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THIS SUPPLEMENTAL MATERIAL CONTAINS FIVE APPENDIXES. Appendix A
contains the proof of Theorem 1 and discusses Remark 1. Appendix B provides
proofs for the lower bound approach discussed in Section 4.1. Appendix C dis-
cusses the data, including details for the covariate specifications and the sample
selection. Appendix D discusses the empirical specification for the lower bound
estimator, presents the decomposition discussed in Section 6.3, and presents
additional robustness checks referred to in Section 6.5. Appendix E provides
details on the specification and estimation of the structural approach referred
to throughout Section 7. Finally, Appendix F presents a selection of pages from
the LTC underwriting guidelines of Genworth Financial.

APPENDIX A: THEORY

A.1. Proof of No-Trade Theorem

I prove the no-trade theorem in several steps. First, I translate the problem
to a maximization problem in utility space. Second, I prove the converse of
the theorem directly by constructing an implementable allocation other than
the endowment when condition (1) does not hold. Third, I prove the no-trade
theorem for a finite type distribution. Fourth, I approximate arbitrary distri-
butions that satisfy condition (1) with finite type distributions and pass to the
limit, thus proving the no-trade theorem for a general type distribution.

Most of the steps of the proof are straightforward. Indeed, it is arguably quite
obvious that condition (1) rules out the profitability of any pooling contract.
The theoretical contribution is to show that condition (1) also rules out the
profitability of separating contracts. Indeed, the ability for insurance compa-
nies to offer separating contracts is an important ingredient in previous models
of this environment (Spence (1978), Riley (1979), Chade and Schlee (2011)).
In Lemma A.5, I show that condition (1) implies that the profitability of a menu
of contracts is bounded above by the profitability of a pooling allocation.

A.1.1. Utility Space

First, translate the problem to utility space so that the incentive and indi-
vidual rationality constraints are linear in utility. Let c(u) = u−1(u) denote
the inverse of the utility function u(c), which is strictly increasing, continu-
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ously differentiable, and strictly convex. I denote the endowment allocation
by E = {(cL(p)� cNL(p))}p = {(w − l� l)}p. Let us denote the endowment al-
location in utility space by EU = {u(w − l)�u(w)}p. To fix units, I normalize
uNL(1)= u(w).

Given a utility allocation AU = {uL(p)�uNL(p)}p∈Ψ , denote the slack in the
resource constraint by

Π
(
AU

) =
∫ [
w−pl−pc(uL(p)

) − (1 −p)cNL(p)
]
dF(p)�

I begin with a useful lemma that allows us to characterize when the endowment
is the only implementable allocation.

LEMMA A.1—Characterization: The endowment is the only implementable
allocation if and only if EU is the unique solution to the f constrained maximiza-
tion program

P1: max
{uL(p)�uNL(p)}p

∫ [
w−pl−pc(uL(p)

)

− (1 −p)c(uNL(p)
)]
dF(p)

s.t. puL(p)+ (1 −p)uNL(p)

≥ puL(p̂)+ (1 −p)uL(p̂) ∀p� p̂ ∈Ψ�
puL(p)+ (1 −p)uNL(p)

≥ pu(w− l)+ (1 −p)u(w) ∀p ∈Ψ�

PROOF: Note that the constraint set is linear and the objective function is
strictly concave. The first constraint is the incentive constraint (IC) in util-
ity space. The second constraint is the individual rationality (IR) constraint
in utility space. The linearity of the constraints combined with strict con-
cavity of the objective function guarantees that the solutions are unique.
Suppose that the endowment is the only implementable allocation and sup-
pose, for contradiction, that the solution to the above program is not the
endowment. Then there exists an allocation AU = {uL(p)�uNL(p)} such that∫ [w−pl−pc(uL(p))− (1 −p)c(uNL(p))]dF(p) > 0, which also satisfies the
IC and IR constraints. Therefore, AU is implementable, which yields a contra-
diction.

Conversely, suppose that there exists an implementable allocation B such
that B �= E. Let BU denote the associated utility allocations to the consump-
tion allocations in B. Then BU satisfies the IC and IR constraints. Since the
constraints are linear, the allocations CU(t)= tBU + (1 − t)EU lie in the con-
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straint set. By strict concavity of the objective function, Π(CU(t)) > 0 for all
t ∈ (0�1). SinceΠ(EU)= 0, EU cannot be the solution to the constrained max-
imization program. Q.E.D.

The lemma allows me to focus attention on solutions to P1, a concave maxi-
mization program with linear constraints.

A.1.2. Necessity of the No-Trade Condition

I begin the proof with the converse portion of the theorem: if the no-trade
condition does not hold, then there exists an implementable allocation A �= E
that does not utilize all resources and provides a strict utility improvement to
a positive measure of types.

LEMMA A.2—Converse: Suppose condition (1) does not hold so that there
exists p̂ ∈Ψ \ {1} such that p̂

1−p̂
u′(w−l)
u′(w) >

E[P|P≥p̂]
1−E[P|P≥p̂] . Then there exists an allocation

ÂU = {(ûL(p)� ûNL(p))}p and a positive measure of types, Ψ̂ ⊂Ψ , such that

pûAL (p)+ (1 −p)ûNL(p) > pu(w− l)+ (1 −p)u(w) ∀p ∈ Ψ̂
and ∫ [

W −pL−pc(ûL(p)
) − (1 −p)c(ûNL(p)

)]
dF(p)�

PROOF: The proof follows by constructing an allocation that is preferable
to all types p≥ p̂ and showing that the violation of condition (1) at p̂ ensures
its profitability. Given p̂ ∈ Ψ , either P = p̂ occurs with positive probability or
any open set that contains p̂ has positive probability. In the case that p̂ occurs
with positive probability, let Ψ̂ = {p̂}. In the latter case, note that the function
E[P|P ≥ p] is locally continuous in p at p̂ so that, without loss of generality
(WLOG), the no-trade condition does not hold for a positive mass of types.
WLOG, I assume p̂ has been chosen so that there exists a positive mass of
types Ψ̂ such that p ∈ Ψ̂ implies p ≥ p̂. Then, for all p ∈ Ψ̂ , I have Ψ̂ ⊂ Ψ
such that

p

1 −p
u′(w− l)
u′(w)

>
E[P|P ≥ p]

1 −E[P|P ≥ p] ∀p ∈ Ψ̂ �

Now, for ε�η > 0, consider the augmented allocation to types p ∈ Ψ̂ :

uL(ε�η)= u(w− l)+ ε+η�

uNL(ε�η)= u(w)− 1 − p̂
p̂

ε�
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Note that ifη= 0, ε traces out the indifference curve of individual p̂. Construct
the utility allocation AU(ε�η) defined by

