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THIS SUPPLEMENTAL MATERIAL contains the proofs of all the lemmas that
do not appear in the printed Appendix to the paper. It also contains the
statements of all these lemmas and details of the intervening arguments in
the proofs of the propositions. These arguments appeared in the printed Ap-
pendix. It also contains a proof of existence for a more general model that
implies Proposition 3(ii). This Supplemental Material can be used without ref-
erence to the printed Appendix.

We maintain Assumptions 1–3 until further notice. We begin with a central
lemma.

LEMMA 1: At any date with equilibrium distribution of consumption F , μ(c)≡
u(c� F̄(c)) must be concave.

PROOF: This property is an essentially static result that holds within each
period independently of the intertemporal links. We first claim that μ(c) ≡
u(c� F̄(c)) must be continuous at all c > 0. If not, F has a mass point at c > 0.
Now choose ε ∈ (0�1) smaller than c such that (1 − ε)u(c�F(c)) > u(c� F̄(c))
(by (2), this is always possible). Consider a fair consumption bet that pays c+ε2

with probability 1 − ε and c− ε(1 − ε) with probability ε. The expected payoff
from this bet is then given by

(1 − ε)μ(c+ ε2)+ εμ(c − ε[1 − ε]) > (1 − ε)u(c�F(c)) > μ(c)�(A.1)

There must be a positive measure of individuals who take gambles that have a
positive probability of generating c. All such individuals would be strictly better
off replacing the realization c with this gamble, so such an atom cannot arise
in equilibrium.

Now we show that μ must be concave. Suppose not; then, by the already-
established continuity of μ for all positive consumption, there exist c, c1, c2,
with 0< c1 < c < c2,1 and π(c) ∈ (0�1) such that

c = π(c)c1 + (1 −π(c))c2 and(A.2)

π(c)u(c1� F̄(c1))+ (1 −π(c))u(c2� F̄(c2)) > u(c� F̄(c))�

1Because μ(0)= u(0� F̄(0)) ≤ u(0�F(0)), the presumed lack of concavity of μ must allow us
to choose c1 and c2 to be strictly positive.
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Indeed, it is not hard to see that it must be possible to choose such c1 and c2

such that (A.2) holds for all c ∈ (c1� c2).2
Now, there must be such a positive measure of individuals who have a posi-

tive probability of consuming in the interval (c1� c2). For, if not,μwould be con-
cave on (c1� c2), contradicting (A.2). Consider any such individual; she takes a
(possibly degenerate) lottery F ′. Suppose that F ′ is modified by the addition of
the simple lottery (c1� c2;π(c)�1 − π(c)), conditional on any c ∈ (c1� c2). The
increment in expected utility from this change is then

∫ c2

c1

[
π(c)u(c1� F̄(c1))+ (1 −π(c))u(c2� F̄(c2))(A.3)

− u(c� F̄(c))]dF(c) > 0�

which shows a positive measure of individuals strictly prefer to deviate from
their equilibrium strategies, and thereby creates a contradiction. Q.E.D.

PROOF OF PROPOSITION 1: First suppose that H has finitely many mass
points. For any “initial point” a such that H(a) < 1, and for any “terminal
point” d > a, let [aHd] be the affine segment that connects u(a�H(a)) to
u(d�H(d)). Associated with [aHd] is a positive slope α, given by

α≡ u(d�H(d))− u(a�H(a))
d− a �

Say that [aHd] is allowable if α≥ uc(a�H(a)).

LEMMA 2: If [aHd] is allowable, then the following distribution function F is
well-defined and strictly increasing: F(c)=H(c) for all c /∈ (a�d), and

u(c�F(c))= u(a�H(a))+ α(c − a)(A.4)

for all c ∈ (a�d).

PROOF: It is obvious that the number F(c) is well-defined in [0�1] for every
c ∈ (a�d), because H(a) ≤ F(c) ≤ H(d). So we only need to show that F is
strictly increasing. Because [aHd] is allowable and u is strictly concave in c,
F is strictly increasing at a. Consider any interval [a�b] on which F is strictly
increasing. Then, for all x < b, α≥ uc(x�F(x)). Passing to the limit and using
the continuity of uc in (c� s), we see that α ≥ uc(b�F(b)), so again by strict

2That is, consider the chord from (c1�μ(c1)) to (c2�μ(c2)). There must then exist c′
1 < c

′
2 such

that μ(c) intersects the chord at c′
1 and at c′

2 but is strictly beneath the chord for all c ∈ (c′
1� c

′
2).

Redefining c′
1 and c′

2 as c1 and c2 then yields (A.2). Note further that π(c) is clearly a continuous
function of c, so the integral in (A.3) exists.
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concavity of u in c, F must continue to strictly increase just to the right of b.
This proves that F is strictly increasing everywhere on [a�d]. Q.E.D.

For allowable [aHd] with associated distribution function F as described in
Lemma 2, define

I[aHd](x)≡
∫ x

a

[F(z)−H(z)]dz

for x≥ a. Say that the allowable segment [aHd] is feasible if

I[aHd](x)≥ 0(A.5)

for all x ∈ [a�d), with equality holding at x= d:

I[aHd](d)= 0�(A.6)

Because H has finitely many jumps and is flat otherwise, and because u is
concave in c, it is easy to see that from any a, there are at best finitely many
feasible segments (there may not be any). Construct a function d(a) in the
following way. If, from a, there is no feasible segment with d > a, set d(a)= a.
Otherwise, set d(a) to be the largest value of d among all d’s that attain the
highest value of α.

LEMMA 3: Let [aHd] and [aHd′] be two feasible segments. If α′ > α, then
d′ > d.

PROOF: Let F and F ′ be the distributions associated with [aHd] and [aHd′],
respectively. By (A.6),

∫ d′

a

[F ′(x)−H(x)]dx= 0�

It follows that
∫ d′

a

[F(x)−H(x)]dx < 0�

Because (A.5) holds for every b ∈ (a�d], we must conclude that d′ > d. Q.E.D.

LEMMA 4: For every a with H(a) < 1, α(a) and d(a) are well-defined.

PROOF: Given that uc(c� s)→ 0 as c→ ∞ for every s, it is easy to see that if
a feasible solution exists at a, then the supremum over all feasible slopes from
a—call it α∗—is finite.
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If α∗ is itself feasible, we are done. Otherwise, there is a sequence {dn} of fea-
sible solutions with associated distributions Fn, and slopes αn strictly increasing
to α∗. By Lemma 3, dn must strictly increase as well, to some finite limit d∗.3

We claim that F(dn)must converge to F(d∗). The only way in which this may
not happen is if dn converges up to some point of discontinuity of F . But it is
easy to see that in this case, αn has to decline in n, a contradiction.

Therefore [aHd∗] is a segment. It has slope α∗. It is easy to see that allowa-
bility, (A.5), and (A.6) hold for this segment, so it is feasible. Q.E.D.

LEMMA 5: Suppose that an ↓ a with d(an) > an for all n. Then d(a) > a.4

PROOF: Because u(c�H(c)) is strictly concave as long asH is unchanging in
c, every feasible segment [aHd] must possess a jump point of H in the interior
of [a�d]. Let cn be the first jump point within [an�dn]. Because there are finitely
many jumps and an ≥ an+1, we can set cn = c for all n large enough. It follows
that d(a)≥ c > a. Q.E.D.

LEMMA 6: Suppose that [aHd] with slope α is allowable, but (A.5) fails at
x= d. Then the maximum slope α(a) from a strictly exceeds α.

PROOF: Because [aHd] (with associated F) is allowable, F(x) > H(x) just
to the right of a, so that (A.5) must hold over this range. Let d1 be the largest
value in [a�d] such that (A.5) holds for all x ∈ [a�d1]. Clearly, d1 < d.

We claim that H(d1) > F(d1). Certainly, H(d1)≥ F(d1) (if the opposite in-
equality held, it would contradict the definition of d1). If equality holds, then
becauseH(x) is flat just to the right of d1 and F strictly increasing (Lemma 2),
F(x) must strictly exceed H(x) for x in an interval just to the right of d1, once
again contradicting the definition of d1.

For any segment [aHb] with corresponding distribution Fb, define

I(b)≡ I[aHb](b)=
∫ b

a

[Fb(z)−H(z)]dz�

Consider this function on [d1� d]. Because H(d1) > F(d1), we have I(d1) >
0, while of course I(d) < 0. Moreover, it is easy to verify that I(b) is right-
continuous, and jumps upward at every discontinuity point. Therefore, there
exists a smallest value of b ∈ (d1� d) for which I(b)= 0; call it d∗. Consider the
segment [aHd∗] with distribution F∗ and slope α∗.

3The sequence dn is bounded because the slopes αn are bounded away from 0, and Assump-
tion 2 holds.

