SUPPLEMENT TO "NONPARAMETRIC IDENTIFICATION OF A CONTRACT MODEL WITH ADVERSE SELECTION AND MORAL HAZARD"

(Econometrica, Vol. 79, No. 5, September 2011, 1499–1539)

BY ISABELLE PERRIGNE AND QUANG VUONG

This supplemental material contains the proofs of the propositions and lemmas stated in Section 2.

PROOF OF PROPOSITION 1: From (8), the Hamiltonian of the optimization problem (P') is

$$\mathcal{H} = \left\{ \int_{p}^{\infty} \overline{y}(v) \, dv + (1+\lambda) \left(p \overline{y}(p) - \psi(e) - \mathbf{E} \left[(\theta - e) c_o(y(p, \varepsilon_d), \varepsilon_c) \right] \right) - \lambda U(\theta) \right\} f(\theta) + \gamma(\theta) (-\psi'(e)),$$

where $p=p(\theta)$ and $e=e(\theta)$ are the control functions, $U(\theta)$ is the state variable, and $\gamma(\theta)$ is the co-state variable. Hence, applying the Pontryagin principle, the FOC are

$$\begin{split} \mathcal{H}_p &= \big\{ \lambda \overline{y}(p) + (1+\lambda) p \overline{y}'(p) \\ &- (1+\lambda) \mathrm{E} \big[(\theta-e) c_{o1}(y(p,\varepsilon_d),\varepsilon_c) y_1(p,\varepsilon_d) \big] \big\} f(\theta) = 0, \\ \mathcal{H}_e &= \big\{ -(1+\lambda) \psi'(e) + (1+\lambda) \mathrm{E} \big[c_o(y(p,\varepsilon_d),\varepsilon_c) \big] \big\} f(\theta) \\ &- \gamma(\theta) \psi''(e) = 0, \\ -\mathcal{H}_U &= \lambda f(\theta) = \gamma'(\theta). \end{split}$$

The last equation gives $\gamma(\theta) = \lambda F(\theta)$ using the transversality condition $\gamma(\underline{\theta}) = 0$. Thus, rearranging \mathcal{H}_p and \mathcal{H}_e , the solutions $p = p^*(\theta)$ and $e = e^*(\theta)$ are given by (12) and (13). Q.E.D.

PROOF OF PROPOSITION 2: Given the price schedule $p^*(\cdot)$ and the transfer function $t^*(\cdot, \cdot)$, we show that the firm will announce its true type θ and will exert the optimal effort $e^*(\theta)$ by verifying the FOC of the firm's problem (F).

DOI: 10.3982/ECTA6954

Under A1, this problem becomes

$$\begin{split} (\mathbf{F}^*) & & \max_{\tilde{\boldsymbol{\theta}},e} \mathbf{E} \big[t^* \big(\tilde{\boldsymbol{\theta}}, (\boldsymbol{\theta} - \boldsymbol{e}) c_o \big(y(p^*(\tilde{\boldsymbol{\theta}}), \boldsymbol{\varepsilon}_d), \boldsymbol{\varepsilon}_c \big) \big) \mid \boldsymbol{\theta} \big] - \boldsymbol{\psi}(\boldsymbol{e}) \\ & = \mathbf{E} \big[t^* \big(\tilde{\boldsymbol{\theta}}, (\boldsymbol{\theta} - \boldsymbol{e}) c_o \big(y(p^*(\tilde{\boldsymbol{\theta}}), \boldsymbol{\varepsilon}_d), \boldsymbol{\varepsilon}_c \big) \big) \big] - \boldsymbol{\psi}(\boldsymbol{e}) \\ & = A(\tilde{\boldsymbol{\theta}}) + \boldsymbol{\psi}' [\boldsymbol{e}^*(\tilde{\boldsymbol{\theta}})] \{ \tilde{\boldsymbol{\theta}} - \boldsymbol{e}^*(\tilde{\boldsymbol{\theta}}) - (\boldsymbol{\theta} - \boldsymbol{e}) \} - \boldsymbol{\psi}(\boldsymbol{e}), \end{split}$$

