sector satisfies the requirement for the

steady state in Definition 1. In addition, Definition 3 does not require nj to be positive,

thus including the possibility where the introduction of goods eventually stops in some

sectors. Additionally, αj may be zero for some j, allowing for the possibility that some

sectors disappear in the long run.

Similar to Equation (5), the instantaneous GDP growth rate in this multisector

economy at any given time t can be defined as follows:

gt =

∑J
j=1 Ṅj,tp̃j,t(Nj,t)x̃j,t(Nj,t) +

∑J
j=1

∫ Nj,t
0 p̃j,t(i) ˙̃xj,t(i)di∑J

j=1

∫ Nj,t
0 p̃j,t(i)x̃j,t(i)di

. (43)

Here, the denominator gives the expenditure for all goods, the first term in the numerator

is the value of all new goods introduced at time t, and the second term is the value of

the changes in the production of existing goods. Using the sectoral expenditure share

defined by Equation (42), Equation (43) can be expressed as the share-weighted average

of the sectoral GDP growth rate.

gt =
J∑
j=1

αj,tgj,t, where,

gj,t =
Ṅj,tp̃j,t(Nj,t)x̃j,t(Nj,t) +

∫ Nj,t
0 p̃j,t(i) ˙̃xj,t(i)di∫ Nj,t

0 p̃j,t(i)x̃j,t(i)di
. (44)

Since Equation (44) takes the same form as Equation (5), we can utilize Proposition

1 to obtain the long-term GDP growth rate in a steady state.

Proposition 2. Suppose that the multisector economy converges to an asymptotic steady

state, as defined by Definition 3. Then, the real GDP growth rate gt asymptotes to the

following:

g =
J∑
j=1

αjgj , (45)

where gj is given by Proposition 1, in which p(τ), x(τ) and g are replaced by pj(τ), xj(τ)

and gj, respectively.

Proposition 2, combined with Proposition 1, implies that if there is a category of

goods (a sector) with a positive GDP share where Conditions (9) and (10) hold in the

long run, the economy-wide long-term GDP growth rate can be positive and finite.
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Similar to Figure 4 in Section 2.4, we can draw the evolution of {xj(τ), pj(τ)} in the

quantity–price space and the evolution of pj(τ)xj(τ) against τ . The numerator and

denominator of gj are then graphically represented as the blue and yellow areas. If

αj > 0 and both areas are positive and finite, then sector j contributes positively to

the long-term GDP growth rate. As in Example 2 of Figure 4, gj could be negative if

the prices of older and disappearing goods in that sector are higher than those of new

goods in the same sector. Nonetheless, aggregate GDP growth becomes zero only by

coincidence; therefore, nonzero long-term growth rates will be the norm rather than the

exception. This result contrasts with existing endogenous growth models, where the

growth rate can be nonzero only under strict knife-edge conditions.

As a final note, observe that gjs in Proposition 2 are the sectoral output growth rates

measured according to their own sectoral price indices. They do not coincide with the

sectoral output growth calculated using the general price levels (e.g., the GDP deflator).

In the long run, the expenditures to all the surviving sectors (those with positive αj
values) will grow at the same rate. Even the sectors with gj = 0 will record real income

growth of g.

5 Concluding Remarks

Non-exponential growth theory provides a novel interpretation of observed stability in

the measured GDP growth rate by focusing on the movement of quantities and prices of

individual goods and calculating the GDP growth rate on the basis of SNA statistics (e.g.,

the NIPA). This paper has shown that sustained GDP growth can be explained without

exponential growth in quantity, quality, or variety. This finding enables researchers to

build endogenous growth models under less restrictive assumptions than the knife-edge

conditions that are required in existing full endogenous growth models.

In standard variety-expansion models, all goods are symmetric and receive the same

expenditure share. Therefore, as the number of goods increases, the share of the expen-

diture given to a single new good dilutes. This means that profits obtained from a single

successful R&D also decrease. Therefore, to give firms enough incentives to do R&D

in equilibrium, those models require a strong degree of externality in the R&D process
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so that the cost of inventing new goods declines exponentially. Moreover, GDP growth

can be maintained only when the number of goods increases exponentially because the

contribution of each new good to the economic growth rate decreases toward 0.

In contrast, if the expenditure for older goods decreases as they age, then newly

introduced goods can receive a constant proportion of the total expenditure. Then,

the incentive to innovate can be maintained without such strong externalities. In such

a case, a constant flow of new goods, as well as improvements in the productivity of

producing existing goods, constitutes a significant addition of economic activity relative

to all existing activities. This enables the measured GDP growth rate to remain positive

in the long run without accelerating R&D.

