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PROOF OF EQUATION (A.1): The first part of the proof follows the proof of
Theorem 4.2 in Johansen (1995). We shall provide some details, but for a full
account we refer to Johansen (1995).

We use the result from Lemma 4.1 in Johansen (1995): if Ψ(z) = ∑∞
i=0 Ψiz

i

is convergent for |z| < 1 + δ for some δ > 0, and Ψ#
i and Ψ#(z) are defined

by Ψ#
i = ∑∞

j=i+1 Ψj and Ψ#(z) = ∑∞
i=0 Ψ

#
i z

i, respectively, then Ψ#(z) is also
convergent for |z|< 1 + δ and Ψ(z)= Ψ(1)+ (1 − z)Ψ#(z). If Ψ(z) is a poly-
nomial, so is Ψ#(z).

From the proof of Theorem 4.2 in Johansen (1995) it also follows that if
X̃∗

t = (X∗′
t β̂��X

∗′
t β̂⊥)′, the recursion defined in Algorithm 1 may be expressed

as

˜̂
A(L)X̃∗

t = ( ¯̂α� ¯̂α⊥)′(ε∗
t + µ̂0 + α̂ρ̂1t)

for a suitable polynomial.
We then use the fact that the zeros of det[Â(z)] = 0 are equal to 1 or are

outside the unit circle when T is large enough. This follows from the fact
that Assumption 1 implies that det[A(z)] = 0 has exactly p − r solutions at 1
and the rest of the solutions are outside the unit circle; see Corollary 4.3 in
Johansen (1995). The definition of Â(z) implies that det[Â(z)] = 0 has at least
p− r solutions at 1; see Johansen (1995, p. 16). Because the estimators of the
coefficients are consistent, the solutions of det[Â(z)] = 0 must converge to
those of det[A(z)] = 0. Thus when T is large enough, p − r of the solutions
det[Â(z)] = 0 are equal to 1 and the rest are outside the unit circle.

Lemma 4.1 of Johansen (1995) can now be applied to ˜̂
C(z) = ˜̂

A(z)−1. The
reason is that det[Â(z)] = 0 and det[ ˜̂

A(z)] = 0 have the same roots except

for z = 1 and that det[ ˜̂
A(1)] �= 0. An argument is in Johansen (1995, p. 51).

Because, as noted previously, det[Â(z)] = 0 has no root inside the unit circle,

all the roots of det[ ˜̂
A(z)] = 0 must be outside the unit circle when T is large

enough. Now, because det[ ˜̂
A(z)] is a polynomial, det[ ˜̂

A(z)] = 0 has a finite
number of solutions. Since all roots are outside the unit circle, there must exist

a δ > 0 such that det[ ˜̂
A(z)] �= 0 when |z| < 1 + δ. Hence, we can argue as in

Theorem 11.3.1 in Brockwell and Davis (1991) to verify that ˜̂
C(z) = ˜̂

A(z)−1

1
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satisfies the condition of Lemma 4.1 of Johansen (1995). Then

X̃∗
t =

(
β̂′X∗

t

β̂′
⊥�X

∗
t

)
(S1)

= ˜̂
A(L)−1( ¯̂α� ¯̂α⊥)′(ε∗

t + µ̂0 + α̂ρ̂1t)

= ˜̂
C(L)( ¯̂α� ¯̂α⊥)′(ε∗

t + µ̂0 + α̂ρ̂1t)

= ˜̂
C(1)( ¯̂α� ¯̂α⊥)′(ε∗

t + µ̂0 + α̂ρ̂1t)

+ ˜̂
C

#

(L)( ¯̂α� ¯̂α⊥)′�(ε∗
t + µ̂0 + α̂ρ̂1t)	 Q.E.D.

