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APPENDIX A: ON ATM CARDS AND ATM CASH WITHDRAWALS IN ITALY

This appendix provides some institutional information on the ATM card
transactions technology in Italy. Cash intermediation (e.g., debiting or credit-
ing cash on a deposit account) is reserved to banks: as a consequence, all ATM
terminals are owned by banks. About 80% of the ATM terminals are located
in the premises of a bank branch; the remaining 20% are not (e.g., located in
airports, shopping malls, etc.). These figures do not change much over time in
our sample period. Hence the number of bank branches is a good proxy for
the number of ATM terminals. The time-series correlation between the two
series is positive and very strong, and so is the cross-section correlation (the
linear correlation across provinces is between 0.75 and 0.94 in each year of the
sample). However, in the time series, ATMs grow faster than bank branches:
the ratio of the total number of ATMs to bank branches was 0.6 in 1993 and
1.2 in 2004.

Most ATM cards can also be used as debit cards, and they can be used na-
tionwide for cash withdrawals. The cash-back option (i.e., getting cash at a su-
permarket in exchange for a debit transactions) does not exist in Italy: only
banks can act as cash intermediaries. Most ATM cards exact a fee of about 2
euros if cash is taken from a terminal that does not belong to the agent’s bank;
withdrawals at own bank are free.

Next, we compare data on average ATM withdrawals drawn from two
sources: our households survey data (Survey of Household Income and Wealth
(SHIW)) and the data drawn from banks’ records as reported in the European
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Central Bank (ECB) Blue Book (2006). Table 12.1a in the bluebook reports
the total number of cash withdrawals at ATMs in a year. Table 13.1a gives the
total value of cash withdrawals at ATMs in a year. The average withdrawal
computed as the ratio of these two numbers for the years 2001, 2002, and 2004
is 162, 205, and 169 euros, respectively (these years are the closest to those of
the SHIW survey years). In the household survey we compute the analogous
statistics for the years 2000, 2002, and 2004, obtaining 177, 185, and 205 euros,
respectively. For each year, the latter statistics were computed as the ratio be-
tween the sum across households of the amount of cash withdrawn from ATMs
and the sum across households of the number of withdrawals from ATMs. For
each household, the total amount of cash withdrawn from ATM was given by
the average ATM withdrawal times the number of ATM withdrawals. These
statistics differ from the statistics on W reported in Table I in the paper for
three reasons. First, because even for households with an ATM card, W in-
cludes withdrawals done at the bank desk (which are larger on average). Sec-
ond, W is measured in 2004 euros. Third, W reports the average withdrawal
per household, so the weighting is different.

APPENDIX B: STATISTICS ON THE PROBABILITY OF CASH THEFT IN ITALY

The statistics on the probability of cash thefts (κ) for Italy are computed in
three steps.

Step 1. We consider four crimes where cash is lost: bag-snatching (scippi),
pickpocketing (borseggi), theft (furti), and robbery (rapine). Using survey data
on victimization per person (aged 14 or older) for the whole of Italy (i.e., aver-
age of 103 provinces) in the year 2002 gives the following percentages for each
of the crimes, respectively:1 0.4 , 1.4 , 2.2, and 0.3.

Step 2. Next, we adjust the statistic for each crime to take into account
information on the percentage of crimes where cash is taken (source: Isti-
tuto nazionale di statistica (Istat) victimization survey). For instance, for bag-
snatching cash is taken 49% of the time. The statistics that we are interested in
for 2002 is

κ= (0�4 · 0�49 + 1�4 · 0�61 + 2�2 · 0�37 + 0�3 · 0�59)= 2�041�

Step 3. Finally, using data on bag-snatching (scippo) and pickpocketing
(borseggi) across 103 Italian provinces, and using a time series for these two
crimes at the country level across years (source: Istat), we construct values of
κ that vary across provinces and years. A comparison between the statistics for
Italy and those obtained for the United States following a similar procedure is

1Victimization rates: Istat, Figure 1.1 on page 13 of “La Sicurezza dei Cittadini, Year 2002”
(N. 18, published in 2004); Fraction of crimes where cash is taken: Istat Table 7.1 on page 67 of
report “La Sicurezza dei cittadini.”
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given in Technical Appendix B, available on our website. In summary, the fig-
ures on the probability of cash theft are not that different between the United
States and Italy. Table III in the Technical Appendix shows that an overall sim-
ilar picture emerges using three different data sources.

APPENDIX C: ON THE AVERAGE CASH BALANCE M WITH
A PRECAUTIONARY MOTIVE

PROPOSITION 1: Assume that π = 0 and let λ denote the time elapsed between
two consecutive withdrawals. Let M(λ) be the average cash balance during this
elapsed time, let W (λ) be the withdrawal at the end of a period of length λ, and
let M(λ) be the cash balance just prior to the withdrawal. Let M be the expected
value of cash holdings under the invariant distribution and let g(λ) be the density
of the distribution of the lengths. We then have

M(λ)=M(λ)+ W (λ)

2
=m∗ − (cλ)

2
�(S1)

M =

∫ ∞

0
M(λ)λg(λ)dλ∫ ∞

0
λg(λ)dλ

�(S2)

PROOF: Let t ∈ [0�λ] index the time elapsed in an interval of length λ. The
law of motion of cash and the optimal policy imply that cash holdings obey
m(t) = m∗ − cλ for t ∈ [0�λ) and m(λ) = m∗; W (λ) = m+(λ) −m−(λ) and
m∗ =W (λ)+M(λ) imply equation (S1). The ergodic theorem implies, usingω
to index the sample space,

M = lim
T→∞

(1/T)
∫ T

0
m(t�ω)dt in probability�(S3)

from which equation (S2) can be derived. Q.E.D.

