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APPENDIX O-A: CONSTRUCTING A POLYGON APPROXIMATION OF M

IN THIS APPENDIX we construct a polygon that approximates M .

LEMMA O-A: For any ε there exists a finite collection of directions {Ñ1� Ñ2� � � � �

ÑL} such that the distance between M and any point of the polygon

P =
L⋂
l=1

H(Ñl)

(which contains M) is at most ε/2.

PROOF: Start with any direction N0. Now, parameterize all directions going
clockwise from N0 back to N0 by p ∈ [0�2π]. Let K be a positive integer and
define Nk to be a direction corresponding to pk = 2πk/K for k= 1� � � � �K. For
each k, choose a point vk on the boundary of M with the normal vector Nk. If
M has no kink at vk, let Nk be the unique normal vector at vk. Draw a tangent
line at vk, and let Hk be the half-space containing M bounded by this tangent
line. (Note that Hk may not be the same as H(Nk): it may be strictly smaller,
as at point vk = (2�3) in our example from Section 4 with Brownian signals.
However, Hk is approximated arbitrarily closely by H(N ′) with N ′ close to Nk

(close in the Hausdorff metric computed after intersecting the half-spaces with
a circle of a large radius around the set of feasible payoffs). Indeed, since vk
is on the boundary of M , there is a sequence H(N ′

m) such that the distance
between vk and the boundary of H(N ′

m) converges to 0. Since M has no kink
at vk and since M ⊆ H(N ′

m), it follows that N ′
m → Nk�) If M has a kink at vk,

draw two extreme tangent lines through vk, and let H ′
k and H ′′

k be the two half-
spaces containing M bounded by the two tangent lines.

Consider the polygon P ′, which is an intersection of half-spaces Hk (if there
is no kink at vk) or H ′

k and H ′
k (if there is a kink at vk) for each k. Let us show

that the distance between any point of P ′ and M decreases uniformly to 0 as K
increases. Indeed, note that the points of P ′ farthest away from M are vertices.
Indeed, while moving along any side of P ′ away from vk, the distance to M
weakly increases. Furthermore, any vertex w of P ′ either coincides with a kink
point of M (i.e., w = vk) or has an the angle greater than π − 2π/K. In the lat-
ter case, consider the points vk and vk+1 of M on the sides of P ′ adjacent to w.
The distance between points vk and vk+1 is at most V̄ . Because ∠vk+1wvk is an
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obtuse angle, vkvk+1 is the longest segment of the triangle vk+1wvk , and so the
segments wvk and wvk+1 are of length less than V̄ . Because one of the angles
∠wvkvk+1 or ∠wvk+1vk is less than π/K, the distance from w to the segment
vkvk+1 is at most sin(π/K)V̄ . This is an upper bound on the distance from any
point on the boundary of P ′ to M . As K increases, this bound converges to 0.

Now note that each side of P ′ (with a normal vector N) can be approxi-
mated arbitrarily closely by the hyperplane corresponding to H(N ′) with N ′

close to N . Thus, the polygon P ′ can be approximated arbitrarily closely as an
intersection of hyperplanes

P =
L⋂
l=1

H(Ñl)�

This completes the proof. Q.E.D.

APPENDIX O-B: DESTROYING VALUE WITH BROWNIAN SIGNALS

We would like to show that∫
(ω(x�0) ·N)(fa(x)− fa′(x))dx≤O(Δ1�49999)

whenever

ω(x�0) ·N ∈ [−V̄ �0] and |E[ω ·N|a]| ≤O(Δ)�

We adapt the arguments of Sannikov and Skrzypacz (2007) to prove this
claim. Lemma O-B1, which is analogous to Lemma 3 from Sannikov and Skrzy-
pacz (2007), shows that the solution to this problem involves a tail test, which
triggers a punishment if and only if the likelihood ratio fa′(x)/fa(x) becomes
sufficiently high. Thereafter, Lemma O-B2 (which generalizes Lemma 2 from
Sannikov and Skrzypacz (2007)) implies that a tail test that destroys value on
the order of Δ per period creates incentives on the order of at most Δ1�49999.

LEMMA O-B1: Suppose D> 0. Consider the problem

max
∫

v(x)(fa(x)− fa′(x))dx

s.t. ∀x ∈ �� v(x) ∈ [−V̄ �0] and
∫ ∞

−∞
v(x)fa(x)dx≤DΔ�

The solution of this problem takes the form of a “tail test,” that is,

v(x)=
{

0� if fa(x)/fa′(x) > c ⇔ x · (μ(a)−μ(a′)) > c′,
−V̄ � if fa(x)/fa′(x)≤ c ⇔ x · (μ(a)−μ(a′))≤ c′,



GAMES WITH FREQUENT ACTIONS 3

for some c and c′.

PROOF: Write the Lagrangian for the maximization problem

L =
∫ ∞

−∞
v(x)(fa(x)− fa′(x))dx+ ρ0

(∫ ∞

−∞
v(x)fa(x)dx−DΔ

)

+
∫ ∞

−∞
ρ1(x)(v(x)+ V̄ ) dx−

∫ ∞

−∞
ρ2(x)v(x)dx�

where ρ1(x) > 0 only if v(x)= −V̄ and ρ2(x) > 0 only if v(x) = 0. Taking first-
order conditions with respect to v(x) gives

fa(x)− fa′(x)+ ρ0fa(x)+ ρ1(x)− ρ2(x)= 0�

It follows that

v(x)=
{

0 and ρ2(x) > 0� if fa(x)− fa′(x)+ ρ0fa(x) > 0,
−V̄ and ρ1(x) > 0� if fa(x)− fa′(x)+ ρ0fa(x) < 0.