PROOF OF EQUATION (A.2): We first consider the linear part and start with
the decomposition

X∗
t = ¯̂

β⊥β̂
′
⊥

t∑
i=k+1

�X∗
i + ¯̂

ββ̂′X∗
t + ¯̂

β⊥β̂
′
⊥X

∗
k	(S2)

Whereas (0� ¯̂
β⊥)

˜̂
C(1)( ¯̂α� ¯̂α⊥)′ = Ĉ = β̂⊥(α̂′

⊥Γ̂ β̂⊥)−1α̂′
⊥, the first term in (S2) is

equal to

¯̂
β⊥β̂

′
⊥

t∑
i=k+1

�X∗
i(S3)

= Ĉ

t∑
i=k+1

(ε∗
i + µ̂0 + α̂ρ̂1i)+ (t − k)(0� ¯̂

β⊥)
˜̂
C

#

(1)( ¯̂α� ¯̂α⊥)′α̂ρ̂1

+ (0� ¯̂
β⊥)

˜̂
C

#

(L)( ¯̂α� ¯̂α⊥)′(ε∗
t − ε∗

k)	

For z �= 1 and ˜̂
A(z) nonsingular,

˜̂
C

#

(z)
˜̂
A(z) =

˜̂
A(z)−1 − ˜̂

A(1)−1

1 − z
˜̂
A(z)(S4)

= I − ˜̂
A(1)−1 ˜̂

A(z)

1 − z

= − ˜̂
A(1)−1[ ˜̂

A(z)− ˜̂
A(1)]

1 − z

= ˜̂
A(1)−1 ˜̂

A
#

(z)	
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Therefore, ˜̂
C

#

(1) = ˜̂
A(1)−1 ˜̂

A
#

(1) ˜̂
A(1)−1. However, ˜̂

A
#

(1) = − d
dz

˜̂
A(z)|z=1 =

− ˙̃̂
A(1)	 The expression (0� ¯̂

β⊥)
˜̂
C

#

(1)( ¯̂α� ¯̂α⊥)′α̂ρ̂1 equals ĈΓ̂ ˆ̄βρ̂1, which follows
from Equation 37 in Rahbek and Mosconi (1999). The contribution to the lin-

ear term from (S3) is thus (t − k)(Ĉµ̂0 + ĈΓ̂ ˆ̄βρ̂1), and the contribution from
¯̂
ββ̂′X∗

t is ( ¯̂
β�0) ˜̂

C(1)( ¯̂α� ¯̂α⊥)′α̂ρ̂1t = ¯̂
β ¯̂α′

(Γ̂ Ĉ − I)α̂ρ̂1t = − ¯̂
βρ̂1t. Summing, this

is seen to equal (t − k)τ̂ − ¯̂
βρ̂1k.

We now have considered the linear part of the lemma and have shown that

X∗
t = Ĉ

t∑
i=k+1

ε∗
i + τ̂(t − k)+ √

TR∗
t�T �

where

√
TR∗

t�T = (0� ¯̂
β⊥)

˜̂
C

#

(L)( ¯̂α� ¯̂α⊥)′(ε∗
t − ε∗

k)

+ (
¯̂
β�0) ˜̂

C(1)( ¯̂α� ¯̂α⊥)′(ε∗
t + µ̂0)

+ (
¯̂
β�0) ˜̂

C
#

(L)( ¯̂α� ¯̂α⊥)′�(ε∗
t + µ̂0 + α̂ρ̂1t)

− ¯̂
βρ̂1k+ ¯̂

β⊥β̂
′
⊥X

∗
k

= (0� ¯̂
β⊥)

˜̂
C

#

(L)( ¯̂α� ¯̂α⊥)′(ε∗
t − ε∗

k)+ (
¯̂
β�0) ˜̂

C(1)( ¯̂α� ¯̂α⊥)′ε∗
t

+ (
¯̂
β�0) ˜̂

C
#

(L)( ¯̂α� ¯̂α⊥)′�ε∗
t − ¯̂

βρ̂1k

+ (
¯̂
β�0) ˜̂

C(1)( ¯̂α� ¯̂α⊥)′µ̂0

+ (
¯̂
β�0) ˜̂

C
#

(1)( ¯̂α� ¯̂α⊥)′α̂ρ̂1 + ¯̂
β⊥β̂

′
⊥X

∗
k	 Q.E.D.

PROOF OF EQUATION (A.3): When µ̂0 = µ̂1 = 0,

√
TR∗

t�T = (0� ¯̂
β⊥)

˜̂
C

#

(L)
˜̂
A(L)(X̃∗

t − X̃∗
k)+ ¯̂

ββ̂′X∗
t + ¯̂

β⊥β̂
′
⊥X

∗
k

= ¯̂
ββ̂′X∗

t + (0� ¯̂
β⊥)

˜̂
A(1)−1 ˜̂

A
#

(L)(X̃∗
t − X̃∗

k)+ ¯̂
β⊥β̂

′
⊥X

∗
k�

where the first equality follows from (S1) and the second follows from (S4).

