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MATHEMATICAL APPENDIX: PROOFS OF THEOREMS

TO MINIMIZE THE COMPLEXITY of the presentation, it is assumed here that
p= 1 and r = 0. The proofs for p> 1 and/or r > 0 are identical after replacing
quantities for p= 1, r = 0 with the analogous quantities for the more general
case. Let fXW denote the density function of (X�W ).

Define

Sn1(x)= n−1/2
n∑
i=1

UifXW (x�Wi)�

Sn2(x)= n−1/2
n∑
i=1

[g(Xi)−G(Xi�θ0)]fXW (x�Wi)�

Sn3(x)= n−1/2
n∑
i=1

[G(Xi�θ0)−G(Xi� θ̂n)]fXW (x�Wi)�

Sn4(x)= n−1/2
n∑
i=1

Ui[f̂ (−i)XW (x�Wi)− fXW (x�Wi)]�

Sn5(x)= n−1/2
n∑
i=1

[g(Xi)−G(Xi�θ0)][f̂ (−i)XW (x�Wi)− fXW (x�Wi)]�

and

Sn6(x)= n−1/2
n∑
i=1

[G(Xi�θ0)−G(Xi� θ̂n)][f̂ (−i)XW (x�Wi)− fXW (x�Wi)]�

Then Sn(x)= ∑6
j=1 Snj(x).

LEMMA 1: As n→ ∞,

Sn3(x)= −Γ (x)′n1/2(θ̂n − θ0)+ op(1)

= −Γ (x)′n−1/2
n∑
i=1

γ(Ui�Xi�Wi� θ0)+ op(1)

uniformly over z ∈ [0�1].
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PROOF: A Taylor series expansion gives

Sn3(x)= −n−1
n∑
i=1

Gθ(Xi� θ̃n)fXW (x�Wi)n
1/2(θ̂n − θ0)�

where θ̃n is between θ̂n and θ0. Application of Jennrich’s (1969) uniform law
of large numbers gives the first result of the lemma. The second result follows
from the first by applying Assumption 3. Q.E.D.

LEMMA 2: As n → ∞, |∂f̂ (−i)XW (x�w)/∂z − ∂fXW (x�w)/∂z| = o[(logn)/
(n1/2h2)+ h] almost surely uniformly over (z�w) ∈ [0�1]2.

PROOF: This is a modified version of Theorem 2.2(2) of Bosq (1996) and is
proved the same way as that theorem. Q.E.D.

LEMMA 3: As n→ ∞, Sn4(x)= op(1) uniformly over x ∈ [0�1].
PROOF: Let I1� � � � � Im be a partition of [0�1] intom intervals of length 1/m.

For each j = 1� � � � �m, choose a point xj ∈ Ij . Define �f (−i)XW (x�w) = f̂ (−i)XW (x�
w)− fXW (x�w). Then for any ε > 0,

Sn4(x)= n−1/2
m∑
j=1

n∑
i=1

UiI(x ∈ Ij)�f (−i)XW (x�Wi)

= n−1/2
m∑
j=1

n∑
i=1

UiI(x ∈ Ij)�f (−i)XW (xj�Wi)

+ n−1/2
m∑
j=1

n∑
i=1

UiI(x ∈ Ij)[�f (−i)XW (x�Wi)−�f (−i)XW (xj�Wi)]

≡ Sn41(x)+ Sn42(x)�

A Taylor series expansion gives

Sn42(x)= n−1/2
m∑
j=1

n∑
i=1

UiI(x ∈ Ij)[∂�f (−i)XW (x̃j�Wi)/∂x](x− xj)�

where x̃j is between xj and x. Therefore, it follows from Lemma 2 that

|Sn42(x)| ≤ n−1/2m−1
m∑
j=1

n∑
i=1

|Ui|I(x ∈ Ij)|∂�f (−i)XW (x̃j�Wi)/∂x|

≤ n−1/2m−1op[(logn)/(n1/2h2)+ h]
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×
m∑
j=1

n∑
i=1

|Ui|I(x ∈ Ij)

= Op[(logn)/(mh2)+ n1/2h/m]
uniformly over x ∈ [0�1]. In addition, for any ε > 0,

P
[

sup
x∈[0�1]

|Sn41(x)|> ε
]

= P

[
max
1≤j≤m

∣∣∣∣∣n−1/2
n∑
i=1

Ui�f
(−i)
XW (xj�Wi)

∣∣∣∣∣> ε
]