REMARK 1: If the distribution of the length λ is concentrated at a single
value λ̄, as in a deterministic model, then M =M(λ̄). Then

M =M(λ̄)=M(λ̄)+W (λ̄)/2�

REMARK 2: When the distribution of the length λ is not degenerate, then

M <

∫ ∞

0
M(λ)g(λ)dλ=

∫ ∞

0
M(λ)g(λ)dλ+ 1

2

∫ ∞

0
W (λ)g(λ)dλ�
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where the inequality follows because M(λ) is decreasing in λ. Thus M , the
duration weighted expected value of M(λ), is smaller than the unweighted
expected value in the right hand side of the inequality.

APPENDIX D: CASH-FLOW IDENTITY: THEORY AND EVIDENCE

We derive the relationship

c = nW −πM(S4)

between the average (real) cash balances M , average (real) withdrawal
amount W , average (real) consumption flow c, average number of with-
drawals n per unit of time, and the inflation rate π for a (large) class of cash
management policies. In what follows we fixed a particular path and denote
the real cash balances at time t by m(t), let τi be the times at which there are
withdrawals for this sample path, and let wi be the corresponding withdrawal
amounts. In between withdrawals, cash balances satisfy

dm(t)

dt
= −c −m(t)π�

At times t = τi, a withdrawal of size wi, defined as an upward jump on m,
occurs:

wi ≡ lim
t↓τi
m(t)− lim

t↑τi
m(t) > 0�

Thus we have that

m(t)=m(0)−
∫ T

0
(c +πm(s))ds+

N(T)∑
i=1

wi�

where N(T) denotes the number of (upward) jumps up to time T in the path:
N(T)≡ {N :τN ≤ T ≤ τN+1}�

Dividing by T and rearranging gives

m(t)−m(0)
T

= −c −π 1
T

∫ T

0
m(s)ds+

[
N(T)

T

][
1

N(T)

N(T)∑
i=1

wi

]
�

Then define

M ≡ lim
T→∞

1
T

∫ T

0
m(s)ds� n≡ lim

T→∞
N(T)

T
� and

W ≡ lim
T→∞

1
N(T)

N(T)∑
i=1

wi�
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FIGURE S.1.—Measurement error: deviation from the cash-flow identity.

where M� n, and W are the average money balances, average number of with-
drawals per unit of time, and average amount of withdrawal. Assuming that,
for almost all paths, the limits M , n, and W are well defined, and that the
process is ergodic, so that these time averages converge to the unconditional
expectations for almost all paths, we obtain equation (S4). In all the models we
analyze, these limits exist and coincide for all paths as a consequence of basic
results on renewal theory, but of course their validity is much more general.

An illustration of the extent of the measurement error can be derived by as-
suming that the data satisfy the identity in (S4). Figure S.1 reports a histogram
of the logarithm of n(W /c)− π(M/c) for each type of household. In the ab-
sence of measurement error, all the mass should be located at zero. It is clear
that the data deviate from this value for many households.2 At least for house-
holds with an ATM card, we view the histogram to be well approximated by
a normal distribution (in log scale).

APPENDIX E: WEIGHTS USED IN THE ESTIMATION

Table S.I displays the average weights Nj/σ
2
j used in estimation, the aver-

age Nj (across provinces and years), and the estimated value of σ2
j . The latter

are estimated as the variance of the residual of a regression of each of the j
variables at the household level against dummies for each province–year com-
bination (separate regressions are used for households with and without ATM
cards).

2Besides measurement error in reporting, which is important in this type of survey, there is
also the issue of whether households have an alternative source of cash. An example of such
a source occurs if households are paid in cash. This will imply that they require fewer withdrawals
to finance the same flow of consumption or, alternatively, that they effectively have more trips
per periods.
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TABLE S.I

WEIGHTS USED IN ESTIMATIONa

log(M/c) log(W /M) log(n) log(M/M)

Households with ATM
Average weight (Nj/σ

2
j ) 30 17 22 14

Variance (σ2
j ) 0�46 0�42 0�53 0�82

Average no. of households in
province–year–consumption cell (Nj) 13�5 6�3 12 9�5

Households without ATM
Average weight (Nj/σ

2
j ) 26 14 12 11

Variance (σ2
j ) 0�41 0�51 0�62 0�82

Mean no. of households in
province–year–consumption cell (Nj) 10�7 7�4 7�6 7�6

aThere is a total of 3189 estimation cells (the available observations of the Cartesian product of 6 years, 103
provinces, ATM ownership, and 3 consumption groups).

APPENDIX F: ESTIMATION UNDER ALTERNATIVE CELL DEFINITIONS

This appendix reports the estimation results of the model with random free
withdrawals obtained under five alternative aggregations and selection of the
raw data.

The baseline aggregation used in the estimates of Section 5 includes all
households with a deposit account for whom the survey data are available
(see the paper for details). The elementary household data were aggregated
at the province–year–household type (ATM/no ATM and three consumption
groups), providing us with a total of about 1800 observations per type of with-
drawal technology (ATM/no ATM) to be fitted (103 provinces × 6 years × 3
consumption groups), each one based on approximately 13 elementary house-
hold observations. Four additional aggregations of the data were explored. Ta-
ble S.II provides a quick synopsis that is helpful for comparing the results ob-
tained from our benchmark specification (reported in the fifth column for ease
of comparison) with the ones produced by those alternatives.