4This assertion is false for arbitrary sequences an; consider a distributionH with a unique mass
point at a. It is clear that d(a)= 0, while d(a′) > 0 for all a′ < a.
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Because d∗ > d1, it follows from the definition of d1 that

I[aHd](d∗) < 0�

while at the same time

I[aHd∗](d∗)= 0�

It follows from these two expressions that α∗ >α.
To complete the proof, we show that [aHd∗] is feasible. It is certainly allow-

able because α∗ >α. Next, I(d∗)= 0, so (A.6) holds. It remains to verify (A.5).
Given α∗ >α, (A.5) certainly holds for all b ∈ [a�d1], so in the rest of the proof
we focus on b ∈ (d1� d

∗). Suppose, on the contrary, that for some such b,

I[aHd](b)=
∫ b

a

[F∗(x)−H(x)]dx < 0�

There are three possibilities.
(a) F∗(b) > H(b). In this case, there exists c ∈ [d1� b) such that F∗(c) =

H(c), and F∗(x) > H(x) for all x ∈ (c�b].5 It is obvious that F∗(x) coincides
(on [a� c]) with the distribution associated with the segment on [aHc], and we
must conclude that I(c) < 0.6

(b) F∗(b) < H(b). In this case, there exists c ∈ (b�d∗] such that F∗(c) =
H(c), and F∗(x) < H(x) for all x ∈ [b� c).7 Again, it is obvious that F∗(x)—
suitably extended on [b� c]—is the distribution associated with the segment
[aHc], so that I(c) < 0.8

(c) F∗(b) =H(b). Set c = b; then F∗(x) is the distribution associated with
the segment [aHc], and I(c) < 0.

In all three cases, then, there exists c < d∗ with I(c) < 0. But now—noting
that [aHc] is allowable—we can apply the same argument as above for I(b) on
[d1� c] to conclude that there exists d̂ ∈ [d1� c) with I(d̂)= 0. But d̂ < d∗, which
contradicts our choice of d∗ as the smallest value of b ∈ [d′� d] with I(b)= 0.

Therefore we must conclude that (A.5) holds for all b ∈ (d1� d
∗), which com-

pletes the proof. Q.E.D.

Now construct a utility function μ∗ on consumption alone. In the sequel this
will be the unique reduced-form utility [RFU] satisfying Conditions R1–R3 for
the distribution H.

5This follows from the observations that (A.5) holds for F∗ at d1 and fails at b, and the right-
continuity of H .

6
∫ b
a
[F∗(x)−H(x)]dx < 0, while F∗(x) >H(x) for all x ∈ (c�b].

7Note that (A.6) holds for F∗ at d1, so the inequality F∗(x) < H(x) must be reversed some-
where in the interval [b�d∗).

8After all, I(d∗)= ∫ d∗
a

[F∗(x)−H(x)]dx= 0, while F∗(x) >H(x) for all x ∈ (c�d∗]. Therefore
0 = ∫ d∗

a
[F∗(x)−H(x)]dx > ∫ c

a
[F∗(x)−H(x)]dx= I(c).
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The construction is always in one of two phases: “on the curve” or “off
the curve,” referring informally to whether we are “currently” following the
original function u(x�H(x)) or are changing it in some way. Start at a = 0,
and follow the original function u(a�H(a)) as long as d(a)= a (stay “on the
curve”); at the first point at which d(a) > a—and Lemma 5 guarantees that
if any d(a) > a exists, there is a first such a—move along the line segment
[aHd(a)] (go “off the curve”). Repeat the same process once back again “on
the curve” at d(a).9 The reduced-form function—call it μ∗—will be made up
of affine segments in the regions in which d(a) > a, and when d(a) = a, of
stretches that locally coincide with u(c�H(c)). It is easy to see that there are
at most finitely many affine segments involved in the construction of μ∗.10

When H has finite support, our construction generates a reduced-form util-
ity for H:

LEMMA 7: μ∗, as given by the construction, satisfies Conditions R1–R3.

PROOF: It is very easy to see that μ∗ satisfies Condition R1 and Condi-
tion R3. The heart of the argument is the verification of Condition R2. Begin
with concavity. We proceed in steps.

Step 1. No segment is followed by a stretch of u(x�H(x)) with higher slope.
Consider a terminal point d of a segment that is used in the construction of μ∗.
It must hit u(c�H(c)) “from below”; that is, α ≥ uc(d�H(d)). Because H(x)
is locally constant at the value H(d) to the right of d, the step follows.

Step 2. No stretch of u(x�H(x)) is followed by a segment with higher slope,
or a discontinuity. Suppose this is false, so that a stretch of u(x�H(x)) ending
at a∗, with H(x) constant at its step-function value—call it h, is followed by
an allowable segment [a∗Hd∗] with slope α strictly higher than uc(a∗�h). This
includes a possible discontinuity at a∗, which may be viewed for the sake of the
argument that follows as a segment with infinite slope, in which case d∗ = a∗.

Because α> uc(a∗�h), it is easy to see that, for d > d∗ but close to it, [a∗Hd]
is allowable as well, with associated slope α′ > uc(a∗�h), but (A.5) must fail
at d.11 Because α′ > uc(a∗�h), we can use continuity to assert the existence
of a < a∗ such that the segment [aHd] is allowable, with (A.5) again failing
at d. By Lemma 6, a feasible segment [aHd′] exists from a. This contradicts
the construction of μ∗, which demands that a feasible segment be followed
whenever available, at any point such as a where the construction is “on the
line.”

Step 3. No adjacent segments [aHd] and [a′Hd′] (with a′ = d) are in the con-
struction of μ∗, with α< α′. For suppose α< α′. Extend [aHd] with same slope

9It could be that d(d(a)) > d(a), so that we immediately leave the curve again at d(a).
10Indeed, the number of affine segments cannot exceed the number of atoms in H .
11This follows from three observations: (i) I[a∗Hd∗](d∗)= 0 (this includes the case of a discon-

tinuity at a∗), (ii) u(c�H(c)) is strictly concave just to the right of d∗, and (iii) by feasibility, the
segment [a∗Hd∗] hits u(c�H(c)) “from below” at d∗.



STATUS AND RISK-TAKING 7

to form segment [aHd′′], where d′′ is the first number greater than d′ with
u(a�H(a))+ α(d′′ − a)= u(x�H(x)).12 The conditions of Lemma 6 are satis-
fied for [aHd′′]. It follows that α(a) > α, a contradiction.

It is immediate that these three steps complete the proof of concavity.
Q.E.D.

Now we prove that a larger class of consumption budget distributions all
admit reduced-form utilities satisfying Conditions R1–R3. We begin by proving
the uniqueness of such functions.

LEMMA 8: For every distribution of consumption budgets H, there is at most
one RFU.

PROOF: Suppose, on the contrary, that μ and μ′ are two distinct RFUs for
H, both satisfying the needed properties. Let a∗ be the infimum value of c such
that μ∗(c) �= μ(c). Without loss of generality, μ(a∗)≥ μ′(a∗) and μ(c) > μ′(c)
for all c ∈ (a∗� b), for some b > a.13 Let F and F ′ be the associated distribution
of consumption realizations. Then F(c)= F ′(c) for all c < a∗, F(a∗)≥ F ′(a∗),
and F(c) > F ′(c) for all c ∈ (a∗� b), so that∫ c

0
F(x)dx >

∫ c

0
F ′(x)dx≥

∫ c

0
H(x)dx

for all c ∈ (a∗� b), where the second inequality follows from second-order
stochastic dominance (Condition R1 applied to F ′). Using Condition R3 ap-
plied to F , we must conclude that μ is affine over (a∗� b). Let [a∗� d] be the
maximal interval over which μ is affine. Then

∫ d

0
[F(t)−H(t)]dt = 0�

At the same time, because μ is linear and μ′ is concave on (a∗� d] (Condi-
tion R2), it must be that μ(c) > μ′(c) for all c ∈ (a∗� d], so that F(c) ≥ F ′(c)
for all c ∈ [0� d] with strict inequality on (a∗� d]� It follows that

∫ d

0
[F ′(t)−H(t)]dt < 0�

which contradicts the fact that F ′ must satisfy Condition R1. Q.E.D.

To complete the proof of the first part of Proposition 1, we use an extension
argument.

12Such a d′′ must exist, because u(a�H(a)) + α(d′ − a) < u(d′�H(d′)) (use α < α′), while
uc(c�1)→ 0 as c→ ∞, by Assumption 2.

13That such an interval must exist follows from the concavity of both μ and μ′.
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Consider the collection H of all c.d.f.s H on [0�M], where M <∞. We seek
the existence of a mapping φ that assigns to each H ∈ H its unique RFU μ.
Let Hfin be the subspace of H containing all H with finite support. Then Hfin

is dense in H in the weak topology. Lemma 7 tells us that the mapping φ is
already well-defined on Hfin. The required extension is provided below.

LEMMA 9: Let Gn converge weakly to G, and (an�bn) to (a�b). Then

∫ bn

an
Gn(x)dx→

∫ b

a

G(x)dx as n→ ∞�

PROOF: Note that
∫ bn

an
Gn(x)dx=

∫ b

a

Gn(x)dx+
∫ a

an
Gn(x)dx+

∫ bn

b

G(x)dx�

Weak convergence and monotonicity of F ensure that Gn(x) converges to
G(x) almost everywhere on [a�b], so that by dominated convergence,

∫ b

a

Gn(x)dx→
∫ b

a

G(x)dx�

while at the same time,
∫ a

an
Gn(x)dx→ 0 and

∫ b

bn
Gn(x)dx→ 0

as n→ ∞. Q.E.D.