(
ûL(p)� ûNL(p)

)

=
⎧⎨
⎩

(
u(w− l)+ ε+η�u(w)− p̂

1 − p̂ε
)

if p≥ p̂�(
u(w− l)�u(w)) if p< p̂�

Note that for ε > 0 and η > 0, the utility allocation (ûL(p)� ûNL(p)) is strictly
preferred by all types p ≥ p̂ relative to the endowment utility allocation.
Therefore, AU

ε is individually rational and incentive compatible. I now only
need to verify that there exists an allocation with ε > 0 and η> 0 that does not
exhaust resources. I have

Π(ε�η)=
∫ [
w−pl−pc(ûL(p)

) − (1 −p)c(ûNL(p)
)]
dF(p)�

Notice that this is continuously differentiable in ε and η. Differentiating with
respect to ε and evaluating at ε= 0 yields

∂Π

∂ε

∣∣∣∣
ε=0

=
∫ [

−pc′(u(w− l+η)) + p̂

1 − p̂ (1 −p)c′(u(w))
]

× 1{p≥ p̂}dF(p)�
which is strictly positive if and only if

E[P|P ≥ p̂]c′(u(w− l+η))< p̂

1 − p̂
(
1 −E[P|P ≥ p̂])c′(u(w))�

Notice that this is continuous in η. So at η= 0, I have

∂Π

∂ε

∣∣∣∣
ε=0�η=0

> 0 ⇐⇒ p̂

1 − p̂
u′(w− l)
u′(w)

>
E[P|P ≥ p̂]

1 −E[P|P ≥ p̂] �

Thus, by continuity, the above condition holds for sufficiently small η > 0,
proving the existence of an allocation that both delivers strictly positive util-
ity for a positive fraction of types and does not exhaust all resources.

This shows that condition (1) is necessary for the endowment to be the only
implementable allocation. Q.E.D.

A.1.3. Useful Results

Before showing that condition (1) is sufficient for no trade, it is useful to
have a couple of results that characterize solutions to P1.
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LEMMA A.3: Suppose condition (1) holds. Then for all cL� cNL ∈ [w− l� l],
p

1 −p
u′(cL)

u′(cNL)
≤ E[P|P ≥ p]

1 −E[P|P ≥ p] ∀p ∈Ψ \ {1}

and if cL� cNL ∈ (w− l� l),
p

1 −p
u′(cL)

u′(cNL)
<

E[P|P ≥ p]
1 −E[P|P ≥ p] ∀p ∈Ψ \ {0�1}�

PROOF: Since u′(c) is decreasing in c, I have u′(cL)
u′(cNL)

≤ u′(w−l)
u′(w) . Therefore, the

result follows immediately from condition (1). The strict inequality follows
from strict concavity of u(c). Q.E.D.

LEMMA A.4: In any solution to P1, cL(p)≥w− l and cNL(p)≤w.

PROOF: Suppose A = {cL(p)� cNL(p)}p is a solution to P1. First, suppose
that cL(p̂) < w − l. For this contract to be individually rational, I must have
cNL(p̂) > w. Incentive compatibility requires cL(p) ≤ cL(p) < w − l ∀p <
p̂ and cNL(p) ≥ cNL(p̂) > w ∀p < p̂. Consider the new allocation Ã =
{c̃L(p)� c̃NL(p)} defined by

c̃L(p)=
{
cL(p) if p> p̂,
w− l if p≤ p̂,

c̃NL(p)=
{
cNL(p) if p> p̂,
w if p≤ p̂.

Then Ã is implementable (IC holds because of single crossing of the utility
function). It only remains to show that Π(A) < Π(Ã). But this follows triv-
ially. Notice that the IR constraint and concavity of the utility function require
that points (cL(p)� cNL(p)) lie above the zero profit line p(w− l− cL)+ (1 −
p)(w − cNL). Thus, each point (cL(p)� cNL(p)) must earn negative profits at
each p≤ p̂.

Now, suppose cNL(p̂) > w. Then the incentive compatibility constraint re-
quires cNL(p) > w ∀p≤ p̂. Construct Ã as above, yielding the same contradic-
tion. Q.E.D.

I now prove the theorem in two steps. First, I prove the result for a finite type
distribution. I then pass to the limit to cover the case of arbitrary distributions.

A.1.4. Sufficiency of the No-Trade Condition for Finite Types

To begin, suppose that Ψ = {p1� � � � �pN}. I first show that condition (1) im-
plies that the solution to P1 is a pooling allocation that provides the same allo-
cation to all types.
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LEMMA A.5: Suppose Ψ = {p1� � � � �pN} and that condition (1) holds (note
that this requires pN = 1). Then the solution to P1 is a full-pooling allocation:
there exist ūL and ūNL such that (uL(p)�uNL(p)) = (ūL� ūNL) for all p ∈ Ψ \
{0�1}, uL(1)= ūL, and uNL(0)= ūNL.

PROOF: Let AU = {u∗
L(p)�u

∗
NL(p)}p denote the solution to P and suppose,

for contradiction, that the solution to P is not a full-pooling allocation. Let
p̂= min{p|u∗

L(p)= u∗
L(1)} and let p̂− = max{p|u∗

L(p) �= u∗
L(1)}. The assump-

tion that Ψ is finite implies that p̂ > p̂−. Let us define the pooling sets
J = {p|u∗

L(p) = u∗
L(1)} and K = {p|u∗

L(p) = u∗
L(p̂−)}. I will show that a prof-

itable deviation exists that pools groups J andK into the same allocation. First,
notice that if p̂= 1, then clearly it is optimal to provide group J with the same
amount of consumption in the event of a loss as group K, since otherwise the
IC constraint of the p̂= 1 type would be slack. So I need only consider the case
p̂ < 1.

Notice that if the IR constraint of any member of group J binds (i.e., if the
IR constraint for p̂ binds), then its IC constraint implies that the only possible
allocation for the lower risk typesp< p̂ is the endowment. This standard result
follows from single crossing of the utility function. Therefore, I have two cases.
Either all types p̃ ∈ Ψ \ J receive their endowment, (cL� cNL)= (w− l�w), or
the IR constraint cannot bind for any member of J. I consider these two cases
in turn.