The first alternative aggregation of the data, reported in the second column
of Table S.II, differs from the baseline case in that it does not split house-
holds according to their consumption level. This increases by about three times
the number of elementary household observations used for the estimate of
(p�b/c) in a given province–year–household type. The value of the point esti-
mates is close to the one obtained in the baseline exercise, though the greater
number of underlying observation increases the statistical significance of the
estimates.

Two alternative aggregations of the data exclude households that receive
more than 50% of their income in cash or violate the cash-flow identity of equa-
tion (S4) by more than 200%. This choice removes households for whom cash
inflows are an important source of replenishment (as this channel is ignored
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TABLE S.II

ESTIMATION OUTCOMES OVER FIVE DIFFERENT DATA SETSa

Data Setb

Province–Year Province–Year–Consumption

Raw Filtered
Region–Year–Consumption

(Filtered) Raw Filtered

Households with ATM
No. of estimates 576 563 532 1654 1454
Mean no. of HH per est. 39 17 16 14 6

% of estimates where
Hypothesis f = 0 rejected 40 33 42 19 17
F(θ�x) < 4�6 42 47 38 57 60

Mean estimate of p 22 29 27 22 29
Mean t-statistic 4.9 4.4 4.4 3.1 3.0
Corr. w. bank branchesc 0.1 0.0 0.0 0.1 0.1

Mean estimate of b/c · 100 2.6 2.5 2.5 4.0 3.8
Mean t-statistic 4.5 3.3 3.5 2.8 2.3
Corr. w. bank branchesc −0.2 −0.2 −0.3 −0.2 −0.2

Households without ATM
No. of estimates 550 538 535 1539 1411
Mean no. of HH per est. 30 14 13 11 5

% of estimates where
Hypothesis f = 0 rejected 9 6 3 2 1
F(θ�x) < 4�6 49 66 70 64 74

Mean estimate of p 7 7 7 8 8
Mean t-statistic 3.7 3.1 3.0 2.4 2.1
Corr. w. bank branchesc 0.0 0.0 −0.1 0.0 0.1

Mean estimate of b/c · 100 6.7 6.2 5.8 7.7 7.4
Mean t-statistic 4.2 3.3 3.3 2.7 2.3
Corr. w. bank branchesc −0.3 −0.2 −0.3 −0.3 −0.2

aSample statistics computed on the distribution of the estimates after trimming the (p�b/c) distribution tails of
the highest and lowest percentiles (1% from each tail). The variable b/c is measured as a percentage of the daily cash
expenditure.

bThe labels that appear below indicate the type of aggregation that was performed on the elementary household
data in each year: ‘Province’ or ‘Region’ refers to the geographical level of aggregation; ‘Consumption’ indicates that
households were clustered within the relevant observation unit, e.g., in a province–year, on the basis of their cash
expenditure level (3 bins were considered for the province–year dataset, 5 bins for the region–year dataset); ‘Raw’
or ‘Filtered’ indicates whether the aggregation was based on the raw data or on a filtered dataset which excludes
households who receive more than 50% of income in cash and/or violate the cash-holdings identity by more than
200%.

cCorrelation coefficient between the estimated values of (p�b/c) and the number of bank branches per capita
measured at the province level. All variables are measured in logs.

by our baseline model) and observations affected by large measurement error.
This selection criterion roughly halves the number of elementary observations.
The estimation results obtained from these data when one or three consump-
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tion groups are considered (third and last columns of Table S.II, respectively)
are extremely similar to the ones of the baseline case (fifth column).

The last experiment that we report involves aggregation of the household
data at the regional, rather than province, level (a region is a geographical unit
which contains several provinces; there are 103 provinces and 20 regions in
Italy). This allows us to consider a finer grid of consumption classes, namely
five for the instance reported in the fourth column of the table, thus increas-
ing the mean number of elementary observations used in each estimation cell.
Again, as the table shows, the results are similar to the ones produced by the
other approaches.

APPENDIX G: HOUSEHOLD-LEVEL ESTIMATES WITH
UNOBSERVED HETEROGENEITY

The estimation strategy pursued in Section 5.2 of the paper is based on two
assumptions: (i) the parameters b/c and p are the same for all households
in a given cell; (ii) the variables (M/c, W/M , n, M/M) are observed with
a classical measurement error (in this section we refer to these estimates as
cell estimates). An alternative estimation strategy, developed in Section 5.3 of
the paper, also assumes that the household variables are observed with classical
measurement error, but posits that the parameters b/c and p differ for each
households, and are given by a simple function of household level variables.
We refer to this case as the one with observed household level heterogeneity.

This section considers yet another strategy where the estimation incorpo-
rates unobserved household level heterogeneity and NO measurement error.
We estimate the distribution of the household level values for (p�b/c) non-
parametrically. In this case we assume that each household has a pair of pa-
rameters b/c and p, and assume that we observe (M/c�W /M�n�M/M) with
no error. With no need to assume a functional form for the distribution of
the parameters (p�b/c), these assumptions allow us to estimate the model
for each household separately. Note that unless the four observables (M/c,
W/M , n, M/M) for a given household can be rationalized by the two para-
meters (p�b/c), the observations will be inconsistent for this household. To
address this stochastic singularity (that comes from having four observables,
no measurement error, and only two parameters), we estimate the model us-
ing only two observables: (M/c�n), the two variables for which we have more
observations.