We have

fa(x)− fa′(x)+ ρ0fa(x) < 0 ⇔ fa′(x)

fa(x)
> 1 + ρ0�

Now

fa′(x)

fa(x)
= exp

(−(x−Δμ(a′))2 + (x−Δμ(a))2

2Δ

)

= exp
(
x(μ(a′)−μ(a))+ Δ

2
(μ2(a)−μ2(a′))

)
�

so whether the ratio is larger or smaller than 1 + ρ0 depends only on whether
x(μ(a) − μ(a′)) is above or below a threshold. Therefore, the solution to the
optimization problem above takes the conjectured form. Q.E.D.

To evaluate the efficiency of tail tests, we can assume that x is one dimen-
sional, because the likelihood ratio fa′(x)/fa(x) stays constant along directions
orthogonal to the line connecting μ(a) and μ(a′).

The following lemma is a generalization of Lemma 2 from Sannikov and
Skrzypacz (2007); the proof is virtually identical to the proof there.

LEMMA O-B2: Fix C1 > 0� ε > 0�k > 0, and μ − μ′ > 0. Consider a tail test
with a critical region (−∞� c] of the hypothesis that x ∼ N(Δμ�Δ) against an al-
ternative that x ∼ N(Δμ′�Δσ2). Denote by g(x) and g′(x) the densities of these
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FIGURE O1.—The likelihood difference for a tail test.

two distributions respectively. There exists a constant C2 > 0 such that if the likeli-
hood difference of this test is bigger than or equal to C1Δ

k, that is,∫ c

−∞
(g′(x)− g(x))dx≥ C1Δ

k�

then for small Δ, the probability of a false positive associated with this test is∫ c

−∞
g(x)dx≥ C2Δ

k−1/2+ε�

PROOF: Without loss of generality, c < μ (or else the probability of a false
positive is at least 1/2). There are two ways of representing the likelihood dif-
ference of a tail test on a graph, as shown on Figure O1.

Using the area to the right of c, we see that there exists x∗ ∈ (c� c+Δ(μ−μ′))
such that

likelihood difference = Δ(μ−μ′)g(x∗)

= Δ(μ−μ′)√
2πΔ

exp
(

−(x∗ −μ)2

2Δ

)
�

Then if the likelihood difference is greater than or equal to C1Δ
k,1

Δ(μ−μ′)√
2πΔ

exp
(

−(x∗ −Δμ)2

2Δ

)
≥ C1Δ

k

⇒ Δμ− x∗ =
√

−2Δ log
(√

2πΔk−1/2
C1

(μ−μ′)

)
�

Let α> 1 be a number to be specified later. Let y∗ satisfy (Δμ− y∗)= α(Δμ−
x∗). Because x∗ − Δ(μ − μ′) < c, the probability of making type I error (i.e.,

1From now on we take x∗ <Δμ′. Otherwise, the size is strictly positive as Δ → 0 and the lemma
is trivially satisfied.



GAMES WITH FREQUENT ACTIONS 5

FIGURE O2.—A lower bound on the size of the test.

the size of the test) is greater than the shaded area in the Figure O2, that is,

(x∗ −Δ(μ′ −μ)− y∗)g(y∗)

= ((α− 1)(Δμ− x∗)−Δ(μ−μ′))

× 1√
2πΔ

exp
(

−α2(x∗ −Δμ)2

2Δ

)

=
(
(α− 1)

√
−2Δ log

(√
2πΔk−1/2

C1

(μ−μ′)

)
−Δ(μ−μ′)

)

× 1√
2πΔ

(√
2πC1Δ

k−1/2

(μ−μ′)

)α2

>O
(
Δα2(k−1/2)

)
�

Taking α sufficiently close to 1 proves the lemma. Q.E.D.

APPENDIX O-C: PROOF OF THEOREM 2

Here we prove a technical proposition, Proposition O-C1, used in the proof
of Theorem 2 (the rest of the proof follows FLM).

PROPOSITION O-C1: Suppose W is a smooth set in the interior of M−. For
any v on the boundary of W there exists a neighborhood Nδ(v) of v with radius
δv, a discount rate rv, and period length Δv such that any extreme point of W in
this neighborhood (w ∈ extW ∩ Nδ(v)) is generated by W for all discount rates
and period lengths not exceeding rv and Δv.

PROOF: Let T and N be unit tangent and normal vectors to W at v. Con-
sider the problem of generating w ∈ extW in a neighborhood of v. By def-
inition (see Section 5.1), w is generated by W if there is an admissible pair
(a�ω), that is, current-period action profile a and a map ω(x� (jy)) from sig-
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nals to continuation-value transitions, that satisfies the feasibility constraint
w +ω(x� (jy)) ∈W , the promise-keeping constraint

w = g(a)+ e−rΔ

1 − e−rΔ
E

[
ω(x� (jy))|a

]
�(O.1)

and the incentive compatibility constraints:

(gi(a)− gi(a
′))+ e−rΔ

1 − e−rΔ

(
E

[
ωi(x� (jy))|a

] −E
[
ωi(x� (jy))|a′]) ≥ 0(O.2)

for any a′ (such that a′
j = aj and a′

i ∈ Ai).
We first show a natural way to construct an approximately admissible pair,

so that promise keeping holds, incentive compatibility (O.2) holds strictly, and
the feasibility condition is nearly satisfied (all for small r and Δ). Then we show
how to adjust ω in such a way that all three constraints hold.