On the basis of this insight, we present a simple prototype model in which the GDP

growth rate can be sustained if the price elasticity of demand for older goods is less than

one and the price decreases with age (Section 3). If goods become obsolete as they age,

then the above condition can be further relaxed (Subsection 4.1). We also extended the

theory (Subsection 4.2) to show that if a group of goods with a nonzero expenditure

share satisfies the required condition, the long-term GDP growth rate can be positive.

Therefore, positive long-term GDP growth is consistent even when some goods do not

lose expenditures forever.

This paper suggests that an endogenous growth theory can be applied to data with

much weaker restrictions than before. Nevertheless, we make simplifying assumptions

for expositional simplicity and ease of understanding. Notably, while existing variety-

expansion endogenous growth models assume that the elasticity of spillover from R&D

activity is exactly at ϕ = 1, we assume that there is none, i.e., ϕ = 0. In a working

paper,46 we confirm that the intuitions from the non-exponential growth theory continue

to hold when ϕ < 1, although the analysis becomes significantly intricate because the

number of new goods introduced per unit time is no longer constant. Additionally, this

paper abstracts from population growth and decline by assuming a constant population.

While it is standard to make this assumption in existing (full-)endogenous growth mod-

46See Horii (2024), where the theory is extended to include ϕ ∈ (−∞, 1) and nonzero population

growth.
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els, studies by Jones (1995, 2002, 2022) have shown that positive population growth is

essential in sustaining growth when ϕ < 1. An important difference from semiendoge-

nous growth theory is that sustained GDP growth does not require positive population

growth even when ϕ < 1. This concerns the grave question of whether humanity can

continue growing in the future. This paper, which is based on ϕ = 0 and an asymptoti-

cally constant population, shows the possibility that the measured rate of GDP growth

continues to be positive in a straightforward setting.

References

Aghion, Philippe, Antonin Bergeaud, Timo Boppart, Peter J. Klenow, and Huiyu Li.

2019. “Missing Growth from Creative Destruction.” American Economic Review

109 (8):2795–2822.

Aghion, Philippe and Peter Howitt. 1992. “A Model of Growth Through Creative De-

struction.” Econometrica 60 (2):323–351.

Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb. 2020. “Are

Ideas Getting Harder to Find?” American Economic Review 110 (4):1104–44.

Bolt, Jutta and Jan Luiten van Zanden. 2020. “Maddison style estimates of the evolution

of the world economy. A new 2020 update.” Maddison-Project Working Paper WP-15

.

Griliches, Zvi. 1998. R&D and Productivity: The Econometric Evidence. National

Bureau of Economic Research, Inc.

Grossman, Gene M. and Elhanan Helpman. 1991a. Innovation and Growth in the Global

Economy. The MIT Press.

———. 1991b. “Quality Ladders in the Theory of Growth.” The Review of Economic

Studies 58 (1):43–61.

Growiec, Jakub. 2007. “Beyond the Linearity Critique: The Knife-edge Assumption of

Steady-state Growth.” Economic Theory 31 (3):489–499.

42



———. 2010. “Knife-edge conditions in the modeling of long-run growth regularities.”

Journal of Macroeconomics 32 (4):1143–1154.

Horii, Ryo. 2012. “Wants and past knowledge: Growth cycles with emerging industries.”

Journal of Economic Dynamics and Control 36 (2):220–238.

———. 2024. “Robust Endogenous Growth.” mineo, Osaka University .

Jones, Charles I. 1995. “R&D-Based Models of Economic Growth.” Journal of Political

Economy 103 (4):759–784.

———. 2002. “Sources of U.S. Economic Growth in a World of Ideas.” American Eco-

nomic Review 92 (1):220–239.

———. 2022. “The End of Economic Growth? Unintended Consequences of a Declining

Population.” American Economic Review 112 (11):3489–3527.

Klenow, Peter J. and Andres Rodriguez-Clare. 2005. “Externalities and Growth.” In

Handbook of Economic Growth, Handbook of Economic Growth, vol. 1, edited by

Philippe Aghion and Steven Durlauf, chap. 11. Elsevier, 817–861.

León-Ledesma, Miguel and Alessio Moro. 2020. “The Rise of Services and Bal-

anced Growth in Theory and Data.” American Economic Journal: Macroeconomics

12 (4):109–46.

Lucas, Robert Jr. 1988. “On the mechanics of economic development.” Journal of

Monetary Economics 22 (1):3–42.