To be concrete we apply this estimation strategy to all households in four
large provinces (Turin, Milan, Florence, Rome), using data for all the years
(from 1993 to 2004), for households (HH) with or without ATM cards, and
for each third-tile of the cash consumption distribution. We label these esti-
mates as HH Unobs. Heterogeneity estimates and compare them with the cell
estimates obtained using observation on (M/c�n) and assuming that these are
measured with error. Since there are two parameters and two observables, the
Cell estimates produce one (p�b/c) parameter vector for the whole cell, while
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TABLE S.III

ESTIMATES OF p�b OVER 1993–2004 USING M/c AND na

Cash Expenditure Group

Low Medium High Low Medium High

Province No. of Obs. HH Unobs. Heterogeneity Cell Estimates

Household with ATM
Estimates of p

Turin 1215 25 25 32 26 28 28
Milan 1355 31 32 35 37 32 32
Florence 632 35 39 32 29 37 27
Rome 752 36 32 38 30 28 29

Estimates of b/c · 100
Turin 1215 12 4 2 2 2 2
Milan 1355 18 7 4 5 4 4
Florence 632 27 15 4 5 8 5
Rome 752 19 8 5 6 5 5

Household without ATM
Estimates of p

Turin 563 8 8 10 0 0 0
Milan 358 8 8 8 0 5 0
Florence 292 16 13 9 0 0 0
Rome 344 9 8 8 0 0 0

Estimates of b/c · 100
Turin 563 16 7 5 5 4 5
Milan 358 38 23 8 9 12 12
Florence 292 31 19 19 12 19 14
Rome 344 36 27 23 20 14 13

aThe entries for the HH level unobserved heterogeneity are the median of the distribution of estimated p�b values.
All are based on the two observables M/c and n.

the HH unobserved heterogeneity estimates produce a distribution of the pa-
rameters (p�b/c) for each cell. Table S.III reports the median of the (p�b/c)
estimates for four major Italian provinces and, for comparison, we report the
values obtained using cell estimates for the case in which two observable vari-
ables were used.

Table S.III shows that the cell estimates and the HH estimates with unob-
served heterogeneity display similar patterns: Households with an ATM card
have higher values of p and smaller values of b/c compared to households
without an ATM. Moreover, the value of b/c is decreasing in the level of cash
expenditure, while the value of p is roughly independent of c.

G.1. Mean vs. Medians and Two vs. Four Variables

This subsection analyzes means, medians, and standard deviations obtained
from the HH unobserved heterogeneity estimates for the province of Turin,
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TABLE S.IV

ESTIMATES OF (p�b) FOR HOUSEHOLD WITH ATM IN TURIN OVER 1993–2004a

Cash Expenditure Group

Low Medium High Low Medium High

Parameter p Parameter b/cday · 100

HH estimates
Mean 33 30 37 53 19 9
Median 25 25 32 12 4 2
Std. dev. 28 27 29 141 102 37

Cell mean estimates
Two variables 26 28 28 2 2 2
Four variables (as in paper) 14 17 23 6 2 2

a The means and the standard deviations for the HH level unobserved heterogeneity estimates are computed by
trimming 1% of observation from each tail of the distribution estimates.

and compares them with two types of cell estimates obtained using two and
four observables, respectively.

The first three rows of Table S.IV display the HH unobserved heterogeneity
estimates, the next two rows report the cell estimates. There is a large dis-
persion across households on the values of the HH unobserved heterogeneity
estimates for (p�b/c), reflecting the large variability of M/c and n in a given
cell. As noted above, the median values of the HH unobserved heterogeneity
estimates for (p�b/c) are similar to the corresponding values of the cell esti-
mates using two observables. Instead, the mean values of the HH unobserved
heterogeneity estimates for (p�b/c) are larger than the corresponding values
of the cell estimates using two observables, especially for b/c, even after trim-
ming the top and bottom 1% of the estimate distribution. This difference is
due, mechanically, to the effect of a large right tail in the distribution of the
estimated values of (b/c�p).

The large right tail of the estimates using unobserved heterogeneity reflects
two facts: the large variability of the observables (M/c�n) across households
and a particular nonlinearity of our model. Below we illustrate the nature of
this nonlinearity and conduct a Monte Carlo experiment to analyze its effect
on the estimates. In the model there is a relationship between M/c and n, due
to the nature of the optimal policy, which has to hold for any value of b/c
and R, and that we derived in the Section 5.1 in the paper for the case of zero
inflation:

M

c
= ξ(n�p)= 1

p

(
− n
p

log
(

1 − p

n

)
− 1

)
�

Without measurement error, this relationship has to hold exactly for each
household. This means that given the observable values of (M/c�n) for this
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household, the function ξ implicitly identifies this household estimate of p.
Furthermore, since the model requires n≥ p, fixing p, the function ξ has a ver-
tical asymptote as n ↓ p in the (n�M/c) coordinates. Moreover, fixing p, the
different points in the curve defined by (n�M/c)= (n�ξ(n�p)) correspond to
different values of b/(cR). In other words, the value of b/(cR) is identified by
the location of the pair (n�M/c) on a given ξ curve indexed by p. Thus, since
the ξ(·�p) function becomes vertical as n ↓ p, observations with large M/c
relative to n correspond to extremely large values of b/(cR).

We conducted the following Monte Carlo experiment. We assume that the
data generating mechanism is one where all households in a cell have the same
values of (p�b/c), that is, we assume that there is NO unobserved heterogene-
ity. In particular, we set the value of b/c = 0�02 and p = 28, corresponding
to some of the typical values estimated above (see Turin two-variable cell es-
timates for the median cash expenditure group). We create a sample of size
N = 10,000 of values of (M/c�n) obtained by adding independent measure-
ment error, additive in logs, with variance σ2

M/c = 0�46 and σ2
n = 0�53 (as from

our estimates; see Table S.I). We treat this artificial sample as if it were a sam-
ple of households characterized by unobserved household level heterogeneity
and estimate the distribution of (p�b/c). The medians of the estimated values
of p and b/c are, respectively, 37 and 3. These values are close to the true ones
(28 and 2, respectively). The means of the estimated values of p and b/c are,
respectively, 41 and 16. It appears that, consistent with our explanation of the
nonlinearity presented above, the mean value of b/c is much higher than its
true value.