Suppose u∗
L(p) = u(w − l) and u∗

NL(p) = u(w) for all types p̃ ∈ Ψ \ J.
Clearly, I must then have that the IR constraint must bind for type p̂, since
otherwise profitability could be improved by lowering the utility provided to
types p̃ ∈Ψ \ J. I now show that the profitability of the allocation violates the
no-trade condition. The profitability of AU is

Π
(
AU

) =
∫
p∈J

[
w−pl−pc(u∗

L(p̂)
) − (1 −p)c(u∗

NL(p̂)
)]
dF(p)�

Now, I construct the utility allocation AU
t by

(
utL(p)�u

t
NL(p)

) =
⎧⎨
⎩

(
u(w− l)+ t� u(w)− p̂

1 − p̂ t
)

if p ∈ J�
(
u(w− l)�u(w)) if p /∈ J�

Since the IR constraint binds for type p̂, I know that there exists t̂ such that
AU
t̂

=AU . By Lemma A.4, t̂ > 0 andAU
t satisfies IC and IR for any t ∈ [0� t̂+η]

for some η > 0. Since profits are maximized at t = t̂ and since the objective
function is strictly concave, it must be the case that

dΠ(AU
t )

dt

∣∣∣∣
t=t̂

= 0�
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where

dΠ(AU
t )

dt

∣∣∣∣
t=t̂

=
∫
p∈J

[
pc′(u∗

L(p)
) − (1 −p)c′(u∗

NL(p)
) p̂

1 − p̂
]
dF(p)�

Rearranging and combining these two equations, I have

p̂

1 − p̂
u′(c(u∗

L(p̂)))

u′(c(u∗
NL(p̂)))

= E[P|P ≥ p̂]
1 −E[P|P ≥ p̂] �

which, by strict concavity of u, implies

p̂

1 − p̂
u′(w− l)
u′(w)

>
E[P|P ≥ p̂]

1 −E[P|P ≥ p̂] �

which contradicts condition (1).
Now, suppose that the IR constraint does not bind for any member of J.

Then clearly the IC constraint for type p̂ must bind; otherwise profit could be
increased by lowering the utility provided to members of J. So construct the
utility allocation BUε to be

(
uεL(p)�u

ε
NL(p)

) =
⎧⎨
⎩

(
u∗

L(p̂)− ε�u∗
NL(p̂)+ p̂

1 − p̂ε
)

if p≥ p̂�
(
u∗

L(p)�u
∗
NL(p)

)
if p< p̂�

so that BUε consists of allocations equivalent to AU except for p ∈ J. By con-
struction, BUε is IR for any ε. Moreover, because of single crossing and because
types are separated (finite types), BUε continues to be IC and IR for ε ∈ (−η�η)
for some η> 0 sufficiently small. Therefore, I must have dΠ(BUε )

dε
|ε=0 = 0, which

implies

dΠ(BUε )

dε

∣∣∣∣
ε=0

=
∫
p∈J

[
pc′(u∗

L(p̂)
) − (1 −p)c′(u∗

NL(p̂)
) p̂

1 − p̂
]
dF(p)

= Pr{p ∈ J}
[
E[P|P ≥ p̂] 1

u′(c(u∗
L(p̂)))

− (
1 −E[P|P ≥ p̂]) 1

u′(c(u∗
NL(p̂)))

p̂

1 − p̂
]

= Pr{p ∈ J}(1 −E[P|P ≥ p̂])
u′(c(u∗

L(p̂)))



8 NATHANIEL HENDREN

×
[

E[P|P ≥ p̂]
(1 −E[P|P ≥ p̂]) − u′(c(u∗

L(p̂)))

u′(c(u∗
NL(p̂)))

p̂

1 − p̂
]

= 0�

which implies

p̂

1 − p̂
u′(c(u∗

L(p̂)))

u′(c(u∗
NL(p̂)))

= E[P|P ≥ p̂]
1 −E[P|P ≥ p̂] �

which, by strict concavity of u, implies

p̂

1 − p̂
u′(w− l)
u′(w)

>
E[P|P ≥ p̂]

1 −E[P|P ≥ p̂] �

which contradicts condition (1). Therefore, if condition (1) holds, the only pos-
sible solution to P1 is a full-pooling allocation. Q.E.D.

All that remains to show is that a full-pooling allocation cannot be a solution
to P1.

LEMMA A.6: Suppose condition (1) holds. Then the only possible full-pooling
solution to P1 is EU .

PROOF: Suppose, for contradiction, that AU �= EU is a full-pooling solution
to P1. Let u∗

L and u∗
NL denote the full-pooling allocations AU . Recall that p1 =

minΨ is the lowest risk type. Note that the IR constraint for the p1 = minΨ
type must bind in any solution to P1. Otherwise, profits could be increased by
providing all types with less consumption, without any consequences on the
incentive constraints of types p>p1. Consider the allocations CU

t defined by

(
utL�u

t
NL

) =
(
u∗

L + (1 − t)(u(w− l)− u∗
L

)
�

u∗
NL + (1 − t)(u(w)− u∗

NL

))

so that when t = 1, these allocations correspond to AU and t = 0 corresponds
to the endowment. Because the IR constraint of the p1 type must hold, I know
that these allocations must follow the iso-utility curve of the p1 type that runs
through the endowment. Differentiating with respect to t and evaluating at
t = 0 yields

dΠ(CU
t )

dt

∣∣∣∣
t=0

= E[P|P ≥ p1]c′(u(w− l))

− (
1 −E[P|P ≥ p1]

)
c′(u(w)) p1

1 −p1
�
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where p1
1−p1

comes from the fact that I can parameterize the iso-utility curve of
the p1 type by uL − τ�uNL + p1

1−p1
τ. But rearranging the equation, I have

dΠ(CU
t )

dt

∣∣∣∣
t=0

= −E[P|P ≥ p1] 1
u′(w− l) + (

1 −E[P|P ≥ p1]
) 1
u′(w)

p1

1 −p1

= 1 −E[P|P ≥ p1]
u′(W −L)

(
− E[P|P ≥ p1]

1 −E[P|P ≥ p1] + u′(w− l)
u′(w)

p1

1 −p1

)
< 0�

which yields a contradiction to condition (1) at p= p1. Q.E.D.

Therefore, I have shown that if Ψ is finite, then if condition (1) holds, the
only possible allocation is the endowment. It only remains to show that this
property holds when Ψ is not finite.

A.1.5. Extension to Arbitrary Type Distribution

If F(p) is continuous or mixed and satisfies the no-trade condition, I first
show that F can be approximated by a sequence Fn of finite support distribu-
tions on [0�1], each of which satisfies the no-trade condition.