LEMMA 10: Consider any sequence Hn ∈ H converging weakly to H ∈ H, and
suppose that there exist associated RFUs μn, along with distributions of realized
consumption Fn. If Fn converges weakly to F , then μ given by μ(c)≡ u(c�F(c))
for all c is the RFU for H.

PROOF: We verify that μ satisfies Conditions R1–R3, givenH. First we show
that F (second-order stochastically) dominates H. Because Fn dominates Hn,
it follows that∫ c

0
[Fn(x)−Hn(x)]dx≥ 0

for every c. It is immediate (e.g., an immediate corollary of Lemma 9) that
∫ c

0
[F(x)−H(x)]dx≥ 0
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for every c, so that Condition R1 is verified.
Next, we claim that μ is concave. For if not, there exist c1� c2 ∈ (0�∞) and

θ ∈ (0�1) such that

μ(c̄)(c̄�F(c̄)) < θu(c1�F(c1))+ (1 − θ)u(c2�F(c2))�

where c̄ ≡ θc1 + (1 − θ)c2. Now, there exist sequences c̄m ↓ c̄, cm1 ↓ c1, cm2 ↓ c2,
and θm → θ, where c̄m = θmcm1 + (1 − θm)cm2 , and c̄m� cm1 , and cm2 are all points
of continuity of F . Because F is right-continuous, it must be that

F(c̄m)→ F(c̄)� F(cm1 )→ F(c1)� and

F(cm2 )→ F(c2) as m→ ∞�

It follows that there exists m such that

u(c̄m�F(c̄m)) < θmu(cm1 �F(c
m
1 ))+ (1 − θm)u(cm2 �F(cm2 ))�(A.7)

Moreover, because Fn converges weakly to F ,

Fn(c̄m)→ F(c̄m)� Fn(cm1 )→ F(cm1 )� and

Fn(cm2 )→ F(cm2 )� as n→ ∞�

Using this information in (A.7), we see that there exists n such that

u(c̄m�Fn(c̄m)) < θmu(cm1 �F
n(cm1 ))+ (1 − θm)u(cm2 �Fn(cm2 ))�

but this contradicts the concavity of μn, and so establishes Condition R2.
Finally, to establish Condition R3, we must show that if∫ c

0
F(x)dx >

∫ c

0
H(x)dx for all c ∈ (¯c� c̄)�(A.8)

then μ(c)= u(c�F(c)) must be affine on (¯c� c̄). To this end, we first claim that
if (A.8) holds, then, for all ε > 0, there exists N such that n >N implies∫ c

0
Fn(x)dx >

∫ c

0
Hn(x)dx for all c ∈ [¯c+ ε� c̄− ε]�(A.9)

Suppose the claim is false; then there is ε > 0 and a sequence cn ∈ [¯c+ε� c̄−ε]
such that∫ cn

0
Hn(x)dx=

∫ cn

0
Fn(x)dx�

Pick a subsequence such that cn → c ∈ [¯c + ε� c̄ − ε] as n→ ∞. By Lemma 9,
we must conclude that∫ c

0
H(x)dx=

∫ c

0
F(x)dx�
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which contradicts (A.8), and so verifies (A.9). Because μn(c)= u(c�Fn(c)) sat-
isfies Condition R3, it follows that there exist an > 0 and αn > 0 such that

μn(c)= an + αn(c − ¯c)
for all c ∈ [¯c + ε� c̄ − ε]. Because μ satisfies Condition R2, it is concave and
therefore continuous on [¯c + ε� c̄ − ε], and consequently, so is F . Therefore
u(c�Fn(c))→ u(c�F(c)) as n→ ∞, and so there must exist a > 0 and α > 0
such that an → a, αn → α, and

u(c�F(c))= a+ α(c− ¯c)�
for all c ∈ [¯c + ε� c̄ − ε]. Since ε > 0 is arbitrary and u(·�F(·)) is continuous,
this must then hold for all c ∈ [¯c� c̄], and the proof is complete. Q.E.D.

LEMMA 11: Every sequence in φ(Hfin), the space of all RFUs for distributions
in Hfin, admits a weakly convergent subsequence.

PROOF: Pick any distributionH ∈ Hfin, and letμ be the RFU associated with
it, with distribution function F . If the supremum of the support of F exceeds
M , then it is easy to see, using Condition R3, that μ must be affine beyond M .
Let a be the starting point of the corresponding segment [aHd]. Because
[aHd] must be allowable, the slope of the segment can be no smaller than
uc(a�H(a)), and therefore no smaller than the minimum h of all these partial
derivatives. It follows that the affine segment must end before M ′, where M ′

is the intersection of the affine ray with slope h emanating from u(M�0) with
the function u(c�1). Notice that F(M ′)= 1, and that M ′ is independent of the
particular distribution H ∈ Hfin. Q.E.D.

Now proceed as follows. Pick any budget distribution H ∈ H. We know that
there is a sequence Hn ∈ Hfin that converges weakly to H. Each Hn has its
(unique) RFU μn, with associated distribution of realized consumptions Fn. By
Lemma 11, the sequence {Fn} admits a convergent subsequence that weakly
converges to some distribution F . By Lemma 10, this is an RFU for H. By
Lemma 8, it is the only one, so the proof of Proposition 1(i) is complete.

To prove Proposition 1(ii), let {Ht�Ft} be an equilibrium sequence of con-
sumption budgets and realizations. We observe that Ht(0) = 0 for all t ≥ 0.
This follows easily from Assumption 3 combined with the unbounded steep-
ness of utility u(c� F̄ t(c)) at every date (recall that uc(c� s)→ ∞ as c → 0 for
any s); initial wealth positive implies optimal consumption is positive at all
dates.14

It follows that Ft(0) = 0 for all t. For if Ft(0) > 0, there must be a positive
measure of individuals who take gambles that have a positive probability of

14We record this observation formally in Lemma 13.
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generating 0. All of them have strictly positive budgets, so each such person
would be better off by replacing her gamble by one that avoids 0, which yields
a status payoff F̄ t(0) that is discontinuously lower than Ft(0). This contradicts
the fact that we have an equilibrium to begin with.

It is now easy to prove Conditions R1–R3, noting that Condition R2 is a
direct corollary of Lemma 1. Q.E.D.

PROOF OF COROLLARY 1: Simply verify that the conditions in the statement
of the corollary correspond to Conditions R1–R3 when the consumption bud-
get is degenerate, and then apply Proposition 1(i) for the case of a degenerate
distribution H.15

To establish the very last assertion in the corollary, suppose that b is in-
creased. Then, by (4) in the main paper, the new distribution function F must
have a higher mean. It is easy to conclude that a and d must both increase. By
the concavity of uc(·�0), α= uc(a�0) cannot increase. Q.E.D.

PROOF OF PROPOSITION 2: Let F∗ be any steady state distribution of con-
sumption. Then we know that the RFU μ∗(c) = u(c�F∗(c)) is concave. By
Assumption 2 and the fact that μ∗(c) ≥ u(c�0) for all c, μ∗ has unbounded
steepness at 0.

Consider the problem

max
∞∑
t=0

δtμ∗(bt(i))

subject to

wt(i)= bt(i)+ kt(i)
for all t, and

wt+1(i)= f (kt(i))
for all t, with w0(i) given. Because μ∗ is concave and f is strictly concave, this
problem has a unique optimal investment strategy associated with it, assigning
an investment k and consumption budget b for every starting wealth w.

One can check (see, e.g., Mitra and Ray (1984)) that, for each individual, kt
must converge to a steady state. Because μ∗ has unbounded steepness at 0, it
is easy to see that if initial wealth is positive, this steady state value must equal
k∗, defined by δf ′(k∗)= 1. Finally, F∗ must be the distribution associated with
the degenerate consumption budget b∗ = f (k∗)−k∗. That verifies that if there

15For part (iii) in particular, use the fact that uc(c� s)→ ∞ as c → 0 to argue that a > 0, and
the concavity of the RFU to argue that α= uc(a�0).
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is any steady state with positive wealth for all individuals, it must be the one
described in the proposition.

We need to complete the formalities of showing that this outcome is indeed
a steady state. All we need to do is exhibit an optimal consumption policy. If
the consumption budget b at any date equals b∗ ≡ f (k∗)− k∗, take a fair bet
with c.d.f. F∗, consuming the proceeds entirely.

We already know that the investment policy is optimal. So is the consumption
policy, because utilities are linear in realized consumption over the support
of F∗. Q.E.D.

PROOF OF PROPOSITION 3: In what follows, we assume throughout that As-
sumptions 1 and 2 hold, and that the initial wealth distribution has bounded
support with infimum wealth positive (as assumed in the statement of the
proposition).

