SUPPLEMENT TO "TESTING MODELS WITH MULTIPLE EQUILIBRIA BY QUANTILE METHODS"

(Econometrica, Vol. 77, No. 4, July 2009, 1281–1297)

By Federico Echenique and Ivana Komunjer

This supplement contains the proofs of Proposition 1 and Lemma 1 that were stated in the paper.

PROOF OF PROPOSITION 1: For any $(y,x) \in \mathbb{R} \times \mathcal{X}$, $F_{Y|X=x}(y) = \int_{-\infty}^{+\infty} \mathcal{P}_{xu}(y) f_{U|X=x}(u) \, du$ with $\mathcal{P}_{xu}(y) = \sum_{i=1}^{n_x} \pi_{ix} \mathbb{1}(\xi_{ixu} \leq y)$, where $\mathbb{1}$ denotes the standard indicator function: For any event A in B, where B is the Borel σ -algebra on \mathbb{R} , $\mathbb{1}(A) = 1$ if A is true and =0 otherwise. Combining all of the above, we get

$$F_{Y|X=x}(y) = \sum_{i=1}^{n_x} \pi_{ix} \int_{-\infty}^{+\infty} \mathbb{1}(\xi_{ixu} \le y) f_{U|X=x}(u) \, du.$$

For any $x \in \mathcal{X}$ and any $1 \leq i \leq n_x$, let $F_{iY|X=x}(y) = \int_{-\infty}^{+\infty} \mathbb{1}(\xi_{ixu} \leq y) f_{U|X=x}(u) \, du$ for all $y \in \mathbb{R}$. Then $F_{iY|X=x}(y) : \mathbb{R} \to \mathbb{R}$ is right-continuous, $\lim_{y \to +\infty} F_{iY|X=x}(y) = 0$, $\lim_{y \to +\infty} F_{iY|X=x}(y) = 1$, and $F_{iY|X=x}$ is nondecreasing in y. Hence, $F_{iY|X=x}$'s are distribution functions and the conditional distribution of the dependent variable can be written as in Proposition 1. Moreover, for any $(y, x) \in \mathbb{R} \times \mathcal{X}$, we have $F_{iY|X=x}(y) - F_{jY|X=x}(y) = \int_{-\infty}^{+\infty} \mathbb{1}(\xi_{ixu} \leq y < \xi_{jxu}) f_{U|X=x}(u) \, du \geq 0$ whenever $\xi_{jxu} \geq \xi_{ixu}$, that is, $F_{jY|X=x}(y) \leq F_{iY|X=x}(y)$ whenever $j \geq i$. So, $F_{jY|X=x}$ first-order stochastically dominates $F_{iY|X=x}$ for any $j \geq i$.

PROOF OF LEMMA 1: Fix $(y_0, x) \in \mathbb{R} \times \mathcal{X}$: continuity and limit conditions on r(y, x) in S1 then ensure that the envelope $r^{e}(y, x)$ is well defined on $[y_0, +\infty)$. Now consider $y \ge y_0$. That $\mathbb{1}(\xi_{n_x x u} \le y) = \mathbb{1}(u \le r^{\mathrm{e}}(y, x))$ follows from showing that $r^{e}(\xi_{n_{x}xu}, x) = r(\xi_{n_{x}xu}, x)$, as r^{e} is nonincreasing and $\xi_{n_{x}xu}$ is the largest equilibrium. We proceed in two steps. First, we show that for all $y > \xi_{n_x x u}$, we have $r(\xi_{n_x x u}, x) > r(y, x)$. If that were not the case, then there would exist a $y' > \xi_{n_x x u}$ such that $r(\xi_{n_x x u}, x) \le r(y', x)$. But this is incompatible with $\xi_{n_x x u}$ being the largest equilibrium: we would have $u \le r(y', x)$, so given the limit condition S1(ii) on r at $+\infty$, there would be an equilibrium larger than ξ_{n_xxu} . Second, we show that $r^e(\xi_{n_xxu}, x) = r(\xi_{n_xxu}, x)$. By definition of r^e , we have $r^e(\xi_{n_xxu}, x) \ge r(\xi_{n_xxu}, x)$, so we need to rule out that strict inequality holds. We again reason by contradiction: assume that $r^{e}(\xi_{n_{x}xu}, x) > r(\xi_{n_{x}xu}, x)$. From the first step, we know that $r(\xi_{n_{x}xu}, x) > r(y, x)$ for all $y > \xi_{n_x xu}$. Then consider the function which coincides with $r^e(y, x)$ for $y < \xi_{n_x x u}$ and with min $\{r^e(y, x), r(y, x)\}$ for $y \ge \xi_{n_x x u}$. This function is nonincreasing, larger than r, and smaller than r^e at ξ_{n_xxu} , which is impossible by the definition of $r^{\rm e}$. Q.E.D.

DOI: 10.3982/ECTA6223

Division of Humanities and Social Sciences, California Institute of Technology, 311 Baxter Hall, Pasadena, CA 91125, U.S.A.; fede@caltech.edu and

Dept. of Economics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508, U.S.A.; komunjer@ucsd.edu.

Manuscript received December, 2005; final revision received November, 2008.