≤
m∑
j=1

P

[∣∣∣∣∣n−1/2
n∑
i=1

Ui�f
(−i)
XW (xj�Wi)

∣∣∣∣∣> ε
]
�

However, E[Ui�f
(−i)
XW (xj�Wi)] = 0 and standard calculations for kernel estima-

tors show that

var

[
n−1/2

n∑
i=1

Ui�f
(−i)
XW (x�Wi)

]
=O[(nh2)−1 + h4]

for any x ∈ [0�1]. Therefore, it follows from Chebyshev’s inequality that

m∑
j=1

P

[∣∣∣∣∣n−1/2
n∑
i=1

Ui�f
(−i)
XW (xj�Wi)

∣∣∣∣∣> ε
]

=O[m/(nh2ε2)+mh4/ε2]�

which implies that

P
[

sup
x∈[0�1]

|Sn41(x)|> ε
]

=O[m/(nh2ε2)+mh4/ε2]�

The lemma now follows by choosing m so that n−1/2m→ C3 as n→ ∞, where
C3 is a constant such that 0<C3 <∞. Q.E.D.

LEMMA 4: As n→ ∞, Sn6(x)= op(1) uniformly over x ∈ [0�1].
PROOF: A Taylor series expansion gives

Sn6(x)= n−1
n∑
i=1

Gθ(Xi� θ̃n)[f̂ (−i)XW (x�Wi)− fXW (x�Wi)]n1/2(θ̂n − θ0)�

where θ̃n is between θ̂n and θ0. The result follows from boundedness of Gθ,
n1/2(θ̂n − θ0) = Op(1), and [f̂ (−i)XW (x�Wi) − fXW (x�Wi)] = O[h2 + (logn)/
(nh2)1/2] almost surely uniformly over x ∈ [0�1]. Q.E.D.
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LEMMA 5: Under H0, Sn(x)= Bn(x)+ op(1) uniformly over x ∈ [0�1].
PROOF: Under H0, Sn2(x) = Sn5(x) = 0 for all x. Now apply Lemmas 1, 3,

and 4. Q.E.D.

PROOF OF THEOREM 1: Under H0, Sn(x) = Bn(x) + op(1) uniformly over
x ∈ [0�1] by Lemma 5. Therefore,

τn =
∫ 1

0
B2
n(x)dx+ op(1)�

The result follows by writing
∫ 1

0 [B2
n(x)−EBn(x)2]dx as a degenerateU statistic

of order 2. See, for example, Serfling (1980, pp. 193–194). Q.E.D.

PROOF OF THEOREM 2: By Theorem 5.1a of Bhatia, Davis, and McIntosh
(1983), |ω̂j − ω̃j| = O(‖�̂ − �̃‖). Moreover, standard calculations for kernel
density estimators show that ‖�̂ − �̃‖ = O[(logn)/(nh2)1/2]. Part (i) of the
theorem follows by combining these two results. Part (ii) is an immediate con-
sequence of part (i). Q.E.D.

PROOF OF THEOREM 3: Let z̃α denote the 1 −α quantile of the distribution
of

∑∞
j=1 ω̃jχ

2
1j . Because of Theorem 2, it suffices to show that if H1 holds, then

under sampling from Y = g(X)+U ,

lim
n→∞

P(τn > z̃α)= 1�

This will be done by proving that

plim
n→∞

n−1τn =
∫ 1

0
[(Tq)(x)]2 dx > 0�

To do this, observe that by Jennrich’s (1969) uniform law of large num-
bers, n−1/2Sn2(x) = (Tq)(x) + op(1) uniformly over x ∈ [0�1]. Moreover,
Sn5(x) = o(h−1 logn) = o(n1/6 logn) a.s. uniformly over x�w ∈ [0�1] because
f̂ (−i)XW (x�w) − fXW (x�w) = o[(logn)/(nh2)1/2] a.s. uniformly over x ∈ [0�1].
Combining these results with Lemma 5 yields

n−1/2Sn(x)= n−1/2Bn(x)+ (Tq)(x)+ op(1)�
A further application of Jennrich’s (1969) uniform law of large numbers shows
that n−1/2Sn(x)→p (Tq)(x), so n−1τn →p

∫ 1
0 [(Tq)(x)]2 dx. Q.E.D.