O’Donoghue, Ted, Suzanne Scotchmer, and Jacques‐François Thisse. 1998. “Patent

Breadth, Patent Life, and the Pace of Technological Progress.” Journal of Economics

& Management Strategy 7 (1):1–32.

Philippon, Thomas. 2022. “Additive Growth.” Working Paper 29950, National Bureau

of Economic Research.

Rebelo, Sergio. 1991. “Long-Run Policy Analysis and Long-Run Growth.” Journal of

Political Economy 99 (3):500–521.

43



Romer, Paul M. 1986. “Increasing Returns and Long-run Growth.” Journal of Political

Economy 94 (5):1002–37.

———. 1990. “Endogenous Technological Change.” Journal of Political Economy

98 (5):S71–S102.

Uzawa, Hirofumi. 1965. “Optimum Technical Change in An Aggregative Model of Eco-

nomic Growth.” International Economic Review 6 (1):18–31.

44



Online Appendix for
“Non-Exponential Growth Theory”

September 5, 2024

Appendix A Analysis of the General Case

A.1 Proof of Lemma 1

The proof goes by a “guess and verify” method. Suppose that λ∗ < ((1 + µ)ĉ1/ε)−1,

which means that (1 + µ)λ∗ĉ1/ε < 1. Then, q(τ) > (1 + µ)λ∗ĉ1/ε holds for all τ ≥ 0,

since q(0) = 1 and q′(0) > 0 for all τ > 0.

Below, we verify that the initial guess is correct under the assumption in the lemma.

Since q(τ) > (1+µ)λ∗ĉ1/ε holds for all τ ≥ 0, we can calculate the steady-state value of λ∗

as in Equation (25). Using the assumption of the lemma, ĉ <
(
aµL

∫∞
0 q(τ)ε−1e−ρτdτ

)−1,

Equation (25) implies the following:

λ∗ =
1

1 + µ

(
aµL

∫ ∞

0
q(τ)ε−1e−ρτdτ

)1/ε

≤ 1

1 + µ
ĉ−1/ε, (46)

which confirms that the initial guess is correct.

In Appendix A.2, we show that the steady-state value of λ∗ is unique. Therefore,

we are assured that the unique value of λ∗ satisfies λ∗ < ((1 + µ)ĉ1/ε)−1; thus, q(τ) >

(1 + µ)λ∗ĉ1/ε for all τ ≥ 0.

A.2 Steady-state Equilibrium when ĉ is not Small

In Section 3.4, we assume that ĉ is sufficiently small so that q(τ) ≥ (1 + µ)λ∗ĉ1/ε holds

for all τ . Here, we analyze the steady-state equilibrium without this assumption. The

threshold age of goods is defined as follows:

τ̂(λ∗) = max

[
0,
θ

β

((
(1 + µ)λ∗ĉ1/ε

)1/θ
− 1

)]
. (47)

Then, from Equation (19), q(τ) ≥ (1 + µ)λ∗ĉ1/ε if and only if τ ≥ τ̂(λ∗).

Using Equation (22), the profit of an age-τ firm in the steady state can be written
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as follows:

π(τ) =


µD(λ∗)q(τ)ε−1 for τ ≥ τ̂(λ∗),

µD̂(λ∗)q(τ)ε̂−1 for τ ≤ τ̂(λ∗).

(48)

Using Equations (47) and (48), the value of a new firm in the steady state can be written

as a function of λ∗:

V (λ∗) = µD̂(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1e−ρτdτ + µD(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)e−ρτdτ. (49)

The equilibrium value of λ∗ is determined by the free entry condition, V (λ∗) = 1/a.

From D(λ) = L((1+µ)λ)−ε and D̂(λ) = L((1+µ)λ/u)−ε̂, we can confirm that function

V (λ) is continuous and strictly decreases with λ.47 Additionally, limλ→0 V (λ) = ∞ and

limλ→∞ V (λ) = 0. Therefore, there is a unique value of positive and finite λ∗ that solves

the free entry condition. This is the steady-state value of λ∗.

Next, let us turn to the labor market. From functions (17) and (22), the total number

of production workers in the ASSE can be written as LP∗ = n∗ℓ(λ∗), where

ℓ(λ∗) ≡ D(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1dτ +D(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)dτ. (50)

Note that the first integral in Equation (50) is finite because τ̂(λ∗) is finite. The second

integral is finite if the power of q(τ)−(1−ε) ∝ (τ + κ0)
−θ(1−ε) is less than 1, which means

that θ(1− ε) > 1, or equivalently ψ > ε. In the following, we assume that ψ > ε holds.