We conclude by analyzing the effect of the number of observables used on
the estimates of p and b/c. The cell estimates that appear in the last line of Ta-
ble S.IV use four observables (M/c,W/M , n,M/M), as in the benchmark case
considered in the paper; the previous line instead, used only two observables:
M/c and n. Using four variables reduces the estimated values for p with minor
effects on the value of b/c. Clearly the observed values ofW/M andM/M are
not in line with the values predicted by the model when the estimates with two
variables are used. In particular, at these values the model has a larger precau-
tionary component than is observed (i.e., smaller values of W/M and higher
values ofM/M). Another clear illustration of the difference produced by using
more variables comes from observing that the estimates for p for households
without an ATM presented in Table S.III are often equal to zero, while this is
not true in the paper. The reason, again, is that if p = 0, the model predicts
values for W/M = 2 and M/M = 0 which are far from those observed in the
data. That is why, when estimated using four variables, the value of p is closer
to 7.

APPENDIX H: A MODEL WITH COSTLY RANDOM WITHDRAWALS

The dynamic model discussed in the paper has the unrealistic feature that
agents withdraw every time a match with a financial intermediary occurs, thus
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making as many withdrawals as contacts with the financial intermediary; many
of the withdrawals are of a very small size. In this section we extend the model
to the case where the withdrawals (deposits) done upon the random con-
tacts with the financial intermediary are subject to a fixed cost f , assuming
0 < f < b� The model produces a more realistic depiction of the distribution
of withdrawals by limiting the minimum withdrawal size. In particular, we show
that the minimum withdrawal size is determined by the fixed cost relative to the
interest cost (i.e., f/R) and that it is independent of p. On the other hand, if f
is large relative to b, the predictions get closer to those of the Baumol and To-
bin (BT) model. Indeed, as f goes to b, then there is no advantage to a chance
meeting with the intermediary, and hence the model is identical to the one of
the previous section, but with p= 0.

In this section we formulate the dynamic programming problem for f > 0,
solve its Bellman equation, and characterize its optimal decision rule. We also
derive the corresponding invariant distribution and the expressions for n, M ,
W , and M . As several features of this case are similar to the previous one we
streamline the presentation and do not report results on comparative statics or
welfare.

We skip the formulation of the total cost problem, which is exactly parallel
to the one for the case of f = 0. Using notation that is analogous to the one
that was used above, the Bellman equation for this problem when the agent is
not matched with a financial intermediary is given by

rV (m)=Rm+pmin{V ∗ + f − V (m)�0} + V ′(m)(−c −mπ)�(S5)

where V ∗ ≡ minm̂ V (m̂) and min{V ∗ + f − V (m)�0} takes into account that it
may not be optimal to withdraw/deposit for all contacts with a financial inter-
mediary. Indeed, whether the agent chooses to do so will depend on her level
of cash balances.

We will guess, and later verify, a shape for V (·) that implies a simple thresh-
old rule for the optimal policy. Our guess is that V (·) is strictly decreasing at
m= 0 and single peaked, attaining a minimum at a finite value of m. Then we
guess that there will be two thresholds, m and m̄, that satisfy

V ∗ + f = V (m)= V (m̄)�(S6)

Thus solving the Bellman equation is equivalent to finding five numbers m∗,
m∗∗, m, m̄, and V ∗, and a function V (·) such that

V ∗ = V (m∗)� 0 = V ′(m∗)�(S7)
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V (m)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rm+p(V ∗ + f )− V ′(m)(c +mπ)
r +p � if m ∈ (0� m),

Rm− V ′(m)(c +mπ)
r

� if m ∈ (m� m̄),
Rm+p(V ∗ + f )− V ′(m)(c +mπ)

r +p � if m ∈ (m̄� m∗∗),

(S8)

and the boundary conditions

V (0)= V ∗ + b� V (m)= V ∗ + b for m>m∗∗�(S9)

Hence the optimal policy in this model is to pay the fixed cost f and withdraw
cash if contact with the financial intermediary occurs when cash balances are in
the (0�m) range, or to deposit if cash balances are larger than m̄. In either case,
the withdrawal or deposit is such that the posttransfer cash balances are equal
to m∗. If the agent contacts a financial intermediary when her cash balances
are in (m� m̄), then no action is taken. If the agent’s cash balances get to zero,
then the fixed cost b is paid, and after the withdrawal the cash balances are
set to m∗. Notice that m∗ ∈ (m� m̄). Hence in this model withdrawals have a
minimum size given bym∗ −m. This is a more realistic depiction of actual cash
management.

Now we turn to the characterization and solution of the Bellman equation.

PROPOSITION 2: For a given V ∗, m�m̄� and m∗∗ satisfying 0<m< m̄ <m∗∗,
the solution of (S8) for m ∈ (m� m̄) is given by

V (m)= ϕ(m�Aϕ)(S10)

≡ −Rc/(r +π)
r

+ Rm

r +π +
(
c

r

)2

Aϕ

[
1 +πm

c

]−r/π

for an arbitrary constant Aϕ.
Likewise, the solution of (S8) for m ∈ (0� m) or m ∈ (m̄� m∗∗) is given by

V (m)= η(m�V ∗�Aη)(S11)

≡
p(V ∗ + f )− Rc

r +p+π
r +p + Rm

r +p+π

+
(

c

r +p
)2

Aη

[
1 +πm

c

]−(r+p)/π

for an arbitrary constant Aη.
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PROOF: The proposition is readily verified by differentiating (S10) and (S11)
in their respective domains. Q.E.D.