Part (i)—Convergence. We first review the main argument to follow. The first
step is Lemma 12, which is based on the Mitra–Zilcha turnpike theorem (see
Mitra and Zilcha (1981) and the version we use, which is Mitra (2009)). It
states that in any equilibrium, the paths followed by all agents converge to
one another. Lemmas 13 and 14 ensure that convergence occurs to some com-
mon sequence that has a strictly positive limit point (over time). The second
step is Lemma 16, which states that when all stocks cluster sufficiently close
by to this common limit point, a bout of endogenous risk-taking must force
all consumption budgets to lie in the same affine segment of the “reduced-
form” utility function μ at that date. Lemma 17 states that all individual capital
stocks must fully coincide thereafter. The remainder of the proof shows that
this common path must, in turn, converge over time to k∗, with consumption
distributions converging to F∗, the unique c.d.f. associated (as in Corollary 1)
with b∗ = f (k∗)− k∗.

LEMMA 12: In any equilibrium, supi�j |kt(i) − kt(j)| → 0 and supi�j |bt(i) −
bt(j)| → 0 as t → ∞.

PROOF: Pick numbers ¯w> 0 and w̄ > 0 such that ¯w≤w≤ w̄ for every initial
wealth w. Denote by {¯kt} the optimal path followed by a hypothetical individ-
ual with initial wealth ¯w, and by {k̄t} the optimal path followed by a hypothet-
ical individual with initial wealth w̄. By a non-crossing argument (see Mitra
(2009), Proposition 1),

¯kt ≤ ki(t)≤ k̄t(A.10)

for all individuals i and dates t. Moreover, Lemma 1 together with our assump-
tions on f guarantee that all16 the assumptions of Theorem 2 in Mitra (2009)

16Mitra assumed that f (0)= 0. It can be checked that this assumption is not needed for any of
the propositions in Mitra (2009) that we invoke.
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are satisfied, so that

k̄t − ¯kt → 0 as t → ∞�(A.11)

Combining (A.10) and (A.11), we must conclude that, for any two optimal
paths for individuals i and j from the given set of initial wealths,

sup
i�j

|kt(i)− kt(j)| → 0 as t → ∞�(A.12)

which proves the first part of the assertion. Using the fact that, for ev-
ery i, bt(i) = f (kt(i))− kt+1(i), the second part follows directly from (A.12).

Q.E.D.

LEMMA 13: In any equilibrium, for any i with initial wealth strictly positive,
bt(i) > 0 for every t and lim supt bt(i) > 0.

PROOF: Because uc(c� s)→ ∞ as c→ 0 (for any s), the same is true of the
steepness of the RFU μt(c) as c → 0. Moreover, μt is concave. The observa-
tion that bt(i) > 0 for all t (when initial wealth is positive) now follows from a
standard argument.

To prove the second part of the lemma, suppose, on the contrary, that
bt(i) → 0 as t → ∞. Then it must be that wt(i) → 0 as t → ∞.17 It follows
from Assumption 1 that there is T such that δf ′(kt(i)) ≥ ρ > 1 for all t ≥ T .
For each such t, the Euler equation assures us that

βt(bt(i))= δf ′(kt(i))βt+1(bt+1(i))≥ ρβt+1(bt+1(i))�

where βt and βt+1 are appropriately chosen supports to the functions μt and
μt+1, respectively. Because ρ > 1, it follows that the right-hand derivatives of
μt evaluated at bt(i)—μ+

t (bt(i))—are bounded in t (in fact, these derivatives
converge to 0). On the other hand,

μ+
t (bt(i))≥ ub(bt(i)�Ft(bt(i)))�

but the latter term goes to infinity as t → ∞, because bt(i)→ 0. This contra-
diction establishes the lemma. Q.E.D.

LEMMA 14: There exists σ > 0 so that, for every ε > 0, there is a date T such
that

bT (i) ∈ [σ − ε�σ + ε](A.13)

for all i.

17For if lim supwt(i) > 0 while bt(i)→ 0, we contradict the assumption that u is strictly in-
creasing in c.
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PROOF: Let σ ≡ lim supt bt , where bt is the average of all bt(i)’s. Then
σ > 0, by Lemma 13. By Lemma 12, bt(i) must converge—uniformly in i, and
along a common subsequence independent of i—to σ for all i. But this means
that, for every ε > 0, there exists a date T such that bT (i) ∈ [σ − ε�σ + ε] for
all i. Q.E.D.

LEMMA 15: For any σ > 0, there exists ψ> 0 such that, for all ε < σ/2,

Ft(σ + ε)− Ft(σ − ε)≤ψε(A.14)

independently of t.

PROOF: Denote by m the smallest value of us(c� s) for c ∈ [σ/2�3σ/2] and
s ∈ [0�1]. By Assumption 2, m> 0. Let ψ≡ 4u(σ/2�1)/σm. Then by the con-
cavity of μt , for all ε < σ/2,

ψεm≥ 4μt(σ/2)/σ ≥ 2εμ+
t (σ/2)≥ 2εμ+

t (σ − ε)
≥ μt(σ + ε)−μt(σ − ε)
= u(σ + ε�Ft(σ + ε))− u(σ − ε�Ft(σ − ε))
≥ u(σ − ε�Ft(σ + ε))− u(σ − ε�Ft(σ − ε))
≥m[Ft(σ + ε)− Ft(σ − ε)]� Q.E.D.

We now combine Lemmas 14 and 15 to prove the following.

LEMMA 16: There exists a date T such that, for every i, bT (i) belongs to the
interior of the same affine segment of μT ; in particular, μ′

T (bT (i)) is a constant
independent of i.

PROOF: Fix σ as given in Lemma 14, and then ψ from Lemma 15. Pick
ε′ ∈ (0�σ/2) so that ψε′ < 1/2. By Lemma 15,

Ft(σ − ε′)+ [1 − Ft(σ + ε′)]> 1/2�(A.15)

Choose ε < ε′/7. By Lemma 14, there is a date T so that (A.13) is satisfied.
We claim that at that date, some individual must take a fair bet F with infF <
σ − ε≤ σ + ε < supF .

Suppose the claim is false. Observe from (A.15) that either Ft(σ − ε′) or
1 −Ft(σ + ε′) exceeds 1/4. Suppose the former. Then there is some individual
with consumption budget in [σ−ε�σ+ε] who accepts a bet F with F(σ−ε′) >
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1/4, so that infF < σ − ε� The expected utility of this individual is
∫
μT(c)dF(c) ≤ (1/4)μT (σ − ε′)+ (3/4)μT(σ + ε)(A.16)

≤ μT
(
σ + 3ε− ε′

4

)

< μT(σ − ε)�
where the first inequality follows from infF < σ − ε and our supposition that
the claim is false, so that σ + ε≥ supF , the second inequality follows from the
concavity of μT , and the last inequality follows from our choice of ε. But (A.16)
contradicts the supposed willingness of the individual to accept such a bet.

Now suppose, on the other hand, that we have 1 − Ft(σ + ε′) > 1/4. Then
there is some individual with consumption budget b in [σ − ε�σ + ε] who
accepts a fair bet F with 1 − F(σ + ε′) > 1/4, so that σ + ε < supF . If the
claim is false, then infF ≥ σ − ε and

∫
c dF(c)≥ (1/4)(σ + ε′)+ (3/4)(σ − ε) > σ + ε≥ b�

which contradicts the fairness of the bet.
This proves the claim: at date T , some individual must take a fair bet F with

infF < σ − ε ≤ σ + ε < supF . Because μT satisfies Condition R3, it must be
affine on [infF� supF]. Q.E.D.

LEMMA 17: For every date t ≥ T + 1, where T is given by Lemma 16, the
wealths, investments, and consumption budgets of all agents must fully coincide.

PROOF: By Lemma 16, we see that μ′
T (bT (i))= αT for all i, where αT > 0 is

independent of i. Let VT+1(w) be the value function at date T + 1; it is concave
because μt is concave for all t. Therefore, VT+1(f (k)) is strictly concave.

Note that bT (i) > 0 for all i by Lemma 13. So, using the Bellman equation
between dates T and T + 1, and writing the first-order condition, we see that

αT ≥ δβi(kT (i))� with equality if kT(i)= 0�

for every agent i, where βi(k) denotes some supporting hyperplane to VT+1 ◦ f
at k. It follows that the wealths of all agents fully coincide at date T + 1. It is
easy to see that optimal programs are unique starting from any initial wealth
at any date,18 so all wealths, investments, and consumption budgets must fully
coincide from date T + 1 onward. Q.E.D.

18The optimization problem facing each individual is strictly concave.
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In what follows, we consider only dates t > T . By Lemma 17, the equilibrium
program has common values at all dates thereafter: (wt� bt), where all these
values are strictly positive. By Proposition 1 and Corollary 1, the distribution
Ft is also fully pinned down at all these dates. Denote by αt the correspond-
ing slopes of the affine segments of μt , given by (5); these, too, are all strictly
positive.

