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This supplemental material contains the proofs of the propositions and lem-
mas stated in Section 2.

PROOF OF PROPOSITION 1: From (8), the Hamiltonian of the optimization
problem (P′) is

H =
{∫ ∞

p

y(v)dv

+ (1 + λ)(py(p)−ψ(e)− E
[
(θ− e)co(y(p�εd)�εc)

])

− λU(θ)
}
f (θ)+ γ(θ)(−ψ′(e))�

where p= p(θ) and e= e(θ) are the control functions, U(θ) is the state vari-
able, and γ(θ) is the co-state variable. Hence, applying the Pontryagin princi-
ple, the FOC are

Hp = {
λy(p)+ (1 + λ)py ′(p)

− (1 + λ)E[
(θ− e)co1(y(p�εd)�εc)y1(p�εd)

]}
f (θ)= 0�

He = {−(1 + λ)ψ′(e)+ (1 + λ)E[
co(y(p�εd)�εc)

]}
f (θ)

− γ(θ)ψ′′(e)= 0�

−HU = λf(θ)= γ′(θ)�

The last equation gives γ(θ) = λF(θ) using the transversality condition
γ(θ)= 0. Thus, rearranging Hp and He, the solutions p= p∗(θ) and e= e∗(θ)
are given by (12) and (13). Q.E.D.

PROOF OF PROPOSITION 2: Given the price schedule p∗(·) and the transfer
function t∗(·� ·), we show that the firm will announce its true type θ and will
exert the optimal effort e∗(θ) by verifying the FOC of the firm’s problem (F).
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Under A1, this problem becomes

max
θ̃�e

E
[
t∗

(
θ̃� (θ− e)co

(
y(p∗(θ̃)� εd)� εc

)) | θ] −ψ(e)(F∗)

= E
[
t∗

(
θ̃� (θ− e)co

(
y(p∗(θ̃)� εd)� εc

))] −ψ(e)
=A(θ̃)+ψ′[e∗(θ̃)]{θ̃− e∗(θ̃)− (θ− e)} −ψ(e)�

where the first equality follows from the independence between θ and (εd� εc),
while the second equality follows from (15). Thus, using (16), the FOCs with
respect to θ̃ and e are

0 = ψ′[e∗(θ̃)]e∗′(θ̃)−ψ′[e∗(θ̃)] + dψ′[e∗(θ̃)]
dθ̃

{θ̃− e∗(θ̃)− (θ− e)}

+ψ′[e∗(θ̃)][1 − e∗′(θ̃)]

= dψ′[e∗(θ̃)]
dθ̃

{θ̃− e∗(θ̃)− (θ− e)}�

0 = ψ′[e∗(θ̃)] −ψ′(e)�

It is easy to see that these FOCs are verified if θ̃= θ and e= e∗(θ).
It remains to show that [p∗(·)� t∗(·� ·)� e∗(·)�U∗(·)] solves the FOC of prob-

lem (P). In view of the discussion surrounding problem (P′), it suffices to show
that the transfer function t∗(·� ·) satisfies (6) and (7), where [p∗(·)� e∗(·)�U∗(·)]
solves the FOC of problem (P′). The preceding statement shows that the trans-
fer function t∗(·� ·) satisfies (7). It remains to show that t∗(·� ·) also satisfies (6).
Using (15), the right-hand side of (6) is

A(θ)+ψ′[e∗(θ)]{θ− e∗(θ)− (θ− e∗(θ))
} −ψ[e∗(θ)]

=A(θ)−ψ[e∗(θ)] =U∗(θ)

by (14) and (16), as desired. Q.E.D.

PROOF OF LEMMA 1: From the problem (F), the second partial derivative
of the firm’s objective function with respect to e is

∫
U33(θ̃� θ� e�εd� εc)dG(εd�εc)=

∫
t22(·)c2

o(·)dG(εd�εc)−ψ′′(e)�

where we have omitted the arguments of the functions to simplify the nota-
tion. When the transfer function t(·� ·) is weakly decreasing and concave in
realized cost c so that t2(·) ≤ 0 and t22(·) ≤ 0, it follows from ψ′′(·) > 0 that
the firm’s objective function is strictly concave in e for any (θ̃� θ). Hence, the
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effort e(θ̃� θ), which solves the FOC (3), is uniquely defined and corresponds
to a global maximum of the problem (FE).

Next, we show that 0 ≤ e2(θ�θ) < 1. This can be seen by differentiating the
FOC (3) that defines e(θ̃� θ) with respect to θ. This gives

0 = [1 − e2(θ̃� θ)]E[t22(·)c2
o(·)] +ψ′′[e(θ̃� θ)]e2(θ̃� θ)�

Rearranging and evaluating at θ̃= θ give

e2(θ�θ)
{
E[t22(·)c2

o(·)] −ψ′′[e(θ)]} = E[t22(·)c2
o(·)]�

Thus the expectation term is nonpositive whenever the transfer function t(·� ·)
is weakly decreasing and concave in realized cost. Because ψ′′(·) > 0 by A2(iii),
it follows that 0 ≤ e2(θ�θ) < 1. Q.E.D.

