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Section S.1 continues the discussion in the main text of the definition of assump-
tion and of the relationship between assumption and the concepts of (i) infinitely more
likely than (Blume, Brandenburger, and Dekel (1991), henceforth BBD) and (ii) strong
belief (Battigalli and Siniscalchi (2002), henceforth B-S). The focus is on the behavior
of the assumption concept in the game, theoretic setting. Section S.2 examines our neg-
ative result (Theorem 10.1). It is impossible (under certain conditions) for rationality
and common assumption of rationality (RCAR) to hold in a complete structure based
on lexicographic probability systems (our Theorem 10.1). But it is possible for rational-
ity and common strong belief of rationality (RCSBR) to hold in a complete structure
based on conditional probability systems (Proposition 6 in B-S). What accounts for the
difference? Finally, Section S.3 expands on the coverage of the literature in the main
text.

S.1. ASSUMPTION

IN THE CONTEXT of a finite space and a full-support LPS σ , BBD showed that
E is infinitely more likely than not-E if and only if E satisfies conditions (i)
and (ii) of Proposition 5.1 in the main text. Here, we show that, for a general
space, conditions (i) and (ii) do not suffice for this result. Specifically, we can
have a full-support lexicographic probability system (LPS) σ and an event E so
that conditions (i) and (ii) are satisfied, but not-E is infinitely more likely than
part of E. We will also argue that if we ask only for conditions (i) and (ii) of
assumption, we can end up with a conceptually unsatisfactory game analysis.

Our discussion will focus on the game in Figure 1. Fix type spaces Ta = {ta}
and Tb = [0�1]. Let λa(ta) = (μ0�μ1), where μ0 is uniform on {L} × [0�1] and
μ1 is uniform on {C�R} × [0�1]. Let λb(0) be a one-level LPS that assigns
probability 1

2 to each of (U� ta) and (D� ta). For each tb ∈ (0�1], let λb(tb) be a
one-level LPS that assigns probability 1

3 to (U� ta) and probability 2
3 to (D� ta).

Then

Ra
1 = {U�D} × Ta�

Rb
1 = ({L} × Tb)∪ {(C�0)}�

Provisionally, take assumption to mean only conditions (i) and (ii). Note
that μ0(R

b
1) = 1 and μ1(R

b
1) = 0. Therefore, under our provisional definition

of assumption, we get Ra
2 =Ra

1 and Rb
2 =Rb

1 , and so, by induction, Ra
m = Ra

1 and
Rb

m = Rb
1 for all m. We conclude that if the analyst’s prediction is RCAR, then

she predicts {U�D} × {L�C}—that is, the projection of
⋂∞

m=1 R
a
m × ⋂∞

m=1 R
b
m

into Sa × Sb.
But now ask: What if Ann steps into the analyst’s shoes? Specifically, let

us now focus on the strategies that can be played (i.e., on the space Sb) and

1
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FIGURE 1.

imagine that the analyst’s prediction is available to Ann. What happens if the
measures in an initial segment of her sequence of hypotheses each assign prob-
ability 1 to {L�C}? Then Ann cannot rationally play D. Yet the prediction is
that she can play D.

So Ann’s reasoning fails a natural consistency check, namely, that if she
steps into the analyst’s shoes (in the above sense), then her answer should not
change.

To see what is missing, go back to the epistemic analysis. Type ta is confident
that Bob is rational, in the sense that the LPS associated with ta satisfies condi-
tions (i) and (ii) of assumption for the event Rb

1 . But while the choice C is con-
sistent with the event that Bob is rational, type ta never considers the possibility
that Bob is rational and plays C . (Formally, the event Rb

1 ∩[{C}×Tb] = {(C�0)}
receives probability 0 under both μ0 and μ1.) Indeed, Ann is more confident
that Bob is irrational than that Bob is rational and plays C . This is different
from what the consistency check gave: There, because Ann is confident of her
prediction {L�C}, she must be more confident that “Bob plays in accordance
with the prediction and, in particular, plays C” than that “Bob violates his pre-
diction and plays R.”