LEMMA 18: Suppose that, for some t ≥ T +1, we have kt ≤ kt+1 and αt ≤ αt+1.
Then ks ≤ ks+1 for all s ≥ t.

PROOF: Suppose that, for some t, we have kt ≤ kt+1 and αt ≤ αt+1. If kt+1 =
0, then so is kt , and then bt+1 = f (0) ≥ bt+2, so that by the very last part of
Corollary 1, αt+1 ≤ αt+2. Otherwise, kt+1 > 0, and using the Euler equations for
utility maximization (with appropriate inequality at date t, and with equality at
date t + 1) and combining them with the concavity of f ,

αt

αt+1
≥ δf ′(kt)≥ δf ′(kt+1)= αt+1

αt+2
�

which permits us to conclude that αt+1 ≤ αt+2 once more. Using again the very
last part of Corollary 1, we must also conclude that bt+1 ≥ bt+2. Therefore,

kt+1 = f (kt)− bt+1 ≤ f (kt+1)− bt+2 = kt+2�

We have therefore shown unambiguously that αt+1 ≤ αt+2 and kt+1 ≤ kt+2. We
can continue the recursive argument indefinitely to show that ks ≤ ks+1 for all
s ≥ t. Q.E.D.

LEMMA 19: The common sequence of investments {kt}, defined for t ≥ T + 1,
must converge to k∗, which solves δf ′(k∗)= 1.

PROOF: First we establish convergence. If the sequence {kt} is either even-
tually nondecreasing or eventually nonincreasing, it must converge. Otherwise,
there is some date t ≥ T + 1 with kt ≥ kt+1 <kt+2. Then

bt+1 = f (kt)− kt+1 > f(kt+1)− kt+2 = bt+2�

which implies (by Corollary 1) that αt+1 ≤ αt+2. But now all the conditions of
Lemma 18 are satisfied, so that in this case {kt} must eventually be nonde-
creasing. By Assumption 1, kt is bounded and so must converge. It follows that
bt and therefore αt also converge. Passing to the limit using the Euler equa-
tions, and noting from Assumption 1 that δf ′(0) > 1, we must conclude that
limkt = k∗. Q.E.D.

The proof of Proposition 3(i) then proceeds as follows. Lemma 16 assures
us that there exists a date T at which consumption budgets bT (i) belong to
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the same affine segment of μT for every i. Lemma 17 states that, for every date
t ≥ T+1, the wealths, investments, and consumption budgets of all agents must
fully coincide. Lemma 19 states that the common sequence of investments {kt},
defined for t ≥ T + 1, must converge to k∗, which solves δf ′(k∗)= 1.

At the same time, Corollary 1 asserts that, for all t ≥ T + 1, the equilibrium
distribution of consumptions must be the unique c.d.f. associated with the com-
mon consumption budget bt , where “association” is defined (and uniqueness
established) in Proposition 1. Therefore the sequence of consumption distribu-
tions must converge to the unique c.d.f. associated with b∗ = f (k∗)− k∗. This
is the unique steady state of Proposition 2, so the proof is complete. Q.E.D.

Part (ii). Existence will follow as a corollary of Proposition 6 below.
We turn now to consideration of the special model of Section 4. For this

purpose, we specialize to the case of u(s) and adopt Assumptions 4–6 instead
of Assumptions 1–3. It is not hard to see that Lemma 1 remains true in this
new setting.

PROOF OF PROPOSITION 4: Part (i). Suppose that all individuals in a set of
unit measure use the policy function (6). Let G = {Gt} be the resulting se-
quence of wealth distributions. It is obvious that, for every date t and for every
w in the support of Gt ,

Gt+1(f (δw))=Gt(w)�

so that for every w in the support of Gt+1,

Gt+1(w)=Gt(f
−1(w)/δ)�(A.17)

LEMMA 20: u(Gt(w)) is concave for all dates t on the support of Gt .

PROOF: Because f is increasing and convex, and f (0) = 0, f−1(w) is in-
creasing and concave in w. Using (A.17), we therefore see that u(Gt+1(w))=
u(Gt(f

−1(w))) is concave provided that u ◦Gt is concave. Now proceed recur-
sively from date 0, using Assumption 6. Q.E.D.

Fix a date t. Suppose that a particular dynasty employs the policy (6) for
all dates s ≥ t + 1, and that every other dynasty employs the policy (6) at all
dates. Define Vt+1(w

′) to be the discounted value to this dynasty under these
conditions, starting from wealthw′ and date t+1. Then status at every s ≥ t+1
is simply

F̄ s(cs)=Gt+1(w
′)�

so that

Vt+1(w
′)= (1 − δ)−1u(Gt+1(w

′))�(A.18)
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Now suppose that at date t, this dynasty has starting wealth w, does not ran-
domize, and chooses k ∈ [0�w]. Then the total dynastic payoff at that date is
given by

u(F̄ t(w− k))+ δVt+1(f (k))

= u(F̄ t(w− k))+ δ(1 − δ)−1u(Gt+1(f (k)))

= u(Gt([w− k]/(1 − δ))) + δ(1 − δ)−1u(Gt+1(f (k)))

= u(Gt([w− k]/(1 − δ))) + δ(1 − δ)−1u(Gt(k/δ))�

where the first equality uses (A.18), the second uses the fact that F̄ t(c) =
Gt(c/(1 − δ)) for every c ≥ 0, and the last uses (A.17).

By Lemma 20, this expression is concave in both w and k, so no randomiza-
tion is necessary. Moreover, given the concavity of u(Gt(w)) and the assump-
tion that u is C1,Gt must have left-hand and right-hand derivatives everywhere
(G−

t (w) and G+
t (w), respectively), with

G−
t (w)≥G+

t (w)(A.19)

for all w. So a solution to the first-order condition

−u′(rt)G+
t ([w− k]/(1 − δ))(1 − δ)−1(A.20)

+ δ(1 − δ)−1u′(rt+1)G
−
t (k/δ)δ

−1

≥ 0

≥ −u′(rt)G−
t ([w− k]/(1 − δ))(1 − δ)−1

+ δ(1 − δ)−1u′(rt+1)G
+
t k/δ)δ

−1

(where rs is the resulting status in date s, for s = t� t + 1) is an optimum. Us-
ing (A.19), we see that k = δw is indeed a solution to (A.20), so that by the
one-shot deviation principle and the fact that t and w are arbitrary, (6) is an
equilibrium policy.

Part (ii).19 Notice that each dynasty is atomless and therefore has the same
intertemporal utility criterion as any other. Because the equilibrium is regular,
we see that at any date, the solution to the optimization problem is unique ex-
cept at countably many wealth levels. But it is easy to see that such a solution
cannot admit more than one differentiable selection. Therefore, all dynasties
must use the same savings policy, which we denote by {ct}. Given this environ-
ment, let Vt(w) be the total value to a dynasty with wealth w at date t. By using

19We are indebted to a referee for suggesting this line of proof, which is simpler than the one
we had.
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exactly the same steps as in Part (i), we see that, for every w, c = ct(w) must
maximize

u(Gt(c
−1
t (c)))+ δ(1 − δ)−1u

(
Gt(s

−1
t (w− c)))�(A.21)

where st(w)≡w− ct(w) is also strictly increasing and differentiable, by regu-
larity.

Notice that under our assumptions, F̄ t(c) = Ft(c) for all c. Therefore by
Lemma 1, u(Ft(c)) is concave in c, and so Ft is differentiable almost every-
where. Consequently, because

Gt(w)= Ft(ct(w))
and ct is differentiable and strictly increasing,Gt is also differentiable at almost
every (a.e.) w. Using the fact that optimal c and w− c are both strictly increas-
ing in w, we may therefore differentiate the expression (A.21) with respect to c
at almost every w, set the resulting expression equal to zero (it is the first-order
condition), and cancel common terms all evaluated at the same rank or same
wealth to obtain

1
c′
t(w)

= δ

1 − δ
1

s′t(w)
= δ

1 − δ
1

1 − c′
t(w)

�

or c′
t(w)= (1 −δ) for every t and for almost every w. This completes the proof

of the proposition. Q.E.D.

PROOF OF PROPOSITION 5: We now revert to Assumptions 1–3 instead of
Assumptions 4–6. Consider the steady state F∗; we may equivalently express
it as a mapping from realized status s ∈ [0�1] to realized consumption c∗(s)
at status s, given by c∗(s) = (F∗)−1(s). If the outcome is Pareto-efficient, that
mapping must maximize the integral

∫
u(c(s)� s)ds

over all continuous and increasing functions c on [0�1] with
∫
c(s)ds = b.

But it is easy to see that a necessary condition for such maximization is that
uc(c

∗(s)� s) is constant as s varies over [0�1], or equivalently, that

uc(c�F
∗(c))= λ for some λ > 0�(A.22)

for all c ∈ [a�d]. Now, recall from (5) that

u(c�F∗(c))= u(a�0)+ α[c− a]
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for all c ∈ [a�d]. Because α= uc(c�0), it follows that F∗′(a)= 0. Consequently,

duc(c�F
∗(c))

dc

∣∣∣∣
c=a

= ucc(a�F
∗(a))+ ucs(a�F∗(a))F∗′(a)

= ucc(a�F
∗(a)) < 0�

which contradicts (A.22). Q.E.D.