Next we are going to list a system of five equations in five unknowns that de-
scribes aC1 solution of V (m) on the range [0�m∗]. The unknowns in the system
are V ∗�Aη�Aϕ�m, and m∗. Using Proposition 2, and the boundary conditions
(S6), (S8), and (S9), the system is given by the equations

ϕm(m
∗�Aϕ)= 0�(S12)

ϕ(m∗�Aϕ)= V ∗�(S13)

η(m�V ∗�Aη)= V ∗ + f�(S14)

η(0� V ∗�Aη)= V ∗ + b�(S15)

ϕ(m�Aϕ)= V ∗ + f�(S16)

In the proof of Proposition 3 we show that the solution of this system can
be found by solving one nonlinear equation in one unknown, namely m. Once
the system is solved, it is straightforward to extend the solution to the range
(m∗�∞).

PROPOSITION 3: There is a solution for the system (S12)–(S16). The solution
characterizes a C1 function that is strictly decreasing on (0�m∗), convex on (0� m̄),
and strictly increasing on (m∗�m∗∗). This function solves the Bellman equations
described above. The value function satisfies

V (0)= R

r
m∗ + b�(S17)

See Appendix H.1 for the proof.
Next we present a proposition about the determinants of the range of inac-

tion m∗−m or, equivalently, the size of the minimum withdrawal.

PROPOSITION 4: The scaled range of inaction (m∗ −m)/(c +m∗π) solves

f

R(c+m∗π)
(S18)

=
(
m∗ −m
c+m∗π

)2
[

1
2

+
∑
k=1

1
(k+ 2)!

(
m∗ −m
c+m∗π

)k k+1∏
j=2

(r + jπ)
]
;

hence it can be written as

m∗ −m
c+m∗π

=
√

2 f
R(c +πm∗)

+ o
((

f

R(c+πm∗)

)2)
(S19)
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and, for π = 0, it is increasing in f/R with elasticity smaller than 1/2.

For the proof, see Appendix H.1.
The quantity c + m∗π is a measure of the use of cash per period when

m = m∗. The quantity m∗ − m also measures the size of the smallest with-
drawal. Hence (m∗ −m)/(c +m∗π) is a normalized measure of the minimum
withdrawal. The proposition shows that, for π = 0, the minimum withdrawal
does not depend on p and b, and that, as the approximation above makes clear,
it is analogous to the withdrawal of the BT model facing a fixed cost f and an
interest rate R. Quantitatively, these properties continue to hold for π > 0.

The next proposition examines the expected number of withdrawals n.

PROPOSITION 5: The expected number of cash withdrawals per unit of time,
n(m∗/c� m/c�π�p), is

n= p

(p/π) log(1 + (m∗ −m)π/c)+ 1 − (1 +mπ/c)−p/π(S20)

and the fraction of agents with cash balances below m is given by

H(m)= 1 − (1 +mπ/c)−p/π
(p/π) log(1 + (m∗ −m)π/c)+ 1 − (1 +mπ/c)−p/π �(S21)

See Appendix H.1 for the proof.
Inspection of equation (S20) confirms that whenm∗ >m, the expected num-

ber of withdrawals (n) is no longer bounded below by p� Indeed, as p→ ∞,
then n→ [(1/π) log(1 + (m∗ −m)π/c)]−1� which is the reciprocal of the time
that it takes for an agent who starts with money holdings m∗ (and consuming
at rate c when the inflation rate is π) to reach real money holdings m�

As in the case of f = 0, for any m ∈ [0�m], the density h(m) solves the ordi-
nary differential equation (ODE) given by

∂h(m)

∂m
= (p−π)
(πm+ c)h(m)�(S22)

The reason is that in this interval the behavior of the system is the same as for
f = 0. On the interval m ∈ [m�m∗], the density h(m) solves the ODE

∂h(m)

∂m
= −π
(πm+ c)h(m)�(S23)

In this interval the chance meetings with the intermediary do not trigger a
withdrawal; hence it is as if p= 0.
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PROPOSITION 6: ForH(m) as given in (S21), the cumulative distribution func-
tion (CDF) H(m) for m ∈ [0�m] is

H(m)=H(m)

(
1 + π

c
m

)p/π

− 1(
1 + π

c
m

)p/π

− 1

;(S24)

for m ∈ [m�m∗], it is

H(m)= [1 −H(m)]
log

(
1 + π

c
m

)
− log

(
1 + π

c
m∗

)

log
(

1 + π

c
m∗

)
− log

(
1 + π

c
m

) + 1�(S25)

For the proof see Appendix H.1.
Using the previous density, the average money holding M(m

∗
c
� m
c
�π�p) is

M =
∫ m

0
mh(m)dm+

∫ m∗

m

mh(m)dm�

a closed form expression of which can be found in Technical Appendix F, avail-
able on our websites.