Following the definition of M(ε), define D(N�ε) as the solution to the
linear-programming problem:

D(N�ε)= max
a�β�d(y)

(
g(a)+

∑
y∈Y

d(y)λ(y|a)
)

·N s.t. d(y) ·N ≤ 0(O.3)

and

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti(ICε)

+
∑
y∈Y

di(y)(λ(y|a)− λ(y|a′))+ ε

≥ 0�

Since v is an extreme point of W , which is in the interior of M− (recall that M−
is the limit of M(ε) as we take ε to zero from below), there exists a constant
ε < 0 such that for all w ∈W :

w ·N ≤ v ·N ≤D(N�ε)+ ε�(O.4)

Let {a�β�d} be the instruments that solve the maximization problem (O.3).
Fix a and consider the following construction of ω from β and d:

ω(x� (jy))= 1 − e−rΔ

Δe−rΔ

(
βxT +

∑
y

jyd(y)

)
+�(O.5)

for some � ∈ R
2. See Figure O3 for an illustration of such ω. With such con-

tinuation payoffs, the incentive compatibility (O.2) constraints hold strictly for
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FIGURE O3.—First construction of ω and violation of feasibility constraint.

sufficiently small Δ (independently of w):

(gi(a)− gi(a
′))+ e−rΔ

1 − e−rΔ
(E[ωi|a] −E[ωi|a′])

= gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y

di(y)(λ(y|a)− λ(y|a′))+O(Δ)

≥ −ε�

The promise-keeping constraint is satisfied by an appropriate choice
of �.

However, the feasibility constraint does not hold for at least two reasons.
First, since x and jy are unbounded, the payoffs are unbounded. Second, be-
cause the set W is curved, we cannot move on a tangent at v, as then continu-
ation payoffs get outside the set.

Nevertheless, since T is nearly the tangent vector to the boundary in a neigh-
borhood of v, we are able to adjust ω to satisfy feasibility without violating
promise keeping and affecting IC by less than ε. In fact, we adjust ω by (i) cut-
ting off the tails of x, (ii) ignoring multiple arrivals of the jumps, and (iii) forc-
ing the payoffs inside the curvature of W .

We need to introduce two functions to be able to adjust ω for the cur-
vature of W . In the tangential and normal coordinates near point v, let
f (θ) be the parameterization of the boundary of W , where θ represents
the tangential coordinate and the point (0� f (0)) corresponds to v. Fix a
small positive constant α, to be specified later. Because W is a smooth set,
for any α > 0 we can find δ > 0 such that for all θ ∈ (−δ�δ)� |f ′(θ)| ≤ α
and there exists a constant κ such that |f ′′(θ)| ≤ κ. Then for all θ�ϑ ∈
(−δ/2� δ/2),

f (θ+ϑ)≥ f (θ)+ f ′(θ)ϑ− κ

2
ϑ2�

This inequality is illustrated in Figure O4.
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FIGURE O4.—Set W and the points (θ+ϑ�f (θ)+ f ′(θ)ϑ− κ
2 ϑ

2).

Moreover, it is convenient to use the following inequalities for all θ, ϑ1 +
ϑ2 +ϑ3 ∈ (−δ/2� δ/2):

f ′(θ)(ϑ1 +ϑ2 +ϑ3)− κ

2
(ϑ1 +ϑ2 +ϑ3)

2

≥ f ′(θ)(ϑ1 +ϑ2 +ϑ3)− 3κ
2
(ϑ2

1 +ϑ2
2 +ϑ2

3)

⇒ f (θ+ϑ1 +ϑ2 +ϑ3)≥ f (θ)+ hθ(ϑ1)+ hθ(ϑ2)+ hθ(ϑ3)�

where hθ(ϑ)= f ′(θ)ϑ− 3κ
2 ϑ

2.
Note that (θ + ϑ1 + ϑ2 + ϑ3� f (θ) + hθ(ϑ1) + hθ(ϑ2) + hθ(ϑ3) − �n) ∈ W

for all �n ∈ [0�Aδ] for some strictly positive constant Aδ (and all θ�ϑ1 +ϑ2 +
ϑ3 ∈ (−δ/2� δ/2)). We will use functions hθ to introduce normal components
of ω for every tangential component to guarantee that feasibility constraint is
satisfied.

We now claim that for any such θ ∈ (−δ/2� δ/2), the payoff pair w with co-
ordinates (θ� f (θ)) is generated by W (and hence the radius can be picked to
be δv = δ/2) if α is chosen appropriately small. Let 1|x|≤c denote the event that
|x| < c and let 1y denote the event that exactly one jump arrives (of type y).
Consider

ω(x� (jy)) = 1 − e−rΔ

Δe−rΔ

((
1|x|≤Δ1/3βx

)
T +

∑
y

1yd(y)+�TT

)
(O.6)

+ hθ

(
1 − e−rΔ

Δe−rΔ

(
1|x|≤Δ1/3βx

))
N
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+
∑
y

1yhθ

(
1 − e−rΔ

Δe−rΔ
d(y) · T

)
N

+ hθ

(
1 − e−rΔ

Δe−rΔ
�T

)
N −�NN�

Note that we have truncated the linear βx at |x| ≤ Δ1/3, used hθ to assure that
the tangential transfers are accompanied by the necessary normal transfers of
payoffs to stay within W .