LEMMA A.7: Let P be any random variable on [0�1] with c.d.f. F(p). Then
there exists a sequence of random variables, PN , with c.d.f. FN(p), such that
FN → F uniformly and

E[PN |PN ≥ p] ≥E[P|P ≥ p] ∀p�∀N�
PROOF: Since F is increasing, it has at most a countable number of discon-

tinuities on [0�1]. Let D = {δi} denote the set of discontinuities and WLOG
order these points so that limε→+0 F(δi)− limε→−0 F(δi) is decreasing in i (so
that δ1 is the point of largest discontinuity). Then the distribution F is con-
tinuous on Ψ \ D. For any N , let ωN denote a partition of [0�1] given by
2N +min{N� |D|}+1 points equal to j

2N for j = 0� � � � �2N and {δi|i≤N}. I write

ωN = {pNj }2N+min{N�|D|}+1
j=1 . Now define F̂N :ωN → [0�1] by

F̂N(p)= F(
max

{
pNj |pNj ≤ p})

so that F̂N converges to F uniformly as N → ∞.
Unfortunately, I cannot be assured that F̂N satisfies the no-trade condition

at each N . But I can perform a simple modification to F̂N to arrive at a dis-
tribution that does satisfy the no-trade condition for all N and still converges
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to F . To do so, consider the following modification to any random variable.
For any λ ∈ [0�1] and for any random variable X distributed G(x) on [0�1],
define the random variable Xλ to be the random variable with c.d.f. λG(x)
and Pr{Xλ = 1} = 1 − λ. In other words, with probability λ, the variable is dis-
tributed according to X , and with probability 1 − λ, the variable takes on a
value of 1 with certainty. Notice that E[Xλ|Xλ ≥ x] is continuously decreasing
in λ and E[X0|X0 ≥ x] = 1 ∀x.

Now, given F̂N with associated random variable P̂N , I define PNλ to be the
random variable with c.d.f. λF̂N(p). I now define a sequence {λN}N by

λN = max
{
λ|E[

PNλ |PNλ ≥ p] ≥ E[P|P ≥ p] ∀p}
�

Note that for each N fixed, the set {λ|E[PNλ |PNλ ≥ p] ≥ E[P|P ≥ p] ∀p} is a
compact subset of [0�1], so that the maximum exists. Given λN , I define the
new approximating distribution by

FN(p)= λNFN(p)�
which satisfies the no-trade condition for all N . The only thing that remains to
show is that λN → 1 as N → ∞.

By definition of λN , for each N , there exists p̃N such that

E
[
PNλN |PNλN ≥ p̃N

] =E[P|P ≥ p̃N]�
Moreover, because λN is bounded, it has a convergent subsequence, λNk → λ∗.
Therefore,

E
[
P
Nk
λ∗ |PNkλ∗ ≥ q] →E[Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k → 0, where Pλ∗ is the random variable with c.d.f.
λ∗F(p). Moreover,

E
[
P
Nk
λNk

|PNkλNk ≥ q] →E[Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k→ 0. Therefore,

E
[
P
Nk
λ∗ |PNkλ∗ ≥ p̃N

] →E[P|P ≥ p̃N]�
so that I must have λ∗ = 1.

Therefore, the distribution PNk with c.d.f. FNk(p) = λNkF
Nk(p) for k ≥ 1

has the property

E
[
PNk |PNkλ ≥ p] ≥ E[P|P ≥ p] ∀p

and FNk(p) converges uniformly to F(p). Q.E.D.
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Now, let us return to problem P1 for an arbitrary distribution F(p)
that satisfies the no-trade condition. Let Π(A|F) denote the value of the
objective function for allocation A under distribution F . Suppose, for
contradiction, that an allocation Â = (ûL(p)� ûNL(p)) �= (w − l�w) is the
solution to P1 under distribution F , so that Π(A|F) > 0. Let FN(p) be a
sequence of finite approximating distributions that satisfy the no-trade con-
dition and converge to F . Let ωN = {pNj } denote the support of each ap-
proximating distribution. For any N , define the augmented allocation ÂN =
(ûNL (p)� û

N
NL(p)) by choosing (ûL(p)� ûNL(p)) to be the most preferred bun-

dle from the set {uL(p
N
j )�uNL(p

N
j )}j . Since Â is incentive compatible, clearly

I will have (ûNL (p
N
j )� û

N
NL(p

N
j )) = (ûL(p

N
j )� ûNL(p

N
j )). By single crossing, for

p �= pNj , agents with p ∈ (pNj−1�p
N
j ) will prefer either allocation for type pNj−1

or pNj .
Clearly, ÂN converges uniformly to Â. Since ÂN satisfies IC and IR by con-

struction, the no-trade condition implies that the allocation ÂN cannot be as
profitable as the endowment, so

Π(ÂN |FN)≤Π(E|FN)= 0 ∀N�

By the Lebesgue dominated convergence theorem (Π(ÂN |FN) is also bounded
below by −(W +L)),

Π(Â|F)≤ 0�

which yields a contradiction that Â was the optimal solution (which required
Π(Â|F) > 0) and concludes the proof.

A.2. Remark 1

A proof of Remark 1 follows in the same manner as the proof of the no-trade
condition. It is straightforward to see how the fact that the no-trade condition
holds for values p ≤ F−1(1 − α) rules out the tradability of pooling contracts
that attract a fraction α of the population. To see how it also rules out sep-
arating contracts, one can repeat the analysis of Lemma A.5, noting that the
measure of the sets J and K must be at least α.

APPENDIX B: PROPERTIES OF THE LOWER BOUND ESTIMATOR

This appendix formally derives the properties of the nonparametric lower
bound approach presented in Section 4.1 and provides a proof of Proposi-
tion 2.
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First, note that P is a mean-preserving spread of PZ ,

E[P|X�Z] = E
[
Pr{L|X�P}|X�Z]

= E
[
Pr{L|X�Z�P}|X�Z]

= Pr{L|X�Z}
= PZ�

where the first equality follows from Assumption 1, the second equality follows
from Assumption 2, the third equality follows from the law of iterated expecta-
tions (averaging over realizations of P givenX and Z), and the fourth equality
is the definition of PZ .

Let QP(α) to be the α-quantile of P ,

QP(α)= inf
q

{
q|Pr{P ≤ q} ≥ α}

�

and let Qα(PZ) be the α-quantile of the analogue,

QPZ(a)= inf
q

{
q|Pr{PZ ≤ q} ≥ α}

�

Note that E[m(P)] can be represented as a weighted average of these quan-
tiles:

E
[
m(P)

] =
∫ 1

0

[
Eα̃

[
QP(α̃)−QP(α)|α̃≥ α]]

dα

=
∫ 1

0

1
1 − α

[∫
ã≥α

[
QP(α̃)−QP(α)dα̃

]]
dα

=
∫ 1

0

∫
ã≥α

QP(α)

1 − α dα̃dα−E[P]

=
∫ 1

0
QP(α̃)

∫ α̃

0

1
1 − α dαdα̃−E[P]

=
∫ 1

0

[
QP(α)−E[P]] log

(
1

1 − α
)
dα�

Now it is straightforward to prove Proposition 2.