The function ℓ(λ∗) is a decreasing and continuous function of λ∗, with limλ→0 ℓ(λ) = ∞

and limλ→∞ ℓ(λ) = 0. Since λ∗ is positive and finite, ℓ(λ∗) is also positive and finite.

Using Equation (50), the equilibrium condition for the labor market is written as follows:

n∗ℓ(λ∗) + (n∗/a) = L. From this, we obtain the following:

n∗ =
aL

1 + aℓ(λ∗)
. (51)

Since ℓ(λ∗) is positive and finite, n∗ is also positive and finite.

47To calculate V ′(λ), we need to use Leibniz’s rule because the range of the integration depends on λ.

However, at τ = τ̂(λ), we can confirm that D̂(λ)q(τ̂(λ))ε̂−1 = D(λ)q(τ̂(λ))ε−1. Therefore, a marginal

change in τ̂(λ) does not affect V ′(λ).
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A.3 Measured Real GDP Growth Rate when ĉ is not Small

As shown in Appendix A.2, the economy has an ASSE with a positive and finite pair of

n∗ and λ∗ whenever ψ ∈ (ε, 1). In this ASSE, we now calculate the real GDP growth

rate, as measured by the SNA. From Equations (21) and (22), the expenditure for an

age τ good can be written as follows:

p(τ)x(τ) =


(1 + µ)D(λ∗)q(τ)−(1−ε) for τ ≥ τ̂(λ∗),

(1 + µ)D̂(λ∗)q(τ)1−ε̂ for τ < τ̂(λ∗).

(52)

Using Equation (52), we can calculate the expenditure shares for the goods of each age:

σ(τ) =


D(λ∗)q(τ)−(1−ε)/ℓ(λ∗) for τ ≥ τ̂(λ∗),

D̂(λ∗)q(τ)1−ε̂/ℓ(λ∗) for τ < τ̂(λ∗).

(53)

The measured real GDP growth rate is obtained via the growth formula (35):

g∗ =
1

ℓ(λ∗)

(
D̂(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1gq(τ)dτ +D(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)gq(τ)dτ

)
. (54)

Using Equations (19) and (20), the growth rate can be written as follows:

g∗ =
θ

ℓ(λ∗)

(
D̂(λ∗)κε̂−1

1

∫ τ̂(λ∗)

0
(τ + κ0)

θ(ε̂−1)−1dτ

+D(λ∗)κ
−(1−ε)
1

∫ ∞

τ̂(λ∗)
(τ + κ0)

−θ(1−ε)−1dτ

)
.

(55)

The two integrals in Equation (55) are both finite, and their sum is positive. Additionally,

as discussed in Section A.2, ℓ(λ∗) is positive and finite. Therefore, given ψ ∈ (ε, 1), the

measured real GDP growth rate is positive and finite.
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Appendix B Simplest Examples of Non-Exponential Growth

B.1 When Goods become Free in Two Periods

Consider an economy in discrete time with overlapping generations of products. One new

good is introduced every year. When the good is introduced, the price is 2; it falls to 1

in the next period and to 0 thereafter. The output quantity is 1 when it is introduced,

2 in the next period, and 3 thereafter. For example, we can consider each good as a

medication for a particular disease. In this example, after two periods, generic drugs

with the same effect become available (almost) for free. The pattern of movements of

quantities and prices is summarized below.

index i = Nt − 3 i = Nt − 2 i = Nt − 1 i = Nt i = Nt + 1

x̃t−1(i) 3 2 1 N/A N/A

x̃t(i) 3 3 2 1 N/A

x̃t+1(i) 3 3 3 2 1

p̃t(i) 0 0 1 2 N/A

p̃t+1(i) 0 0 0 1 2

In the table, i is the index of goods, Nt is the index of the newest good in period

t, x̃t(i) is the quantity of good i, and p̃t(i) is the price of good i. Note that the newest

good in period t+ 1 is i = Nt + 1. Therefore, the values in the x̃t+1(i) and p̃t+1(i) rows

are shifted to the right by one column. The opposite holds for the x̃t−1(i) row.

In SNA statistics, the real GDP growth rate from years t − 1 to t is defined as the

growth of the value of output when the value is evaluated by the prices in the base year.