Existence in a More General Model. The analysis that follows establishes ex-
istence for a more general model than the one in the paper, in that the pro-
duction function can have convex segments and there are possibly stochastic
shocks to production. It is worth noting that we establish the existence of an
equilibrium in Markovian policies, where each individual conditions her cur-
rent actions on her current wealth alone.

We assume throughout that the one-period utility function satisfies Assump-
tion 2 in the main paper.

Turning to production, we suppose that bequests kt produce fresh wealth
according to a stochastic production function

wt+1 = f (kt� θt+1)�

where θt is a sequence of random shocks, independent and identically dis-
tributed across time and across individuals,20 with compact support; say [0�1].
As per the discussion in the paper, we assume without loss of generality that
all random shocks are uninsurable. We maintain the following assumption on
the technology:

CONDITION F.1: f ≥ 0 is continuous. It is continuously differentiable and
strictly increasing in k, with f ′(k�θ) > 0 for every k and θ, though the deriva-
tive is always finite for k> 0. f is nondecreasing in θ.

CONDITION F.2: Either f (0�0) > 0 or f (0� θ)= 0 on a set of positive proba-
bility.

Condition F.1 is standard, and allows for nonconvex production functions.
Condition F.2 allows for output to be positive even with no capital input.

We also place (possibly time-varying) upper bounds on the size of any invest-
ment gamble, and therefore on wealth and consumption budgets:

CONDITION B.1: There is a sequence {Mt}, with Mt < ∞ for every t and
Mt+1 ≥ f (Mt�1), such that no wealth or investment can exceed Mt at date t.

20We will follow imprecise convention and sidestep the issues of independence across a con-
tinuum population.
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Notice that if no investment gamble is considered, as in the central model of
the paper with strictly concave f , then Condition B.1 is automatically satisfied.

A Remark on Risk-Taking: Each individual has access to any fair gamble over
her wealth, and she can divide the realizations of that gamble over consump-
tion and investment. A special case is as follows: an agent divides realized
output into a consumption budget b and an investment budget k, which are
expended on independent consumption and investment gambles. This “inde-
pendence property” can be imposed without any essential loss of generality.
It is true that the most general gamble is one taken on starting wealth, with
realizations divided ex post into consumption and investment. (This is tanta-
mount to a gamble with correlated realizations across consumption and invest-
ment.) However, a moment’s reflection indicates that there is nothing extra to
be gained from this. Say V is the value function defined on investment at some
date; then an individual divides wealth w into consumption c and investment
x to maximize

μ(c)+ V (x)�
subject tow= c+x, whereμ is some reduced-form utility defined on consump-
tion alone. Suppose that w is subjected to randomization, with the proceeds
divided for every realization into c and x. This joint gamble induces marginals
on c and x, say with means b and k, where b + k must sum to w. Because
utility is additive over time, we can replace the joint gamble by two indepen-
dent gambles on c and x (with the same marginals), and expected utility will be
unaffected thereby.

In what follows, we look for (Markovian) equilibria that have this indepen-
dence property: at every date, wealth is allocated to consumption and invest-
ment budgets, and randomization of either budget (if any) occurs indepen-
dently. In the paper, all equilibria have the independence property.

RFU Revisited: In any equilibrium with the independence property, the “in-
direct utility function”

μt(c)= u(c�Ft(c))�
where Ft is the distribution of consumptions at date t, must be an RFU given
the distribution of consumption budgets at that date. The following lemma
highlights a basic property of RFUs.

LEMMA 21: For every M > 0, there exists M ′ ∈ [M�∞) such that, if the distri-
bution of consumption budgets has support contained in [0�M], the distribution
of realized consumptions under the RFU has support contained in [0�M ′].

PROOF: The same argument as in the proof of Lemma 11 tells us that the
current assertion is true if the distribution of consumption budgets has finite



22 D. RAY AND A. ROBSON

support. Using Lemma 10, we can extend the assertion to arbitrary distribu-
tions of consumption budgets on [0�M]. Q.E.D.

With Condition B.1 in mind, we can conclude from Lemma 21 that no con-
sumption will exceedM ′

t at any date. Our last assumption imposes an “insignif-
icant future” condition using these bounds:

CONDITION B.2: For {Mt} given by Condition B.1, and the corresponding
sequence {M ′

t} given by Lemma 21,

Ut ≡
∞∑
s=t
δsu(M ′

s�1) is finite, and converges to 0 as t → ∞�(A.23)

When arbitrary randomization in investments is permitted, it is possible (in
principle) to make unboundedly large investments with very low probabilities;
Conditions B.1 and B.2 place a bound on the support of such randomizations.

We make two remarks on Condition B.2. First, it is automatically satisfied
for the central model of the paper, as all wealth, and therefore consumption,
is uniformly bounded over time. (Simply take Mt to be the maximum of K
and largest initial wealth.) Second, in many cases one can make the “more
primitive” assumption

∞∑
s=t
δsu(Ms�1) is finite, and converges to 0 as t → ∞�(A.24)

and deduce (A.23) from it. As an example, take u(c� s) = h(s)cα, where h(s)
is a strictly positive, increasing, continuous function, and α ∈ (0�1). Then it is
easy to see that u(M ′�1)≤Ku(M�1) for some K independent of M , so that if
(A.24) is satisfied, so must (A.23) be.

We now state and prove the following proposition.

PROPOSITION 6: There exists an equilibrium.

PROOF: It is useful to break up the study of equilibria (satisfying the in-
dependence property) into two parts. In the first part, we presume that a se-
quence μ = {μt} of concave utility functions on consumption alone is already
given. In the sequel these will be RFUs. We study joint distributions over in-
vestments and consumption budgets that form a best-response to μ. We call
these μ-optimal sequences.

A μ-optimal sequence will generate a sequence of consumption budget dis-
tributions H. Later—this is the second part—we complete the description by
requiring that μt be an RFU for each Ht .

We need to consider a space of functions large enough to serve as potential
RFUs. Noting that no consumption budget at date t can exceed Mt , define M ′

t
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as the corresponding bound for realized consumptions, using Lemma 21.
Let Ut be the space of all increasing, concave, continuous utility functions such
that, for every μ ∈ Ut ,

μ(c) ∈ [u(c�0)�u(c�1)]
for all c ∈ [0�M ′

t ], and μ(c)= u(c�1) for c >M ′
t . Then U , the infinite product

of Ut , contains all sequences μ = {μt} of continuous and concave one-period
utilities, with μt drawn from Ut at every t.

Fix μ ∈ U . For t ≥ 0, define a sequence of value functions {Wt}, defined on
wealth in [0�Mt]:

Wt(w)≡ max
{b�ζ}

{
μt(b)+ δEζEθWt+1(f (x�θ))

}
�

where ζ is a c.d.f. (generating investments x) with mean k= w − b, and con-
strained (by Condition B.1) to have support within [0�Mt].

Standard contraction mapping arguments guarantee the existence of a
unique sequence of such value functions, each continuous.21 It is obvious that
when all randomizations of investments on [0�Mt] are permitted, and μt is
concave (by assumption), Wt must be concave for every t. Maximizing the val-
ues for every date and initial wealth generates an optimal policy correspon-
dence, one for each date t—call it Γt , which collects, for every initial wealth
w ∈ [0�Mt], all the optimal (b� ζ) choices that maximize Wt(w).

This correspondence allows us to define μ-optimal sequences Z = {Zt} of
joint distributions of wealth, consumption budgets,22 and capital investments
over all dates, given the initial distributionG and the utility sequence μ. Define
any such sequence recursively as follows. LetGt be the distribution of wealth at
date t, with support within [0�Mt]. Pick any function γw that (a) is measurable
in w, and (b) for Gt-a.e. w, assigns a probability measure on the set Γt(w).
Such functions, interpretable as regular conditional probabilities (see, e.g., Ash
(1972)), exist.23 Now define the c.d.f. Zt by

Zt(w�b�x)=
∫ w

0

∫
(b̃�ζ̃)

1[0�b](b̃)ζ̃(x)dγw̃(b̃� ζ̃) dGt(w̃)�

21For each t, consider the complete space Wt of all continuous functions on [0�Mt ], each
bounded by Ut (where Ut is given in (A.23)), and equipped with the sup-norm metric. Now the
product space equipped with a suitable metric is complete (because each Wt is complete). Carry
out the contraction argument on the product space to yield the desired result.

22We deliberately omit the distribution of consumption realizations, which will be embedded in
the RFUs {μt}.