The missing requirement is this: If Ann is to assume an event E, and U is a
“significant” event with U ∩E �= ∅, then we should require that Ann considers
U ∩ E possible. What are the significant events U? If Ann has a full-support
LPS, the natural answer is that these are the (nonempty) open events. So the
consistency check corresponds exactly to condition (iii) of assumption.

Without this consistency check—that is, without condition (iii)—the event
that Bob is irrational is considered infinitely more likely than part of the Rb

1
(namely {(C�0)}). This is different from the idea that Rb

1 be considered in-
finitely more likely than not-Rb

1 . (In particular, then, it does not accord with
BBD’s original idea for what the term “infinitely more likely than” means.)

Also, without this consistency check, Ann does not strongly believe (in the
sense of B-S) the event that Bob is rational. To see this, first use the fact that
the LPS λa(ta) induces a conditional probability system (CPS) where the con-
ditioning events are the nonempty open sets U . (See Brandenburger, Frieden-
berg, and Keisler (2006) for details.) Next, consider the conditioning event
{C} × Tb. Under the construction, we would have that Rb

1 ∩ [{C} × Tb] �= ∅
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even though the associated CPS assigns probability 0 to Rb
1 given the condi-

tioning event {C} × Tb. This says that the associated CPS does not strongly
believe Rb

1 .
Finally, we note that this example also indicates the need for condition (a) in

Definition 5.1. Without (a), {(C�0)} is infinitely more likely than not-Rb
1 under

λa(ta), and not-Rb
1 is infinitely more likely than {(C�0)} under λa(ta). This does

not make sense.

S.2. THE NEGATIVE RESULT

Theorem 10.1 says that if Ann is not indifferent (Definition 10.1), and the
type structure is continuous (Definition 7.8) and complete, then RCAR is im-
possible. By contrast, Proposition 6 in B-S says that RCSBR is possible in a
complete structure. We now explore the source of the difference between the
two cases.

Here is an overview of the comparison. We will cast both cases in abstract
CPS-based probability-theoretic terms. From this we will see that the key dis-
tinction is in the choice of conditioning events on which the CPS is built.

First, the B-S analysis. If RCSBR is to hold, Ann must strongly believe each
of a decreasing sequence of compact events Em. That is, there must be a CPS
under which each Em is strongly believed. The conditioning events correspond
to the information sets in the tree—and are therefore closed (we will use this
below).

Next, for our analysis of admissibility, the natural family of conditioning
events to consider is the family of all nonempty open sets. Call a CPS where
these are the conditioning events an open CPS. In Brandenburger, Frieden-
berg, and Keisler (2006), we showed that for every full-support LPS σ there is
a corresponding open CPS p such that every event which is assumed under σ
is strongly believed under p. If RCAR is to hold, Ann must assume each of a
(different) decreasing sequence of events Em. That is, there must be an LPS
under which each Em is assumed. It follows that for RCAR to hold there must
be an open CPS which strongly believes each Em.

Below, we will give a simple property (∗) which holds for a family of con-
ditioning events if and only if there exists a CPS which strongly believes each
event Em.

Property (∗) will be satisfied when each conditioning event is closed and each
event Em is compact. This explains the positive result of B-S.

But property (∗) will fail if each open set is a conditioning event and the
closures of the events Em are strictly decreasing. So in this case, there cannot
be an open CPS which strongly believes each Em. This explains the negative
result of our Theorem 10.1.

To begin the formal treatment, let Ω be a Polish space and let B(Ω) be the
Borel σ-algebra on Ω.
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DEFINITION S.1: Fix a family F of nonempty events in B(Ω) (the family of
conditioning events). A conditional probability system (CPS) on (Ω�B(Ω)�F)
is a map p :B(Ω)×F → [0�1] so that:

(i) for all F ∈F , p(F |F)= 1;
(ii) for all F ∈F , p(·|F) is a probability measure on (Ω�B(Ω));

(iii) for all E ∈ B(Ω) and F�G ∈ F , if E ⊆ F ⊆ G, then p(E|G) =
p(E|F)p(F |G).