Note that ˜̂
A

#

(z) is a polynomial, where the coefficients are functions of the
parameters, so that Rt�T only involves a finite number of the generated X∗

t as
T → ∞. Q.E.D.
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PROOF OF EQUATION (A.4): By a well-known argument (see, e.g., Hall and
Heyde (1980, p. 53)),

P∗
(

max
k+1≤t≤(T−k)

|X̃∗
t |/

√
(T − k) > η

)

= P∗
(

1
T − k

T∑
t=k+1

X̃∗′
t X̃

∗
t I

[|X̃∗
t | >η

√
(T − k)

]
>η2

)

≤ 1
η2

E∗
[

1
T − k

T∑
t=k+1

X̃∗′
t X̃

∗
t I

(|X̃∗
t |>η

√
(T − k)

)]

≤ 1
η4(T − k)2

T∑
t=k+1

E∗(X̃∗′
t X̃

∗
t )

2�

so it suffices to show that

1
(T − k)2

T∑
t=k+1

E∗(X̃∗′
t X̃

∗
t )

2 → 0(S5)

in probability.
In Equation 4.13 in Johansen (1995) it is shown that the relationship between

Â(z) and ˜̂
A(z) is given by ( ¯̂α� ¯̂α⊥)′Â(z) = ˜̂

A(z)(β̂� β̂⊥(1 − z))′ when z �= 1.

Therefore, ˜̂
A(0) = ( ¯̂α� ¯̂α⊥)′(β̂� β̂⊥)−1 = ( ¯̂α� ¯̂α⊥)′( ¯̂

β�
¯̂
β⊥), so that ˜̂

A(L)X̃∗
t =

( ¯̂α� ¯̂α⊥)′ε∗
t may alternatively be represented as B(L)X̃∗

t = (β̂� β̂⊥)′ε∗
t , where

B̂(z) is a polynomial of order k with B̂(0)= I.
Introduce X̃∗

t = (X̃∗′
t � 	 	 	 � X̃

∗′
t−k+1)

′, κ∗
t = (β̂� β̂⊥)′ε∗

t , κ
∗
t = (κ∗′

t �0� 	 	 	 �0)′, and
the matrix

B̂ =



B̂1 · · · · · · · · · B̂k

I 0 · · · · · · 0
			

			
			

			
0 · · · · · · I 0


 	

Then

X̃∗
t = B̂X̃∗

t−1 + κ∗
t � t = k+ 1� 	 	 	 �T	

Solving the equation backward, we therefore have

X̃∗
t =

t−(k+1)∑
j=0

B̂jκ∗
t−j + B̂(t−k)X̃

∗
k = V ∗

1�t + V ∗
2�t 	
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Whereas E∗(X̃∗′
t X̃

∗
t )

2 ≤ E∗(X̃∗′
t X̃

∗
t )

2 ≤ 8(E∗(V ∗′
1�tV

∗
1�t)

2 + (V ∗′
2�tV

∗
2�t)

2), (S5) and
hence (A.4) will follow from

1
(T − k)2

T∑
t=k+1

E∗(V ∗′
l�tV

∗
l�t)

2 → 0� l = 1�2�(S6)

in probability. Consider first the case l = 1.

The equations det[B̂(z)] = 0 and det[ ˜̂
A(z)] = 0 have the same solutions,

and the eigenvalues of B̂ equal the inverse of these solutions. Therefore all the
eigenvalues of B̂ must be smaller in modulus than 1 when T is large enough,

because the coefficients of the polynomial ˜̂
A(z) tend to those of Ã(z), and the

solutions of det[Ã(z)] = 0 have moduli larger than 1 by assumption (see, e.g.,
Johansen (1995, p. 51)). Then

E∗(V ∗′
1�tV

∗
1�t)