23Standard arguments tell us that Γt is nonempty-valued and upper hemicontinuous, where we
use weak convergence on probability measures. The same properties are inherited by the set Γ ∗

t ,
which assigns to each initial wealth w ∈ [0�Mt ], all the probability measures over the set Γt(w).
Therefore a measurable selection γw exists from Γ ∗.
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where 1[0�b] is the indicator function for the set [0� b].
Uniquely associated with this construction is a consumption distribution Ht ,

given by

Ht(b)=Zt(∞� b�∞)

for each b, and an investment distribution Xt , given by

Xt(x)=Zt(∞�∞�x)

for each x. All these distributions have support within [0�Mt], by our restric-
tion. Complete the recursive step by defining next period’s distribution of
wealth

Gt+1(w)=
∫

Probθ[f (x�θ)≤w]dXt(x)�(A.25)

for all w. By our restriction, Gt+1 will have support contained within [0�Mt+1],
and the recursion can continue. Begin the iteration from the initial distribution
G0 =G.

The assignment of distributions of the form γw over optimal consumption
budgets and investment gambles, given wealth w, is an implicit use of Lya-
punov’s theorem, which allows us to use the continuum of agents to generate
all possible convexifications over choices.

Because our primary interest is in the distribution of consumption, we shall
refer to a sequence H = {Ht} of consumption distributions as μ-optimal if there
is a μ-optimal sequence Z of joint wealth-consumption-investment distribu-
tions, with consumption marginals given by {Ht}. Denote by H(μ) the collec-
tion of all μ-optimal sequences of consumption distributions.

Note that any μ ∈ Ut is concave and so admits a right-hand derivative at any
b, which we denote by μ+(b), as well as a left-hand derivative at any b > 0,
which we denote by μ−(b). The following observation places some bounds on
these derivatives at each date t, uniformly over any μ ∈ Ut .

LEMMA 22: For each t, there exists a function qt(b) > 0 such that qt(b)→ ∞
as b→ 0, and

μ+(b)≥ qt(b)(A.26)

for every μ ∈ Ut . In addition, for b > 0,

μ−(b)≤ u(b�1)/b�(A.27)

PROOF: For any t and any b ∈ [0�Mt], define qt(b) to be the slope of the
flattest line segment L(c) on the interval [b�M ′

t ] such that (a) L(b)= u(b�1),
(b) L(M ′

t ) ≥ u(M ′
t �1), and (c) L(c) ≥ u(c�0) for every c ∈ [b�M ′

t ]. Clearly,
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qt(b) > 0 for every b. If μ ∈ Ut , the concavity of μ and the conditions (a)–
(c) immediately imply that (A.26) holds. And Assumption 2 on u, along with
condition (c), together guarantee that qt(b)→ ∞ as b→ 0.

The condition (A.27) is another immediate consequence of the concavity of
μ along with the requirement that μ(b) ∈ [u(b�0)�u(b�1)]. Q.E.D.

We now note a useful restriction on the space of possible consumption bud-
get distributions in equilibrium.

LEMMA 23: There exists a strictly positive sequence {βt} such that for any μ-
optimal sequence {Ht} of consumption budget distributions with μ ∈ U , bt ≥ βt
for any consumption budget bt in the support of Ht .

PROOF: We first show that for every date t, there is a function et(w) with
et(w) > 0 when w> 0, such that for any μ-optimal sequence Z with μ ∈ U ,

b≥ et(w) for any (b� ζ) ∈ Γt(w)�(A.28)

For any μ ∈ U , let {Wt} be the corresponding sequence of concave value func-
tions. For any w > 0, Wt(w) ≤ ∑∞

s=t δ
s−tu(Ms�1) ≤ Ut/δ

t , where Ut is given
by (A.23). Because Wt is concave, it admits a left derivative W −

t , and it must be
that

W −
t (w)≤Ut/δ

tw�(A.29)

Pick any w > 0, and date t, and consider the problem of choosing b ∈ [0�w]
to maximize

μt(b)+ δEθWt+1(f (k�θ))�

Pick any number et(w) ∈ (0�w) such that

qt(b) >
Ut+1

δtf (w− b�0)
max
θ
f ′(w− b�θ)

for all b ∈ (0� et(w)), where qt(b) is given by Lemma 22. By Assumption 2,
Condition F.1, and the end-point condition in Lemma 22, such an et(w) > 0
must exist. Now we claim that any optimal b must be at least as large as et(w).
For if not, a tiny increase of Δ in b will create a gain (accurate to a first order) of

qt(b)Δ

while the corresponding drop (by Δ) in k=w− b will cause a future value loss
(again accurate to a first order) of

δEθW
−
t+1(f (k�θ))f

′(k�θ)Δ≤ Ut+1

δtf (w− b�0)
max
θ
f ′(w− b�θ)Δ�
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using (A.29), thus contradicting maximization. That establishes the claim re-
garding et(w).

Next, we claim that for every t, there is a second functionEt(w) withEt(w) >
0 whenever w> 0, such that

wt+1 ≥Et(wt) for any wt and (b� ζ) ∈ Γt(wt)�(A.30)

In the case in which f (0�0) > 0, this is immediate. So suppose that f (0�0)= 0.
Then, by Condition F.2, f (0� θ)= 0 for θ in some set of probability π > 0. In
this case, for any date t and w> 0, choose Dt(w) ∈ (0�w) such that

u(b�1)/b < δπqt+1(f (w− b�1))
[
min
θ
f ′(w− b�θ)

]

for all b ∈ (Dt(w)�w). Our assumptions and Lemma 22 guarantee that such a
Dt(w) must exist. Now we claim that any optimal b cannot exceed Dt(w). For
if it did, a tiny decrease of Δ in b will create a first-order loss of at at most

[u(b�1)/b]Δ�
where we invoke (A.27) of Lemma 22, while the corresponding increase (by Δ)
in k=w− b will cause a future first-order value gain of at least

δEθW
+
t+1(f (k�θ))f

′(k�θ)Δ

> δπqt+1(f (w− b�1))
[
min
θ
f ′(w−E(w)�θ)

]
Δ�

invoking (A.26) of Lemma 22, a contradiction. Therefore b ≤ Dt(w) and
k ≥ w − Dt(w) at date t. Also, if wt > 0, then so are wt − Dt(wt) and
f (wt −Dt(wt)�0), the latter by Condition F.1. Consequently, defining Et(w)≡
f (wt −Dt(wt)�0), the random variable wt+1 satisfies (A.30) in all cases.

Note that infw0 = ¯w > 0. It follows from (A.30) that there exists ¯wt with
wt ≥ ¯wt in any μ-optimal Z independently of μ. Define βt ≡ et( ¯wt) > 0, and
use (A.28) to complete the proof. Q.E.D.

This lemma tells us that we can focus only on those budget distributions with
infimum consumption budget at least as great as the βt identified in Lemma 23.
Define, then, Ht to be the space of consumption budget distributions with sup-
port contained in [βt�Mt].

The next observation places a corresponding restriction on RFUs ofH ∈ Ht :

LEMMA 24: There exists ηt > 0 such that, for any distribution H ∈ Ht , the
associated reduced form μ has μ(b)= u(b�0) for all b ∈ [0�ηt].

PROOF: Suppose not; then there is a sequence of distributions Hn ∈ Ht ,
a corresponding sequence of reduced-form utilities μn, and a sequence εn → 0
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such that μn(εn) �= u(εn�0) for all n. That is, the distribution of realizations
Fn satisfies Fn(εn) �= Hn(εn) for all n. It follows from Condition R3 that
u(c�Fn(c))must be locally affine around εn. That is, u(c�Fn(c))must coincide
with a segment of the form [anHndn], with εn ∈ (an�dn), for all c ∈ [an�dn].

Certainly, an ≤ εn < βt/2 for all large n, where βt is given by Lemma 23.
However, the termination dn must be at least as large as βt .24

It follows that

μn(βt) ≥ u(an�Hn(an))+ uc(an�Hn(an))(βt − an)
≥ uc(an�Hn(an))βt/2

for all n large enough. Because uc(an�Hn(an))→ ∞ as n→ ∞, it follows that
μn(βt)→ ∞ as n→ ∞, which contradicts the fact that μn(βt) ≤ u(βt�1) for
all n. Q.E.D.

In view of Lemma 24, let U ∗
t be the space of all functions μ in Ut such that

μ(b)= u(b�0) for all b ∈ [0�ηt]. Give U ∗
t the topology of uniform convergence.

Let U ∗ be the infinite product of all the U ∗
t ’s with the product topology. Let H

be the infinite product of all the Ht ’s with the product topology. Let Φ be
the map that takes a sequence of distributions H = {Ht} in H and assigns the
sequence μ= {μt}, where, for each t, μt is the unique RFU associated withHt .

LEMMA 25: Φ maps H into U ∗, and it is continuous.

PROOF: First, observe that, for each t, Ht has support contained in [0�Mt].
By Lemma 21, the RFU forHt must have support [0�M ′

t ]. ThereforeΦmaps H
into U . That Φ additionally maps into U ∗ follows from Lemma 24. Lemma 10
tells us that if Hn ⇒H in Ht , and if the sequence of distributions of realized
consumptions {Fn} associated with the sequence of RFUs {μn} weakly con-
verges to F , then μ defined by μ(c�F(c)) must be the RFU for H.