Finally, constants �T and �N are given by the promise-keeping constraint:

�T = Δ(w− g(a)) · T −E

[(
1|x|≤Δ1/3βx

) +
∑
y

1yd(y) · T ∣∣a]
�

�N = 1 − e−rΔ

e−rΔ

(
g(a)−w + 1

Δ
E

[∑
y

1yd(y)
∣∣a])

·N

+E

[
hθ

(
1 − e−rΔ

Δe−rΔ
(1|x|≤Δ1/3βx)

)

−
∑
y

1yhθ

(
1 − e−rΔ

Δe−rΔ
d(y) · T

)∣∣a]

+ hθ

(
1 − e−rΔ

Δe−rΔ
�T

)
�

We now prove that for small Δ and r, the incentive compatibility (O.2) and
feasibility constraints hold as well. Let us evaluate terms involved in these con-
straints. For all action profiles a′ (including a), we have

E
[
1|x|≤Δ1/3βx|a′] = βE[x|a′] +O(Δ2)= βΔμ(a′)+O(Δ2)

and

E

[∑
y

1yd(y)
∣∣a′

]
=

∑
y

d(y)λ(y|a′)Δ+O(Δ2)�

Let us introduce a constant A> 0 independent of Δ (for small Δ), r, or α, such
that ∣∣E[

1|x|≤Δ1/3βx|a′]∣∣ ≤AΔ�

E
[
1|x|≤Δ1/3(βx)2|a′] ≈ Var[βx] +O(Δ2) ≤AΔ�

|λ(y|a)d(y) · T |� ∣∣λ(y|a)(d(y) · T)2
∣∣ ≤A�
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and

�T = Δ(w − g(a)) · T −E

[(
1|x|≤Δ1/3βx

) +
∑
y

1yd(y) · T ∣∣a]
≤ AΔ�

Then

E

[
hθ

(
1 − e−rΔ

Δe−rΔ
1|x|≤Δ1/3βx

)∣∣a′
]

≈ rf ′(θ)E
[
1|x|≤Δ1/3βx|a′] + 3κ

2
r2E

[
1|x|≤Δ1/3(βx)2|a′]�

P[y|a]E
[
hθ

(
1 − e−rΔ

Δe−rΔ
d(y) · T

)∣∣a]

≈ Δλ(y|a)
(
rf ′(θ)d(y) · T − 3κ

2
r2(d(y) · T)2

)
�

and

hθ

(
1 − e−rΔ

Δe−rΔ
�T

)
≈ rf ′(θ)�T − 3κ

2
r2�2

T

all have absolute values bounded by αrAΔ+ 3κ
2 r

2AΔ for all θ ∈ (−δ�δ).
Hence for any ε and A we can pick α, rv, and Δv small enough so that

(gi(a)− gi(a
′))+ e−rΔ

1 − e−rΔ
(E[ωi|a] −E[ωi|a′])(O.7)

≥ gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y

di(y)(λ(y|a)− λ(y|a′))−O(Δ)

− (|Y | + 2)
(
αA+ 3κ

2
rA

)
≥ 0

and hence the incentive compatibility constraints (O.2) are satisfied (recall,
that β and d satisfy the ICε constraints for some ε < 0, so that for small
enough r�Δ and α, the additional terms in (O.7) have less impact on the con-
straints (O.2) than ε).

For feasibility, for small enough Δ and r, all the variables in hθ terms in (O.6)
are less than δ/2, so that it is sufficient to check that �N is not too large. For
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that, note

�N = 1 − e−rΔ

e−rΔ

(
g(a)−w + 1

Δ
E

[∑
y

1yd(y)
∣∣a])

·N

+E

[
hθ

(
1 − e−rΔ

Δe−rΔ

(
1|x|≤Δ1/3βx

))

−
∑
y

1yhθ

(
1 − e−rΔ

Δe−rΔ
d(y) · T

)∣∣a]
+ hθ

(
1 − e−rΔ

Δe−rΔ
�T

)

≥ rΔ|ε| − (|Y | + 2)
(
αrAΔ+ 3κ

2
r2AΔ

)
≥ 0

when α and r are sufficiently small (and by taking Δ or r to be small, �N can
be bounded from above by Aδ). Thus, for any w in the neighborhood of v of
radius δ/2 the constructed (a�ω) are an admissible pair generating w. This
completes the proof of the proposition. Q.E.D.

APPENDIX O-D: GENERICALLY, M− =M

Before proving that generically M− = M , we present a singular example in
which M and M− are different. Consider the following two-player partnership
game. Each player can choose between three effort levels ai = 0�1, or 2. Ac-
tions are private and players equally share the continuous stream of revenue

4dXt = 4(μ(a1� a2)dt + dZt)�

where μ(a1� a2) = a1 + a2 and Z is a Brownian motion. The cost of effort is
ci(ai)= −a2

i , so expected stage-game payoffs are

gi(a1� a2)= 2(a1 + a2)− a2
i �

The matrix of expected stage-game payoffs is

0 1 2
0 0�0 2�1 4�0
1 1�2 3�3 5�2
2 0�4 2�5 4�4

The static Nash equilibrium of this game is (1�1). If Xt is the only public signal
in this game, then vectors (β1�β2) = (βT1�βT2) enforce action profiles such
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FIGURE O5.—Enforceable action profiles and sets M and M−.

that each player maximizes gi(a1� a2) + βi(a1 + a2) = (2 + βi)(a1 + a2) − a2
i .

Therefore, βi enforces the action

ai =
{0� βi <−1,

1� βi ∈ [−1�1],
2� βi ≥ 1.

The expected stage-game payoffs enforced by various vectors (β1�β2) are il-
lustrated in the left panel of Figure O5. The right panel of Figure O5 shows
the sets M and M− constructed with the help of the left panel.

From the left panel we can read which payoff pairs are enforceable (weakly
or strictly) on each tangent hyperplane. For example, all payoffs except for
(0�0) and (4�4) are weakly enforceable on the negative 45-degree tangent,
such that T1 = −T2 and β1 = −β2. At the same time, only (4�0), (3�3), and
(0�4) are enforceable strictly. Also, only (0�0), (3�3), and (4�4) are strictly en-
forceable on the positive 45-degree tangent, while additionally (5�2), (2�5),
(2�1), and (1�2) are enforceable weakly. As a result, the maximal ε-strictly en-
forceable half-spaces in positive and negative 45-degree directions collapse as
ε becomes positive. That is why M and M− in this example are different.