where the first equality follows from the independence between θ and $(\varepsilon_d, \varepsilon_c)$, while the second equality follows from (15). Thus, using (16), the FOCs with respect to $\tilde{\theta}$ and e are

$$0 = \psi'[e^*(\tilde{\theta})]e^{*'}(\tilde{\theta}) - \psi'[e^*(\tilde{\theta})] + \frac{d\psi'[e^*(\tilde{\theta})]}{d\tilde{\theta}} \{\tilde{\theta} - e^*(\tilde{\theta}) - (\theta - e)\}$$

$$+ \psi'[e^*(\tilde{\theta})][1 - e^{*'}(\tilde{\theta})]$$

$$= \frac{d\psi'[e^*(\tilde{\theta})]}{d\tilde{\theta}} \{\tilde{\theta} - e^*(\tilde{\theta}) - (\theta - e)\},$$

$$0 = \psi'[e^*(\tilde{\theta})] - \psi'(e).$$

It is easy to see that these FOCs are verified if $\tilde{\theta} = \theta$ and $e = e^*(\theta)$.

It remains to show that $[p^*(\cdot), t^*(\cdot, \cdot), e^*(\cdot), U^*(\cdot)]$ solves the FOC of problem (P). In view of the discussion surrounding problem (P'), it suffices to show that the transfer function $t^*(\cdot, \cdot)$ satisfies (6) and (7), where $[p^*(\cdot), e^*(\cdot), U^*(\cdot)]$ solves the FOC of problem (P'). The preceding statement shows that the transfer function $t^*(\cdot, \cdot)$ satisfies (7). It remains to show that $t^*(\cdot, \cdot)$ also satisfies (6). Using (15), the right-hand side of (6) is

$$A(\theta) + \psi'[e^*(\theta)] \{ \theta - e^*(\theta) - (\theta - e^*(\theta)) \} - \psi[e^*(\theta)]$$
$$= A(\theta) - \psi[e^*(\theta)] = U^*(\theta)$$

O.E.D.

PROOF OF LEMMA 1: From the problem (F), the second partial derivative of the firm's objective function with respect to e is

$$\int U_{33}(\tilde{\theta}, \theta, e, \varepsilon_d, \varepsilon_c) dG(\varepsilon_d, \varepsilon_c) = \int t_{22}(\cdot) c_o^2(\cdot) dG(\varepsilon_d, \varepsilon_c) - \psi''(e),$$

where we have omitted the arguments of the functions to simplify the notation. When the transfer function $t(\cdot, \cdot)$ is weakly decreasing and concave in realized cost c so that $t_2(\cdot) \le 0$ and $t_{22}(\cdot) \le 0$, it follows from $\psi''(\cdot) > 0$ that the firm's objective function is *strictly* concave in e for any $(\tilde{\theta}, \theta)$. Hence, the

effort $e(\tilde{\theta}, \theta)$, which solves the FOC (3), is uniquely defined and corresponds to a global maximum of the problem (FE).

Next, we show that $0 \le e_2(\theta, \theta) < 1$. This can be seen by differentiating the FOC (3) that defines $e(\tilde{\theta}, \theta)$ with respect to θ . This gives

$$0 = [1 - e_2(\tilde{\theta}, \theta)] \mathbb{E}[t_{22}(\cdot)c_o^2(\cdot)] + \psi''[e(\tilde{\theta}, \theta)]e_2(\tilde{\theta}, \theta).$$

Rearranging and evaluating at $\tilde{\theta} = \theta$ give

$$e_2(\theta, \theta) \{ E[t_{22}(\cdot)c_o^2(\cdot)] - \psi''[e(\theta)] \} = E[t_{22}(\cdot)c_o^2(\cdot)].$$

Thus the expectation term is nonpositive whenever the transfer function $t(\cdot, \cdot)$ is weakly decreasing and concave in realized cost. Because $\psi''(\cdot) > 0$ by A2(iii), it follows that $0 \le e_2(\theta, \theta) < 1$.