2

≤ E∗
(

t−(k+1)∑
i�j=0

κ∗′
t−jB̂

′jB̂iκ∗
t−i

)2

≤ E∗
(

t−(k+1)∑
j=0

κ∗′
t−jB̂

′jB̂jκ∗
t−jκ

∗′
t−jB̂

′jB̂jκ∗
t−j

+ 2
t−(k+1)∑

i<j

κ∗′
t−jB̂

′jB̂iκ∗
t−iκ

∗′
t−jB̂

′jB̂iκ∗
t−i

+ 2
t−(k+1)∑

i<j

κ∗′
t−jB̂

′jB̂iκ∗
t−iκ

∗′
t−iB̂

′iB̂jκ∗
t−j

+ 2
t−(k+1)∑

i<j

κ∗′
t−jB̂

′jB̂jκ∗
t−jκ

∗′
t−iB̂

′iB̂iκ∗
t−i

)
	

For a vector x = (x1� 	 	 	 � xn)
′, consider the norm ‖x‖∞ = max1≤i≤n |xi| and

for an n × n matrix C = {cij}, let ‖C‖∞ be the induced norm, which equals
max1≤i≤n

∑n

j=1 |cij|. Then ‖x‖2
∞ ≤ x′x ≤ n‖x‖2

∞ and if all the eigenvalues of C
have modulus less than 1, ‖Cm‖∞ ≤ const|λ|m/2, where λ is an eigenvalue that
has maximal modulus; see Corollary A.2 in Johansen (1995).

Because in our case n= pk, then

E∗(κ∗′
t−jB̂

′jB̂jκ∗
t−jκ

∗′
t−jB̂

′jB̂jκ∗
t−j) = E∗[(κ∗′

t−jB̂
′jB̂jκ∗

t−j)
2]

≤ (pk)2E∗(‖B̂jκ∗
t−j‖4

∞)
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≤ (pk)2‖B̂‖4j
∞E∗(‖κ∗

t−j‖4
∞)

≤ (pk)2‖B̂‖4j
∞E∗[(κ∗′

t−jκ
∗
t−j)

2]
= (pk)2‖B̂‖4j

∞E∗(|κ∗
t−j|4)�

but ‖B̂‖4j
∞ is less than the product of the eigenvalue of B̂ that has the largest

modulus to the power 2j and a constant, and this eigenvalue value converges in
probability to a number with modulus less than 1. The existence of the fourth
moments of the elements of εt will assure that E∗(|κ∗

t |4) converges and there-
fore that (S6) holds. A similar argument works for the case l = 2, because the
eigenvalues of B̂ have moduli that are less than 1.

The last statement in the lemma follows by the consistency of the estimators
because E∗[ε∗

t ε
∗′
t ] = 1

T−k

∑T

i=k+1 ε̂iε̂
′
i. Q.E.D.

PROOF OF PROPOSITION 1: The proof in Johansen (1995) is based on a
slightly different model, i.e., with unrestricted constant and no linear drift so
that ρ1 = 0 in model (1). The main ideas apply also in the situation we consider.
The first step is to show that the p− r + 1 smallest solutions of

det[λS∗
11 − S∗

10S
∗−1
00 S∗

01] = 0(S7)

converge to zero. This follows from Lemma S1, which follows.
To find the asymptotic distribution, we use the representation in Lemma 1

and an argument similar to Johansen (1995) to show that the p− r+1 smallest
solutions multiplied by T converge weakly in probability toward the distribu-
tion of the solutions of∣∣∣∣ρ

∫ 1

0
GG′ −

∫ 1

0
G(dW )′α⊥(α′

⊥Ωα⊥)−1α′
⊥

∫ 1

0
(dW )G′

∣∣∣∣ = 0	(S8)

This is a consequence of the continuous mapping theorem and Lemma S2 (fol-
lowing text). Proposition 1 will now follow by defining B = (α′

⊥Ωα⊥)−1/2α′
⊥W ,

which is a standard Brownian motion.