DEFINITION S.2 —B-S: Fix a CPS p on (Ω�B(Ω)�F) and an event E in
B(Ω). Say p strongly believes E if, for all F ∈F , F ∩E �= ∅ implies p(E|F)= 1.

Fix a decreasing sequence of nonempty events Em in B(Ω). We will add the
event E0 = Ω to the beginning of the sequence E1�E2� � � � � (The event E0 may
or may not be distinct from E1.) We now give our criterion for the existence of
a CPS which strongly believes each event Em.

THEOREM S.1: Let F be a family of nonempty events in B(Ω). Then the fol-
lowing statements are equivalent:

(∗) For each F ∈F , either F meets the intersection
⋂

n En or there is a greatest
integer m such that F meets Em.

(∗∗) There exists a CPS p on (Ω�B(Ω)�F) which strongly believes each
event Em.

PROOF: Suppose first that (∗∗) holds and let p be a CPS on (Ω�B(Ω)�F)
which strongly believes each event Em. Fix F ∈F . Suppose there is no greatest
m such that F meets Em. Since E0 = Ω, F meets E0. Therefore, F meets each
Em. By strong belief, p(Em|F) = 1 for each Em. Therefore, p(

⋂
n En|F) = 1

and hence F meets
⋂

n En. This proves (∗).
Now assume (∗). Let Dm = Em\Em+1 and D∞ = ⋂

n En. The sets Dm, m ≤ ∞,
form a partition of Ω. Therefore, each F ∈ F meets some Dm. By (∗), if F
meets Dm for infinitely many m, then F meets D∞. Therefore, there is a great-
est mF ≤ ∞ such that F meets mF . Well order each of the sets Dm�m ≤
∞ and let xF be the first element of F ∩ DmF

under this ordering. Define
p :B(Ω)×F → [0�1] by

p(E|F)=
{

1� if xF ∈ E�
0� otherwise.

Since xF ∈ F for each F ∈ F , condition (i) of Definition S.1 holds. Condi-
tion (ii) is easily checked, since p(·|F) is a point mass at xF . For condition (iii),
let E ⊆ F ⊆ G with E ∈ B(Ω) and F�G ∈ F . Suppose first that xF = xG. Then
p(E|F)= p(E|G). Moreover, xG ∈ F , so p(F |G)= 1. Condition (iii) now fol-
lows.

Next suppose that xF �= xG. Since xF ∈ F ⊆G, either mF =mG and xG is ear-
lier than xF in the well ordering of DmF

or mF <mG. In either case, xG cannot
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belong to F . Therefore, p(F |G) = 0. Since E ⊆ F , we also have p(E|G) = 0.
Thus condition (iii) holds with both sides equal to 0.

This shows that p is a CPS on (Ω�B(Ω)�F). It remains to prove that p
strongly believes Em for each finite m. Suppose that F ∈ F�m < ∞, and F
meets Em. Then F meets Dn for some n ≥ m, so mF ≥ m and xF ∈ DmF

⊆ Em.
Therefore, p(Em|F)= 1. This shows that p strongly believes Em. Q.E.D.

We first apply this theorem to the positive result in B-S.

COROLLARY S.1: If each F ∈ F is closed and each event Em is compact, then
there exists a CPS p on (Ω�B(Ω)�F) which strongly believes each event Em.

PROOF: Let F ∈ F and suppose there is no greatest m such that F meets
Em. But F meets E0 =Ω, so F ∩Em is nonempty for each m. Since F is closed,
F ∩Em is compact for each m. Therefore

⋂
n(F ∩En)= F ∩⋂

n En is nonempty,
so (∗) holds. By Theorem S.1, (∗∗) holds. Q.E.D.