PROOF OF PROPOSITION 2: The fact that P is a mean-preserving spread of
PZ implies that

∫ 1

x

QPZ(α)dα≤
∫ 1

x

QP(α)dα ∀x ∈ [0�1]�
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So

E
[
m(P)

] −E[
mZ(PZ)

] =
∫ 1

0

[
QP(α)−QPZ(α)

]
log

(
1

1 − α
)
dα

=
∫ 1

0

[
QP(α)−QPZ(α)

]
�

∫ α

0

1
1 − α̃ dα̃dα=

∫ 1

0

∫ α

0

[
QP(α)−QPZ(α)

] 1
1 − α̃ dα̃dα

=
∫ 1

0

∫ 1

α̃

[
QP(α)−QPZ(α)

] 1
1 − α̃ dαdα̃

=
∫ 1

0

(∫ 1

α̃

[
QP(α)−QPZ(α)

]
dα

)
1

1 − α̃ dα̃

≥ 0�

where the last inequality follows from the fact that
∫ 1
α̃
[QP(α)−QPZ(α)]dα≥ 0

for all α̃ because P is a mean-preserving spread of PZ . Q.E.D.

APPENDIX C: DATA

C.1. Covariate Specification

The variables used in the pricing and full controls specifications for each
market are presented in Table A-I. These specifications, along with the baseline
age and gender specification, cover a wide range of variables that insurance
companies could potentially use to price insurance and allow for an assessment
of how the potential frictions imposed by private information would vary with
the observable characteristics insurance companies use to price insurance.

LTC

In LTC, the pricing specification primarily follows Finkelstein and McGarry
(2006) to control for variables insurers use to price insurance, along with the
interaction of a rich set of health conditions to capture how insurance compa-
nies would price contracts to those individuals they currently reject. I include
age and age squared, both interacted with gender, indicators for ADL restric-
tions, an indicator for performance in the lowest quartile on a word recall test,
and indicators for numerous health conditions, that is, the presence of an ADL
or instrumental ADL (IADL), psychological condition, diabetes, lung disease,
arthritis, heart disease, cancer, stroke, and high blood pressure.1 For the ex-
tended controls specification, I add full interactions for age and gender, along

1Note that for the no reject sample, many of these health conditions will, in practice, drop out
of the estimation because, for example, there are no people with ADLs in the no reject sample.
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TABLE A-I

COVARIATE SPECIFICATIONS

Price Controls Extended Controls

Long-Term Care

Age, ageˆ2, gender Full interactions of
Gender∗age Age
Gender∗ageˆ2 Gender

Word recall performancea Word recall performancea

Indicators for Indicators for
ADL/IADL restriction ADL/IADL restriction
Psychological condition Psychological condition
Diabetes Diabetes
Lung disease Lung disease
Arthritis Arthritis
Heart disease Heart disease
Cancer Cancer
Stroke Stroke
High blood pressure High blood pressure

Interactions between 5 yr age bins and
the presence of

Number of health conditions (high blood
preassure, diabetes, heart condition,
lung disease, arthritis, stroke, obesity,
psychological condition)
Number of ADL/IADL restrictions
Number of living relatives (≤ 3)
Past home care usage
Census region (1–5)
Income decile

Disability

Age, ageˆ2, gender Full interactions of
Gender∗age Age
Gender∗ageˆ2 Gender

Indicators for Full interactions of
Self employed Wage decile
Obese Part time indicator
Psychological condition Job tenure quartile
Back condition Self-employment indicator
Diabetes
Lung disease Interactions between 5 yr age bins and
Arthritis the presence of
Heart condition Arthritis
Cancer Diabettes
Stroke Lung disease
High blood pressure Cancer

(Continues)
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TABLE A-I—Continued

Price Controls Extended Controls

Heart condition
BMI Psychological condition

Back condition
Wage decile BMI quartile

Full interactions of
BMI quartile
5 year age bins

Full interactions of
Job requires stooping
Job requires lifting
Job requires phys activity

Full interactions of
5 year age bins
Census region (1–5)

Life

Age, ageˆ2, gender Full interactions of
Gender∗age Age
Gender∗ageˆ2 Gender
Smoker status

Full interactions of
Indicator for years to questionb Age

AGE in subj prob question
Indicator for death of parent
before age 60 Interactions of 5 yr age bins with

Smoker status
BMI Income decile

Heart condition
Indicators for Stroke

Psychological condition Cancer
Diabetes Lung disease
Lung disease Diabetes
Arthritis High blood pressure
Heart disease Census region
Cancer
Stroke BMI
High blood pressure

Indicator for death of parent
Income decile before age 60

aIndicator for lowest quartile performance on word recall test.
bFull indicator variables for number of years to AGE reported in subjective probability

question.
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with interactions of 5-year age bins with measures of health conditions, indica-
tors for the number of living relatives (up to three), census region, and income
deciles.

Disability

For disability, I construct the pricing specification using underwriting guide-
lines and also rely on feedback from interviews with a couple of disability in-
surance underwriters at major U.S. insurers. In general, there are three main
categories of variables used in pricing: demographics, health, and job informa-
tion. The pricing specification includes age, age squared, and gender interac-
tions, indicators for self-employment, obesity (body mass index (BMI) > 40),
the presence of a psychological condition, back condition, diabetes, lung dis-
ease, arthritis, heart condition, cancer, stroke, and high blood pressure. I also
include a linear term in BMI to capture differential pricing based on weight.
Finally, I include wage deciles to capture differential pricing by wage.

The extended controls specification includes full interactions of age and gen-
der, full interactions of wage deciles, a part-time working status indicator, job
tenure quartiles, and a self- employment indicator. I also include interactions
between 5-year age bins and the following health variables: arthritis, diabetes,
lung disease, cancer, heart condition, psychological condition, back condition,
and BMI quartiles. I also include full interactions between 5-year age bins and
BMI quartiles. I also include full interactions of several job characteristic vari-
ables: an indicator that the job requires stooping, the job requires lifting, and
the job requires physical activity. Finally, I include interactions between 5-year
age bins and census region (1–5).

In general, my conversations with underwriters suggest that I have a decent
approximation to the way in which insurers currently price insurance. How-
ever, as discussed in the main text, I do not observe the results of medical tests
and attending physician statements, which sometimes feed into the underwrit-
ing process. Underwriters suggest that the primary role of such tests is to verify
application information, not for independent use in pricing, but there may be
some additional factors not included in my regressions that disability insurers
could use to price insurance.2

Life

For life, the pricing specification primarily follows He (2009), who tested for
adverse selection in life insurance. The preferred specification includes age,

2Even if one believes insurers would use more information to price policies to the rejectees, it
should be clear that my approach will still be able to simulate the extent to which private informa-
tion would afflict an insurance market if insurers priced using the set of observables I use from
the HRS. With additional data, future work could explore different specifications and perhaps
even make prescriptive recommendations to underwriters about relevant variables for reducing
informational asymmetries.
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age squared, and gender interactions, smoking status, indicators for the death
of a parent before age 60, BMI, income decile, and indicators for a psychologi-
cal condition, diabetes, lung disease, arthritis, heart disease, cancer, stroke, and
high blood pressure. I also include a set of indicators for the years between the
survey date and the AGE corresponding to the loss.3

The extended controls specification adds full interactions of age and gen-
der; full interactions between age and the AGE in the subjective probability
question; interactions between 5-year age bins and smoking status, income
decile, census region, and various health conditions (heart condition, stroke,
non-basal-cell cancer, lung disease, diabetes and high blood pressure); BMI;
and an indicator for death of a parent before age 60.

In general, I approximate the variables insurers use to price insurance fairly
well. As with disability insurance, life insurers often require medical tests and
attending physician statements from applicants. and, as with disability insur-
ance, my conversations with underwriters suggest that the primary role of such
tests is to verify application information and ensure that there is no presence
of a rejection condition. But I cannot rule out that such information could be
used by insurance companies to price insurance.

Although I can well approximate the variables insurers use currently to price
insurance, the data do have one key limitation in constructing the variables in-
surers would use to price insurance to the rejectees. A common rejection con-
dition is the presence of cancer. If insurers were to offer insurance to people
with cancer, they would potentially price differentially based on the organ in
which the cancer is present. Unfortunately, the HRS does not report the organ
in which the cancer occurs in all years. Fortunately, the second wave (1993–
1994) of the survey does provide the organ in which a cancer occurs; therefore,
to assess whether pricing differentially based on the organ of the cancer would
reduce the amount of (or potentially remove all) private information, I con-
struct a sample from 1993–1994 and include a full set of indicators for the can-
cer organs (54 indicators). These results are discussed in Appendix D.3.2 and
the main conclusions of the lower bound analysis in life insurance continue to
hold.

C.2. Sample Selection

For all three settings, I begin with years 1993–2008 (waves 2–9) of the HRS
survey (subjective probability elicitations were not asked in wave 1).

LTC

For LTC, I exclude individuals I cannot follow for a subsequent 5 years to
construct the loss indicator variable; years 2004–2008 are used but only for

3I also include this in my age, gender, and extended control specifications for life.
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construction of the loss indicator. Also, I exclude individuals who currently
reside in a nursing home or receive specialized home care. Finally, I exclude
individuals who have missing observations (either the subjective probabilities
or observable covariates). For consistency, I exclude any case that is missing
any of the extended control variables (results are similar for the price controls
and age/gender controls that do not exclude these additional missing cases).

The primary sample consists of 9051 observations from 4418 individuals for
the no reject sample, 10,108 observations from 3215 individuals for the re-
ject sample, and 10,690 observations from 5190 individuals for the uncertain
sample. In each sample, I include multiple observations for a given individual
(which are spaced roughly 2 years apart) to increase power. All standard errors
are clustered at the household level.

In addition to the primary sample, I construct a sample that excludes those
who own insurance to assess robustness of my results to moral hazard. For this,
I drop the 13% of the sample who own insurance, along with an additional 5%
of the sample who currently are enrolled in Medicaid.

Disability

For disability, I begin with the set of individuals between the ages of 40 and
60 who are currently working and report no presence of work-limiting disabili-
ties. Although individuals are used to construct the corresponding loss realiza-
tion, I limit the sample to individuals who I can observe for a subsequent 10
years (years 2000–2008 are used solely for the construction of the loss indica-
tor). The final sample consists of 936 observations from 491 individuals for the
no reject classification, 2216 observations from 1280 individuals for the reject
classification, and 5361 observations from 1280 individuals for the uncertain
classification.4 Note that the size of the no reject sample is quite small. This
is primarily due to the restriction that income must be above $70,000. As dis-
cussed in Section 5.1, the individual disability insurance market primarily exists
for individuals who have sufficient incomes. Thus, many of these individuals
enter the uncertain classification.

Life

For the life sample, I restrict to individuals I can follow through the age cor-
responding to the subjective probability elicitation 10–15 years in the future,
so that years 2000–2008 are used solely for the construction of the loss indica-
tor. Since the earliest age used in the elicitation is 75, my sample consists of
individuals aged 61 and older. The final sample consists of 2689 observations
from 1720 individuals for the no reject classification, 2362 observations from

4Ideally, I would also test the robustness of my results using a sample of those who do not own
disability insurance, but unfortunately the HRS does not ask about disability insurance owner-
ship.
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1371 individuals for the reject classification, and 6800 observations from 4270
individuals for the uncertain classification. Similar to LTC, I include those who
own life insurance in the primary sample (64% of the sample) but present re-
sults that exclude this group for robustness.

APPENDIX D: LOWER BOUND

D.1. Lower Bound Specification

Here I discuss the construction of the lower bound estimates. I begin with a
detailed discussion of the specification for the pricing controls, and then dis-
cuss modifications for the age/gender and extended controls specifications.

Aside from differences in the variablesX ,Z, andL, the specifications do not
vary across the nine samples (LTC, life, disability + reject, no reject, uncertain
classifications). For the pricing controls specification, I model Pr{L|X�Z} as a
probit,

Pr{L|X�Z} =Φ(
Xβ+ Γ (age�Z)

)
�

where X contains all of the price control variables. The function Γ (age�Z)
captures the way in which the subjective probabilities affect the probability of
a loss. In principle, one could allow this effect to vary with all observables, X;
in practice, this would generate far too many interaction terms to estimate.
Therefore, I allow Z to interact with age but not other variables. Note that
this does not restrict how the distribution of Pr{L|X�Z} varies with X and
Z; it only limits the number of interaction coefficients. The distribution of
Pr[L|X�Z] can and does vary because of variation in Z conditional on X .
Indeed, the results are quite similar if one adopts a simple specification of
Pr{L|X�Z} =Φ(Xβ+ γZ).

I choose a flexible functional form for Γ (age�Z) that uses full interactions
of basis functions in age and Z:

Γ (age�Z)=
∑
i�j

αijfi(age)gj(Z)�

For the basis in Z, I use second-order Chebyshev polynomials for the nor-
malized variables, Z̃ = 2(Z − 50%), plus separate indicators for focal point
responses at Z = 0, 50, and 100:

g1(Z)= Z̃�
g2(Z)= (

2Z̃2 − 1
)
�

g3(Z)= 1{Z = 0%}�
g4(Z)= 1{Z = 50%}�
g5(Z)= 1{Z = 100%}�
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For the basis in age, I use a linear specification, f1(age) = age (note that any
constant terms are absorbed into Xβ).

I estimate β and {αij} using MLE (the standard probit command in Stata)
and construct the predicted values for Pr{L|X�Z}. Given these predicted val-
ues, I plot the distribution of Pr{L|X�Z}−Pr{L|X} aggregated within each set-
ting and rejection classification. To do so, I also need an estimate of Pr{L|X}.
For this, I use the same specification as above, except I exclude Γ (age�Z), so
that

Pr{L|X} =Φ(Xβ̃)�
I again estimate β̃ using MLE and construct the predicted values of Pr{L|X}.

Now, for each observation, I have an estimate of Pr{L|X�Z} and Pr{L|X}.
Therefore, I can plot the predicted empirical distribution of Pr{L|X�Z} −
Pr{L|X} in each sample. For ease of viewing, I estimate a kernel density, us-
ing the optimal bandwidth selection (the default option in Stata), andplot the
density in Figure 2.

I then construct an estimate of the average magnitude of private infor-
mation implied by Z. With infinite data, I could construct an estimate of
E[mZ(PZ)|X] for each value of X; in practice, I need to aggregate across
values of X within a sample to gain statistical power. To do this aggregation,
I rely on the assumption that the distribution of Pr{L|X�Z} − Pr{L|X} does
not vary conditional on age. Thus, I can aggregate across the residual distri-
bution to construct, for each age, the average difference between one’s own
probability and the probability of worse risks. I construct the residual ri =
Pr{L|X�Z} − Pr{L|X} for each case in the data. Then, within each age, I com-
pute the average residual, Pr{L|X�Z} − Pr{L|X}, of those who have higher
residuals within a given age (i.e., for an observation with ri = x, I construct
r̂i = E[ri|ri ≥ x�age]). Note that this is where I use the assumption that the
distribution of Pr{L|X�Z} − Pr{L|X} does not vary conditional on age. I then
construct the average of r̂i in the sample, which equals E[mZ(PZ)|X ∈Θ] for
the given sample Θ.

For the age/gender controls specification, I use the same specification as for
the price controls, but replaceX with the saturated set of age/gender variables.
However, for the extended controls specification, the number of covariates is
too large for a probit specification. Aside from the computational difficulties
of maximizing the probit likelihood, it is widely known that the probit yields in-
consistent estimates of Γ in this setting when the dimensionality ofX increases
(this is analogous to the problem of doing a probit with fixed effects). I there-
fore adopt a linear specification, L= βX + Γ (age�Z)+ ε, to ease estimation
with the very high dimensionality of X . Under the null hypothesis that the lin-
ear model is true, this approach continues to deliver consistent estimates of Γ
even as the dimensionality ofX increases. For Γ , I use the same basis function
approximation as used above (of course it now has a different interpretation).
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D.2. Statistical Drivers of Lower Bound Results

Figure 2(a)–(c) shows that the elicitations are more predictive of L given X
for the rejectees than for nonrejectees in each setting. To help provide greater
statistical clarity on the drivers of this result and to relate to more standard re-
gression data analysis used in previous literature, I use a linear functional form
to decompose the variance of the predictive distribution into two components:
(i) the “slope” of L and Z given X , cov(L�Z|X)

var(Z|X) , and (ii) the dispersion of the
elicitations given X , E[var(Z|X)].

To do so, I adopt a linear specification

Pr{L|X�Z} = γZ +βX�
so that we have the decomposition5

var
(
Pr{L|X�Z} − Pr{L|X}) = γ2E

[
var(Z|X)]�

so that greater dispersion in Pr{L|X�Z} − Pr{L|X} can be driven by two com-
ponents: γ = cov(L�Z|X)

var(Z|X) (assumed to be constant across values of X by the addi-
tive specification) and E[var(Z|X)].

Table A-II presents estimates of γ and E[var(Z|X)] for rejectees and non-
rejectees in each market setting.6 The first row shows that in all three market
settings, the coefficient γ is larger for the rejectees relative to the nonrejectees.
This indicates that differences in elicitations lead to larger differences in expe-
rienced loss probabilities.

The third row presents the estimated mean residual squared error of a re-
gression of Z onX . This provides an estimate of E[var(Z|X)]. In all three set-
tings, we find larger estimates for rejectees relative to nonrejectees: rejectees
have greater dispersion in their subjective probability elicitations.

In short, the greater dispersions in predicted probabilities, Pr{L|X�Z} −
Pr{L|X}, presented in Figure 2(a)–(c) are driven by a combination of a larger
“slope” to the relationship between Z and L, conditional on X , and greater
dispersion in Z, conditional on X .

D.3. Lower Bound Robustness Checks

This section presents several robustness checks of the lower bound analysis.

5The advantage of the linear specification is that it allows this simple decomposition. All of
the results in the paper can be qualitatively reproduced with this specification; however, I use
the more flexible (nonlinear) specification for the main results because L is a binary variable and
hence the linear specification can be inappropriate.

6I estimate E[var(Z|X)] by adopting the linear specification

Z =ΩX + ε�
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TABLE A-II

DECOMPOSITION OF DISPERSION IN Pr{L|X�Z}

LTC Disability Life

Classification No Reject Reject No Reject Reject No Reject Reject

Regression of L on Z, cond’l on X
Gamma (ϒ) −0�004 0�132 −0�033 0�206 0�062 0�159

s.e.a 0�013 0�018 0�045 0�041 0�031 0�032

RMSE of regression of Z on X
E[var(Z|X)] 0�194 0�250 0�239 0�257 0�294 0�320

aStandard errors clustered at household level.

D.3.1. Age Analysis

First, I present estimates of the average magnitude of private information
implied by Z separately by age for the disability and life settings. Figure A-1
presents the results, along with bootstrapped standard errors. I also split the
results separately for males and females in disability to ensure that the results
are not driven by age-based sample selection in the HRS (the HRS samples
near retirement individuals and includes their spouses regardless of age).

As one can see, the results suggest generally that there is more private infor-
mation for the rejectees relative to nonrejectees, conditional on age.

D.3.2. Organ Controls for Life Specification

The specifications for life insurance did not include controls for the affected
organ of cancer sufferers. As a result, the main results identify the impact of
private information, assuming that the insurer would not differentially price
insurance as a function of the organ afflicted by cancer. It seems likely that
insurers, if they sold insurance to cancer patients, would price differentially
based on the afflicted organ. Fortunately, organ information is provided in the
1993/1994 wave of the survey (it is not provided in other waves). Therefore,
I can assess the robustness of my finding of private information using a sample
restricted to this wave alone.

In the second column of Table A-III, I report results from a specification
restricted to years 1993/1994 that includes a full set of 54 indicators for the af-
fected organ added to the extended controls specification. The finding of sta-
tistically significant amounts of private information among the rejectees con-
tinues to hold (p= 0�0204). Moreover, the estimate of E[mZ(PZ)|X ∈ΘReject]
remains similar to the preferred (pricing) specification (0.0308 versus 0.0338
for the primary specification). While insurers could potentially price differen-
tially based on the afflicted organ, doing so would not eliminate or significantly
reduce the amount of private information held by the potential applicant pool.
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FIGURE A-1.—Magnitude of private information by age.

APPENDIX E: STRUCTURAL ESTIMATION

E.1. Specification Details

I approximate the distribution f (p|X) using mixtures of beta distributions,

f (p|X)=
∑
i

wi Beta
(
ai + Pr{L|X}�ψi

)
�

where Beta(μ�ψ) is the p.d.f. of the beta distribution with mean μ and shape
parameterψ. Note that this parameterization of the beta distribution is slightly
nonstandard; the Beta distribution is traditionally defined with parameters α
and β such that the mean is μ= α

α+β and the shape parameter ψ= α+β.
In the main specification, I use three beta distributions, i = 1�2�3. Also,

I make a couple of simplifying restrictions to ease estimation. First, I only
estimate two values of the shape parameter; one for the most central beta,
ψ1 = ψcentral, and one for all other beta distributions, ψi = ψnoncentral (i = 2�3).
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TABLE A-III

CANCER ORGAN CONTROLS (LIFE SETTING)

Organ + Extended Controls
Preferred Specification (1993/1994 Only)

Reject 0�0587*** 0�0526***
s.e.a (0�0083) (0�0098)
p-valueb 0�000 0�002

No Reject 0�0249 0�0218
s.e.a (0�007) (0�007)
p-valueb 0�1187 0�3592

Difference: ΔZ 0�0338*** 0�0308**
s.e.a (0�0107) (0�0121)
p-valuec 0�0000 0�0260

Uncertain 0�0294*** 0�0342***
s.e.a (0�0054) (0�0063)
p-valueb 0�0001 0�0003

aBootstrapped standard errors computed using block re-sampling at the household level (re-
sults shown for N = 1000 repetitions).

bp-value for the Wald test which restricts coefficients on subjective probabilities equal to
zero.

cp-value is the maximum of the p-value for the rejection group having no private information
(Wald test) and the p-value for the hypothesis that the difference is less than or equal to zero,
where the latter is computed using bootstrap.

***p< 0�01, **p< 0�05, *p< 0�10.

This helps reduce the nonconvexity of the likelihood function.7 Second, I con-
strain the shape parameters, ψi, such that ψi ≤ 200. This restriction prevents
ψi from reaching large values that introduce nontrivial approximation errors in
the numerical integration of the likelihood over values of p (these numerical
errors arise when fP(p|X) exhibits extreme curvature). Changing the levels of
this constraint does not affect the results in the LTC reject, disability reject, life
no reject, and life reject samples. However, the LTC no reject and disability no
reject initial estimates did lie on the boundary, ψi = 200, for the most central
beta. Intuitively, these samples have small amounts of private information, so
that the model attempts to construct a very highly concentrated distribution,
fP(p|X). To relax this constraint, I therefore include an additional point mass
at the mean, Pr{L|X}, that helps capture the mass of people who have no pri-
vate information (note that inserting a point mass at the mean is equivalent
to inserting a beta distribution with ai = 0 and ψi = ∞). This computational
shortcut improves the estimation time and helps remove the bias induced by
the restriction ψi ≤ 200.

7For example, nonconvexity arises because a dispersed distribution can be accomplished either
with one beta distribution with a high value of ψ or with two beta distributions with lower values
of the shape parameters but differing values of ai .
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In addition to these constraints, Assumptions 1 and 2 also yield the con-
straint Pr{L|X} = E[P|X], which requires

∑
i wiai = 0. Imposing this con-

straint further reduces the number of estimated parameters. I also censor the
mean of each beta distribution, ai + Pr{L|X}, to lie in [0�001�0�999]. I accom-
plish this by censoring the value of ai given to observations with values of X
such that ai + Pr{L|X} is greater than 0.999 or less than 0.001. I then read-
just the other values of ai and wi for this observation to ensure the constraint∑

i wiai = 0 continues to hold. If the parameter values and values of X are
such that a2 + Pr{L|X}< 0�001, I then define a2 = 0�001 − Pr{L|X} and then
adjust a3 such that a2w2 + a3w3 = 0. In some instances, it may be the case that
a2 = 0�001 and a3 = 0�999; in such a case, I adjust the weights w2 and w3 to
ensure that

∑
wiai = 0 (note that weight w1 is unaffected because a1 = 0).

Given this specification with three beta distributions and the above-men-
tioned restrictions, there are six parameters to estimate: two parameters cap-
ture the relative weights on the three betas, two parameters capture the non-
centrality of the beta distributions (a1 and a2), and the two shape parameters,
ψcentral and ψnoncentral. Finally, for the LTC no reject and disability no reject sam-
ples, I estimate a seventh parameter, which is given by the weight on the point
mass, wptmass.

Estimation

In each of the six samples, estimation is done in two steps.8 First, I estimate
Pr{L|X} using the probit specification described in Section D.1. Second, I es-
timate the six beta mixture parameters, {w1�w2� a1� a2�ψcentral�ψnoncentral}, along
with the four elicitation error parameters {σ�κ�λ�α}� using maximum likeli-
hood. As is standard with mixture estimation, the likelihood is nonconvex and
can have local minima. I therefore start the maximization algorithm from 100+
random starting points in the range of feasible parameter values.

In addition, I impose a lower bound on σ in the estimation process.
It is straightforward to verify that, under the null hypothesis, I have σ ≥
min{var(Znf) − cov(Znf�L)�

√
3
8 }. In reality, the distribution of Z is concen-

trated on integer values between 0 and 100%, and, in particular, multiples of
5% and 10%. In some specifications, the unconstrained maximum likelihood
procedure would yield estimates of σ ≈ 0 and distributions of P that attempt to
match the integer patterns of Z. In other words, the model attempts to match
the dearth of Z values between 5.01% and 9.99%, and the higher frequency

at Z = 10%. By imposing the constraint σ ≥ min{var(Znf)− cov(Znf�L)�
√

3
8 },

these pathological outcomes are removed. Reassuringly, the constraint does
not locally bind in any of my samples (i.e., I find estimates of σ between 0.3

8The bootstrapping procedure for standard errors will repeat the entire estimation process
(i.e., both steps) for each bootstrap iteration.
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and 0.45, whereas values of var(Znf)− cov(Znf�L) fall consistently around 0.2
in each setting).

E.2. