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Abstract

I introduce the idea of behavioral mechanism design where in addition to the usual

sel�sh players there are noisy players who play randomly and ethical players who

actively seek to maximize social welfare and are committed, up to a point, to �do

their bit� to achieve that goal. I calibrate this model using data on risk aversion

and giving in dictator games. I then use it to study �fteen di�erent (out of sample)

experiments including stag hunt games, ultimatum bargaining games, and public

goods games with and without punishment. I show that this simple calibrated model

makes sharp predictions and does a good job both qualitatively and quantitatively in

explaining the data from those experiments. The theory also identi�es quantitative

anomalies in the data pointing the way to future improvements. I conclude that this

simple calibrated model might be a good benchmark for other experiments.

1. Introduction

You and three friends are on your way to the experimental laboratory to meet

eight other students to be randomly matched to play an ultimatum bargaining game

for ten dollars. You and your friends are public spirited in the sense you would like

to maximize the ex ante expected utility of the participants - provided it is not too

costly for yourselves. You and your friends also know that while the other students
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are, like you, risk averse, unlike you they are not so public spirited. About half are

sel�sh and will try to get what they can for themselves; the other half will have other

agendas, such as worrying about what they will do over the weekend, or trolling the

experimenter. Knowing that you will get to play a number of times what should

you and your friends agree to do? This is a prototypical example of a behavioral

mechanism design problem: behavioral because in addition to sel�sh types there are

two behavioral types: ethical players like the friends in the example, and noise players

with other agendas.

In this paper I analyze the behavioral mechanism design problem and provide

solutions for a number of games that have been played in real laboratories. In the

example, you and your friends should o�er an even split as �rst mover, should accept

o�ers of four dollars or more, and for each dollar less increase the rejection rate by

about 30%. The striking fact is that in this and the other games I study the observed

play in the laboratory resembles the idealized solution of the behavioral mechanism

design problem both qualitatively and quantitatively. To be clear: it is unlikely

that if there are ethical players in these experiments they are able to collude or that

they know in advance what game they will play. Never-the-less play by experienced

participants in the laboratory experiments I study may reasonably be described �as

if� it is the solution to a behavioral mechanism design problem.

The setting for the formal model is a �nite normal or extensive form game. In

that game players are drawn from a population with three types. Sel�sh types are

�standard� players who care only about their own utility. Noisy types are like behav-

ioral or commitment types in the reputation literature or noise traders in the �nance

literature and play according to a �xed exogenous strategy. Ethical types are like

ethical or group rule-utilitarian voters. One the one hand they are willing (to an

extent) to sacri�ce their individual utility for the common good. On the other hand

they act as mechanism designers, committed to picking an equilibrium that maxi-

mizes social welfare and optimally deploying their largesse. Below in the literature

review I indicate that none of these types are new, and that they are adopted from

the existing literature.

The main application of the model is to calibrate it and propose it as a benchmark

for analyzing experimental data for standard stakes experiments involving college

student participants. A benchmark model in my view is a model that is not estimated

from data, but converts experimental instructions into quantitative predictions about
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play. The point of a benchmark model is to detect anomalies: if the experiment

is what is predicted by the benchmark then there is little reason to search for new

theories or modify old ones. The standard Nash (or subgame perfect) model with

sel�sh risk neutral agents is an example of a benchmark model, and is widely used as

such. It is a low bar because vast numbers of anomalies are known and it is easy to

�nd new ones. The Levine (1986) calibrated model of signaling spite and altruism is

a benchmark model albeit it has not proved a very useful one. The Fehr and Schmidt

(1999) calibrated model is also a benchmark model and has proven more useful.

To use the behavioral mechanism design model as a benchmark model it must be

calibrated. In the calibrated version of the model I make the uniformity assumption

that all types are equally likely, the social welfare function puts equal weight on

all types, and the noise players maximize a measure of entropy at each information

set. In addition all players have the same risk averse utility function for money

income. This and the largesse of the ethical types are calibrated to data on individual

decisions for games that are non-strategic in the sense that strategies are ordered by

strict dominance. I particularly want to emphasize the role of risk aversion because

e�ciency creates a demand for insurance and this in turn means that �fair� allocations

are preferred to �unfair� ones.

Having provided a calibrated model I use it to benchmark �fteen di�erent exper-

imental treatments. All are classical experiments that have been replicated many

times. The �rst application is to stag hunt. Behavioral mechanism design rules out

coordination failure. Stag hunt seems an obvious counter-example. I show it is not. I

examine four treatments. Social preference in the form of largesse plays no role, but

noise players play a crucial role. Indeed: while behavioral mechanism design does

well, theories lacking noise players do poorly and despite the fact they do not make

precise predictions are wrong in the few predictions that they do make.

The second application is to ultimatum bargaining for which there are two treat-

ments. These experiments highlight the role of risk aversion in generating a demand

for fairness. They also provide evidence that players are not merely reacting to unfair

or unkind behavior by their opponents but are acting as mechanism designers and

actively seek to achieve social goals. The third primary application is to public goods

games with and without punishments of varying costs. This application demonstrates

how the constraint on largesse interacts with the possibility of punishment to gener-

ate �the law of demand.� The ultimatum and public goods contribution games are
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chosen not only to illustrate speci�c points about the theory but because they have

been widely used to assess models of social preferences. In each case the behavioral

mechanism design benchmark is qualitatively and quantitatively on the mark, albeit

with some quantitative anomalies that I explore.

What, then, is the marginal contribution of this paper to the existing literature?

First, with respect to theory, this paper advances a di�erent point of view than most

existing models. With rare exceptions, behavioral models take account of psycholog-

ical factors such as desire for fairness, reciprocity and altruism and build theories of

what should be considered kindness and fairness. The theory here approaches these

issues from a di�erent angle. As an example, take the willingness to punish those who

fail to contribute to the common good. Standard behavioral theories build this into

preferences as a kind of desire for revenge against those who fail to do their fair share,

who are unkind, or in order to improve equity. In the mechanism design model here

punishment is a means to an end - ethical players are committed to punish others to

provide them with incentives to contribute to the common good. Fairness is not in

con�ict with e�ciency, but in the presence of risk aversion fairness is demanded by

e�ciency. As I indicate below in the literature review this is not a new idea, but the

model here through its simplicity and starkness provides the basis for a benchmark

calibration which earlier models do not.

The second contribution of the paper is to the experimental literature. It provides

a simple qualitative and quantitative (and new) explanation of a wide variety of

experimental results and can be used as benchmark for detecting anomalies. It enables

us to ask and answer questions such as: is risk aversion is su�cient to explain the

demand for fairness or is there trade-o� between e�ciency and fairness?

The model has two ingredients: noise players and the idea that punishments are

issued in order to provide incentives. I provide evidence for both of these ideas. In

the stag hunt game models that lack noise players predict only that all players should

choose the same action. In fact after nine periods of play more than 27% fail to play

the modal action. In ultimatum bargaining models of fairness and kindness predict

that the frequency with which an o�er should be rejected should not depend upon

how frequently that o�er is made. In fact, in the same population, when the frequency

of $3.00 o�ers increases from 3% to 31% the frequency of rejections drops from 85%

to 14%. Mechanism design, by contrast, says that punishments should not be issued

if they do not accomplish the purpose of discouraging ungenerous o�ers.
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2. Literature Review

As I indicated, the viewpoint of this paper has precedent and I would be remiss

not to acknowledge the extent to which it builds on my earlier work with Rohan

and Salvatore in Dutta, Levine and Modica (2021). That paper had ethical players

(there called acolytes) and sel�sh players, but no noise players. Instead it had a

noisy signaling technology that (as acknowledged in the paper) makes sense outside

the laboratory but not inside the laboratory. Although we did try to calibrate that

model, the calibration was clumsy due to the mismatch between the model and the

laboratory and there was very little out of sample testing of the calibration. Here

I have dropped the signaling technology as it is not relevant to the laboratory and

replaced it with noise players who are. This leads to a cleaner model and one that can

be calibrated using only data from non-strategic settings and used as a benchmark

(out of sample) in strategic settings.

The work here is also in the spirit of recent work, for example Fudenberg and

Karreskog Rehbinder (2024), exploring how experimental data can be explained by

models that are both simple and sensible. The idea of using a numerical target (here

welfare) to measure consistency of the theory with data is reminiscent of the idea of

measuring losses in Fudenberg and Levine (1997). Finally, the model is similar to

that used by McKelvey and Palfrey (1992) who �t a model with altruistic, sel�sh

and noise players to data on the centipede game.

Ingredients of the Model: Ethical Players

As I indicated, the features of the model are not new and the types of players have

ample precedent in the literature. In the empirical literature Coase (1960), Ostrom

(1990), Townsend (1994) and Levine, Mattozzi and Modica (2022) argue that groups

are good at self-organizing to �nd solutions to mechanism design problems. The

formal model of an ethical player is taken directly from Harsanyi (1982) who refers

to such players as rule-utilitarian. More recently the idea of ethical players has become

important in the study of voting, including the theoretical model of Feddersen and

Sandroni (2006) and the voting study of Coate and Conlin (2004). Other theoretical

and applied uses of these models can be found in Herrera, Morelli and Nunnari (2016)

and Levine and Mattozzi (2020) among others. The players in Roemer (2010) have

a similar �avor although they are dedicated to a less traditional Kantian notion of

justice rather than the more standard notion of e�ciency.
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The idea implicit in the ethical players is that they choose the best equilibrium.

This idea is scarcely new to the experimental literature, and e�ciency considera-

tion have frequently been used to select among equilibria, for example, in Fehr and

Schmidt (1999). Since that does not predict well in settings such as the stag-hunt

games re�nements such as risk dominance have been used, for example, in Battalio,

Samuelson and Van Huyck (2001). Risk dominance uses hypothetical noise players:

the introduction of actual noise players here eliminates the need for hypothetical ones

and so behavioral mechanism design does not use them.

A key element of ethical players is that they are not only willing to �do their bit�

but they are committed to doing it. In a sense they solve the Stackelberg problem

and are committed to play the Stackelberg action - they play like the Stackelberg

types in the reputational theory of Fudenberg and Levine (1989).

The idea that ethical players are willing to �do their bit� but only up to a limit

is is much the same as the idea of �revoking costs� used in the bargaining literature

such as Dutta (2012). It is closely related to the experimental literature on �warm

glow� giving. Examples are Andreoni (1990) and Palfrey and Prisbrey (1997). In

Palfrey and Prisbrey (1997) as well as Palfrey and Prisbrey (1996) giving in public

goods contribution games is accounted for using a model of mixed types similar to

that used here.

Ingredients of the Model: Noise Players

As indicated, noise players are not new either. They have been extensively used

in the reputational literature, including but not limited to, Kreps and Wilson (1982),

Milgrom and Roberts (1982), Fudenberg and Levine (1989), and Mailath and

Samuelson (2001). Noise traders are widely used in the �nance literature: a quick

overview can be found in the Palgrave article by Down and Gorton (2008).

As shown in Appendix 2 noise players in this setting are equivalent to players who

tremble. Trembles have been widely used in the experimental literature. McKelvey

and Palfrey (1992) use trembles to explain play in their centipede experiment. The

quantal response players of McKelvey and Palfrey (1995) exhibit trembling, and these

quantal response models have been extensively used to analyze experimental data.

The extensive form quantal response in McKelvey and Palfrey (1998) generates play

similar to that of the noise players here.

Finally, as mentioned, the role of noise players has parallel in the notion of risk
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dominant equilibrium, especially in the evolutionary literature: see for example Kan-

dori, Mailath and Rob (1993), Young (1993), and more recently Peski (2010) among

many others. Although the time frame for evolution and mutations is quite di�erent

than considered here, the role of noise is the same.

Psychological Models

As I have indicated the main alternative to the theory here are the many psycho-

logical theories of fairness and or reciprocity. In general these are qualitative analyses

of experimental data and are not suitable as benchmark models. To mention a few

of the more popular theories: Fehr and Schmidt (1999) and Bolton and Ockenfels

(2000) develop models of fairness with which they do qualitative analyses for a va-

riety of experiments, and Fehr and Schmidt (1999) do quantitative analyses as well.

Charness and Rabin (2002) introduce a psychological theory of fairness with many

factors and do a set of experiments determine which are the most important. Falk and

Fischbacher (2006) use higher order beliefs to model intentions and reciprocity. This

is primarily a qualitative analysis. Dufwenberg and Kirchsteiger (2004) similarly

model intentions, kindness and reciprocity. Along somewhat di�erent lines Levine

(1986) models intentions that are inferred from type signaling and uses it to analyze

several experiments quantitatively.

A good overview of the theoretical and experimental literature in this area can be

found in Fehr and Charness (2023). One of their main �ndings is that players value

both fairness and e�ciency. Behavioral mechanism design creates a demand for both

by assuming risk aversion and maximizing ex ante welfare.

Quantitative Calibration: Benchmark Models

As indicated, in addition to the sel�sh risk-neutral Nash model, there are two

models that are potential benchmark models.

Levine (1986) calibrates a type signaling model on ultimatum and a public goods

contribution game. There are two parameters describing the three types: altruistic,

spiteful, and sel�sh (constituting 52% of the population). There are two out of sample

analyses, that of the centipede game and that of a market game. Both are relatively

successful.

Fehr and Schmidt (1999) calibrate a preference for fairness from ultimatum game

data. There are two parameters one of which can take on four values and one three.

The calibration is not complete as they do not specify the correlation between the two
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parameters. They conduct three out of sample analyses, that of a market game and

that of a public good contribution games with and without punishment. All three

are relatively successful. They also give a qualitative analysis of the trust game.

Fehr and Schmidt (1999) also examine dictator, which fails. Levine (1986) did

not discuss dictator, but it is easy to apply the model and it fails even worse than Fehr

and Schmidt (1999). By contrast, behavioral mechanism design does �ne, although

this is not an out of sample test as the largesse of ethical players is calibrated from

dictator data.

In both the Levine (1986) and Fehr and Schmidt (1999) models there can be

multiple equilibria so that the predictions of those theories are not sharp. I want to

emphasize that in contrast to these other models - including sel�sh risk neutral Nash

- the theory here makes sharp predictions. There is a single number - the optimal

social welfare - that is spit out by the model from experimental instructions and can

easily be compared to the theoretical data. The play leading to that optimum need

not be unique but often is, including in settings where the other models make few

useful predictions.

Finally, let me indicate that while the quantal response model has proven ex-

tremely useful in analyzing experimental data it is not a benchmark model. First, it

requires a parameter, the intensity of preference for optimal behavior, to be estimated

from the data ex post. Unfortunately at the current time nobody has developed a

systematic theory of how that parameter depends upon the experimental setting or

instructions - hence the theory does not make ex ante predictions. Second, many of

the experiments here, notably ultimatum bargaining and public goods contribution

games with punishment, cannot be explained without some sort of social preferences

- indeed this is why models of social preferences were developed. It is possible to com-

bine quantal response with social preferences - see, for example, Levine and Zheng

(2015) - but so far nobody has proposed a systematic way of doing this.

3. The Model

The setting is that of a game. Although this may be an extensive form game to

limit notation I formally describe only the normal form. There are n player roles

and each player role has a �nite strategy space si ∈ Si with payo�s ui(si, s−i). Mixed

strategies are denoted by σi and ui(σ) is the expected utility. Each player role is drawn

privately from a single population in which there are three types: (S)el�sh, (N)oise
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and (E)thical, where τ ∈ {S,N,E} denotes the type and φτ > 0 is the fraction of the

population that is type τ with the obvious property that φS+φN+φE = 1. Player roles

are partitioned into classes of roles that are indistinguishable and mixed strategies for

a type are feasible if and only if they are symmetric within each class. For example,

in a fourteen player public goods contribution game with identical players there are

14 player roles, but players cannot distinguish what their �player number� is.

As expected the sel�sh types are standard players who try to maximize their utility

ui(si, s−i) for the player role i they are assigned. The noise type plays according to

a �xed probability distribution σN with σiN(s
i) > 0. The ethical players are public

spirited and committed to act as mechanism designers, choosing incentive compatible

strategies for themselves and the sel�sh types to maximize a social welfare function

as I now explain.

To be speci�c, for given mixed strategies for each type στ denote the mixture by

σ =
∑

τ φτστ . The mechanism design problem can be stated as a choice of σS, σE to

maximize the expected per capita social welfare function

E
∑
τ

wτ

∑n
i=1 u

i(σiτ , σ
−i)

n

where the welfare weights wτ ≥ 0 and
∑

τ wτ = 1. For sel�sh types there are incentive

constraints for i = 1, . . . , n and si ∈ Si

ui(σiS, σ
−i) ≥ ui(si, σ−i).

In addition the willingness of the ethical players to contribute to the public cause

is not unlimited and the ethical players are characterized by a utility limit γ, the

largesse, on how much they are willing to sacri�ce. This gives additional incentive

constraints

ui(σiE, σ
−i) + γ ≥ ui(σiS, σ

−i).

Discussion of the Model

Two aspects of the model deserve mention. First, I have not assumed that the

welfare weights are all positive. It might be, for example, that the ethical players do

not care about the noise players, viewing them as being deviant. Or they might care

only about the welfare of the ethical types.



10

Second: the behavior of the ethical types (and possibly of the sel�sh types as well)

is not individualistic. Coate and Conlin (2004) follow Harsanyi (1982) in calling

ethical voters as �group rule-utilitarian� and this is accurate. That is, ethical players

ask: what would we like to happen (given the incentive constraints) and how can we

do our share to make it happen? In particular: even if γ = 0, or, as is the case in

stag-hunt if γ is irrelevant, if there are multiple equilibria the ethical players get to

select the most favorable equilibrium. It is for this reason that one of my applications

is to the stag hunt game. Ordinarily this is viewed as a failure of the hypothesis

that most favorable equilibria are selected. As I will show this is not the case for

the calibrated behavioral mechanism design model: the presence of the noise players

changes the calculus of both equilibrium and welfare and is consistent with what is

seen in stag hunt experiments. I emphasize in addition that ethical types are not

merely willing �to do their bit� but are committed to doing so.

Incentive Constraints

The incentive constraints are applied after player roles have been assigned and

types determined, but, if the game is sequential, before moves take place. Hence the

equilibrium concept is Nash rather than subgame perfect. In this setting with noise

players who play everything with positive probability this distinction is meaning-

less: every information set feasible given a player's strategy is reached with positive

probability, Bayes law always applies, and every Nash equilibrium is sequential.

The ex ante nature of the incentive constraints does have implications for the

behavior of the ethical players. For example, an ethical player who is moving second

in a game may respond to an unlikely move of the �rst player by taking a greater loss

than γ. This is because they are committed to do �whatever it takes� when the time

comes, provided the ex ante expected loss from doing so is not too great. I should

note that in experimental treatments where one round is chosen at random to be paid

the commitment is automatic: at the time the decision is made the action chosen is

purely hypothetical and will involve an actual loss only with some probability - after

the fact it is impossible to renege.

Existence of a Solution

The one relevant theoretical fact is that the behavioral mechanism design problem

has a solution.
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Theorem 3.1. The problem of maximizing social welfare subject to the incentive

constraints has a solution.

Proof. This follows if the expected utility functions are continuous in the strategies

and the constraint set is closed and non-empty. Continuity of expected utility in

strategies follows from the fact that the game is �nite so they are multi-linear. The

constraint set is closed because the utility functions are continuous and the constraints

are de�ned by weak inequalities. The only substantive issue is whether the constraint

set is non-empty. Since the noise players act as �nature� there is a Nash equilibrium

for the sel�sh and ethical players in which the ethical players act sel�shly: this satis�es

all the constraints.

4. Overview

Before analyzing the experiments in detail I �rst give an overview of the calibrated

model and results. The utility function u(m) for monetary payo�s and γ are calibrated

to data. This is done below, but I want to indicate that this calibration is for standard

stakes with students as participants: those are the applications I am going to consider.

I suspect that for other stakes and with other populations this calibration would not

�work.� In addition the theory is an equilibrium theory and we only observe something

resembling equilibrium in the laboratory when participants have an adequate chance

to play and learn. Consequently, in the applications I will only look at data from

late periods of play. Exactly what this means is described below. As indicated all

treatments are classical experiments that have been replicated many times. Further

details about the selection of experiments and treatments can be found in Appendix

3.

The Calibrated Model

Besides the monetary payo� function, which is given by the experimental instruc-

tions, the mechanism design problem depends upon the utility u(m) for monetary

payo�s m, the largesse γ of ethical players, the weights wτ in the social welfare func-

tion, the fractions of types φτ , and the strategy of the noise types σN .

Here is the calibrated model. Utility is given by

u(m) = 1− (1 +m/C)1−ρ
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where C = 40 and ρ = 9. If there are T paid rounds then largesse in each round

is u−1(γ) = $1.00/T . For the utility weights and fractions the simplest assumption

and the one I will adopt is the uniformity hypothesis : this is wτ = φτ = 1/3. For

the behavior of the noise players σN I will adopt the maximum entropy hypothesis.

I �rst partition and order the actions at each information set by weak dominance.

Within each weak dominance class actions are chosen with equal probability; and

each weak dominance class has the same probability as the combination of all lower

weak dominance classes. For example, the probability that some weakly undominated

strategy is chosen is equal to the probability that some weakly dominated strategy is

chosen.

Results

The strong prediction made by solving the mechanism design problem concerns

welfare. This is reported below in Table 4.1 for the �ve experiments and �fteen

treatments analyzed in this paper.2

2Appendix 10 reports on results for the two one-shot PD treatments and Appendix 11 the market
auction game (mkt). The remaining games are discussed in the text. To avoid informational overload
I do not report standard errors here. They are discussed in the context of speci�c experiments in
the text and in Appendix 12. They add little to the information presented in the table.
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period(s) theory data actual err SGP err FS err

stag

n = 2p 7 $1.18 $1.18 $0.00 $0.22*
n = 2s 5 $1.18 $0.91 $0.27 $0.39*
n = 14 10 $0.64 $0.60 $0.04 $0.70*
n = 15 10 $0.60 $0.66 −$0.06 $0.64*
n = 16 10 $0.60 $0.61 −$0.01 $0.69*

ult
no obs 10− 40 $3.45 $3.44 $0.01 $0.08 $1.38
obs 10− 40 $3.45 $3.43 $0.02 $0.10 $140

pub

no pun 10 $1.51 $1.51 $0.00 −$0.01
pun 1 10 $1.80 $1.64 $0.16 −$0.14
pun 2 10 $1.88 $1.78 $0.10 −$0.28 $0.63*
pun 3 10 $1.91 $1.99 −$0.08 −$0.49 $0.42*
pun 4 10 $1.92 $1.91 $0.01 −$0.41 $0.50*

PD
PD1 9 $0.22 $0.19 $0.03 −$0.02
PD2 9− 10 $0.25 $0.23 $0.02 −$0.01

mar 10 $0.35 $0.44 −$0.09 $0.00

Table 4.1: Welfare

*equilibrium selected as most e�cient
n in stag hunt is number of players, for n = 2 the s denotes strangers and p partners
in ultimatum bargaining no obs is the standard treatment and obs is the treatment
where the play of another player is observed
in the public goods game pun represents the punishment factor (or no punishment)

The experiments are stag (hunt), ult(imatum bargaining), pub(lic good contribu-

tions), one shot P(risoner's) D(ilemma), and the mar(ket auction). Welfare is reported

in certainty equivalent units by applying u−1 to the expected utility of a player in the

game generated by the theory. I then computed the actual utility from the data in

the same units and the di�erence between the theory and the data (actual err). This

in itself proves little: it is possible to develop theories that generate predictions that

do not depend upon the data at all: for example, the maximum possible payo� in

the game. It is important to know that there is a wide range of possible predictions

for welfare, that is, that the theory can be wrong. To this end, as I explain in Ap-

pendix 4, I computed welfare for two other benchmark theories, sel�sh risk neutral

subgame perfect equilibrium (subgame perfection or SGP) and the calibrated Fehr

and Schmidt (1999) (FS) model. In the �nal two column I then computed the error

for each of these other theories. In cases where there were multiple equilibria (marked

with a *) I followed Fehr and Schmidt (1999) and picked the most e�cient one.

For one game, the public good game with no punishment, all the theories agree
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that there will be very little contribution. In twelve of the other fourteen treatments

the actual error for behavioral mechanism design is no more than $0.10 in absolute

terms. By contrast, the other theories come within $0.10 of empirical welfare in only

four of the fourteen treatments and often have much higher errors. Overall, I take

this to mean that behavioral mechanism design does fairly well in predicting welfare.

In the table I have highlighted the two anomalies identi�ed by the calibrated

model. These are the stag hunt game with strangers (players are randomly matched

each period) and the punishment factor one public goods game. These I will ex-

amine below, but for the moment note that the �rst and worst anomaly, the stag

hunt anomaly, occurs with relatively inexperienced players who got to play only �ve

periods. For the punishment factor one public goods game both subgame perfection

and Fehr-Schmidt do better than mechanism design under predicting welfare by $0.14

rather than over predicting it by $0.16, but none of the theories do terribly well.

There are two cases in which subgame perfect equilibrium does well and has long

been know to do so: in the one-shot PD and the market auction game. In the former

case behavioral mechanism design does not do much worse. In the market auction

game behavioral mechanism design does less well, but as I indicate in Appendix 11

the sole reason for this is that the theory makes the unreasonable assumption that

noise players are willing to throw away roughly $10.00 for no reason 50% of the time.

The other case in which an alternative theory does well - subgame perfection in

ultimatum bargaining - is, unfortunately, a case of the broken clock being right twice

a day: subgame perfection makes two o�setting errors. On the one hand it under

predicts the generosity of o�ers, predicting $1.00 o�ers as against at least $3.63 in

the data. This lowers welfare. On the other hand it also under predicts rejections,

predicting that no o�ers will be rejected, while the actual rejection rate in the data is

about 20%. This raises welfare and the two errors more or less cancel out. In contrast

the Fehr-Schmidt model does poorly with ultimatum welfare, over predicting by more

than $1.37. Unlike subgame perfection Fehr-Schmidt gets the distribution of o�ers

fairly accurate for one of the two ultimatum games, but over predicts welfare because

it gets the rejection rate too low. This shows that the details are important, and I

will go through the details of the mechanism design model shortly.
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The Key Ingredients

The key ingredients of the model are the ethical players with their largesse, the

noise players, and risk aversion. The role of these three ingredients depends on the

class of game studied. Here there are three classes of games: I have followed the

earlier literature that do studies across di�erent classes of games in selecting these.

The details can be found in Appendix 3. Let me brie�y indicate what goes wrong for

each type of game if one of these ingredients is omitted.

The PD and market auction are games where standard SGP is know to perform

well and are usually included in studies of this types as a sanity check to make sure

that existing good results are not �unexplained.� Because these games are not central

to the paper the detailed analysis is in the appendices. For these games adding

largesse, noise players, and risk aversion is clearly not needed - the goal is to check

that they do not �unexplain� what is already explained. They do not, albeit with

some caveats as discussed in Appendices 10 and 11.

I included stag hunt because behavioral mechanism design is an equilibrium selec-

tion theory and I wanted to check that in a setting where social preferences (largesse)

does not matter that the theory yields the correct equilibrium selection. Here largesse

and risk aversion do not matter, including them or excluding them makes no dif-

ference. However, the noise players are crucial and deliver the correct equilibrium

selection.

The ultimatum and public goods games with punishment are standard and well

established examples of how standard SGP fails badly. In ultimatum standard SGP

predicts everything demanded and nothing rejected while in actuality many o�ers are

rejected and o�ers are closer to a 50-50 split. In public goods games with punishment

the prediction is there will be little contribution to the public good because nobody

is willing to punish. In actuality punishment is widely used and provides incentives

resulting in large and in some cases nearly �rst best contributions to the pubic good.

Ultimatum bargaining requires all three elements of the theory. Without largesse,

in ultimatum bargaining, nobody is willing to provide incentives for good o�ers by

rejecting bad ones (noise players reject all equally). Hence the equilibrium collapses

to the usual �ask for everything and get it� (plus with noise players some not very

interesting noise). This is never observed in any ultimatum experiment. Risk aversion

creates a demand for fairness: without it the ethical players could implement the �rst

best by rejecting no o�ers with all sel�sh and ethical players demanding and getting
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nine dollars (except from the noise players). This is strongly counter-factual. The

point here is to establish that the level of risk aversion from individual lottery choice

data is consistent with the demand for fairness observed in ultimatum bargaining

hence provides a uni�ed theory.

Noise player also play a crucial role in ultimatum bargaining. Because there are

noise players, punishments must be issued on the equilibrium path and this is socially

costly. Hence the ethical players must trade o� an increased cost of punishment

against an improved outcome. Without the noise players the ethical players would

simply implement the �rst best at no actual cost of punishment and equilibrium would

collapse to the �rst best with all o�ers being an equal split and no o�ers rejected. In

fact splits of 60-40 are far more common and many o�ers are rejected.

In the public goods contribution games studied here the stakes are too low for

risk aversion to play a role and fairness is not at issue. Hiowever, largesse and noise

players play the same crucial role that they do in ultimatum bargaining. Largesse

is needed so that the ethical players are willing to provide incentives by punishing

non-contributors and noise players make these punishments socially costly so that the

ethical players cannot simply implement the �rst best at no cost.

Before turning to the details of the theory and data, I will explain how the cali-

bration is done.

5. Benchmark Calibration for Long-Term Play

The utility u(m) for monetary payo�s m, the largesse γ of ethical players, the

welfare weights wτ , the fractions of types φτ and the strategy of the noise types σN

all must be calibrated. As indicated for the utility weights and fractions are not

calibrated to data, rather I adopt the uniformity hypothesis: this is wτ = φτ = 1/3.

Similarly as I describe below the strategy of the noise players is derived from the

maximum entropy hypothesis. Then I calibrate σN and u(m), as these are needed for

calibrating γ, and conclude by calibrating γ.

I want to emphasize that in this calibration I have taken data from standard

experiments using best practices that have been replicated many times. In addition I

use only data from non-strategic settings. By this I mean games where strategies are

ordered by strict dominance with respect to monetary payo�s: single player decision

problems, dictator, and public goods contribution games.
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There is also an issue of type persistence. The bottom line is that in partners

treatments I assume that types are randomly redrawn after each game: the issue is

discussed further in Appendix 9.

Entropy Maximization in the Agent Normal Form

Strictly speaking I do not calibrate σN at all, rather I assume that it is noisy

in the sense of maximizing a measure of entropy. As it is the behavior of noise

players that matters, it makes sense to talk of behavior strategies and the most

straightforward assumption is that the noise players randomize uniformly over actions

at each information set. This leads to absurd play in some settings, so I instead adopt

the maximum entropy hypothesis which I now describe.

To motivate the maximum entropy hypothesis, consider the public goods game

with punishment studied by Fehr and Gachter (2000). Here in the second stage of

a game a player must decide how to allocate 20 �punishment points� among three

opponents. These are costly both to the punisher and the punished.

What does this structure means in terms of the information set where punishment

is allocated? There is one action in which no punishment points are allocated. There

are three actions in which one punishment point is allocated among the three oppo-

nents, and in general there are (k + 1)(k + 2)/2 actions which allocate k punishment

points among three opponents. The point is that a uniform distribution over actions

at this information set implies that large numbers of punishment points are far more

likely than small numbers because there are many more ways to allocate them. In

particular the probability that six or fewer punishment points are assigned is less

than 5% while the probability that 16 or more punishments points are assigned is

more than 50%. This is not reasonable and is grossly inconsistent with the play of

laboratory participants.

To provide a more �reasonable� description of the play of noise players, I instead

categorize actions and assume that entropy is �rst maximized between categories,

then within categories. Speci�cally, working in the agent normal form so as to deal

with behavior strategies and actions at information sets, for each information set

I at which player i is playing, strategies can be divided into those that are weakly

dominatedW 0(I) and those that are not N0(I). By zero order reasonableness I mean

that it should not be more likely to play a weakly dominated strategy than a weakly
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undominated strategy:

Pr(N0(I)) ≥ Pr(W 0(I)).

This criterion should be applied recursively: we can de�ne W 1(I) as the subset of

W 0(I) that are weakly dominated by a strategy in W 0(I) and N1(I) as those which

are not, and continuing in this way de�neW k(I), N i(I) until we run out of strategies.

The reasonableness constraints are

Pr(Nk(I)) ≥ Pr(W k(I)).

The maximum entropy hypothesis then asserts that entropy should be maximized

among categories subject to the reasonableness constraints: in particular actions

within each category are chosen with equal probability.

In the example the constraints bind so the maximum entropy hypothesis gives

rise to the punishment strategy for the noise players: the probability of issuing k

punishment points is (1/2)k+1 for k ≤ 19 and (1/2)20 for k = 20. For each level

of punishment k there are 3k ways of allocating those punishments among three

opponents, and each of these has equal probability.

Risk Aversion

It has long been observed that players are risk averse over the small stakes in

laboratory experiments. Risk aversion plays a key role in the theory both because

there are risks and because it induces a demand for fairness. That is, if agents are

risk averse, maximizing ex ante expected utility of a player means that an equal split

provides both players with insurance. The social optimality of the equal split plays a

key role in the analysis of ultimatum bargaining.

To get a particular utility function I followed Fudenberg and Levine (2011) who

derive a �short-run� laboratory utility function in a way that is consistent with risk

aversion outside the laboratory. Speci�cally, this is the CES or constant relative risk

aversion function

u(m) = 1− (1 +m/C)1−ρ

where C = $40.00 is an estimate of daily �pocket cash� and ρ is a coe�cient of relative

risk aversion determined from laboratory choices over gambles. The bottom line here

is that I take ρ = 9.0 .

To calibrate ρ I used data from two di�erent experimental approaches: the risky
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investment approach of Gneezy and Potters (1997) and the multiple price list ap-

proach popularized by Holt and Laury (2002). These methods are discussed in the

review paper Charness, Gneezy and Imas (2013) and are the two methods used as

objective measures of risk aversion in the large scale standardized survey of Snowberg

and Yariv (2021). In both cases I used data from the original papers.

Gneezy and Potters (1997) give 84 participants an endowment of $1.20 and ask

them to decide how much to invest in a risk project that pays nothing with probability

2/3 and pays 3.5 times the investment with probability 1/3. They played nine times:

the average investment was x = $0.30 and did not vary much from round to round.

Di�erentiating the objective function

(2/3)u(1.20− x) + (1/3)u(1.20− x+ (3.5)x)

with respect to x, equating to zero, substituting x = $0.30, and solving for ρ yields

the estimate ρ = 8.7.

Second, following Fudenberg and Levine (2011), I use data from Holt and Laury

(2002)'s normal stakes experiments. They provide 187 participants with a menu of

paired lottery choices where the �rst is a lottery between $2.00 and $1.60 the second

between $3.85 and $0.10. The menu gives di�erent probabilities between the �rst and

second prize. They �nd when the odds are 50− 50 that 70% of participants take the

safe choice, while when the odds are 60 − 40 only 45% of participants take the safe

choice. For the �rst lottery indi�erence requires ρ = 4.2 and for the latter ρ = 12.5.

The median individual lies between these two, presumably closer to the top. This is

generally consistent with the ρ = 8.7 from the Gneezy and Potters (1997), so, to

avoid spurious precision, I take ρ = 9. Such an individual is indi�erent on the Holt

and Laury (2002) list at 56− 44.

Those familiar with the literature on risk aversion in the laboratory may be puzzled

by the fact that these values of ρ are much higher than appear in other studies. This

is because I have assumed a �wealth� of C = $40.00 while other studies assume much

smaller �wealth.� With larger wealth risk aversion must be larger to �t the data.

Over the relevant range it makes little di�erence what utility function is �t to the

data. In Appendix 1 I have plotted along with the calibrated utility function a CARA

utility function �t to the Gneezy and Potters (1997) data: it looks the same over the

relevant range of zero to ten dollars.
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One additional remark is important for interpreting the numerical values of welfare

and utility: they are reported in certainty equivalent units, that is, by applying u−1.

Largesse

How much are ethical players willing to sacri�ce for the common good, or to say the

same thing, what is γ? To answer this question I use data only from non-strategic

settings where actions are completely ordered by strict dominance with respect to

monetary payo�s: these are the dictator game, the one shot Prisoner's Dilemma

game, and public goods contribution games without punishment. The bottom line is

that if there are T paid rounds then I take u−1(γ) = $1.00/T .

I am interested in games where experienced players have played many times. A

robust �nding from many studies is that willingness to give declines substantially over

time. Figure 5.1 below plots contributions over time from Fehr and Gachter (2000)'s

repeated public goods contribution game with about 66 strangers, and another with

about 44 partners. In the �nal period the two are quite similar and the average of

the two µ = 0.268 I take to be the long-term ratio. For comparative purposes I also

show the fraction of the population cooperating in Dal Bo (2005)'s one-shot prisoner's

dilemma game with 390 strangers. This is quantitatively quite similar to the Fehr

and Gachter (2000) stranger treatment and stabilizes in about the 7th round with

the average over the last four rounds equal to 0.242.

Figure 5.1: Willingness to Give Declines with Experience

I view the long-term ratio µ as discount factor that multiplies giving in a �rst

time game to determine giving for a pool of experienced players. To determine �rst

time giving I use data from the dictator game.

In the dictator game one player allocates a �xed amount between themselves and

one other player. The basic source of information about dictator is the Engel (2011)
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meta-study based on 83 papers with a total of 20, 813 observations. The key relevant

�nding is that with student participants the donation rate is about 25%. The most

common dictator game in the laboratory is for $10 stakes where giving is in whole

dollars.

In the standard $10 dictator game with students in the laboratory Engel (2011)'s

data indicates we can expect an average contribution of $2.50. Discounting this

by µ = 0.268 and taking account of the fact that the experienced noise players each

contribute on average $1.00 yields the formula for the willingness of the ethical players

to contribute

u−1(γ) = 3(2.50)µ− 1 = 1.00. (5.1)

The given value of γ makes sense when one round is chosen randomly to be paid.

When all rounds are paid it makes sense that the given value of γ applies to the entire

game. That is, if the game is played ten times it makes no sense that each time it

is played the ethical players are willing to sacri�ce $1.00, but rather that they are

willing to sacri�ce that much over the entire course of play, that is, $0.10 for each

round. More generally, if there are T paid rounds I take u−1(γ) = $1.00/T .

I note that there is an issue with the γ constraint failing to bind which would

invalidate these computations - in Appendix 5 I show that the calculations here are

robust to this concern.

Long Term Play

As indicated the theory is an equilibrium theory and we only observe something

resembling equilibrium in the laboratory when participants have an adequate chance

to play and learn. Consequently, in the applications I will only look at data from late

periods of play. What exactly does this mean?

The usual practice for experiments that provide �adequate time to learn� as prac-

ticed in the literature is �ten periods or more� although experiments that are explicitly

designed to study learning dynamics sometimes use more periods. I would summarize

many decades of experience by saying that there is a consensus that ten periods is

usually enough. Indeed, as can be seen in Table 4.1 most of the experiments here

gave participants ten periods of play.

Many of the experiments here are partner treatments in which the same players

play with each other in every period. To avoid repeated game e�ects this means

that only the �nal period should be used. As this is ordinarily the tenth period, for
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consistency, in strangers treatments, I take data beginning with the tenth period until

the �nal period.3 This is a rule-based approach for which the periods of data used

is determined from the experimental instructions without looking at the data, so is

suitable for a benchmark theory.4

Finally I should note that the results here are robust in the sense that, for example,

using the �nal two periods of play in the partners treatment makes little di�erence.

6. Stag Hunt

The �rst experiments I analyze are the stag hunt games of Van Huyck, Battalio

and Beil (1990) designed to illustrate how coordination on e�cient equilibria can

fail. This class of games is interesting because the standard benchmark theories Fehr-

Schmidt and subgame perfection have little to say about these games, and what little

they do say is wrong.

The games studied in Van Huyck, Battalio and Beil (1990) are simultaneous move

n player games in which each player chooses e�ort in dollars qi = {0.10, 0.20, . . . , 0.70}.
The monetary payo� of i is given by

mi(qi, q−i) = .60 + 2.0min{qj} − qi.

Players are paid for every period. There are two treatments: one with a large �xed

population that plays for ten periods with n ∈ {14, 15, 16}. Three sessions were

conducted with n = 16 and two each with n = 14, 15. The other treatment is for a

small population with n = 2: this is done both with a �xed population (partners)

and randomly matched players (strangers).

Qualitative Analysis. In the stag hunt game no individual player, nor even a third

of them, have a substantial chance of raising the minimum, so social preferences

including largesse play no role. Rather it is the play of the noise players together with

equilibrium selection that is crucial. With a large population (14 or more players) the

chances one player messes it up for everyone by choosing a low e�ort is high and it is

impossible to sustain high levels of e�ort. With a small population the chance of the

3When possible I also check that using only late periods does not matter.
4As can be seen in Table 4.1 there is one exception which is PD2. In PD1 participants never got

to play ten times and it seemed wrong for comparative purposes to compare the ninth match in PD1
with the tenth match in PD2 so I took the cuto� for �enough times� to be nine rather than ten.
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one other player messing it up is not so great and high e�ort levels are sustainable.

Hence the theory predicts low e�ort levels in the large population and high e�ort

levels in the small population. This is characteristic of stag hunt experiments. Risk

dominance makes similar predictions but involves hypothetical players as opposed to

noise players. Characteristic of noise players is that, unlike in other theories, there

should be dissidents who fail to play the modal action, and indeed that nearly a

third of the population should be dissidents. This is, in fact, true. Note that this

analysis provides a strong rationale for explicitly including noise players in substantial

numbers: if noise players and equilibrium selection were added to existing models such

as Nash equilibrium or models of social preferences the results would be identical to

those found here.

Description of the Solution. In all cases the mechanism design problem has a unique

solution. All the sel�sh and ethical players choose the same target level of e�ort.

When n = 2 noise players are rare and every target e�ort level is an equilibrium.

Welfare is increasing in the target and so the optimum is maximal e�ort $0.70. When

n = 14, 15, 16 the chances of at least one noise player are high and there are only

equilibria with low e�ort levels. Speci�cally, when n = 14 the e�ort levels $0.10, $0.20

are equilibria and the optimum is $0.20. When n = 15, 16 the only equilibrium is

$0.10 so this is the optimum.

Below in Table 6.1 I summarize the theoretical solution and the data from the

�nal period of play. Note that the maximum attainable joint money payo� is $1.30

per player.

n strangers
welfare mean e�ort

period participants
theory data theory data

2 no 1.18 1.18 0.60 0.64 7 28
2 yes 1.18 0.91 0.60 0.53 5 16
14 no 0.64 0.60 0.27 0.19 10 28
15 no 0.60 0.66 0.20 0.14 10 30
16 no 0.60 0.61 0.20 0.18 10 48

Table 6.1: Summary of Stag Hunt

Qualitatively the theory does extremely well capturing the fact that welfare and

e�ort are higher with fewer players. Quantitatively the theory does reasonably well:

however when n = 2 with strangers the theoretical welfare is substantially greater
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than welfare in the data.

I turn now to a more detailed analysis of the mechanism design problem in these

stag hunt games.

The Large Population Game

I should start by noting that the large population games are played with a �xed

set of players: a partners rather than strangers treatment. However, as indicated,

data is from the �nal period so that there are no repeated game e�ects.

To solve the mechanism design problem observe that there are no weakly dom-

inated strategies, so that the noise players randomize uniformly over contributions.

Using this, I compute the utility of a sel�sh player for a particular contribution under

the assumption that no sel�sh or ethical player is choosing a smaller contribution: I

refer to this as the popular minimum, as it is the minimum for 2/3rds of the popu-

lation, although it need not be the minimum at all when noise players are accounted

for. As the combinatorics of the noise players is complicated, I computed utility by

matching players in a Monte Carlo simulation with 1, 000, 000 draws. The results are

below in Table 6.2 for the case n = 16.

popular minimum n = 16 welfare

0.70 0.27 0.36
0.60 0.37 0.43
0.50 0.46 0.50
0.40 0.56 0.55
0.30 0.64 0.60
0.20 0.695 0.63
0.10 0.700 0.60

Table 6.2: Large Population Game: Sel�sh Payo�

It follows from these utilities that for sel�sh players each wants to reduce the

popular minimum: the only equilibrium behavior is for all to contribute the minimum

$0.10. In Appendix 6 I show that this is also the optimum for the ethical players.

From Table 6.2 it should be clear that the equilibrium at $0.10 rather than at

$0.20 is delicate: this is why I used the full risk averse utility function even though

risk aversion is minor over these stakes. With n = 14 there is an equilibrium at $0.20

as well as $0.10 and this would be chosen by the ethical players.
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Also from Table 6.2 observe that the gain in social welfare of moving from $0.10

to $0.20 is small: it is about $0.03. This highlights a limitation of the mechanism

design: while the prediction of welfare is strong, even if equilibrium is unique it may

be delicate in the sense that a small perturbation of the parameters may cause it to

jump. Moreover, it seems unrealistic that an equilibrium could jump with respect to

such a tiny change: in the n = 14 game the loss to a sel�sh player to erroneously

choosing e�ort $0.10 rather than $0.20 is less than half a cent, and if even a modest

fraction of them wrongly decide $0.10 is best they all want to switch. This is known

problem with mechanism design: it allows the designer to choose equilibria that are

not terribly robust.

Dissidents

Consider the Fehr-Schmidt and subgame perfection theories. For these minimum

games fairness is not at issue and a player with social preferences behaves no di�erently

than a sel�sh player: there is no bene�t from increasing e�ort above the minimum

or decreasing e�ort below the minimum. In other words, in the usual way with

coordination games, every common e�ort level is an equilibrium. The only prediction

made by these theories is that there should be no dissidents in the sense that every

player should play the modal e�ort level. In Table 6.3 below I provide information

about the modal e�ort levels for the n = 15, 16 games and the fraction of dissidents.

As can be seen the prediction of no dissidents fails badly as more than a quarter of the

population are dissidents. By contrast the behavioral mechanism design benchmark

makes precise and correct predictions about the modal e�ort levels and matches the

number of dissidents in the large population games quite well.

n
modal e�ort dissidents
theory data theory data

15, 16 0.10 0.10 29% 27%

Table 6.3: Dissidents are those not choosing the modal e�ort

It is interesting also to take a look at what the dissidents do. Below in Figure

6.1 I plot the theoretical (n = 15 or n = 16) and empirical distribution (all large

population sessions pooled) of contributions conditional on contributing more than

$0.10. As is assumed, the theory is �at. What is interesting is the data: there is a

slight bias towards lower contributions and against intermediate contributions. What
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is striking though is the high fraction who are contributing the maximum: $0.70.

This is especially the case since in no round of any session was the minimum ever

close to $0.70. Perhaps these noise players are making a statement?

I should indicate that the data here is weak. There are 106 observations and 7 of

them have e�ort $0.70. In the theory each player has a 1/3 chance of being a noise

player, and a noise player has a 1/7 chance of providing e�ort $0.70. The binomial

probability of getting 7 or more such draws in 106 trials is fairly large by the standards

of statistical signi�cance: 13.3%.

Figure 6.1: Dissidents

Small Population Game

To compute the unique equilibrium in the small population game, the popular

minimum payo� from Table 6.2 is recomputed for n = 2 in Table 6.4 below using

10, 000 Monte Carlo draws. There is a Nash equilibrium at $0.70 and as it maximizes

welfare it is chosen by the ethical players giving the unique solution reported below

in Table 6.4.

popular minimum n = 2 welfare

0.70 1.09 1.18
0.60 1.05 1.11
0.50 1.00 1.03
0.40 0.94 0.94
0.30 0.87 0.84
0.20 0.79 0.72
0.10 0.70 0.60

Table 6.4: Small Population

In the small population game and the partners treatment the theory does well. I
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will therefore focus on the strangers treatment in which players play against randomly

matched opponents. This is the worst anomaly in Table 4.1. Since the individual

matches were not reported I used a Monte Carlo to randomly match the players

10, 000 times in order to compute welfare from the data.

As observed above when n = 2 in the strangers treatment the theory predicts

too high a level of welfare and too low a rate of dissidence. However, in addition

to relatively little data (16 observations) the game was played only 5 times so the

participants cannot be considered experienced. It is important then to ask: how has

the game progressed over time? Did they start by trying to cooperate at si = 0.70

and then this gradually unraveled? Or has cooperation increased over time so that as

experience is gained play more closely resembles the prediction of the theory. Below

in Table 6.5 I report the distribution of play between the �rst and �fth round: by

every measure play is moving towards that predicted by the theory as player become

increasingly successful at coordinating on $0.70.

1st round 5th round theory

minimum = 0.70 10% 25% 51%
minimum ≥ 0.40 39% 66% 73%
minimum = 0.10 44% 12% 6.5%

dissidents 69% 50% 29%

Table 6.5: Evolution of Play Over Time

Overview

The most important anomalies are

• In the n = 14 game the equilibrium has mode 0.20 rather than 0.10 as in the

data.

• With n = 2 in the strangers treatment the theory indicates far more coordina-

tion than in the data.

• The distribution of the dissidents is di�erent in the data than in the theory.

None of these anomalies are terribly important.

In addition there is an important message for experimental studies: before con-

cluding that there is coordination failure please check that it is not due to noise

players as it is in stag hunt. This is especially important in studies that are oriented

towards mechanism design.
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7. Ultimatum Bargaining

Many ultimatum bargaining experiments have been conducted with similar results.

In ultimatum bargaining game the �rst mover proposes the division of a �xed amount

of money, usually $10.00, and the second mover either accepts and both are paid as

agreed, or rejects and both get nothing. Here I analyze data from Du�y and Feltovich

(1999) for the important reason that players got to play 40 times rather than the usual

10. This is important because play after round 10 is di�erent than earlier, but remains

largely constant during the �nal 30 periods indicating that this is �the long-run� with

experienced players. The experimental design is also a clean one with the standard

$10 stakes, o�ers in whole dollars, no zero o�er, and one randomly chosen round

paid. The whole dollars greatly eases the analysis of the data: when o�ers are in $.05

increments we see things like a single o�er of $4.60 rejected and one of $4.55 accepted.

In other words, to make sense of it the data has to be aggregated into cells and this

is always fraught.

Another useful feature of Du�y and Feltovich (1999) is that there are two treat-

ments: one the standard treatment (nobs, 32 participants), and a second in which

players get to observe the results of one other match each period (obs, 40 participants)

- a treatment that they and I expect to enhance learning. For consistency I take an

experienced player to be one who has played in nine or more matches, so I use data

from the �nal 31 rounds.

Qualitative Analysis. Ultimatum bargaining highlights the importance of risk aver-

sion in generating a demand for fairness. Without noise players the ethical players

would simply insist on the e�cient outcome which is an equal split and back this up

by rejecting less generous o�ers. Without noise players this punishment is entirely

hypothetical and has no cost. With noise players enforcing more generous o�ers in-

creases the number of o�ers that must be rejected, so imposes a social cost o�setting

the gain in fairness. Hence the theory predicts that o�ers should be generous but

many should fall short of an equal split. This is characteristic of ultimatum game

experiments. The theory also predicts a substantial rejection rate, also characteristic

of ultimatum experiments.

Description of the Solution. The behavioral mechanism design problem has a unique

solution for this game. There is a target for the sel�sh �rst mover. This is supported
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by the ethical players rejecting o�ers less generous than the sel�sh target at an in-

creasing rate. The rejection rate should be as small as possible subject to incentive

compatibility. These facts are proven in Appendix 7. I then compute that the welfare

maximizing target is $4.00 for the sel�sh players while the ethical players themselves

o�er $5.00.

I report the key statistics of the solution below and contrast it with the data for

both the obs and nobs treatments. For the rejection rate I also reported for the obs

treatment the �nal 10 periods only. This is to verify that the noise as measured by

rejected o�ers is not declining over time.

mean o�er rejection rate welfare
theory obs nobs theory obs nobs obs 10 theory obs nobs

4.83 4.45 3.63 0.18 0.20 0.19 0.18 3.45 3.43 3.44

Table 7.1: Ultimatum Bargaining

For welfare and the rejection rate the theory and data match well. The mean

o�ers for the obs treatment is reasonably close to the theory but the mean o�er for

the nobs treatment is anomalous.

O�er Distribution

Figure 7.1 below provides detail with the theoretical and empirical o�er densities.

Figure 7.1: Observed O�ers (left), Unobserved O�ers (right)

The empirical distribution for the obs case looks similar to the theory. The nobs

case looks much like the obs case but with o�ers shifted a dollar to the left except for



30

a modest number that remain at $5.00. In other words, the nobs case looks as if the

target for the sel�sh players is 3 rather than 4 and that the majority of the ethical

players are o�ering $4.00 rather than $5.00.

Play in the nobs case looks quite di�erent than the theory. I want to emphasize,

however, that there is very little welfare loss in doing this: the welfare di�erence is

less than a penny. To understand this better I compute in Table 7.2 below the welfare

corresponding to each target o�er for the sel�sh type. This was needed in any case

to �nd the optimum. Note that the constraint only binds on the ethical players when

target is $1.00 in which case they must o�er $4.00 rather than $5.00 as they do for

the other targets. As can be seen setting a target of $3.00 rather than $4.00 results

in similarly small drop in welfare as in the obs treatment. The same cannot be said

for other targets: as the target is lowered below $3.00 welfare drops o� fairly rapidly.

target 5 4 3 2 1

welfare 3.41 3.44 3.42 3.33 3.17

Table 7.2: Welfare

The $3.00 target mechanism also does not match the obs data since all the ethical

players are o�ering $5.00. Again, however, the welfare consequences of the ethical

players switching to $4.00 is quite small: I computed this and it lowers welfare from

$3.42 to $3.40.

I note that Du�y and Feltovich (1999) argue that the di�erence between the two

treatments is because the learning process is changed by the additional information

about other player's play. That makes sense the context of mechanism design as well:

I do not imagine that the players make some sort of exact calculation of the solution

to the mechanism design problem in their heads, although I imagine they have some

general ideas, such as �we must reject bad o�ers so as to encourage good ones.� In

particular ethical players may be unsure what �their bit� is supposed to be: some may

think $5.00 while others think $4.00 would be enough. Observing the o�ers of others

might well convince those making $4.00 o�ers that they are not doing their bit, and

so switch to $5.00 o�ers.

Good O�ers

There is an anomaly in the o�er distribution that is hard to see in the �gures.

That is that there are far too many good o�ers. The theory predicts 16.7% of all o�ers



31

with be for $6.00 or more. In the data this is true for only 20 out of 1080. Moreover,

the same as has been found in hundreds of ultimatum experiments: the only apparent

exception is the experiment conducted with the whale hunting Lamalera reported in

Henrich et al (2004). In that case, however, the noise player was the experimenter -

the �low o�ers plotted for the Lamalera were sham o�ers created by the investigator.�

A good robustness check is to ask what happens if ad hoc and by �at I were

to assume that players cannot make o�ers better than $5.00. This raises the cost

to the ethical players of providing incentives to the sel�sh players because the noise

players now make more bad o�ers. It changes the optimal mechanism: the target for

the sel�sh players drops from $4.00 to $3.00 and, accounting for the poorer o�ers by

the noise players, reduces the mean o�er from $4.83 to $3.67. This mechanism now

mirrors the data for the noobs case where the mean o�er is $3.63. The reduction in

welfare due to increased rejection of bad o�ers is o�set by the fact that uniform o�ers

between $1.00 and $5.00 are more e�cient than between $6.00 and $10.00 and both

welfare and the rejection rate are unchanged. Overall, the theory with this ad hoc

modi�cation does about as well as the original.

Associated with the anomaly in the good o�ers is an associated anomaly with the

rejection rates. By pooling all the good o�ers out of 20 only 1 is rejected, a rejection

rate of 5%. According to the theory the rejection rate should be 17% - much higher.

Rejection Rates

I turn �nally to the theoretical and empirical rejection rates. At the aggregate

level the theory matches the data quite well. Below I report the conditional rejection

rates. Qualitatively the theory matches the nobs data well: declining until the target

of $4.00 is reached, then �at. Not unexpectedly for the nobs case the decline ends

when the target of $3.00 is reached. I will focus on the nobs case.
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Figure 7.2: Observed O�ers (left), Unobserved O�ers (right)

Quantitatively the theory does poorly. Good o�ers are rejected far too often and

bad o�ers not often enough. The low theoretical rate of rejection of bad o�ers is not

in itself surprising. The theoretical rates make the sel�sh players exactly indi�erent.

This is a general problem in mechanism design theory. In practice with heterogeneity

and noise to get sel�sh players to behave themselves it is wise to give them stronger

incentives than exact indi�erence.

Assuming the ethical players reject more frequently than the theory says is inad-

equate to explain the data, however. In the data we may call an o�er bad if it is less

than $4.00 in the obs treatment and less than $3.00 in the nobs treatment. In the

data there are 84 bad o�ers and 64, that is 76% of them, are rejected. By contrast

the theory says that the maximum possible rejection rate when ethical players reject,

sel�sh players accept, and noise players reject half the time is only 50%. Even if all

the noise players and ethical players rejected the o�ers the probability of seeing so

many rejections 64 is less than 4%. This suggests that the sel�sh players might be

ethical players albeit with a much smaller put still positive value of γ, so willing to

punish unlikely bad o�ers.

Fairness, Kindness and Reciprocity

Models of fairness or kindness and reciprocity such as Levine (1986), Fehr and

Schmidt (1999), Bolton and Ockenfels (2000), Falk and Fischbacher (2006) and

Dufwenberg and Kirchsteiger (2004) predict that an o�er should be equally likely to

be rejected regardless of how often it is made. Whether an o�er is fair or kind does

not depend upon how likely it is to be made. The left shift of equilibrium going from
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the obs to the nobs case provides a test of this hypothesis: in fact when the frequency

of $3.00 o�ers jumps up from 4% to 30% the rejection rate plunges from 87% to 14%.

Note that the latter number is close to the 17% rejection rate implied by only noise

players rejecting o�ers.

As indicated above, while mechanism design prediction is consistent with the obs

data it is not with the nobs data. From a broader perspective however, what we

see in the nobs data is an incentive compatible mechanism that is not the best, but

very close: welfare of $3.40 against $3.44. On the other hand emotional players who

rejected o�ers of $3.00 at the rate seen in the obs case would do terribly against

�rst movers who acted like those in the nobs case: welfare would plunge to $1.78.

Mechanism designers by contrast are pragmatic: even dropping incentives entirely

and allowing the sel�sh types to o�er one would result in much higher welfare of

$3.16.

Overview

The most important anomalies are

• In the no-observation case the o�ers distribution is shifted about $1.00 to the

left from the theory.

• The data has too few good o�ers and too low a rejection rate for them.

• The data rejects bad o�ers far too much.

I argued that the no-observation shift is not terribly important. That the theory

produces too many good o�ers and rejects them too frequently is entirely due to the

behavior of the noise players so can be isolated. The rejection of bad o�ers, however,

implies that even sel�sh players must sometimes reject bad o�ers.

8. Public Goods with Punishment

Public goods experiments with punishment have been much studied and replicated

since Fehr and Gachter (2000) and an overview can be found in Chaudhuri (2011)

or Drouvelis (2021). These studies show that without punishment little contribution

occurs, but with punishment contribution levels are quite high. I used data from

Nikiforakis and Normann (2008) who vary the cost of punishment and use a relatively

easy to analyze linear cost structure.
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Four partners play ten times but are randomly relabeled each period. The game

has two stages. In the �rst stage money payo�s are given by

mi(1) = 1.50− qi + 0.4
n∑
j=1

qj

where qi ∈ {0, 0.075, 0.150, . . . , 1.50} and n = 4. There is a punishment factor λ ∈
{0, 1, . . . , 4} and if λ > 0 there is a second stage

mi(2) = mi(1)−
∑
j 6=i

pij − λ
∑
j 6=i

pji

where pij ∈ {0, 0.075, 0.150, . . .} is a punishment assigned by player i to player j.

There is also a constraint on individual punishment
∑

j 6=i p
ij ≤ mi(1). As indicated

the punishments have a common cost to the sender but di�er in how costly they are for

the recipient. Besides the ability to do comparative statics over λ this experiment also

has a linear cost structure making it easier to analyze than some earlier experiments.

How to Spend It. Insight into the solution can be gained by considering the problem

for an ethical player of optimally deploying their largesse for the lowest punishment

factor λ =1. For a private cost of 0.6 an ethical player can increase their own contri-

bution by 1. Suppose instead that the ethical player increases punishment for anyone

who chooses the current and lower levels of contributions by 0.6. There are three

opponents: roughly, another ethical player, a sel�sh player, and a noise player. The

noise player will contribute the current level or less at some of the time, so the ex-

pected cost of the increased punishment is something less than 0.6. On the other

hand, both the other players will be induced to increase their output by 1 resulting

in a total output increase of 2. In other words, for somewhat lower expenditure of

largesse, the ethical player can achieve a greater increase in contribution using it for

punishment rather than for their own contribution. Higher punishment factors make

largesse even more attractive. Hence punishment is always the right way to expend

largesse.

Qualitative Analysis. The importance of these type of experiments is that they show

how contributions jump up when punishment is an option. The analysis of the optimal

use of largesse provides one explanation. Without punishment there is not enough

largesse to lead to substantial contributions. With punishment using largesse for
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punishment, as shown above, is an e�ective way to generate high contribution rates.

Moreover, unlike in the other experiments, here the largesse constraint binds in an

important way. Higher levels of contribution require more punishment and while

the gain in contribution outweighs the loss of punishment socially it does not do so

individually. The amount of punishment sent by the ethical players does not depend

on the contribution rate, rather it is determined by the largesse constraint. With

lower punishment factors the punishment received is smaller so less high contribution

rates can be sustained: this is the �law of demand� identi�ed by Nikiforakis and

Normann (2008).

Description of the Solution. As the stakes are not great, for simplicity of analysis I

abstract here from risk aversion (see Appendix 1 for discussion). With this simpli�-

cation it is easy to compute the solution to the mechanism design problem for each

set of parameters. There is a single target for the sel�sh players. The ethical players

provide incentives by punishing contributions below target. This punishment should

be as small as possible subject to incentive compatibility. These facts are proven in

Appendix 8. Computationally I �nd that welfare is increasing in the target while the

cost of punishment also increases, so the target should be chosen as high as possible

subject to the γ constraint for the ethical players. Because of the integer constraint

of the sel�sh players this may not exhaust the largesse o� the ethical players: any

additional largesse is spent with a probability of the next higher contribution level.

The equilibrium described in terms of expected punishment is unique but there may

be several mixtures over punishment levels by the ethical players that give the same

expected punishment and any of these is an equilibrium. Using these facts I computed

the welfare optimal target for each punishment factor.

punishment factor
contribution punishment welfare participants
theory data theory data theory data

4 1.16 1.24 0.06 0.07 1.92 1.91 24
3 1.05 1.16 0.06 0.05 1.91 1.99 24
2 0.90 0.68 0.06 0.04 1.88 1.78 24
1 0.66 0.24 0.05 0.01 1.80 1.64 24

none 0.07 0.03 0.00 0.00 1.51 1.51 24

Table 8.1: Public Goods Contribution with Punishment

Above in Table 8.1 I report the optimum and compare it to the data the �nal
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(tenth) period. Note that �punishment� is the punishment sent by the punisher not

the punishment received by the punished. For comparative purposes, note also that

the maximum possible welfare is all contributing the maximum $1.50 and there is no

punishment: it is $2.40.

Before comparing the theory to the data I want to comment on the big picture. An

important reason public goods with costly punishment has been frequently studied

is because of the stark contrast between the no punishment and punishment case.

This can be seen in the data, where contributions jump from practically none with

no punishment to 83% of the maximum with punishment factor four. The discussion

of how to spend it above provides an explanation. Without punishment the ethical

players have no choice but to spend their largesse on increased contributions, but as

their largesse is limited this has little impact. Punishment, by contrast, is far more

cost e�ective: the same largesse that has little impact on voluntary contributions has

a big impact when used to provide incentives in the form of costly punishments.

Turning back to the comparison between the theory and the data, as expected

from Table 4.1 the theory and data match quite well for the higher punishment factors

(3, 4) and when there is no punishment. It does, however, under predict contributions

by about $0.10. Qualitatively the model gets right the declining contributions as the

punishment factor declines. However, the theory does poorly from a quantitative

point of view for lower punishment factors (1, 2). In both cases actual contributions

are substantially lower than predicted by the theory with correspondingly lower wel-

fare. Note that the apparent collapse of the mechanism for low punishment factors

is consistent with the idea in Dutta, Levine and Modica (2022) that there might be

a �xed cost of operating a non-trivial mechanism: it may be that the ethical players

simply give up and act sel�shly when the gains from the optimal mechanism is less

than a �xed cost.

The contribution schedule in the theory is �atter than in the data. This is partly

due to the fact that in all treatments the noise players each make an expected contri-

bution of $0.75 regardless of the punishment factors. Below in Table 8.2 are the per

capita contributions of the ethical and sel�sh players

punishment 4 3 2 1

contribution
ethical+sel�sh 1.36 1.20 0.98 0.62

data 1.24 1.16 0.68 0.24

Table 8.2: If noise players do not contribute
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When the punishment factor is 1 the empirical punishment is also much lower

than the theory says is needed to sustain high contributions.

Distribution of Contributions

Below in Table 8.3 I provide greater detail for the punishment factor three and

four cases. To provide some smoothing with 24 observations spread over so many

categories I aggregated the 21 contribution levels into 7 by grouping them in blocks

of 3 contribution levels.

e�ort
frequency punishment

theory data theory data

1.50 0.71 0.71 0.03 0.00
1.13 0.05 0.04 0.06 0.00
1.03 0.05 0.13 0.09 0.00
0.67 0.05 0.00 0.13 ?
0.53 0.05 0.00 0.16 ?
0.30 0.05 0.00 0.19 ?
0 0.05 0.13 0.23 0.55

e�ort
frequency punishment

theory data theory data

1.50 0.05 0.46 0.03 0.00
1.13 0.71 0.21 0.03 0.05
1.00 0.05 0.13 0.08 0.08
0.78 0.05 0.13 0.12 0.00
0.53 0.05 0.00 0.16 ?
0.38 0.05 0.04 0.21 0.00
0 0.05 0.04 0.26 0.83

Table 8.3: Left: Punishment Factor 4 - Right: Punishment Factor 3

The distribution of e�ort between the theory and data is reasonably good. The

data on punishment is quite noisy since there are only 24 observations so less than

3 individuals in all but the top cell. Never-the-less the broad picture �ts the theory:

there is increased punishment for contributing less than the target, and probably that

increases as distance to the target grows.

Low Punishment Factors

I would like to draw attention instead to what happens with punishment factors

two and one. These are reported in Table 8.4 below.
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e�ort
frequency punishment

theory data theory data

1.50 0.05 0.33 0.03 0.00
1.28 0.05 0.00 0.03 ?
1.02 0.71 0.08 0.03 0.00
0.75 0.05 0.08 0.06 0.08
0.52 0.05 0.00 0.09 ?
0.30 0.05 0.08 0.12 0.00
0.02 0.05 0.42 0.15 0.09

e�ort
frequency punishment

theory data theory data

1.50 0.05 0.08 0.03 0.00
1.28 0.05 0.00 0.03 ?
1.05 0.05 0.02 0.03 0.00
0.75 0.71 0.05 0.04 0.11
0.52 0.05 0.00 0.07 ?
0.26 0.05 0.08 0.11 0.00
0.03 0.05 0.75 0.16 0.06

Table 8.4: Left: Punishment Factor 2 - Right: Punishment Factor 1

The theory says ethical and sel�sh types all share the same target and that 71%

of the population should be contributing that target. In the theory column I have

highlighted the modal contribution levels implied by the theory: $0.98 for punishment

factor two and $0.68 for punishment factor one. For punishment factor one the

equilibrium seems to have collapsed to a mode of zero rather than $0.68.

The data for punishment factor two has two peaks at the highest and lowest

contribution levels. I have highlighted these as well in Table 8.4. This led me to

wonder if there was not a mechanism with two peaks, but there is not: if the ethical

players can be induced to contribute at the highest level then the sel�sh players will

contribute not much less. Moreover, the punishment levels in the data are not nearly

incentive compatible - the punishment for contributing at the lowest levels - also

highlighted - is far too low to make it unpro�table for any type to deviate from the

highest to lowest level. As I explain in Appendix 9 this anomaly may be due to

pooling across sessions.

Robustness

As the public goods games with punishment are the only games in which γ plays a

role in determining the solution of the mechanism design problem I want to examine

robustness with respect to the calibrated value of γ. Speci�cally, as observed above,

the discount ratio µ for �rst period largesse is µ = 0.242 in the �nal periods of the

Dal Bo (2005) data. From equation 5.1 this corresponds to a value of u−1(γ) = 0.082

substantially less than the calibrated 0.10. Below the welfare results are reported

both for the calibrated u−1(γ) = 0.10 and for the alternative u−1(γ) = 0.08 . As

expected tightening the constraint reduces welfare - but very little. It results in a
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slightly worse �t for the high punishment factors and a slightly better �t for the low

punishment factors.

welfare/punishment factor 4 3 2 1 none

u−1(γ) = 0.10 1.92 1.91 1.88 1.81 1.51
u−1(γ) = 0.08 1.89 1.88 1.84 1.80 1.51

data 1.91 1.99 1.78 1.64 1.51

Table 8.5: E�ect of µ = 0.242

Overview

There is one important anomaly: for low punishment factors players are far less

successful at achieving high contribution levels than indicated by the theory. This

might be explained by learning in the partners treatment.

9. Conclusion

I have presented a simple and stark calibrated benchmark model and documented

its successes and failures across a range of di�erent experiments. What do the anoma-

lies tell us about how the model can be improved?

With respect to the sel�sh and ethical players their sharp optimization could

be softened in several ways. The quantal response model of McKelvey and Palfrey

(1995) rather than exact best response would eliminate the �good� equilibrium in the

large population stag hunt game, for example. However, quantal response models

are di�cult to use for benchmarking purposes as they require an intensity parameter

that is hard to predict without looking at the data. Another softening would be to

introduce a trade-o� for the ethical players between social welfare and own utility

rather than a sharp limit. As a practical matter it seems unlikely that ethical players

are willing to sacri�ce as much for a small gain in social welfare as for a large gain.

This could help in the public goods experiments with low punishment factors: ethical

players might be less willing to forgo sel�sh behavior when the welfare losses are

modest.

I think that softening the play of the sel�sh and ethical players while improving �t

with the data would not make a good benchmark model: the additional parameters

and complexity would not make sense when the model is doing reasonably well with

these players already. Where the action is, I would say, is with the noise players.
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Modeling the Noise Players

The noise players play a key role in the theory. They serve to keep the ethical

players �honest� by forcing them to bear real costs of providing incentives through

punishment. They also introduce an element of risk dominance that is important in

equilibrium selection. Moreover the number of dissenters in the stag hunt and public

goods contribution games are consistent with the calibration and show that indeed,

a substantial fraction of the population are in some sense �noise� players.

In many respects the noise players are what di�erentiates this theory from others.

If we just had ethical and sel�sh types with risk aversion the model would not be

so di�erent from using the Fehr and Schmidt (1999) model and choosing the best

equilibrium as they suggest. In a similar vein if we introduced noise players into the

Fehr and Schmidt (1999) it would likely �x the equilibrium selection problem in the

large population stag hunt game and increase the rejections for ultimatum bargaining

bringing the model into closer alignment with the data.

Simple entropy maximization delivers the basics at an aggregate level and so is

useful as a benchmark. It does less well with the details. In large population stag hunt

the dissidents appear to be split between those �making a statement� by providing

the highest level of e�ort and those providing slightly more e�ort than the minimum.

In ultimatum the most important anomaly is caused by the noise players making

far too many good o�ers. They also reject far too many good o�ers and not nearly

enough bad ones. In the public goods contribution games the noise players �atten

the contribution schedule below that observed in the data.

Let me highlight some of the theoretical issues with the model of noise players.

In the public goods games there is an abrupt change in the behavior of the noise

players depending on whether or not there is punishment. Without punishment higher

contributions are dominated by lower ones, so the probability of contributions falls

o� exponentially, and expected contributions by the noise players is quite small. By

contrast with punishment no contribution level is weakly dominated so the probability

of contributions is uniform and expected contributions jump up from near zero to

$0.75. This �ts well with the no punishment case and the high punishment factor

case, but fares poorly with low punishment factors.

There is also a denomination issue. If there are two actions, one that earns zero and

one that loses a dollar both are equally likely. If we add an intermediate denomination

so that there is an action that loses �fty cents, then the probability of choosing zero
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remains at a half, but the probability of losing one falls to a quarter. As we add more

intermediate denominations the expected loss falls. This might be true to an extent

- but surely not when denominations become hard to distinguish.

In a related vein, when there are just two actions ordered by dominance both

have equal probability. As I indicated this is already problematic in ultimatum as

it leads to rejections rates too high for good o�ers and too low for bad o�ers. It

is problematic for other games with two actions, for example, the one shot prisoner

dilemma game. In that game suppose that the γ constraint binds on the ethical

players so that they cheat. However, the noise player will cooperate half the time

leading to a 17% cooperation rate. In fact (see, for example, Dal Bo (2005)) the

cooperation rate with experienced players is more like 6%. I should note, however,

that from a welfare point of view the discrepancy is not so great: a full analysis can

be found in Appendix 10. In a similar vein in the market auction game studied by

Roth et al (1991) the ubiquitous $9.95 and $10.00 top bids should be rejected about

17% of the time: in fact they are never are. Additional discussion of this can be

found in Appendix 11. Ex post rationalization suggests that some anomalies would

be reduced or eliminated by placing a limit on the willingness of noise players to take

�obvious� losses.

To �work� the noise players need to be impulsive and willing to do things �just

for the heck of it.� This should be clear from the roughly 30% of dissenters in stag

hunt and in the public goods contribution games with punishment (see Table 8.3).

But the data suggests that noise players are not, as the theory assumes, completely

oblivious to what other players are doing. As I have indicated in the literature review,

psychological models have become popular: surely an important role for these models

is to better understand the behavior of noise players - to model their emotion and

impulsivity?

Last Words

In considering the role of psychology I want to indicate that if I were designing

a functional and e�ective human being I would design a person who was emotional

and sometimes would be angry. The point is that emotions serve as a commitment

device: because we are angry we carry out punishments that ex post are not in

our interest. But we can control our anger, tailoring it to circumstances: an ethical

player would use anger as an ends to a mean, carrying out the commitment to punish,
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di�erence between ethical players and noise players is that the former have greater

control over their emotions?

Finally, I want to conclude by emphasizing that the model is calibrated to western

college students playing for standard stakes in the laboratory. We know from the

work of Snowberg and Yariv (2021) and others that the general population is both

more risk averse and more generous than college students. We also know from cross-

cultural studies such as Henrich et al (2004) that behavior in experiments di�ers

between cultures. However, I have no reason to think that the fraction of ethical

players is invariant to culture, and indeed in Dutta, Levine and Modica (2021) we

developed a model of how the fraction of ethical players might vary depending on the

nature of public goods problems faced by di�erent cultures. One of the advantages

of a benchmark model is that by identifying anomalies it provides hints as to what

might be di�erent between di�erent populations, stakes, or cultures.
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Appendix 1: Risk Aversion for Low Stakes

Figure 9.1 below plots the CES utility function with ρ = 9 (the dots) and a CARA

utility function �t to the Gneezy and Potters (1997) data (solid line) along with a

risk neutral utility function normalized to match utility at $3.31.

Figure 9.1: CES and CARA Utility

The linear utility function is a good approximation in the public games experi-

ments, including stag hunt, because participants were paid for every period so the

stakes were quite low. In Nikiforakis and Normann (2008) the greatest possible

monetary payo� in a single period is $3.31 marked with a vertical line.5 As can be

seen while the utility function has substantial curvature over the entire range, it is

minimal over [0.00, 3.31] where a straight line is an accurate approximation.

As it enormously simpli�es computations I treated the players in the Nikiforakis

and Normann (2008) experiments as risk neutral. I did not do so in stag hunt

although it also makes very little di�erence: however in stag hunt as indicated above

the bene�t of deviating is so small in the large population games that I wanted to be

sure that the calculations were valid when risk aversion was accounted for.

Appendix 2: Repeated Games, Type Persistence, and Trembles

The model presumes that types are chosen once at the beginning of play and

do not change over time. In all applications players play a number of times. An

experienced player is de�ned as one who has played at least nine times, or if the

5Negative monetary payo�s are possible but this never occurred in practice.

47



game is repeated less than ten time, who is playing for the �nal time. In a strangers

treatment, as in ultimatum, after each game players are rematched so, in e�ect, types

are drawn again and the game played is a one-shot game. In some cases, for lack of

data, partners treatments with a �xed horizon are analyzed. In these cases only data

from the �nal period is used so that ordinary repeated game e�ects do not matter.

However: in principle players can learn something about their opponent's types from

play in the earlier games.

The �rst issue is: what di�erence does learning opponent's types make? The key

point is that it can change a player's incentive constraints. Knowing that one is facing

a noise player, for example, means that a player knows that their own actions will

not be punished or rewarded. To avoid this issue I assume that in each game players

independently redraw their types, that is, that types are not persistent between games.

Although this works relatively well in describing play, as I indicate in the discussion

of public goods with punishment factor two, there is some evidence against it.

A related issue has to do with the interpretation of noise players. If at the begin-

ning of the game there are two equally likely types, ethical and sel�sh, and each has a

one third chance of trembling, does this make a di�erence? If we follow McKelvey and

Palfrey (1992) in saying that when a player trembles they play randomly according

to the distribution followed by noise types and if no player plays more than once then

the model of noise players and trembles are identical.

If a player plays more than once then the model of noise players implies type

persistence while the model of agent normal form trembles implies type impersistence.

Again, type persistence may matter if it changes incentive constraints. This would

certainly be true in a genuinely repeated game, for example, an inde�nite horizon

prisoner's dilemma game. However, the only game studied here in which a player

moves twice is a game in which the second stage is a pure decision problem of how

many punishment points to allocate to opponents. The incentive constraints for this

problem do not depend on �rst stage play, so here as well noise players and trembles

are the same.

By contrast with noise players, persistence of ethical types is important in the

public goods game with punishment in the sense that a player who is ethical in the

�rst contribution stage should remain ethical in the second punishment stage. This

is needed to force the player to trade o� largesse between the two stages.
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Appendix 3: Selection of Treatments

In this Appendix I discuss the choice of experiments and treatments used in the

paper: it is of course possible to study many many experiments and report results

only for those in which the theory �works.� As I have found anomalies that is perhaps

some evidence I did not do that, but the only real �proof� is for someone else to study

other experiments.

Let me say �rst that I elected to study a few experiments in detail rather than

doing a meta-study of many experiments. While I hope that I or someone else might

do a meta-study one day it does not seem a good starting place for evaluating a new

theory: the details matter.

That said, let me indicate the criteria that I used in selecting studies. I should

indicate that having chosen a paper and experiment I report all treatments in that

paper on that experiment.

• I looked for studies with robust results - this to me means classical experiments

that have been replicated many times.

• For a speci�c study I looked for papers by researchers with a strong track-record.

• I wanted play to be repeated enough times for learning to take place. This is

not a theory of �one-o�� play,.

• I looked for comparable studies: �standard� college students in laboratory for

�normal� stakes. I do not propose as a �rst pass to try to explain di�erences in

populations and the impact of stakes.

• I looked for studies in which there were several treatments. This makes it

possible to see how the theory does on comparative statics.

• I focused on games the same as or similar to those analyzed by previous social

preference studies. These are games in which social preferences are known to

lead to striking deviations from subgame perfect Nash equilibrium so there is

something to �explain.�

• Data summarized in published work is rarely suitable for analyzing new theories:

I used studies for which individual level data is available.
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Past Studies

Table 9.1 summarizes the classes of games that have been studied using the be-

havioral theories discussed in the main text along with the �rst reference I can �nd

to an experimental study of games in that class.

ult ultimatum bargaining Guth, Schmittberger andSchwarze (1982)
dict dictator Forsythe et al (1994)
PD one shot prisoner's dilemma ?
pub public good contribution Bohm (1972)
pun public good contribution with punishment Ostrom, Walker and Gardner (1992)

gift gift exchange/trust
Berg, Dickhaut and McCabe (1995)

Blount (1995)
cent centipede McKelvey and Palfrey (1992)
imp impunity Bolton, Katok and Zwick (1998)
stag stag hunt Van Huyck, Battalio and Beil (1990)
mkt market auction Roth et al (1991)
best best shot Harrison and Hirshleifer (1989)

Table 9.1: Games from Past Studies

Table 9.2 indicates which studies analyze which games from the list.

ult dict PD pub pun gift cent imp stag mkt best

L X X X X
FS X X X X X X X
BO X X X X X X
FF X X X X X X X
DK X X X
This X X X X X X X

Table 9.2: Social Preference Model Case Studies

L=Levine (1986)
FS=Fehr and Schmidt (1999)
BO=Bolton and Ockenfels (2000)
FF=Falk and Fischbacher (2006)
DK=Dufwenberg and Kirchsteiger (2004)

Below I explain why the gift exchange, centipede, impunity, and best shot were

excluded from this study as well as comments about those classes of games that were

included
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Ultimatum Bargaining

Ultimatum bargaining has been extensively studied. I chose the Du�y and Fel-

tovich (1999) experiment because the original data is available and the experimental

design is well suited for testing a theory of �long-run� behavior. There were many

(40) repetitions and payment was for a randomly chosen round eliminating issues of

intertemporal preferences or income e�ects. Bids were restricted to even dollars mak-

ing the data easier to analyze. In addition there were two informational treatments

providing a stronger test of the theory.

Dictator

While dictator had been extensively studied it was used in the calibration proce-

dure so cannot be used to �test� the behavioral mechanism design model. In addition

I have been unable to locate any data on repeated dictator games.

One Shot Prisoner's Dilemma

The one shot prisoner's dilemma game has been extensively studied. I excluded it

from the main text due to space considerations and because the calibration partly used

data from repeated stranger one shot prisoner's dilemma games. For the interested

reader I did analyze the data from Dal Bo (2005) in Appendix 9: it does not present

signi�cant anomalies.

Public Goods Contribution

Public goods games have been extensively studied. I chose the Nikiforakis and

Normann (2008) study because it was part of the public goods contribution with

punishment experiment described next.

Public Goods Contribution with Punishment

There are two classes of games that give players a clear chance to provide incentives

for others so are a natural testing ground for behavioral mechanism design. In public

goods games with punishment after contributions are observed players have the chance

to impose costly (to the sender and receiver) punishments based on contributions. Gift

exchange and trust games are the opposite: players move sequentially with the �rst

mover having the option of making a welfare improving contribution to the second

mover, and the second mover having the option of providing a costly reward to the

second mover. While both classes of games have been extensively studied space
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considerations preclude studying both and I followed the lead of Fehr and Schmidt

(1999) who studied public goods games with punishment quantitatively.

I chose the particular study by Nikiforakis and Normann (2008) based on the sur-

vey article of Chaudhuri (2011). Earlier work assume non-linear cost of punishment

presenting complications for an analysis. More recent work such as Nikiforakis and

Normann (2008) focused on linear cost. While I would have preferred a strangers

treatment to the partners treatment used by Nikiforakis and Normann (2008) and

more repetitions than ten such studies are not available, so I compromised, selecting

Nikiforakis and Normann (2008) because the careful design of cost variation provides

a good comparative static for quantitative analysis.

Gift Exchange/Trust

In the gift exchange or trust game a �rst mover makes a gift to the second mover

that has greater value to the receiver to the sender (so is e�cient to send) and the

second mover has the option of returning the gift. Sel�sh subgame perfect equilibrium

says that no gift should be given or returned, but of course gifts are given and returned.

Behavioral analyses of these games have been qualitative rather than quantitative and

behavior mechanism design does �ne in this regard. Ethical players will make and

return gifts, and moreover understand that gifts are e�cient and incentive need to be

given to encourage sel�sh players to make gifts.

The main di�erence between the trust and gift exchange games appears to be

the fact that gift exchange usually involves an element of competition: there may be

several senders or receivers. For example, in Fehr and Schmidt (1999) there are many

receivers who may accept or reject the proposed gift with on who accepts chosen at

random to receive the gift and possibly return some of it. The trust game is cleaner:

one sender and one receiver, but while these games have been extensively studied for

possibly historical reasons they appear generally to be done one o� and not repeated

with either strangers or partners.

As indicated analysis of these games has been qualitative. Bolton and Ocken-

fels (2000) discuss data from Fehr, Kirchsteiger and Riedl (1993) but analyze it

as a trust game, that is, they ignore the competitive aspect. Falk and Fischbacher

(2006) discuss qualitatively both a bilateral �investment� (trust) game as well as the

competitive gift exchange.
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Centipede

The centipede game of McKelvey and Palfrey (1992) has not been extensively

studied and there are issue even in repeated play about whether su�cient learning

takes place or whether players make �mistakes� due to self-con�rming considerations:

see Fudenberg and Levine (1997). Hence I excluded it from this study.

Impunity

The impunity game of Bolton, Katok and Zwick (1998) is a variation on ultima-

tum bargaining that has not widely studied. Hence I excluded it from this study.

Stag Hunt

As indicated, behavioral mechanism design rules out coordination failure. Stag

hunt, where players coordinate on a bad equilibrium, seems an obvious counter-

example. It is not: I included it to make this point.

Market Auction and Best Shot

In the market auction of Roth et al (1991) and best-shot game of Harrison and

Hirshleifer (1989) subgame perfection makes strong predictions that accurately de-

scribes behavior in the laboratory. Perhaps as a result, neither has been extensively

studied. Certainly neither game has much scope for social preferences and their in-

clusion in theoretical work is likely a sanity check that these new theories do not

�un-explain� existing knowledge. I have not included best shot in this study as it has

not been so heavily studied as the other games. I discuss the classical market auction

game of Roth et al (1991) in Appendix 10. It features repeated play with a �near�

strangers treatment and a single paid round randomly chosen.

Appendix 4: Welfare Comparison

The Fehr-Schmidt calculations are based on Fehr and Schmidt (1999).

For ultimatum I computed rejection rates, then optimal o�ers for each type. This

led to 70% o�ering 5 and having it accepted and the remainder o�ering 4 and having

it accepted 90% of the time.

For public goods contributions games I used their Proposition 5. It requires β =

0.6 for the non-sel�sh type. The correlation between α and β for their calibrated

model is not speci�ed, but even assuming independence there are at least 12% of
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the population with α ≥ 1 and β = 0.6 and this guarantees that the condition in

Proposition 5 is satis�ed for all the relevant punishment factors.

There is also a constraint that links the best possible equilibrium to the greatest

possible punishment. Let Q be the best possible equilibrium, ψ the fraction of types

with β = 0.6 and α ≥ 1, and punishment factor λ. Recall that the greatest possible

punishment if everyone chooses Q in the �rst state is 1.6Q. From Fehr and Schmidt

(1999) Proposition 5 the constraint is

Q

4ψ − 1/λ
≤ 1.6Q.

The fraction of types with β = 0.6 and α ≥ 1 could be anywhere from 0.12 to 0.40. At

λ = 1 the necessary ψ is greater than 0.40 so the constraint fails. I took the fraction

ψ to be greater than 0.28 as the constraints for λ > 1 are satis�ed and this best �ts

the data.

Appendix 5: Willingness to Sacri�ce

For the calibration of γ in the text to be valid the γ constraint should bind both

for the dominant strategy experiments in which willingness to give is measured over

time and for the one-o� dictator game in which base willingness to give is measured.

Take �rst the public goods experiments in Fehr and Gachter (2000). From the

information given concerning overall earnings, we �nd in dollars

mi = 1− (0.6)si + (0.4)
n∑
j=1

sj.

where si ∈ {0, .05, 0.10 . . . , 1.00} and n = 4. The derivative of social welfare with

respect to si is given as

dS

dsi
= (1/n)

n∑
j=1

u′(mj) ((0.40)− 1(i = j)(0.6))

where

u′(m) = −(1/C)(1− ρ)(1 +m/C)−ρ.

Observe that if an ethical player contributes the maximum of $1.00 and nobody else
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contributes they get $0.80 and everyone else gets $1.40. Marginal utility for the

former is u′(0.8) = 0.0206 and the latter u′(1.4) = 0.0183. Hence

dS

dsi
≥ (0.0183)(0.40)− (0.0206)(0.25)(0.6) = .010 > 0,

that is, the fact that a one dollar increased contribution results in a six dollar increase

in welfare dominates the (modest) unfairness of ethical players contributing more than

others, so an ethical player should contribute the most they can: that is, the constraint

should bind.

In the dictator experiments, by contrast, fairness dictates that an ethical player

contribute no more than half the maximum, and this constraint might bind. However,

in $10.00 dictator experiments with $1.00 increments average contributions are $2.50

while in $5.00 dictator experiments with $0.50 increments such as List (2007) they fall

to about half that, to $1.33 in List (2007) (24 participants). If the γ constraint was

strictly binding that should not happen as the sel�sh types continue to contribute

zero, the noise types halve their contribution, and the ethical types reduce their

contribution by less than a half.

However, List (2007) provides us with extra information: he considers allowing a

�take� option of taking up to $5.00 (48 participants). If the constraint is not binding

when the take option is available then contributions by the ethical type should remain

�xed at $2.50, while the contributions of the sel�sh player should fall by $5.00 and

that of the noise players by approximately that amount. That is, contributions should

fall by $3.33. However, they fall by $3.82 which indicates that the constraint does

bind in the take treatment. The actual contribution in this treatment is −$2.48, or
$2.52 above the �oor. Conveniently this is about the same as the approximately $2.50

contribution in the standard $10.00 treatments, so we conclude that $2.50 is a good

estimate of contributions when the constraint does bind.

Appendix 6: Ethical Players in Stag Hunt

Given that sel�sh players are contributing $0.10 should ethical players they raise

their contribution to a greater amount, for example $0.20 instead of $0.10? This

results in a sure loss to themselves (33% of population) of $0.10. However, if there

are no sel�sh players and all the noise players contribute $0.20 or more, it does raise

the income of all players by $0.10.
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The implication is that if and only if there is a greater than 1/3 chance both that

there are no sel�sh players and that all the noise players contribute $0.20 or more then

it is welfare improving for the ethical players to increase their contribution. However,

the chance of this happening is much less than 1/3: the chance that there are no

sel�sh players by itself is less than 0.3%.

The same analysis applies to contributions greater than $0.20, and indeed above

$0.30 welfare would be reduced even if the sel�sh players were also willing to contribute

that amount. Hence the unique equilibrium as reported above and to contributions

above $0.20 when that is the equilibrium.

Appendix 7: Optimal Mechanism for Ultimatum

Proposition. Sel�sh �rst movers use a pure strategy and no sel�sh or ethical players

o�ers more than $5.00. The rejection rates are as small as possible subject to incentive

compatibility.

Proof. Selfish players never reject offers. This is obvious.

There is an optimal mechanism in which no selfish or ethical player

makes a good offer greater than $5.00 with positive probability. Sup-

pose not. Set all rejection rates by ethical players for good o�ers and $5.00 to zero.

If there is a sel�sh player making a good o�er move all ethical and sel�sh players

to $5.00. This is the �rst best so certainly weakly welfare improving and is incentive

compatible since the sel�sh player making the good o�er is at least as willing to o�er

$5.00 without punishment than a better o�er.

If the only good o�ers are by ethical players, move all ethical players to $5.00.

This is certainly weakly welfare improving. It is incentive compatible for �rst movers.

The utility of sel�sh �rst movers does not change. Since originally all ethical players

had the same utility and the ethical player making the greater o�er has at least as

much utility after the move their utility weakly increases, so is incentive compatible.

It is incentive compatible for second movers. For o�ers at or above $5.00 the utility of

sel�sh second movers does not change and the utility of ethical second movers weakly

increases. For o�ers below $5.00 the utility of ethical second movers decreases less

than that of sel�sh �rst movers since the move is to a weakly lower rejection rate for

the ethical second movers.

There is an optimal mechanism with minimum incentive compatible

rejection rates. Fix the �rst mover strategies. Lowering rejection rates subject to
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those strategies remaining incentive compatible improves welfare and improves second

mover incentive compatibility for ethical players.

There is an optimal mechanism in which selfish first movers use a

pure strategy. If they are indi�erent moving them to a higher o�er does not

change their utility, but increases the utility of the second mover who gets a better

o�er with lower probability of rejection.

Appendix 8: Optimal Mechanism for Public Goods with Punishment

Proposition. There is a single target for the sel�sh players. The ethical players

provide incentives by punishing contributions below target. This punishment should

be as small as possible subject to incentive compatibility.

Proof. There is an optimal mechanism in which pji depends only on qi.

Take an optimal mechanism q̂, p̂ and de�ne pji(qi) = E[p̂ji|qi]. Then q̂, p is also

incentive compatible and yields the same welfare.

De�ne q̂ to be the maximum in the support of sel�sh player contributions. There

is an optimal mechanism in which there is no punishment for qi > q̂. This

is welfare improving and incentive compatible for sel�sh types. Because I showed

in the text that largesse is best spend on providing incentives it is also incentive

compatible for the ethical types.

There is an optimal mechanism with minimum incentive compatible

punishments. Fix the �rst period strategies. Lowering punishment rates subject

for those strategies remaining incentive compatible improves welfare.

There is an optimal mechanism in which selfish first movers use a

pure strategy. If they are indi�erent moving them to a higher contribution level

does not change their utility, but increases the utility of everyone else.

Appendix 9: Partners in Public Goods with Punishment

As indicated Nikiforakis and Normann (2008) experiments were conducted using

a partners treatment in which the same four players remained together for the entire

ten periods. As indicated above, there is no issue with repeated game e�ects as data

is only used from the �nal period. However, as discussed, there is another element

of the partners treatment: the possibility of learning about the types of opponents.
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The issue has been avoided by the assumption that in each game types are redrawn.

Is this accurate?

Type persistence and learning about types provides a possible resolution to the

anomaly found in the distribution of contributions for punishment factor two. Note

that while the model provides a precise way of analyzing the learning it would not

make sense to apply it to this data. While the players may be experienced with

the one shot game after nine rounds, they are not experienced in learning about their

opponents. To apply Bayesian updating about types I would want data with repeated

repeated play as in Dal Bo (2005).

Speci�cally, with low punishment factors, the optimal mechanism is sensitive to

how many ethical and noise players there are. In the extreme, if there are no ethical

players, then the modal play is the least contribution while if there are no noise

players the modal play is the greatest contribution. Each of these has a 20% chance.

More generally with learning and low punishment factors, there will be some groups

in which most players make the least contribution and others in which they make

greatest contribution but there should rarely be groups in which many players do

both. Never-the-less when the sessions are averaged it will give the anomalous pattern

seen in Table 8.4 for punishment factor two.