The singularity, which leads M and M− to be different in this example, is
that as T passes the negative 45-degree direction, the maximal enforceable
payoff profile switches between (2�5) and (5�2), both of which are enforced
weakly. One of the central ideas of our proof is to show that such situations
are nongeneric.

Central ideas of the proof that generically M = M−:
(i) The set M is defined as an intersection of half-spaces, one for each

direction.
(ii) Each half-space has an action profile that generates it.

(iii) Whenever the action profile associated with a half-space can be en-
forced strictly (with constraints tightened a bit), the half-space changes con-
tinuously in T and ε.
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(iv) Half-spaces collapse as we increase ε only at points where the action
profile associated with the half-space is enforced weakly.

(v) Part (a) of Proposition O-D below implies that there are finitely
many directions T in which the best action profile is enforced weakly, and
Lemma O-D1 says that generically the second-best action profile is enforced
strictly in neighborhoods of those directions.

(vi) Part (b) of Proposition O-D below shows that when in some direction T
the maximal half-space defined by the best action profile is discontinuous in ε,
the second-best action profile at T becomes the best action for some directions
in a neighborhood of T .

(vii) Steps (v) and (vi) imply that whenever, as we increase ε above 0, a
maximal half-space in some direction T collapses, the collapse happens only
up until the half-space defined by the second-best action profile at T , that is
only up to the half-space which already bounds the set M in some directions
near T (see Figure O6). Thus, as we increase ε above 0, for generic games the
collapse of the half-space defined by the best action in any direction T does
not cause the collapse of M(ε).

When we say that generically something is true, we mean that for any game
structure (set of actions of each player, the set of possible Poisson jumps,
and the number of dimensions of the Brownian signal) the statement is true
everywhere except for a set of game parameters of measure 0. For a given
game structure, game parameters define for each action profile payoffs to each
player, the mean of the Brownian signal, and the intensity of each possible
Poisson jump.

FIGURE O6.—Collapse of the hyperplane in direction T does not cause the collapse of M .
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We can represent all unit tangent vectors T as points of a unit circle. Then
an interval of vectors T corresponds to an arc of a circle.

The following proposition looks at the incentive constraint for a given action
profile and shows that generically there are finitely many directions T(α) =
(cos(α)� sin(α)) for which that action profile is enforceable but not strictly en-
forceable (we will call this weakly enforceable). The proposition also shows that
in any neighborhood of such an α, there are directions in which the action
profile is not enforceable.

PROPOSITION O-D: Suppose for k= 1� � � � �K′�K′ + 1� � � � �K�gk ∈ R are real
numbers, and μk ∈ R

N and λk ∈ R
M are vectors. For each α ∈ [0�2π), consider

the set S(α)⊆ R
N × [0�∞)M of vectors (x� y) ∈ R

N × [0�∞)M (with x ∈ R
N and

y ∈ [0�∞)M) that satisfy the constraints

gk + (x ·μk) cos(α)+ (y · λk) sin(α)≥ 0 for all k= 1� � � � �K′ and

gk − (x ·μk) sin(α)+ (y · λk) cos(α)≥ 0 for all k= K′ + 1� � � � �K�

Then generically (i.e., for generic values of gk�μk, and λk), the following state-
ments hold:

(a) The set of values of α ∈ [0�2π), for which the set S(α) is nonempty but has
measure 0, has a finite number of elements.

(b) If S(α) is nonempty but has a measure 0, then in any arbitrarily small neigh-
borhood (α − ε�α + ε) of α, there is a point α′ such that S(α′) is empty and a
point α′′ such that S(α′′) has positive measure.

To not interrupt the flow, we provide the proof (via Lemmas p1–p7), which
is quite involved, at the end of this appendix.

Lemma O-D1 implies that for any direction α in which the best action profile
is weakly enforced (by the proposition there are finitely many such directions),
the second-best action profile is generically strictly enforced. The best action
profile is defined as the arg max in the maximization of D(N(α)). The second-
best profile is defined as the arg max of the same problem with the first-best
profile removed from the choice set (since some profiles may require dN > 0,
the ranking is not necessarily the same as the ranking of stage-game payoffs
corresponding to those profiles).

LEMMA O-D1: Consider a direction T = T(α) in which the best action a is
weakly enforceable. Then generically the second-best action a′′ is strictly enforce-
able in direction T .

PROOF: Note that there is at least one enforceable action profile in the di-
rection T besides a, because the Nash equilibrium is strictly enforceable gener-
ically in all directions. Thus, a′′ is enforceable in the direction T .
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Action profiles a and a′′ have at least one component that is different be-
tween players 1 and 2. Without loss of generality, let us say that player 2’s ac-
tion is different. Then changing g1(a

′′) does not affect the incentive constraints
for enforcing profile a (since a = (a′′

1� a
′′
2) cannot result from player 1’s devia-

tion from a = (a1� a2)). Let us show that generically there is at most one value
of g1(a

′′) for which the action profile a′′ is weakly enforceable. We can make
this conclusion if we show that if a′′ is weakly enforceable for a given value of
g1(a

′′), then a′′ is strictly enforceable for all larger values of g1(a
′′).

DEFINITION: Denote by Bi(a�T) the set of (β�dT �dN ≥ 0) that satisfy

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y

(dT (y)Ti + dN(y)Ni)(λ(y|a)− λ(y|a′))

≥ 0

for all deviations a′ of player i. Bi(a�T) is a convex set, as it is defined as an
intersection of a finite number of linear constraints (= half-spaces).