Q.E.D.

PROOF OF LEMMA 2: As noted before A3, the local SOC (19) is satisfied as soon as $e^{*'}(\cdot) \le 0$. We show that $e^{*'}(\cdot) < 0$. By definition, $[p^*(\cdot), e^*(\cdot)]$ satisfies the FOC (12) and (13), which can be written as

$$\begin{split} p^*(\theta)\overline{y}'[p^*(\theta)] &= (\theta - e^*(\theta))\overline{c}_o'[p^*(\theta)] - \mu \overline{y}[p^*(\theta)], \\ \psi'[e^*(\theta)] &= \overline{c}_o[p^*(\theta)] - \mu \frac{F(\theta)}{f(\theta)} \psi''[e^*(\theta)], \end{split}$$

where we have used A1, the definition of $\overline{c}_o(\cdot)$, and the expression found earlier for $\overline{c}'_o(\cdot)$. Differentiating (12) and (13) with respect to θ and rearranging equations give

(S.1)
$$Ae^{*\prime}(\theta) + Bp^{*\prime}(\theta) = A,$$
$$Ce^{*\prime}(\theta) - Ap^{*\prime}(\theta) = D,$$

where

$$\begin{split} A &= \overline{c}_o'[p^*(\theta)], \\ B &= (1+\mu)\overline{y}'[p^*(\theta)] + p^*(\theta)\overline{y}''[p^*(\theta)] - (\theta - e^*(\theta))\overline{c}_o''[p^*(\theta)] \\ &= (1-\mu)\overline{V}''[p^*(\theta)] - (\theta - e^*(\theta))\overline{c}_o''[p^*(\theta)], \\ C &= \psi''[e^*(\theta)] + \mu \frac{F(\theta)}{f(\theta)} \psi'''[e^*(\theta)], \\ D &= -\mu \frac{d}{d\theta} \bigg(\frac{F(\theta)}{f(\theta)}\bigg) \psi''[e^*(\theta)] \end{split}$$

with $\mu = \lambda/(1 + \lambda)$. Under A1 and A2, note that A < 0, B < 0, and C > 0. Solving for $e^{*'}(\theta)$ gives

$$e^{*\prime}(\theta)\left(C + \frac{A^2}{B}\right) = D + \frac{A^2}{B}.$$

Thus, $e^{*'}(\cdot) < 0$ if $-C < A^2/B < -D$, that is, if

$$(S.2) \qquad -\left(\psi''[e^*(\theta)] + \mu \frac{F(\theta)}{f(\theta)} \psi'''[e^*(\theta)]\right)$$

$$< \frac{\{\overline{c}_o'[p^*(\theta)]\}^2}{(1-\mu)\overline{V}''[p^*(\theta)] - (\theta - e^*(\theta))\overline{c}_o''[p^*(\theta)]}$$

$$< \mu \frac{d}{d\theta} \left(\frac{F(\theta)}{f(\theta)}\right) \psi''[e^*(\theta)].$$

Because $-B \ge -(1-\mu)\overline{V}''[p^*(\theta)] > 0$, A3(i) ensures that

$$-\psi''[e^*(\theta)] < \frac{\{\overline{c}_o'[p^*(\theta)]\}^2}{(1-\mu)\overline{V}''[p^*(\theta)] - (\theta - e^*(\theta))\overline{c}_o''[p^*(\theta)]},$$

which implies the first inequality in (S.2) by A2. By A2(iii) and A3(ii), we have D < 0, while B < 0 thereby implying the second inequality in (S.2). Lastly, because $e^{*'}(\theta) + p^{*'}(\theta)B/A = 1$ by (S.1) with A < 0 and B < 0, it follows from $e^{*'}(\cdot) < 0$ that $p^{*'}(\cdot) > 0$, as desired.

