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This supplement contains the proofs of Proposition 1 and Lemma 1 that
were stated in the paper.

PROOF OF PROPOSITION 1: For any (y�x) ∈ R × X , FY |X=x(y) =∫ +∞
−∞ Pxu(y)fU |X=x(u)du with Pxu(y) = ∑nx

i=1 πix1(ξixu ≤ y), where 1 denotes
the standard indicator function: For any event A in B, where B is the Borel
σ-algebra on R, 1(A) = 1 if A is true and =0 otherwise. Combining all of the
above, we get

FY |X=x(y)=
nx∑
i=1

πix

∫ +∞

−∞
1(ξixu ≤ y)fU |X=x(u)du�

For any x ∈ X and any 1 ≤ i ≤ nx, let FiY |X=x(y)= ∫ +∞
−∞ 1(ξixu ≤ y)fU |X=x(u)du

for all y ∈ R. Then FiY |X=x(y) : R → R is right-continuous, limy→−∞ FiY |X=x(y)=
0, limy→+∞ FiY |X=x(y) = 1, and FiY |X=x is nondecreasing in y . Hence, FiY |X=x’s
are distribution functions and the conditional distribution of the dependent
variable can be written as in Proposition 1. Moreover, for any (y�x) ∈ R × X ,
we have FiY |X=x(y) − FjY |X=x(y) = ∫ +∞

−∞ 1(ξixu ≤ y < ξjxu)fU |X=x(u)du ≥ 0
whenever ξjxu ≥ ξixu, that is, FjY |X=x(y) ≤ FiY |X=x(y) whenever j ≥ i. So,
FjY |X=x first-order stochastically dominates FiY |X=x for any j ≥ i. Q.E.D.

PROOF OF LEMMA 1: Fix (y0�x) ∈ R × X : continuity and limit conditions
on r(y�x) in S1 then ensure that the envelope re(y�x) is well defined on
[y0�+∞). Now consider y ≥ y0. That 1(ξnxxu ≤ y) = 1(u ≤ re(y�x)) follows
from showing that re(ξnxxu�x) = r(ξnxxu�x), as re is nonincreasing and ξnxxu

is the largest equilibrium. We proceed in two steps. First, we show that for
all y > ξnxxu, we have r(ξnxxu�x) > r(y�x). If that were not the case, then
there would exist a y ′ > ξnxxu such that r(ξnxxu�x) ≤ r(y ′�x). But this is incom-
patible with ξnxxu being the largest equilibrium: we would have u ≤ r(y ′�x),
so given the limit condition S1(ii) on r at +∞, there would be an equilib-
rium larger than ξnxxu. Second, we show that re(ξnxxu�x) = r(ξnxxu�x). By
definition of re, we have re(ξnxxu�x) ≥ r(ξnxxu�x), so we need to rule out
that strict inequality holds. We again reason by contradiction: assume that
re(ξnxxu�x) > r(ξnxxu�x). From the first step, we know that r(ξnxxu�x) > r(y�x)
for all y > ξnxxu. Then consider the function which coincides with re(y�x) for
y < ξnxxu and with min{re(y�x)� r(y�x)} for y ≥ ξnxxu. This function is nonin-
creasing, larger than r, and smaller than re at ξnxxu, which is impossible by the
definition of re. Q.E.D.
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