LEMMA S1: Under the same assumptions as in Proposition 1 and if η> 0,

P∗(‖S∗
00 −Σ00‖ >η) → 0�

P∗(‖S∗
01β̂

# −Σ0β‖ >η)→ 0�

and

P∗(‖β̂#′S∗
11β̂

# −Σββ‖ >η) → 0

in probability, where ‖ · ‖ denotes the matrix norm ‖C‖ = [tr(C ′C)]1/2. Here Σ00,
Σ0β, and Σββ are the limits in probability of S00, S01β

#, and β#′
S11β

#, respectively.
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LEMMA S2: Under the same assumptions as in Proposition 1 with norming

matrix ĈT = ( ¯̂
β⊥ 0

−τ̂′ ¯̂β⊥ T−1/2

)
,

1
T
Ĉ ′

TS
∗
11ĈT →

∫ 1

0
GG′

and

1
T
Ĉ ′

T (S
∗
10 − S∗

11β̂
#α̂′) →

∫ 1

0
G(dW )′�

where W̄ = ∫ 1
0 W (u)du, G(u) = ((W (u)− W̄ )′Cβ̄⊥�u− 1/2)′, and the conver-

gence is weakly in probability. Q.E.D.

PROOF OF LEMMA S1: We consider only the first part; the others are proved
in a similar manner. Note that S∗

00 =M∗
00 −M∗

02M
∗−1
22 M∗

20, where

M∗ =
(
M∗

00 M∗
02

M∗
20 M∗

22

)

is the (pk+ 1)× (pk+ 1) matrix
∑T

t=k+1 Z
∗
t Z

∗′
t /(T − k) and Z∗

t = (�X∗′
t � 	 	 	 �

�X∗′
t−k+1�1)′, t = k+ 1� 	 	 	 �T . Let M be defined similarly in terms of the orig-

inal observations, where Zt = (�X ′
t � 	 	 	 ��X

′
t−k+1�1)′� t = k + 1� 	 	 	 � T . By the

ergodic theorem, M → ΣM , say, in probability, as T → ∞. The lemma will
follow if, for all η> 0,

P∗(‖M∗ −ΣM‖ >η) → 0(S9)

in probability.
Whereas ‖M∗ − ΣM‖2 is equal to the sum of squares of the elements of

M∗ −ΣM , it is sufficient to prove that (S9) is valid for each element.
We now verify that the variables Zt and Z∗

t have a moving average represen-
tation. The model (1) may be written

�Xt = αβ#′X#
t−1 + Γ1�Xt−1 + · · · + Γk−1�Xt−(k−1) +µ0 + εt	

After some manipulation, this is seen to imply

β′�Xt + ρ1(t + 1) = (I +β′α)(β′Xt−1 + ρ1t)+β′Γ1�Xt−1

+ · · · +β′Γk−1�Xt−(k−1) +β′µ0 +β′εt	
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Arguing as in Hansen and Johansen (1999, p. 311), the stochastic vector
(X ′

tβ
#��X ′

t−1� 	 	 	 ��X
′
t−k+1)

′ can be represented as an AR(1) process




β#′X#
t

�Xt

			
�Xt−k+1


 =Φ



β#′X#

t−1
�Xt−1

			
�Xt−k


 +



β′µ0

µ0
			
0


 +



β′εt

εt

			
0


 �

where the matrix Φ has the form

Φ=



β′α+ I β′Γ1 · · · · · · β′Γk−1

α Γ1 · · · · · · Γk−1

0 I · · · · · · · · ·
			

			
			

			
0 · · · · · · I 0


 	(S10)

By also expanding the state space, (X ′
tβ

#��X ′
t−1� 	 	 	 ��X

′
t−k)

′ has such
a representation. The process is stationary. Here we need the assumption
that α′

⊥Γβ⊥ has full rank p − r. Furthermore, (X ′
tβ

#��X ′
t−1� 	 	 	 ��X

′
t−k)

′

can be represented in terms of the errors εt� εt−1� 	 	 	 	 To see this, we note
that the term Yt in (5) corresponds to β̄Zt in Equation (4.7) in the proof
of Theorem 4.2 in Johansen (1995). Furthermore, from Equation (4.16) in
the same proof, the term denoted by Zt , and therefore Yt here, is part of
an autoregressive process that can be expressed by the errors εt� εt−1� 	 	 	 	
This implies that all terms, apart from A, in (5) can be represented in this
way. However, A cancels in �Xt−j� j = 1� 	 	 	 �k, and because β′A = 0, all
terms in (X ′

tβ
#��X ′

t−1� 	 	 	 ��X
′
t−k)