The average withdrawal W (m
∗
c
� m
c
�π�p) is given by

W =m∗
[

1 − p

n
H(m)

]
+

[
p

n
H(m)

]∫ m

0
(m∗ −m)h(m)dm

H(m)
�(S26)

a closed form expression of which can be found in Technical Appendix G, avail-
able on our websites. To understand this expression notice that n− pH(m) is
the number of withdrawals in a unit of time that occur because agents reach
zero balances, so if we divide it by the total number of withdrawals per unit
of time, n, we obtain the fraction of withdrawals that occur when agents reach
zero balances. Each of these withdrawals is of size m∗. The complementary
fraction gives the withdrawals that occur due to a chance meeting with the
intermediary. Conditional on having money balances in (0�m), then a with-
drawal of size (m∗ −m) happens with frequency h(m)/H(m)�

By the same reasoning as in the f = 0 case, the average amount of money
that an agent has at the time of withdrawal, M� satisfies

M = 0
[

1 − p

n
H(m)

]
+

[
p

n
H(m)

]∫ m

0
m h(m)dm

H(m)
�
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As in the f = 0 model, the relationM =m∗ −W holds. Inserting the definition
of M into the expression for M we obtain

M = p

n
M

[
1 −

∫ m∗

m

mh(m)dm

M

]
�

H.1. Proofs for the Model With Costly Withdrawals

PROOF OF PROPOSITION 3: Recall the five equation system (S12)–(S16).
We use repeated substitution to arrive at one nonlinear equation in one un-
known, namely m. Equations (S12) and (S13) yield V ∗ = R/rm∗. Replacing
V ∗ by this expression yields (S13), so we have a system of four equations
in four unknowns. We use (S12) to define Aϕ(m

∗) as its solution, that is,
ϕm(m

∗�Aϕ(m
∗))= 0, which yields

Aϕ(m
∗)= rR

c(r +π)
[

1 +πm
∗

c

]1+r/π
�(S27)

To solve for Aη(m
∗), we use (S14) and rV ∗ =Rm∗ to get

Aη(m
∗)= r +p

c2

(
Rm∗ + br +p(b− f )+ Rc

r +p+π
)
�(S28)

Next we replace Aη and Aϕ in (S14) and (S16) so we get two nonlinear equa-
tions:

η(m�(m∗R/r)�Aη(m
∗))= (m∗R/r)+ f�

ϕ(m�Aϕ(m
∗))= (m∗R/r)+ f�

The first equation, using (S28) to substitute for Aη(m
∗), yields

m∗
1(m)=

(
r +p
R

)⎡
⎢⎢⎢⎣ c

r +p
(
p f

c
− R

(r +p+π)
)

(S29)

+

(
R

r +p+π
)
m+ b

(
1 + π

c
m

)−(r+p)/π
− f

1 −
(

1 + π

c
m

)−(r+p)/π

⎤
⎥⎥⎥⎦ �
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Notice that for π > 0� m∗
1(m) is continuous in (0�∞) and that

lim
m→0

m∗
1(m)= +∞ and lim

m→∞
m∗

1(m)

m
=

(
r +p

r +p+π
)
< 1�

The second equation, using (S27) to substitute for Aϕ(m
∗), yields

m∗ = σ(m∗�m)(S30)

≡
[

r

r +π
]
m+ c

(r +π)

⎛
⎜⎜⎜⎝

[
1 +πm

∗

c

]1+r/π

[
1 + π

c
m

]r/π − 1

⎞
⎟⎟⎟⎠ − f r

R
�

We define m∗
2(m) as the solution to m∗

2(m) = σ(m∗
2(m)�m). Notice that σ is

increasing in m∗ with

∂σ(m�m)

∂m∗ = 1�
∂σ(m∗�m)
∂m∗ > 1 for m∗ >m�

and

σ(m�m)=m− f r
R

so that m∗
2(m) is well defined and continuous on [0�∞), that m∗

2(0) < ∞,
and that m∗

2(m) > m for all m. Using the properties of m∗
1(·) and m∗

2(·), the
intermediate value theorem implies that there is an m̂ ∈ (0�∞) such that
m∗

1(m̂)=m∗
2(m̂).

For π < 0, the range of the functions defined above is [0�−π/c]. By
a straightforward adaptation of the arguments above one can show the exis-
tence of the solution of the two equations in this case.

Next we verify the guesses that the value function V (m) is decreasing in
a neighborhood of m= 0 and single peaked. The convexity of V (m) is equiva-
lent to showing that Aϕ > 0 and Aη > 0, which can be readily established from
(S27) and (S28) provided b > f� Moreover, since Aϕ > 0 and Aη > 0� then
V (m) is strictly decreasing on (0�m∗).

We extend the value function to the range (m∗�∞). Given the values already
found for V ∗ and Aϕ, we find m̄ as the solution to ϕ(m̄�Aϕ)= V ∗ + f , that is,
m̄ solves

(
R

r +π
)
m̄+

(
c

r

)2

Aϕ

[
1 + π

c
m̄

]−r/π
= V ∗ + f + Rc/(r +π)

r
�
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Now given V ∗ and m̄, we find the constant Āη by solving η(m̄�V ∗� Āη) =
V ∗ + f :

Āη =
(
r +p
c

)2(
1 + π

c
m̄

)(r+p)/π

·
(
V ∗ + f − p(V ∗ + f )−Rc/(r +p+π)

r +p − R

r +p+π m̄
)
�

Given V ∗ and Āη, we find m∗∗ as the solution of η(m∗∗� V ∗� Āη)= V ∗ + b.
Now we establish that V is strictly increasing in (m∗�m∗∗). For this, notice

that since η(m̄�V ∗� Āη)= ϕ(m̄�Aϕ), then by inspecting the Bellman equation
(S8) it follows that they have the same derivative with respect to m at m̄� Since
ϕ(m̄�Aϕ) is convex, this derivative is strictly positive. There are two cases. If
Āη is positive, then η(m̄�V ∗� Āη) is convex in this range and hence V is in-
creasing. If Āη is negative, then η(m̄�V ∗� Āη) is concave but it is increasing
since it cannot achieve a maximum since it is the sum of a linear increasing and
a bounded concave function. Q.E.D.