PROOF OF THEOREM 4: Arguments like those leading to Lemma 5 show
that

Sn(x)= Bn(x)+ Sn2(x)+ Sn5(x)− E(W ∆)′γ̃′(TGθ)(x)+ op(1)
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uniformly over x ∈ [0�1]. Moreover,

Sn5(x)= n−1
n∑
i=1

∆(Xi)[f̂ (−i)XW (x�Wi)− fXW (x�Wi)]

= O[(logn)/(nh2)1/2]
almost surely uniformly over x. In addition,

Sn2(x)= n−1
n∑
i=1

∆(Xi)fXW (x�Wi)

= (T∆)(x)+ o(1)
almost surely uniformly over x. Therefore, Sn(x)= Bn(z)+µ(x)+ op(1) uni-
formly over x. However,

Bn(x)+µ(x)=
∞∑
j=1

b̃jψj(x)�

where b̃j = bj +µj and bj is defined as in the proof of Theorem 1. The bj ’s are
asymptotically distributed as independent N(µj�ωj) variates. Now proceed as
in Serfling’s (1980, pp. 195–199) derivation of the asymptotic distribution of a
second-order degenerate U statistic. Q.E.D.

PROOF OF THEOREM 5: Let zgα denote the critical value under the model
Y = g(X)+U , g ∈Fnc . Let ẑεαg denote the corresponding estimated approxi-
mate critical value. Observe that zgα is bounded and ẑεαg is bounded in proba-
bility uniformly over g ∈Fnc .

We prove (2.12); the proof of (2.13) is similar. Define Dn(x) = Sn3(x) +
Sn6(x)+ E[Sn2(x)+ Sn5(x)] and S̃n(x)= Sn(x)−Dn(x). Then τn = ‖S̃n +Dn‖2.
Use the inequality

a2 ≥ 0�5b2 − (b− a)2(A1)

with a= Sn and b=Dn to obtain

P(τn > zgα)≥ P(0�5‖Dn‖2 − ‖S̃n‖2 > zgα)�

For any finite M > 0,

P(0�5‖Dn‖2 − ‖S̃n‖2 ≤ zgα)
= P(0�5‖Dn‖2 ≤ zgα + ‖S̃n‖2�‖S̃n‖2 ≤M)
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+ P(0�5‖Dn‖2 ≤ zgα + ‖S̃n‖2�‖S̃n‖2 >M)

≤ P(0�5‖Dn‖2 ≤ zgα +M)+ P(‖S̃n‖2 >M)�

where ‖S̃n‖ is bounded in probability uniformly over g ∈ Fnc . Therefore, for
each ε > 0 there is Mε <∞ such that, for all M >Mε,

P(0�5‖Dn‖2 − ‖S̃n‖2 ≤ zgα)≤ P(0�5‖Dn‖2 ≤ zgα +M)+ ε�
Equivalently,

P(0�5‖Dn‖2 − ‖S̃n‖2 > zgα)≥ P(0�5‖Dn‖2 > zgα +M)− ε
and

P(τn > zgα)≥ P(0�5‖Dn‖2 > zgα +M)− ε�(A2)

Now

Sn2(x)+ Sn5(x)= n−1/2
n∑
i=1

[g(Xi)−G(Xi�θg)]f̂ (−i)XW (x�Wi)�

Therefore,

E[Sn2(x)+ Sn5(x)]

= n−1/2E
n∑
i=1

[g(Xi)−G(Xi�θg)][fXW (x�Wi)+ h2Rn(x)]�

where Rn(x) is nonstochastic, does not depend on g, and is bounded uniformly
over x ∈ [0�1]. It follows that

E[Sn2(x)+ Sn5(x)] = n1/2(Tqg)(x)+O[n1/2h2‖qg‖]
and

E[Sn2(x)+ Sn5(x)] ≥ 0�5n1/2(Tqg)(x)

uniformly over g ∈Fnc for all sufficiently large n.
Now

|Sn3(x)+ Sn6(x)|

≤ sup
ξ∈[0�1]�g∈Fnc

n1/2|G(ξ� θ̂n)−G(ξ�θg)|n−1
n∑
i=1

f̂ (−i)XW (x�Wi)�
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Therefore, it follows from the definition Fnc and uniform convergence of f̂ (−i)XW

to fXW that ‖Sn3 + Sn6‖ = Op(1) uniformly over g ∈ Fnc . A further application
of (A1) with a=Dn(x) and b= E[Sn2(x)+ Sn5(x)] gives

‖Dn‖2 ≥ 0�125n‖Tqg‖2 +Op(1)(A3)

uniformly over g ∈Fnc as n→ ∞. Inequality (2.12) follows by substituting (A3)
into (A2) and choosing C to be sufficiently large. Q.E.D.
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