However, by Proposition 1, H has just one RFU and the sequence {Fn} al-
ways has a weakly convergent subsequence (Lemma 11). So the entire sequence
{Fn} must indeed weakly converge.

Now, μ is concave and so it is continuous for c > 0, but, given Lemma 24,
we must conclude that it is continuous everywhere. Therefore F is continuous
as well, so Fn must actually converge pointwise, which means that μn also con-
verges pointwise to μ. But now it is easy to see that uniform convergence is
obtained free of charge, because the family U ∗

t is equicontinuous, by the con-
cavity of each of its elements and Lemma 24. Finally, the continuity ofΦ in the
appropriate product topology follows immediately. Q.E.D.

24There are no consumption budgets below βt . For Fn to serve as a fair randomization, it must
pay out more than βt for some realizations, and moreover, we know that u(c�Fn(c)) must be
affine over the entire range of the randomization.



28 D. RAY AND A. ROBSON

For each μ ∈ U ∗, let H(μ)⊆ H be the collection of all μ-optimal sequences
of consumption distributions.

LEMMA 26: The mapping μ �→ H(μ) on U ∗ is nonempty-valued, convex-
valued, and upper hemicontinuous (u.h.c.).

PROOF: The mapping is nonempty-valued because Γt(w) is nonempty for
each t and w. To prove convex-valuedness, pick H and H′ both in H(μ). We
must show that for any λ ∈ [0�1], the sequence of consumption distributions
{Hλ

t } given by

Hλ
t (x)= λHt(x)+ (1 − λ)H ′

t(x)�

for every x and t, also belongs to H(μ).
Let {Zt} and {Z′

t} be the μ-optimal sequences of joint wealth-consumption-
investment distributions that correspond to H and H′, with associated se-
quences of wealth distributions {Gt} and {G′

t}, and investment distributions
{Xt} and {X ′

t}. Denote with superscript λ the relevant convex combinations.
It is trivial to see that, for every t,Hλ

t is the consumption marginal of Zλ
t ,Gλ

t

is the wealth marginal of Zλ
t , andXλ

t is the investment marginal of Zλ
t . To com-

plete the claim of convex-valuedness, it remains to show that {Zλ
t } is μ-optimal.

For every t and forZt-a.e.w, the conditional distribution Zt(w� ·) assigns some
measure γ on Γt(w) (and the same is true—using a measure γ′—of Z′

t), but
then the convex combination Zλ

t (w� ·) clearly does the same (simply use the
measure λγ + (1 − λ)γ′), for Zλ

t -a.e. w. Finally, Gλ
0 = λG0 + (1 − λ)G′

0 =G,
while for all t and w,

Gλ
t+1(w)= λGt+1(w)+ (1 − λ)G′

t+1(w)

= λ

∫
Probθ[f (x�θ)≤w]dXt(x)

+ (1 − λ)
∫

Probθ[f (x�θ)≤w]dX ′
t(x)

=
∫

Probθ[f (x�θ)≤w]dXλ
t (x)�

so that (A.25) holds. This establishes convex-valuedness.
Finally, we show that H(μ) is u.h.c. To this end, let μn be a sequence of util-

ity streams that converges to some limit μ in the product topology on U ∗.25 Let
Hn ∈ H(μn) be a corresponding collection of μn-optimal consumption distri-
bution sequences. We need to show that every limit point of Hn is contained in
H(μ).

25It is enough to employ the sequential definition of u.h.c., as the underlying space is metriz-
able.
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Recall that there exists a collection of μn-optimal joint distribution se-
quences {Zn

t } such thatHn
t is the consumption marginal ofZn

t for every n and t.
Because the support of Zn

t is compact for every t (it is contained in [0�Mt]3),
we can use a diagonal argument to extract a subsequence (of n) such that

Zn
t →Zt

weakly for every t, where the sequence of consumption marginals attached to
{Zt} is the limit point of interest. It only remains to prove that, at every date
t and at Zt-almost every w, the conditional distribution of Zt on (b�x) can be
generated by a probability measure γ on Γt(w), the set of μ-optimal choices at
the node (t�w).

Certainly, for each n, this is true of Zn: at each date t and at Zt-almost ev-
ery w, the conditional distribution of Zn

t on (b�x) is generated by some γn on
Γ n
t (w), the set of μn-optimal choices at the node (t�w). The γn’s have uni-

formly compact support, so we can extract a convergent subsequence that con-
verges weakly to some γ. We will be done, therefore, if we can show that the
set Γ n

t (w) has all its limit points contained in Γt(w) as n→ ∞.
Specifically, for every sequence (bn� ζn) in Γ n

t (w) with (bn� ζn)→ (b� ζ) as
n→ ∞, we need to show that (b� ζ) ∈ Γt(w).

By uniform convergence of the μns to μs for every date s, there exists a col-
lection {εns } such that εns → 0 as n→ ∞ for every s, and

|μs(bn)−μns (bn)| ≤ εns ≤ u(M ′
s�1)(A.31)

over any sequence bn in [0�Ms]. (The last inequality follows from the fact that
u≥ 0 by normalization, and the definition of the space Us.)

It follows that, for each date t and w ∈ [0�Mt], if (b∗� ζ∗) ∈ Γt(w),
Wt(w)−W n

t (w)

≤ μt(b∗)−μnt (b∗)+ δEζ∗Eθ

[
Wt+1(f (x�θ))−W n

t+1(f (x�θ))
]

≤ εnt + δ‖Wt+1 −W n
t+1‖�

while by the same token, recalling that (bn� ζn) ∈ Γ n
t (w),

W n
t (w)−Wt(w)

≤ μnt (bn)−μt(bn)
+ δEζnEθ

[
W n
t+1(f (w− x�θ))−Wt+1(f (w− x�θ))]

≤ εnt + δ‖Wt+1 −W n
t+1‖�

where both inequalities employ (A.31). Combining the two, we must conclude
that

‖Wt −W n
t ‖ ≤ εnt + δ‖Wt+1 −W n

t+1‖�
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Using this inequality repeatedly, we see that for all positive integers T ,

‖Wt −W n
t ‖ ≤

T∑
s=0

δsεnt+s + δT+1‖Wt+T+1 −W n
t+T+1‖�

By virtue of (A.23), it must be the case that δT+1‖Wt+T+1 − W n
t+T+1‖ ≤

Ut+T+1/δ
t → 0 as T → ∞. Therefore, fixing n and passing to the limit as

T → ∞, we must conclude that

‖Wt −W n
t ‖ ≤

∞∑
s=0

δsεnt+s�

The right-hand side of this inequality is a well-defined, finite sum, using the
last inequality in (A.31), and using again the restriction (A.23). Moreover, that
sum converges to 0 as n→ ∞. We have therefore shown that, for each t,

‖Wt −W n
t ‖ → 0 as n→ ∞�(A.32)

To complete the proof that (b� ζ) ∈ Γt(w), suppose, on the contrary, that
there exists a feasible choice (b′� ζ ′) such that

μt(b
′)+ δEζ′EθWt+1(f (x�θ)) > μt(b)+ δEζEθWt+1(f (x�θ))�

Then using the continuity of μt and Wt+1, and the fact that (bn� ζn)→ (b� ζ) as
n→ ∞, there exists ε > 0 and integer N such that, for all n≥N ,

μt(b
′)+ δEζ′EθWt+1(f (x�θ)) > μt(b

n)+ δEζnEθWt+1(f (x�θ))+ ε�(A.33)

But

μt(b
′)+ δEζ′EθWt+1(f (x�θ))

≤ μnt (b′)+ δEζ′EθW
n
t+1(f (x�θ))+ ‖μt −μnt ‖ + δ‖Wt+1 −W n

t+1‖�
while

μt(b
n)+ δEζnEθWt+1(f (x�θ))

≥ μnt (bn)+ δEζnEθW
n
t+1(f (x�θ))− ‖μt −μnt ‖ − δ‖Wt+1 −W n

t+1‖�
Combining these two inequalities with (A.33), we must conclude that, for
all n ≥ N and large enough so that—using (A.32)—2‖μt − μnt ‖ + 2δ‖Wt −
W n
t ‖< ε,

μnt (b
′)+ δEζ′EθW

n
t+1(f (x�θ))

>W n
t (w)+ ε− 2‖μt −μnt ‖ − 2δ‖Wt+1 −W n

t+1‖
>W n

t (w)�
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which contradicts the Bellman equation for W n
t . Q.E.D.

Define a correspondence Ψ from H to itself by

H �−→
Φ

μ �−→ H(μ)⊆ H�

Let H∗
t be the collection of all probability distributions on [0�Mt], with the

weak topology, and let H∗ be its infinite product. It is easy to see that H is
a compact, convex subset of this locally convex space H∗. This observation,
along with Lemmas 25 and 26, guarantees that all the assumptions of the Fan–
Glicksberg–Kakutani fixed point theorem for locally convex spaces is satisfied.
Therefore a fixed point H exists. This, together with μ =Φ(H), constitutes an
equilibrium. Q.E.D.
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