PROOF OF PROPOSITION 3: Recalling that $e(\tilde{\theta}, \theta)$ is the optimal level of effort for a firm with type θ , the firm's expected utility (4) from announcing $\tilde{\theta}$ is

$$U(\tilde{\theta}, \theta) = A(\tilde{\theta}) + \psi'[e^*(\tilde{\theta})] \{ \tilde{\theta} - e^*(\tilde{\theta}) - (\theta - e(\tilde{\theta}, \theta)) \} - \psi[e(\tilde{\theta}, \theta)]$$

(see the optimization problem (F^*) in the proof of Proposition 2). To show that $\tilde{\theta} = \theta$ provides a global maximum, we first show that $U_{12}(\tilde{\theta}, \theta) > 0$ for any $(\tilde{\theta}, \theta)$. Using $U_{12}(\tilde{\theta}, \theta) = -\psi''[e(\tilde{\theta}, \theta)]e_1(\tilde{\theta}, \theta)$, this is equivalent to showing $e_1(\tilde{\theta}, \theta) < 0$, where $e(\tilde{\theta}, \theta)$ solves the FOC (3), which can be written under A1 as $0 = \psi'[e^*(\tilde{\theta})] - \psi'[e(\tilde{\theta}, \theta)]$ from the FOC of problem (F^*) . Differentiating this FOC with respect to $\tilde{\theta}$ gives $e_1(\tilde{\theta}, \theta)\psi''(\cdot) = \psi''(\cdot)e^{*'}(\cdot)$. Because $e^{*'}(\cdot) < 0$ by Lemma 2, the right-hand side is strictly negative under A2. Hence $e_1(\tilde{\theta}, \theta) < 0$, implying $U_{12}(\cdot, \cdot) > 0$ as desired. Second, we apply the argument in Appendix A1.4 in Laffont and Tirole (1993) with $\phi(\beta, \hat{\beta}) = U(\tilde{\theta}, \theta)$. Hence, $\tilde{\theta} = \theta$ provides the global maximum of $U(\tilde{\theta}, \theta)$.

To prove the second part, let $\overline{t}(\theta) \equiv \mathbb{E}[t^*(\theta, (\theta - e^*(\theta))c_o(y(p^*(\theta), \varepsilon_d), \varepsilon_c))]$ so that $\overline{t} = \overline{t}(\theta)$. Note that $\mathcal{E}(\theta) \equiv \theta - e^*(\theta)$ is strictly increasing in θ because $d(\theta - e^*(\theta))/d\theta = [1 - e^{*'}(\theta)] > 0$ and $e^{*'}(\cdot) < 0$. Thus $\theta = \mathcal{E}^{-1}(\mathcal{E})$, where \mathcal{E} is the firm's cost inefficiency. We want to show that $\overline{t}(\theta) = \overline{t}[\mathcal{E}^{-1}(\mathcal{E})]$ is strictly decreasing in \mathcal{E} . From (15) and A1, we have $\overline{t}(\theta) = A(\theta)$. Hence, using (16),

$$\frac{d\overline{t}}{d\mathcal{E}} = \frac{A'(\theta)}{\mathcal{E}'(\theta)} = -\frac{\psi'[e^*(\theta)]}{1 - e^{*'}(\theta)} < 0.$$

Thus, the expected transfer is strictly decreasing in \mathcal{E} , as desired. Q.E.D.

Dept. of Economics, Pennsylvania State University, University Park, PA 16802, U.S.A.; perrigne@psu.edu

and

Dept. of Economics, Pennsylvania State University, University Park, PA 16802, U.S.A.; qvuong@psu.edu.

Manuscript received January, 2007; final revision received February, 2011.