B-S (p. 373) showed (in a complete continuous structure) that, for each m,
the set of strategy–type pairs for Ann (resp. Bob) that satisfy rationality and
mth-order strong belief of rationality is nonempty closed. Our Em events cor-
respond to these events. In fact, the type spaces in B-S are compact, so each
Em is compact. The conditioning events correspond to the information sets in
the tree. They are clopen (therefore closed). We can now apply Corollary S.1
to get a CPS which strongly believes “rationality and mth-order strong belief
of rationality” for all m. This is a way to see how B-S get a positive result on
RCSBR in a complete structure (their Proposition 6).

Note that Corollary S.1 fails if the hypothesis that each Em is compact is
replaced by the weaker hypothesis that each Em is closed. We illustrate this
with an extreme example.

EXAMPLE S.1: Suppose that F contains at least the maximal event Ω and
that Em is a decreasing sequence of nonempty closed sets such that

⋂
n En

is empty. Then no CPS p on (Ω�B(Ω)�F) strongly believes each event Em.
To see this, note that if a CPS p strongly believed each Em, we would have
p(Em|Ω) = 1 for each m and hence p(

⋂
n En|Ω) = 1, which is impossible if⋂

n En is empty.

We now turn to our negative result, Theorem 10.1.

COROLLARY S.2: Suppose Em\Em+1 �= ∅, for each m (where the bar denotes
closure). Let F be the family of nonempty open events in Ω. Then there does not
exist a CPS p on (Ω�B(Ω)�F) which strongly believes each event Em.
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PROOF: Let F = Ω\⋂
n En. Then F ∈F . By hypothesis, for each m, there is

a point xm ∈ Em\Em+1. Since
⋂

n En ⊆ Em+1 we have xm ∈ F , and F meets Em.
But

⋂
n En ⊆ ⋂

n En, so F does not meet
⋂

n En. Thus property (∗) fails, so (∗∗)
fails. Q.E.D.

In the main text, the Em events are the Rb
m events (the RmAR sets for Bob).

The hypothesis of Corollary S.2 is established via Lemmas F.1 and F.2. In
Brandenburger, Friedenberg, and Keisler (2006), we showed that if there is
no open CPS which strongly believes an event Em, then there is no LPS which
assumes Em. So Corollary S.2 is an abstract probability-theoretic result which
implies our negative result (Theorem 10.1).

S.3. RELATED LITERATURE

Finally, we discuss some other related papers.

A. Consistent Pairs: We noted in the main text that Samuelson (1992)
pointed out the fundamental inclusion-exclusion challenge in this area. To un-
derstand Samuelson’s solution (different from ours), go back to the game of
Figure 2.1. Suppose an analysis yields the answer that Ann plays (only) U .
Then Samuelson requires Ann to include all of Bob’s strategies that are opti-
mal with respect to U , so Ann must include both L and R. Turning to Bob, by
the same principle he should then include D for Ann, since D could be opti-
mal with respect to {L�R}. Contradiction. What if the answer includes Ann’s
playing D? But then Bob must play L (admissibility). From this, Ann will play
U , so D is excluded, not included. Another contradiction.

More generally, Samuelson formalized a condition of “common knowl-
edge of admissibility” (CKA) and showed that a “consistent pair” (Börgers
and Samuelson (1992))—another weak dominance analog to a Pearce best-
response set—is always consistent with CKA.1 Consistent pairs may or may
not exist. In particular, Figure 2.1 is a game where no consistent pair exists.
By contrast, self-admissible sets (SAS’s) always exist: the iteratively admissible
(IA) set is an SAS. In Figure 2.1, {(U�L)} is the (unique) SAS. The reason for
the difference is that while we also require Ann to include R, she can consider
R infinitely less likely than L, in which case only U (and not D) is optimal. A
consistent pair (when it exists) may contain inadmissible strategies and so may
not be an SAS. If it contains only admissible strategies, it is an SAS.