′ can be represented in terms of the errors
εt� εt−1� 	 	 	 	 The process is therefore causal and has a characteristic polynomial
with determinant that has zeros outside the unit circle; see, e.g., Theorems
3.1.1 and 11.3.1 in Brockwell and Davis (1991). Whereas the eigenvalues
of the matrix in the AR(1) representation are the inverses of these roots,
(X ′

tβ
#��X ′

t−1� 	 	 	 ��X
′
t−k)

′ has a moving average representation of the form
(X ′

tβ
#��X ′

t−1� 	 	 	 ��X
′
t−k)

′ = ν1 + ∑∞
i=0 ζiηt−i, where ηt = (ε′

tβ�ε
′
t �0� 	 	 	 �0)′,

ζ0 = I, and ζ1� 	 	 	 are matrices such that the maximal eigenvalue of ζi is
bounded by λi for some 0 < λ< 1, uniformly in i = 1� 	 	 	 	 The elements of the
[r+(k−1)p]-dimensional vector can be expressed as functions of the parame-
ters of (1) . Thus, Zt = ν2 + ∑∞

i=0 Gζiηt−i for a suitable matrix G and vector ν2.
Each element of Zt , which we also denote by Zt (dropping the index), has a
moving average representation

Zt = ν3 +
∞∑
i=0

ξ′
iεt−i�
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where |ξi|< constλi uniformly in i = 1� 	 	 	 	 Similarly,

Z∗
t = ν̂3 +

∞∑
i=0

ξ̂′
iε

∗
t−i�

where |ξ̂i| < constλi uniformly in i = 1� 	 	 	 when T is large enough and ν̂3 de-
notes ν3 with the estimates for the unknown parameters plugged in.

Now E(M) = E[(Zt − ν3)
2] = ∑∞

i=0 ξ
′
iΩξi and E∗(M∗) = E∗[(Z∗

t − ν̂3)
2] =∑∞

i=0 ξ̂
′
iΩT ξ̂i so that E∗(M∗) → E(M) in probability. Whereas ‖M∗ − ΣM‖ ≤

‖M∗ −E∗(M∗)‖ + ‖E∗(M∗)−ΣM‖, (S9) will follow from

P∗(‖M∗ −E∗(M∗)‖ >η
) → 0

in probability. Hence, by Chebychev’s inequality it suffices to show that

Var∗(
∑T

t=k+1 Z
∗2
t )

(T − k)2
=

∑T−k+1
t=−T+k−1(1 − t/T )Cov∗(Z∗2

0 �Z∗2
t )

T − k
→ 0(S11)

in probability as T → ∞. However,

Cov∗(Z∗2
0 �Z∗2

t ) ≤ Var∗(Z∗2
0 )≤ E∗(Z∗4

0 )

= E∗
[ ∞∑

i=0

(ξ̂′
iε

∗
−i)

4 + 2
∑
0≤i<j

(ξ̂′
iε

∗
−i)

2(ξ̂′
jε

∗
−j)

2

]
	

Now, we use that (ξ̂′
iε

∗
−i)

2 ≤ |ξ̂i|2|ε∗
−i|2, that |ξ̂i| < constλi� i = 1� 	 	 	 � when T is

large enough, and that E∗(‖ε∗
t ‖)4 → E∗(‖εt‖)4 < ∞ in probability by the weak

law of large numbers and the existence of the fourth moments of the elements
of εt . Then (S11) will follow. Q.E.D.

PROOF OF LEMMA S2: The proof relies on the continuous mapping theo-
rem in the same way as the proof in Lemma 2 in Johansen (1994). The same
functionals are involved, so it suffices to prove that the process {X∗

[uT ]/
√
T : 0 ≤

u≤ 1} converges weakly in probability as element in D[0�1]p.
By the results from Lemma 1, it follows that the remainder term R∗

T vanishes,
and it is sufficient to consider the linear part and S∗

T (u) = ∑[uT ]
i=k+1 ε

∗
i /

√
T . The

linear term is treated as in Lemma 2 in Johansen (1994).
To prove that S∗

T → W weakly in probability, it is convenient to follow the
approach of Pollard (1984) and exploit the fact that the limit is continuous.
Hence, one can work with the uniform norm in D[0�1]p and show that

E∗[f (S∗
T )] →E[f (W )]

in probability for all bounded continuous functions f . This is explained in more
detail for the one-dimensional case in Swensen (2003). Q.E.D.
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