In practice, the base year is frequently updated; thus, we assume that the base year is

updated every year to the year of evaluation (i.e., year t). Then, we have the following:

gt−1,t =

∑Nt
i=0 p̃t(i)x̃t(i)−

∑Nt−1
i=0 p̃t(i)x̃t−1(i)∑Nt−1

i=0 p̃t(i)x̃t−1(i)
. (56)

Using the number in the table, the value of the output in t using the prices in t

is
∑Nt

i=0 p̃t(i)x̃t(i) = 1 × 2 + 2 × 1 = 4. Similarly, the value of output in t − 1 using

the prices in t is
∑Nt−1

i=0 p̃t(i)x̃t−1(i) = 1 × 1 = 1. Therefore, the GDP growth rate is

gt−1,t = (4 − 1)/1 = 3 = 300%. Similarly, We can calculate the GDP growth rate for
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period t+ 1 as gt,t+1 =
(∑Nt+1

i=0 p̃t+1(i)x̃t+1(i)−
∑Nt

i=0 p̃t+1(i)x̃t(i)
)
/
∑Nt

i=0 p̃t+1(i)x̃t(i) =

(4 − 1)/1 = 300%. We always obtain the same growth rate as long as this pattern of

quantities and prices continues. Therefore, the measured GDP growth in this steady

state is constant and positive, even though the output of any good does not grow at an

exponential rate.

B.2 When Goods become Obsolete in Two Periods

Similar to the previous example, one new good is introduced every year. When the new

good is introduced, its price is 2, and it falls to 1 thereafter. The good is produced only

for the period when it is introduced and one period afterward. The output quantity is

1 for both periods and then 0 thereafter. One can think of each good as a medication

for a particular infectious disease. Owing to medication, the disease is eradicated in two

years, and the good is no longer in demand. The pattern is summarized below.

index i = Nt − 3 i = Nt − 2 i = Nt − 1 i = Nt i = Nt + 1

x̃t−1(i) 0 1 1 N/A N/A

x̃t(i) 0 0 1 1 N/A

x̃t+1(i) 0 0 0 1 1

p̃t(i) 1 1 1 2 N/A

p̃t+1(i) 1 1 1 1 2

Again, we can calculate the GDP growth rate via Equation (56). The value of output

in t using the prices in t is
∑Nt

i=0 p̃t(i)x̃t(i) = 1 × 1 + 2 × 1 = 3. Similarly, the value of

output in t− 1 using the prices in t is
∑Nt−1

i=0 p̃t(i)x̃t−1(i) = 1× 1+1× 1 = 2. Therefore,

the GDP growth rate for year t is gt−1,t = (3−2)/2 = 1/2 = 50%. We can also calculate

gt,t+1, which is again 50%. The measured growth rate does not change as long as the

same pattern continues.

When comparing the output quantities in periods t and t − 1, the difference is that

we have one unit of the newest good (whose value is 2), and we lose one unit of the

2-year-old good (whose value is 1). Since the price of the new good is higher than that

of the old, disappearing good, the numerator is positive. Based on the observed prices,

the GDP growth rate attributes a greater value to newly appearing goods than to old

v



disappearing goods.

B.3 Interpretation

Both examples satisfy the required conditions for positive GDP growth explained in the

Introduction: (i) new goods are introduced over time, (ii) the price of goods decreases

with age, and (iii) the expenditure for old goods is limited (it becomes zero after two

years).

These examples also illustrate that the GDP growth rate may not directly correspond

to welfare improvements. In the first example, the economy will have a (linearly) greater

variety of goods as time passes. With respect to the interpretation of medications, we

have become able to cure more diseases. Therefore, it is natural to expect that the

welfare of the consumer will improve over time. Nevertheless, there is no component of

consumption that grows exponentially.

In the second example, the economy in any year has only two kinds of products, and

the quantity is always one for each good. Therefore, the economy might seem stationary,

despite the positive measured GDP growth rate. Whether the welfare of consumers im-

proves depends on the reason why the goods become obsolete. If a medication becomes

obsolete because the disease is eradicated, then obsolescence is beneficial for consumers,

and their welfare will improve. However, if goods become obsolete because of changes in

taste or fashion, then the welfare of consumers may well be unchanged over time. Unfor-

tunately, the notion of GDP growth does not distinguish these two scenarios because it

is constructed only from the series of prices and quantities of various goods. It does not

have information on why prices and quantities have changed or why products appear

and disappear.

This paper does not try to say that the GDP growth rate is wrong. The GDP growth

rate is just an index and has limitations, similar to any economic index. It is among the

best available indices by which we can analyze the total amount of economic activity;

however this paper suggests that we need to be cautious in interpreting the GDP growth

rate. This is especially true in the long run, when the relative price of goods changes and

the base year needs to be updated. By explicitly considering the changes in relative prices
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and the introduction of new goods, this paper shows that we can interpret more flexibly

the fact that the real GDP growth rate is historically stationary. One concrete benefit

is that we can build endogenous growth models that require less restrictive assumptions

than existing models do.
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