B. Other Routes to IA: Other papers provide foundations for IA. Stahl
(1995) used LPS’s and supposed that Ann considers Bob’s strategy sb infinitely
less likely than his strategy rb, if sb is eliminated on an earlier round of IA than

1He gave a mixed analog to consistent pairs as defined in Börgers and Samuelson (1992). We
are stating his result for the case of pure strategies.
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rb. We want this condition as an output, not an input, of our analysis. For us,
the crucial ingredient, to get IA, is completeness. We saw that without this we
get an SAS, not the IA set.

Ewerhart (2002) also provided epistemic conditions for IA. His conditions
use provability (in the sense of mathematical logic). In his model, Ann assigns
probability 0 to a strategy of Bob’s if and only if it is not provable that it is pos-
sible that Bob plays that strategy. In effect, Ann eliminates a strategy of Bob’s
unless it is provable that it should not be eliminated. The philosophy in Ew-
erhart seems almost opposite to ours. Ewerhart’s players are “aggressive” (his
terminology) in eliminating strategies of the other player. Our players are, in
a sense, cautious in eliminating strategies of the other player, since no strategy
is ever entirely ruled out. Ewerhart showed that if the players follow his rule
and if they work in a self-referential system such as Peano Arithmetic, then
they will choose IA strategies. Completeness does not appear to play a role in
Ewerhart’s analysis.

C. IA vs. Properness: Kohlberg and Mertens (1986, p. 1009) explained that
forward induction and properness are distinct principles. Note that the former
finds its modern epistemic expression in the form of complete type structures.
So, arguably, IA captures forward-induction reasoning. In this sense, our analy-
sis is quite different from the properness route.

An example of the properness route is Asheim (2001), who provided epis-
temic conditions for proper rationalizability (Schuhmacher (1999))—a non-
equilibrium analog to proper equilibrium and a refinement of S∞W . Asheim
supposed that Ann has a full-support LPS and believes the relevant events.
He further asked that Ann’s LPS “respect preferences”—that is, if Bob strictly
(lexicographically) prefers (sb� tb) to (rb� tb), then Ann should consider (sb� tb)
infinitely more likely than (rb� tb). Go back to the game of Figure 2.7 and the
type structure of Figure 2.8. Bob’s LPS there does not respect preferences.
Given her type ta, Ann strictly prefers D to M , but Bob considers (M� ta) in-
finitely more likely than (D� ta). As we saw, Bob does assume Ann is ratio-
nal. Both (M� ta) and (D� ta) are irrational, and considered infinitely less likely
than the rational pair (U� ta). Our route to overturning the (U�L) answer was
different—we did so by rationalizing D (but not M) by adding more types (à la
completeness). To repeat, the understanding that there are these two different
routes goes back to Kohlberg and Mertens.

Asheim (2001, Proposition 2) said that, in a two-player game, if (σa�σb) is
a proper equilibrium, then Suppσa × Suppσb is proper rationalizable. Thus,
the proper rationalizable profiles need not be contained in the IA set. Asheim
also gave an example where the IA profiles are strictly contained in the proper
rationalizable profiles. We do not know if this relationship must hold more
generally.

D. Other Solution Concepts: Asheim and Dufwenberg (2003) defined an-
other refinement of S∞W , called a fully permissible set. An SAS (in fact, the
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IA set) may be disjoint from every fully permissible set. Likewise, a fully per-
missible set need not be an SAS (so, in particular, need not be the IA set).
Naturally, since the fully permissible set concept is distinct from SAS/IA, so
is its epistemic characterization. For more on the epistemic analysis of fully
permissible sets, see Asheim and Dufwenberg (2003).

Two final solution concepts: Adapting Ewerhart’s (1998) definition of a mod-
ified consistent pair to pure vs. mixed strategies, we have that a modified con-
sistent pair is an SAS, but not conversely. We can have an SAS which is not a
(tight) CURB (closed under rational behavior) set (Basu and Weibull (1991))
and a (tight) CURB set which is not an SAS.
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