If a′′ is weakly enforceable on T , it means that B1(a
′′�T ) and B2(a

′′�T ) inter-
sect. If we increase g1(a

′′) a little bit, B1(a
′′�T ) grows in all directions, and at

the original intersection point, all constraints of player 1 become slack. It turns
out that B2(a�T) is generically nonempty (see Lemma O-D2 below). Since
B2(a�T) does not change as we increase g1(a), we can move away from the
original point of intersection in the direction where all constraints of player 2
become slack. Thus, if we increase g1(a

′′) a little bit, it is possible to satisfy all
constraints strictly. Q.E.D.

Lemma O-D2 was used in the proof of Lemma O-D1:

LEMMA O-D2: Generically, for all a, Bi(a�T) is empty or has nonempty inte-
rior for all regular hyperplanes.2

PROOF: Let us call a set degenerate if it is nonempty but has empty interior.
Fix a regular hyperplane T . Let us show that the set of games for which

Bi(a�T) is degenerate has measure 0. Let us vary gi(a) while keeping all the
other parameters of the game fixed. Then there is at most one value of gi(a)
for which Bi(a�T) is degenerate. Indeed, if (β�dT �dN) satisfies the constraints
of player i weakly for a given value of gi(a), then (β�dT �dN) satisfies all con-
straints strictly for all larger values of gi(a).

2All hyperplanes but coordinate ones are regular. Coordinate hyperplanes are those parallel
to one of the axes.
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Now, if Bi(a�T) has nonempty interior for one regular hyperplane T , then
Bi(a�T

′) has nonempty interior for all regular T ′ in the same quadrant, since
Bi(a�T

′) is obtained from Bi(a�T) by stretching along some dimensions and
squeezing along other dimensions. Q.E.D.

Lemma O-D3 implies that the maximal hyperplane (i.e., the one correspond-
ing to D(T�ε)) changes continuously in both T and ε in the range where the
best action profile is enforced strictly. Together Lemmas O-D1 and O-D3 im-
ply that in the neighborhood of the direction in which the best action profile is
enforced weakly, generically the second-best hyperplane changes continuously
in both T and ε.

LEMMA O-D3: If we change T and ε continuously in the range where action
profile a can be enforced on tangent T with constraints tightened by ε, the minimal
amount of value required to be destroyed to enforce a (that is,

∑
y dN(y)λ(y|a))

is continuous (and weakly increasing in ε).

PROOF: Denote by Bi(a�T�ε) the set of (β�dT �dN ≥ 0) that satisfy the in-
centive constraints tightened by ε:

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y

(dT (y)Ti + dN(y)Ni)(λ(y|a)− λ(y|a′))

≥ ε

for all deviations a′ of player i.
The set Bi(a�T�ε) is shrinking continuously as ε increases, as all half-

spaces that define it become continuously smaller. When T changes, the
set Bi(a�T�ε) is also changing continuously: it gets stretched in some di-
mensions and shrinks in other dimensions. As a result, the intersection
B1(a�T�ε)∩B2(a�T�ε) is changing continuously in T and ε (and it is shrinking
continuously as ε increases). Since the function

∑
y dN(y)λ(y|a) is continuous,

the minimum of this function over the intersection B1(a�T�ε) ∩B2(a�T�ε) is
changing continuously in T and ε, and it is weakly increasing continuously as
ε increases. Q.E.D.

Now, as ε increases, the best half-spaces that define the set M(ε) near direc-
tions in which the best action profile is weakly enforceable collapse. If hyper-
planes near direction T , on which the best action profile a is weakly enforce-
able, collapse, then the second-best action profile a′ (which defines the half-
spaces of M to one side of T—by part (b) of Proposition O-D) is generically
strictly enforceable near T by Lemma O-D1. By Lemma O-D3, the half-space
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generated by a′ changes continuously near T . Because of that, M(ε) does not
collapse, but shrinks continuously at ε = 0. See Figure O6.

PROOF OF PROPOSITION O-D: We carry out the proof of the proposition
for α �= 0�π/2�π�3π/2 (i.e., we carry it only for regular hyperplanes). For co-
ordinate hyperplanes, it is enough to observe that generically S(α) is empty or
has positive measure for any fixed α. The reason is that, as we change gk for
all k = 1� � � � �K by the same constant const ∈ R, there is at most one value of
const for which S(α) is a nonempty set with measure 0.

Apart from these special values of α, the proposition follows from a se-
quence of lemmas. The first lemma derives a necessary condition for the set
S(α) to be nonempty of zero measure.

LEMMA p1: If S = {x :gi + xTβi ≥ 0� i = 1� � � � �m} is a nonempty set of zero
measure, then for any x ∈ S, among vectors (gi�βi) there is a subset of dim(x)+1
(or fewer) linearly dependent vectors, such that each of these vectors corresponds
to a constraint that binds at x.

PROOF: First, let us show that if S is nonempty but has measure 0, then
one of the inequalities must hold with equality on the entire set S. In other
words, for some j = 1� � � � �m, for all x ∈ S�gj + xTβj = 0. If not, then for all
i = 1� � � � �m, there exists xi ∈ S such that gi + xT

i βi > 0. Then, since S is con-
vex, x = (x1 + x2 + · · · + xm)/m ∈ S, and gi + xTβi > 0 for all i = 1� � � � �m—
contradiction.