PROOF OF PROPOSITION 4: In Proposition 2 we show that V (m) is analytical
in the interval [m� m∗]. Using V i(·) to denote the ith derivative of V (·), we can
write

V (m)= V (m∗)+
∞∑
i=1

1
i!V

i(m∗)(m−m∗)i�

Using f = V (m)− V (m∗), we write f = ∑∞
i=1(1/i!)V i(m∗)(m−m∗)i. Next we

find an expression for V i(m∗). Differentiating the Bellman equation (S5) with
respect to m in a neighborhood of m∗ yields

R− [r +π]V 1(m)= V 2(m)[c+πm];(S31)

evaluating at m∗, using that V 1(m∗)= 0, we obtain V 2(m∗)=R/c +πm∗. Dif-
ferentiating (S31) repeatedly and using induction yields

[r + (1 + i)π]V i+1(m)= −V i+2
(m)[c+πm] for i≥ 1�(S32)

Solving the difference equation in (S32) evaluated at m∗ gives

V
i+1
(m∗)= (−1)i−1 R

(c +m∗π)i

i∏
j=2

[r + jπ] for i≥ 2�(S33)

Using V 1(m∗) = 0, V 2(m∗) = R/c +πm∗ and (S33) for higher order deriv-
atives into f = ∑∞

i=1(1/i!)V i(m∗)(m −m∗)i, and rearranging yields equation
(S18).
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For π = 0, z = (m∗ − m)/c solves f/(Rc) = z2ψ(z) where ψ(z) = 1/2 +∑∞
k=1(r

kzk/(k+ 2)!). Since ψ > 0 and increasing in z, then (m∗ −m)/c is in-
creasing in f/(Rc) with elasticity smaller than 1/2. Q.E.D.

PROOF OF PROPOSITION 5: The proof for n is analogous to that of the
baseline model with f = 0. Let t be the time to deplete balances from m∗

to m: it solves (m∗ − m) = c
∫ t

0 e
πs ds or t = (1/π) log(1 + (m∗ − m)π/c).

The distribution of the time between withdrawals for this model has density
equal to zero over (0� t) with the right truncation denoted by t̄, which solves
m = c

∫ t̄

0 exp(πs)ds or t̄ = (1/π) log(1 +mπ/c). Thus, the expected time be-
tween withdrawals is given by t + (1 − e−pt̄)/p. Substituting the above expres-
sions into this formula and taking the reciprocal value yields equation (S20) in
the paper.

Now we turn to the derivation of H(m). After each withdrawal, the agent
spends t units of time with m ∈ (m�m∗). The fundamental theorem of renewal
theory implies that the expected time that an agent spends with m ∈ (m�m∗)
in a period of length T converges to nt as T → ∞. By the ergodic theorem,
nt =H(m∗)−H(m)= 1 −H(m). Replacing the expressions for n and t yields
the desired result. Q.E.D.

PROOF OF PROPOSITION 6: By repeated differentiation of (S24) (respec-
tively (S25)) it is readily verified that (S22) is satisfied on the domain (0�m)
(respectively S23 on the domain (m�m∗)). The proof is completed by verify-
ing that the piecewise definition of H satisfies the boundary conditions that
H(0) = 0, H(m∗) = 1, and that both (S24) and (S25) evaluated at m equal
H(m). Q.E.D.

APPENDIX I: TESTING THE f = 0 MODEL VS. THE f > 0 MODEL

We examined the extent to which imposing the constraint that f = 0 dimin-
ishes the ability of the model to fit the data. To do so, we reestimated the model
letting f/c vary across province–year–household type, and compared the fit of
the restricted (f = 0) with the unrestricted model using a likelihood ratio test.

Table S.V reports the percentage of province–year–consumption cells where
the null hypothesis of f = 0 is rejected at a 5% confidence level. It appears that
only for a small fraction of cases (19% for those cells that correspond to house-
holds with ATM cards and 2% for those without cards) there may be some im-
provement in the fit of the model by letting f > 0. We explored two approaches
to estimate the f > 0 model. In one case we let f/c vary across province–year–
household type; in the other case we fixed f/c to a common, nonzero value for
all province–year–types (aggregating all the cash consumption levels). We ar-
gue that while there is an improvement in the fit for a relatively small fraction
of province–years by letting f > 0, as documented in Table S.V, the variables
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TABLE S.V

TESTING THE f > 0 VS. f = 0 MODEL

Household w/o ATM Household w. ATM

Hypothesis f = 0 is rejecteda 2% 19%

aPercentage of estimates where the null hypothesis of f = 0 is rejected by a likelihood ratio test at the 5% confi-
dence level. Based on a comparison between the likelihood for the restricted model (f = 0) with the likelihood for a
model where f/c is allowed to vary across province–year type.

in our data set do not provide us with the type of information that would allow
the parameter f to be identified. Indeed, our findings (not reported) show that
when we let f > 0 and estimate the model for each province–year–type, the
average as well as median t-statistic of the parameters (p�b/c� f/c) are very
low, and the average correlation between the estimates is extremely high. Ad-
ditionally, there is an extremely high variability in the estimated parameters
across province–years.3 We conclude that the information in our data set does
not allow us to estimate p� b/c, and f/c with a reasonable degree of precision.
As we explained when we introduced the model with f > 0, the reason to con-
sider that model is to eliminate the extremely small withdrawals that the model
with f = 0 implies. Hence, what would be helpful to estimate f is information
on the minimum size of withdrawals or some other feature of the withdrawal
distribution.

3The results are available upon request. In the case where f/c is fixed at the same value for all
province–years, the average t-statistics are higher, but the estimated parameters still vary consid-
erably across province–years.
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