To determine the frequency of anomalous groups in which many players simul-

taneously make both the lowest and highest contribution, I disaggregated the data

for the punishment factor two treatments by group. For each group I calculated the

minimum frequency of the highest and lowest contribution cells ($1.50 and $0.05 in

Table 8.4). If groups tend to cluster at the top or the bottom but not both then

these minima should be small. Below in Table 9.3 I report the fraction of punishment

factor two groups that correspond to the di�erent minima. There are 4 observations

per group in the �nal period and 20 over the last �ve periods. For example, if the

minimum frequency is 0.05 in the table for the last �ve periods one of two things is

true: only one time out of 20 was the minimum contribution made or only one time

out of 20 was the maximum contribution made. In other words the anomaly in Table

8.4 is not present in that session.
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minimum frequency �nal period last �ve periods

0− 5% 67% 67%
20− 25% 33% 33%

Table 9.3: Top and Bottom E�ort Levels: Punishment Factor Two

As can be seen, most groups do not simultaneously have high fractions of both

the highest and lowest e�ort, so clustering and aggregation are largely responsible for

the anomaly reported in Table 8.4 for punishment factor two. This clustering may be

due learning in the partners treatment.

Appendix 10: One Shot PD

Many repeated strangers one-shot Prisoner's Dilemma experiments have been con-

ducted with similar results. Here I analyze results from Dal Bo (2005). There were

two treatments with payo�s in dollars as indicated below in Table 9.4.

C D

C 0.325, 0.325 0.050, 0.500
D 0.500, 0.050 0.175, 0.175

C D

0.375, 0.375 0.050, 0.500
0.500, 0.050 0.225, 0.225

Table 9.4: Dal Bo Games: PD1 left, PD2 right

From a theoretical point of view there is cooperation by noise players: they co-

operate half the time. In addition, ethical players cooperate a fraction of the time

due to their largesse. As participants were paid for roughly 30 rounds during the

experiment largesse is not large: $1.00/30. To �nd the exact contribution rate of

the ethical players requires an equilibrium calculation since the cost of cooperating

depends on how frequently the other player is cooperating. This done, behavioral

mechanism design predicts in addition to the 16.67% cooperation from noise players

and 3−7% cooperation from ethical players depending on the treatment. The details

are in Table 9.5 below.

Unfortunately not all participants got to play ten times, and in PD1 no participant

played more than nine times. For this reason I give results for period 9 for PD1 and

averaged over periods 9 and 10 for PD2.6 The theoretical and empirical results are

6Cooperation rates for PD2 were 5.2% in period 9 and 5.8% in period 10. Fewer participants
played ten rounds than nine so the average over the two periods is weighted in favor of period 9.

59



game observations periods
cooperation welfare
theory nash data theory nash data

PD1 54 9 25.0% 0.0% 7.4% 0.221 0.175 0.190
PD2 294 9− 10 23.3% 0.0% 5.4% 0.251 0.225 0.231

Table 9.5: Dal Bo Results

below in Table 9.5.

The bottom line is that Nash (and Fehr-Schmidt which here is the same as Nash)

do better quantitatively than behavioral mechanism design both in terms of descrip-

tion of play and welfare. However, behavioral mechanism design does not do partic-

ularly poorly with welfare with an error of 2− 3 cents depending on the treatment as

against 1− 2 cents for Nash.

Behavioral mechanism design does better than Nash from a qualitative point of

view: it correctly predicts that there should be less cooperation in PD2 than in PD1

while Nash asserts the two should be the same.

Sequential Move PD

The papers that study the PD, Bolton and Ockenfels (2000), Falk and Fischbacher

(2006), and Dufwenberg and Kirchsteiger (2004), focus primarily on the sequential

PD, although Bolton and Ockenfels (2000) also examine the simultaneous move PD.

I have not attempted to analyze the sequential PD due to lack of space and data.

However, from a qualitative point of view, behavioral mechanism design makes the

same predictions as the psychological models - that there will be reciprocity in the

sequential PD with cooperation rewarded with a greater chance of cooperation. The

reason for this is straightforward: the ethical players will �nd it desirable to provide

incentives for e�cient cooperation by cooperating with those who cooperate.

Appendix 11: Market Auction

The game studied in Roth et al (1991) is a market auction in which 9 players

simultaneously submit bids between $0.00 and $10.00 (in increments of $0.05) and a

tenth player the auctioneer may accept or reject the highest bid. If the bid is rejected

everyone gets zero; if the bid is accepted the winner is chosen randomly among those

submitting the high bid, and the winner gets $10.00 minus the bid and the auctioneer

gets the bid.
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Participants are divided into two markets each with one anonymous auctioneer and

nine bidders. They play ten times with the auctioneer being �xed and the bidders

randomly remixed between the two markets each period. One period is randomly

chosen to be paid. A total of 14 markets were studied in four countries and in two

US markets the monetary payo�s were tripled. No high bid was every rejected. In

the tenth round the winning bid was $10.00 in 9 of the markets and $9.95 in the

remainder.

The main result about bidding does not depend on behavioral mechanism design

theory but holds generally when there are sel�sh players. It shows that if there is

at least a 25% chance of a player being sel�sh this is enough to assure that with

very high probability the highest bid is $9.95. This is the sense in which the market

auction game is a low lying fruit.

Theorem 9.1. Suppose that the acceptance rate is weakly increasing in the highest

bid, that there is a positive probability of a player who bids less than $10.00 and that at

least 25% of the players are sel�sh and that sel�sh players use a common pure strategy.

Then every sel�sh player bids $9.95 and there is at least a 1− (3/4)9 = 92.5% chance

that the highest bid is this high.

Proof. I can ignore risk aversion as I will show breaking a tie with a higher bid

increases expected money income so for a risk aversion payer must increase expected

utility. I will show inductively that all sel�sh players bid 9.95.

First, since there is a positive probability that the highest bid is less than 10.00

no sel�sh player bids 10.00 as this would result in a utility of 0 while bidding 9.95

results in a strictly positive utility. Second, no sel�sh player bids 0.00 as this is a

winning bid only if all other eight bidders bid 0.00 resulting in an expected money

payo� of 10/9 as against bidding 0.05 and getting 9.95 for sure.

Suppose that the sel�sh players bid x < 9.95. I will complete the induction by

showing that this implies a bid by a sel�sh player of x+ 0.05 is better.

There is a probability φS that a player is sel�sh. All of these players by inductive

hypothesis bid x. Let π be the probability of a non-sel�sh player bidding less than x.

The probability that there are no other sel�sh players and they all bid less than x is

(1− φS)8π8. In this case bidding x+ 0.05 results in a loss of no more than 0.05. The

probability that there is one other sel�sh player and all the non-sel�sh player bid less

than or equal to x is at least is 8φS(1 − φS)π7. Recall that x ≤ 9.90. Hence in this
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case bidding x+ 0.05 results in a gain of at least

(10− x)− 0.05− (10− x)/2 = (1/2)(10− x)− 0.05 ≥ 0.

With the remaining probability bidding x+ 0.05 results in a gain of at least

(10− x)− 0.05− (10− x)/3 = (2/3)(10− x)− 0.05 ≥ 0.016.

It follows that bidding x+0.05 is pro�table provided (0.016) (1− 8φS(1− φS)6π7 − (1− φS)8π8) >

(0.05)(1− φS)8π8 or

0.016 > 0.066(1− φS)8π8 + 0.128φS(1− φS)7π7.

As the right hand side is increasing in π the inequality holds if it holds for π = 1, and

it does for φS ≥ 0.25.

Corollary 9.2. In the calibrated model the probability of a $10.00 high bid is 1 −
(5/6)9 = 80.6% and if sel�sh players are constrained to play a pure strategy the

probability of a $9.95 or higher bid is 1− (1/2)9 = 99.8%.

Notice that in subgame perfect Nash equilibrium there is no equilibrium in which

there is a positive probability that the high bid is both $9.95 and $10.00 as is the

case in the data. Nor do behavioral theories of fairness or equity explain why the

weakly dominated strategy of bidding $10.00 is employed. Behavioral mechanism

design does better, predicting that 80% of the time there will be a bid of $10.00 due

to the presence of noise players. This is reasonably close to the 64% observed in the

data.

By contrast, on the auctioneer side behavioral mechanism design does poorly.

The lack of bid rejection by the auctioneer poses a problem for the noise players:

supposedly half of the noise players should reject the winning bid, resulting in a 17%

rejection rate, and achieving a welfare of $0.36 as against the actual welfare of $0.44.

However, it is neither credible nor reasonable that noise players would simply throw

away $9.95 (with an impact of less than �ve cents on the other players) nor is there

evidence from any other experiment that they do so.

Note that the issue here is not that it is di�cult to impose a limit on the losses of

the noise players, nor yet to do so in a way compatable with the other experiments.
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Rather the issue is that there are many ways of doing this and very little data with

which to judge which is the �right� way. For example: we could say that no player

conditional on an information set takes a certain loss of more than $9.50. Or we could

compute the expected loss at that information set conditional on the equilibrium

strategies - which while it might make more sense would complicate the model by

endogenizing the play of the noise players. Regardless, there is no doubt about the

need for an improvement in modeling the noise players willingness to su�er large

losses.

Finally, the unwillingness of the noise players to take losses here is similar to that

in the one-shot PD, but a simple limit of the type described is too large to explain the

one-shot PD where the losses su�ered by cooperating are much less than rejecting a

favorable bid in the market auction. However: in the one-shot PD not only is there a

loss, but the result is manifestly unfair to the noise player. It is possible to speculate

that endowing the noise players with fairness preferences of the type described by

Fehr and Schmidt (1999) together with a utility bound on acceptable losses might

provide a better benchmark. Given limited data and limited space I have not pursued

this idea here.

Remark:. The second part of Corollary 9.1 presumes that the ethical players are

limited to choosing a pure strategy for the sel�sh players. To do otherwise would be

complicated. However, by bidding low the ethical players can create an equilibrium

in which the sel�sh players mix.

To understand the situation, condition on their being no noise players bidding

$10.00 so that there are 2/5 ethical, 2/5 sel�sh and 1/5 noise players playing uniformly

on 0, ..., 9.95. If the ethical players all bid zero a sel�sh player who deviates from $9.95

to $7.50 increases expected utility by about 3/10 of a cent so the ethical players can

break the pure strategy equilibrium if they choose. The best mixed equilibrium will

have the ethical players bidding just below the support of the sel�sh players to give

them the maximum incentive to bid low.

Finding the best (or any) mixed equilibrium is di�cult, but the bottom of the

support of a mixed equilibrium must satisfy the property that it cannot be pro�table

either to deviate by bidding an extra $0.05 or by bidding $9.95. If the probability of

bidding the bottom is large then it it pro�table to bid the extra $0.05 to break a tie.

If the probability of bidding the bottom is small the best chance of winning is for all
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the other bidders to be ethical. The probability, however, that all eight other players

are ethical is quite small: (2/5)8 = 0.0007. From these facts computations show that

bottom must be at least at least $7.45, and that utility at the bottom is quite close

to utility at the pure equilibrium. As the bottom must earn the equilibrium utility

these conditions also imply that welfare at a mixed equilibrium exceeds that of the

pure equilibrium by at most 3/100 of a cent.

Appendix 12: Sampling Error

Hypothesis testing is fraught and standard errors are often subject to misinter-

pretation. The gap between theory and practice is large, and I refer the interested

reader to the relevant literature and in particular Leamer (1983) and Imbens (2021).

Before explaining how standard errors they should be interpreted in this setting,

let me �rst describe how to compute them. Standard errors are computed with respect

to a model: in this case the �hypothesis� is a point hypothesis - the calibrated model

with given and known coe�cients that are not estimated and certainly not from

the data being analyzed. From the theoretical model samples are drawn in exactly

the same way as in the data and this gives the entire distribution of sampling error

including the standard error. A convenient way to do this is via Monte Carlo.

There are two possible results of �nding con�dence intervals based on the standard

errors. First, the con�dence intervals may be small and the data may lie outside the

con�dence intervals. Since the theory is certainly wrong and is expected to be wrong

with enough data this will always be the case, and so it is meaningless. In smaller

samples the con�dence intervals might be large relative to the distance from the

theory to the data. When the theory is closer to the data than the standard errors

suggest the only reasonable conclusion that can be drawn is that I manipulated either

the theory or the data: for example, I cherry-picked the experiments to �t the theory,

or I chose the calibration after looking at the data. For this reason there is some

importance in reporting the standard errors.

In the stag hunt games I analyzed sampling error in the context of dissidents

where it was relevant. I have not computed standard errors in the ultimatum games

because the sample is large and there is an issue of whether there is serial correlation

over the thirty periods of data used. Below in Table 9.6, in the public goods games

with punishment, I add to Table 4.1 the standard errors (se) computed using a Monte

Carlo with 1, 000 draws.
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theory data se actual err SGP err FS err

pun 1 1.80 1.64 0.07 0.16 −0.14
pun 2 1.88 1.78 0.10 0.10 −0.28 0.63
pun 3 1.91 1.99 0.13 −0.08 −0.49 0.42
pun 4 1.92 1.91 0.15 0.01 −0.41 0.50

Table 9.6: Welfare and Standard Errors for Public Goods with Punishment

Speci�cally the procedure is this. For each treatment each Monte Carlo iteration

draws six matches. In each match four players are randomly drawn from the player

types and the noise players randomly draw contributions and punishments. The

punishments of the noise players by the ethical players is then computed, and welfare

for the match is determined and averaged over the six matches. This is done 1, 000

times to �nd the distribution of the draws.

The standard errors are large enough that except in the case of punishment factor

one the data is within two standard deviations of the theory. Except in the case of

punishment factor four the data is not exceptionally close to the theory compared

to the standard error. In addition the standard errors are small enough that with

the exception of punishment factor one they exclude SGP and FS which lie consid-

erably more than two standard deviations from the data. This argues that if we

were to engage in hypothesis testing the test would have some power. We may also

wish to conclude that the anomalous data point - the increase in welfare going from

punishment four to three - might be due to sampling error.

Overall the standard errors, while computable, add only modestly to our under-

standing of the theory and the data.
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