Now, if gj + xTβj = 0 for some j = 1� � � � �m, then the problem

max
x

gj + xTβj

s.t. gi + xTβi ≥ 0� i �= j�

has value 0 and the solution set S. Consider any x ∈ S. Then by the Kuhn–
Tucker theorem, there are Lagrange multipliers ηi ≥ 0� i �= j, such that

βj =
∑
i �=j

ηiβi�

where ηi > 0 only if gi + xTβi = 0. This equation represents βj as a linear
combination of other βi (such that gi + xTβi = 0 and i �= j). We can always
represent βj as a linear combination of at most dim(x) of these βi’s as

βj =
∑
i∈I′

η′
iβi�
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where |I ′| ≤ dim(x).3 Multiplying both sides by −xT (and using that the value
of the problem is 0), we get

gj = −xTβj = −xT
∑
i∈I′

η′
iβi = −

∑
i∈I′

η′
igi�

Let I = I ′ ∪ {j}. Then the vectors (gi�βi)� i ∈ I, are linearly depen-
dent. Q.E.D.

Lemma p1 implies that a necessary condition for S(α) to be nonempty of
zero measure is that among 1 +N +M-dimensional vectors⎛

⎝ gi

μi cosα
λi sinα

⎞
⎠ � i = 1� � � � �k;(O.8)

⎛
⎝ gi

−μi sinα
λi cosα

⎞
⎠ � i = k+ 1� � � � �K�

⎛
⎝ 0

0
em

⎞
⎠ � m= 1� � � � �M�

there is a subset of at most 1 + N +M linearly dependent vectors, where em is
an M-dimensional vector with entry 1 in location m and entries 0 in all other
locations.

The next lemma allows us to focus on subsets of exactly 1 + N + M vectors
when we discuss instances when S(α) is nonempty of measure 0.

LEMMA p2: Generically, any subset of fewer than 1 + N + M vectors among
vectors (O.8) are independent for all α �= 0�π/2�π�3π/2.

PROOF: Consider any subset of L < 1 + N + M vectors among (O.8), and
let us show that generically they are independent for all α �= 0�π/2�π�3π/2.
Consider the 1 +N +M ×L matrix composed of these vectors. Generally this
matrix could include M ′ columns of the form (0 0 em ). If we exclude these
columns and corresponding rows (with 1 from (0 0 em )) to get a smaller
1 + N + (M − M ′) × (L − M ′) matrix A, then whenever the columns of the
original 1 + N + M × L matrix are dependent, the columns of matrix A will
also be dependent. Let us show that generically the columns of matrix A are
independent for all α �= 0�π/2�π�3π/2.

3If a set of vectors (β’s) span a linear space of dimension ≤ dim(x), then we can pick a subset
of these vectors (not more than dim(x)) that form the basis of this subspace.
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Note that whenever the columns of A are dependent, then any (L−M ′) rows
of A are also dependent. Consider the square matrix B composed of the last
(L − M ′) rows of A. Rows of B are dependent if and only if the determinant
of B is zero. Since

sin(α)=
2 tan

(
α

2

)

1 + tan2

(
α

2

) and cos(α)=
1 − tan2

(
α

2

)

1 + tan2

(
α

2

) �

the determinant of B is a rational function (i.e., a ratio of two polynomials) of
tan(α/2). Generically, this rational function is not identically 0, so it becomes 0
only at finitely many values of α. For any such value of α, the last (L−M ′) rows
of A span a subspace of R

L−M ′ of dimension less than L − M ′. Generically,
the first row of A, which is of the form (gk1� � � � � gkL−M′ ), will not be in this
subspace. Q.E.D.

The next lemma proves part (a) of the proposition.

LEMMA p3: Generically, there are finitely many values of α at which any subset
of 1 +N +M vectors among (O.8) are dependent.

PROOF: A subset of 1 + N + M vectors among (O.8) are dependent if and
only if the determinant of the square matrix composed of these vectors is zero.
Since the determinant is a rational function of tan(α/2), generically there are
finitely many values of α that set this function to zero. Q.E.D.

To prove part (b) of the proposition, we first show that generically, when-
ever S(α) is nonempty of measure 0, there is exactly one subset of 1 +N +M
dependent vectors among (O.8).

LEMMA p4: Generically, there is no value of α for which two different subsets
of 1 +N +M vectors among (O.8) are dependent.

PROOF: Consider two subsets S1 and S2 of 1 +N +M vectors, and suppose
that either S1 \ S2 or S2 \ S1 has a vector among the first K vectors in the collec-
tion (O.8). Let us say that it is vector v ∈ S2 \ S1. Generically there are finitely
many α for which the set S1 is dependent, because those α correspond to zeros
of the determinant of S1, which is a rational function of tan(α/2). Let us show
that for any one of these α, generically the collection of vectors S2 are indepen-
dent. Note that S2 \ v are generically independent for all α �= 0�π/2�π�3π/2,
by Lemma p2. Now, v is dependent on S2 \ v if and only if v belongs to the
N +M-dimensional subspace of the 1 +N +M-dimensional space spanned by
S2 \ v. Since each component of v is determined by a different parameter (and
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note that these parameters are separate from those parameters that define α
and S2 \ v), it follows that generically v will not be in the span of S2 \ v.

Now, suppose that both S1 \ S2 and S2 \ S1 have only vectors of the form
(0 0 em )T . Denote by I1 the set of indices where one of the vectors in S1 \S2

has a 1. Similarly define I2. Denote by I3 the set of indices for which one of the
vectors in S1 ∩S2 of the form (0 0 em ) has a 1. Take the matrix consisting of
vectors S1 ∩ S2 as columns, and exclude from this matrix columns of the form
(0 0 em ) and rows from the set I3. We end up with a 1 + N + M − |I3| −
|I1| × 1 + N + M − |I3| matrix. Note that 1 + N + M − |I3| − |I1| rows of this
matrix, excluding the rows from I1, are dependent, and another set of rows of
the same size, excluding the rows from I2 (note that |I1| = |I2|), are dependent.
This situation is nongeneric, but the same argument as in the first paragraph
of this proof applies. Q.E.D.

LEMMA p5: Generically, whenever S(α) is a nonempty set of zero measure, it
consists of a single point, at which 1 +N +M inequality constraints bind and the
rest of the constraints are slack. The set of 1 +N +M vectors that correspond to
these constraints are linearly dependent.

PROOF: If S(α) is nonempty of zero measure, then by Lemmas p1 and p2,
generically there is a subset of 1+N +M dependent vectors among (O.8), and
by Lemma p4, generically all other vectors are independent of these 1+N+M .
Lemma p1 also implies that there is (x� y) ∈ S(α) at which the 1 + N + M
constraints are binding. All other constraints must be slack at (x� y), since a
binding constraint, that is, a hyperplane passing through the same point (x� y),
would correspond to a vector that is dependent on these 1+N +M . It remains
to be shown that S(α) consists of a single point. Suppose there is another point
(x′� y ′). Then Lemmas p1 and p2 imply that the same 1 + N + M constraints
must bind at (x′� y ′) as at (x� y) (because some constraints, which correspond
to linearly dependent vectors, must bind at (x′� y ′), and generically these are
not different from the ones that bind at (x� y)).

Toward a contradiction, note that the first N+M vectors of these, (gi�βi)� i ∈
I, are independent and so the matrix with columns βi is invertible and so
the system of equations gi + xβi = 0 has a unique solution. Therefore, there
can be at most one point at which N + M of these constraints are bind-
ing. Q.E.D.

Part (b) of the proposition follows from Lemma p6.

LEMMA p6: Generically, whenever S(α∗) is a nonempty set of zero measure,
there is ε > 0 such that in a neighborhood (α∗�α∗ +ε)�S(α) has positive measure
and in a neighborhood (α∗ − ε�α∗)� S(α) is empty, or vice versa.

PROOF: Consider 1 + N + M constraints that define S(α∗). Then, since all
other constraints are slack, by continuity S(α) equals the intersection of these
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1 + N + M half-spaces in a neighborhood of α∗. Let us put the vectors that
correspond to these half-spaces into a matrix

M(α)=
⎛
⎝ gk0 · · · gkN+M

μk0 cosα · · · −μkN+M
sinα

λk0 sinα · · · λkN+M
cosα

⎞
⎠ �

We consider the case when M(α) does not have columns of the form
(0 0 em ), but that is without loss of generality because such columns do
not contain free parameters affecting the determinant of M(α).
S(α) goes from an empty set to a set of positive measure as α passes through

α∗ if and only if the determinant of M(α) changes sign as α passes through α∗.4
That happens if and only if the determinant of the matrix⎛

⎝ gk0 · · · gkN+M

μk0 · · · −μkN+M
sinα/ cosα

λk0 sinα/ cosα · · · λkN+M

⎞
⎠

=
⎛
⎝ gk0 · · · gkN+M

μk0 · · · −μkN+M
x

λk0x · · · λkN+M

⎞
⎠

=M ′(x)

changes sign as x passes through sinα∗/ cosα∗ (here we are assuming that α
is not 0�π/2�π, or 3π/2). But that is true generically: the fact that the deter-
minant of a matrix M ′(x) has only single roots follows from Lemma p7 be-
low. Q.E.D.

LEMMA p7: Consider a square matrix

A(x) =
⎛
⎝ a11 · · · a1nx

���
���

an1x · · · ann

⎞
⎠ �

where x’s (x is some real variable) could multiply any entries in the matrix. Then,
for generic coefficients a11 through ann, the determinant of the matrix has no dou-
ble roots (except for, possibly, x= 0).

4The intuition is that, first, Lemma p5 implies that generically S(α) is a nonempty set of zero
measure if and only if the columns of matrix M(α) are dependent, that is, detM(α) = 0. If S(α)
goes from empty to positive measure near α∗, then for arbitrarily small perturbations of parame-
ters gk0 through gkN+M�S(α) still goes from positive measure to empty. However, if the determi-
nant of M(α) did not change sign at α∗, then by adjusting the parameters of the first row of S(α)
arbitrarily slightly, the determinant of M(α) can be made to stay strictly positive (or negative) in
a neighborhood of α∗, contradicting that S(α) goes from empty to positive measure.
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PROOF: We prove this statement by induction on n. Clearly, both a11 and
a11x have no double roots.

The statement follows for n if we show that for generic coefficients a12

through ann (all coefficients but a11) the set of values of a11 for which the de-
terminant has double roots (except for, possibly, x = 0) consists of isolated
points.

Note that the determinant of A(x) is of the form f (x) + a11g(x), where
f (x) and g(x) are polynomials. Let us see what happens to the roots of the
determinant as we change a11. If x∗ is an isolated root, it moves with speed
g(x∗)/f ′(x∗), which is bounded. So, in a neighborhood of a11, single roots can-
not merge into double roots. If x∗ is a double root, it disappears or bifurcates
(or becomes a single root in case of a triple root, etc.) if g(x∗) �= 0 or g(x∗)= 0
and g′(x∗) �= 0. Thus, if there is a double root x∗ at a11, there are no double
roots in a neighborhood of a11 unless x∗ is a double root of g(x).

However, g(x) is the determinant of⎛
⎝ a22 · · · a2nx

���
���

an2x · · · ann

⎞
⎠

or the determinant of this matrix times x. In both cases, g(x) has no double
roots (except for possibly x= 0) by the inductive hypothesis. Q.E.D.

This completes the proof of Proposition O-D. Q.E.D.
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