PROOF OF LEMMA 2: As noted before A3, the local SOC (19) is satisfied as
soon as e∗′(·)≤ 0. We show that e∗′(·) < 0. By definition, [p∗(·)� e∗(·)] satisfies
the FOC (12) and (13), which can be written as

p∗(θ)y ′[p∗(θ)] = (θ− e∗(θ))c′
o[p∗(θ)] −μy[p∗(θ)]�

ψ′[e∗(θ)] = co[p∗(θ)] −μF(θ)
f (θ)

ψ′′[e∗(θ)]�

where we have used A1, the definition of co(·), and the expression found ear-
lier for c′

o(·). Differentiating (12) and (13) with respect to θ and rearranging
equations give

Ae∗′(θ)+Bp∗′(θ)=A�(S.1)

Ce∗′(θ)−Ap∗′(θ)=D�

where

A= c′
o[p∗(θ)]�

B = (1 +μ)y ′[p∗(θ)] +p∗(θ)y ′′[p∗(θ)] − (θ− e∗(θ))c′′
o[p∗(θ)]

= (1 −μ)V ′′[p∗(θ)] − (θ− e∗(θ))c′′
o[p∗(θ)]�

C = ψ′′[e∗(θ)] +μF(θ)
f (θ)

ψ′′′[e∗(θ)]�

D= −μ d
dθ

(
F(θ)

f (θ)

)
ψ′′[e∗(θ)]
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with μ = λ/(1 + λ). Under A1 and A2, note that A < 0, B < 0, and C > 0.
Solving for e∗′(θ) gives

e∗′(θ)
(
C + A2

B

)
=D+ A2

B
�

Thus, e∗′(·) < 0 if −C <A2/B <−D, that is, if

−
(
ψ′′[e∗(θ)] +μF(θ)

f (θ)
ψ′′′[e∗(θ)]

)
(S.2)

<
{c′
o[p∗(θ)]}2

(1 −μ)V ′′[p∗(θ)] − (θ− e∗(θ))c′′
o[p∗(θ)]

<μ
d

dθ

(
F(θ)

f (θ)

)
ψ′′[e∗(θ)]�

Because −B ≥ −(1 −μ)V ′′[p∗(θ)]> 0, A3(i) ensures that

−ψ′′[e∗(θ)]< {c′
o[p∗(θ)]}2

(1 −μ)V ′′[p∗(θ)] − (θ− e∗(θ))c′′
o[p∗(θ)]

�

which implies the first inequality in (S.2) by A2. By A2(iii) and A3(ii), we have
D < 0, while B < 0 thereby implying the second inequality in (S.2). Lastly,
because e∗′(θ)+p∗′(θ)B/A= 1 by (S.1) with A< 0 and B < 0, it follows from
e∗′(·) < 0 that p∗′(·) > 0, as desired. Q.E.D.

PROOF OF PROPOSITION 3: Recalling that e(θ̃� θ) is the optimal level of ef-
fort for a firm with type θ, the firm’s expected utility (4) from announcing θ̃
is

U(θ̃�θ)=A(θ̃)+ψ′[e∗(θ̃)]{θ̃− e∗(θ̃)− (θ− e(θ̃� θ))} −ψ[e(θ̃� θ)]
(see the optimization problem (F∗) in the proof of Proposition 2). To show
that θ̃ = θ provides a global maximum, we first show that U12(θ̃� θ) > 0 for
any (θ̃� θ). Using U12(θ̃� θ)= −ψ′′[e(θ̃� θ)]e1(θ̃� θ), this is equivalent to show-
ing e1(θ̃� θ) < 0, where e(θ̃� θ) solves the FOC (3), which can be written under
A1 as 0 = ψ′[e∗(θ̃)] − ψ′[e(θ̃� θ)] from the FOC of problem (F∗). Differen-
tiating this FOC with respect to θ̃ gives e1(θ̃� θ)ψ

′′(·) = ψ′′(·)e∗′(·). Because
e∗′(·) < 0 by Lemma 2, the right-hand side is strictly negative under A2. Hence
e1(θ̃� θ) < 0, implying U12(·� ·) > 0 as desired. Second, we apply the argument
in Appendix A1.4 in Laffont and Tirole (1993) withφ(β� β̂)=U(θ̃�θ). Hence,
θ̃= θ provides the global maximum of U(θ̃�θ).
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To prove the second part, let t(θ)≡ E[t∗(θ� (θ− e∗(θ))co(y(p∗(θ)�εd)� εc))]
so that t = t(θ). Note that E(θ)≡ θ− e∗(θ) is strictly increasing in θ because
d(θ − e∗(θ))/dθ = [1 − e∗′(θ)] > 0 and e∗′(·) < 0. Thus θ = E −1(E), where E
is the firm’s cost inefficiency. We want to show that t(θ)= t[E −1(E)] is strictly
decreasing in E . From (15) and A1, we have t(θ)=A(θ). Hence, using (16),

dt

dE = A′(θ)
E ′(θ)

= − ψ′[e∗(θ)]
1 − e∗′(θ)] < 0�

Thus, the expected transfer is strictly decreasing in E , as desired. Q.E.D.
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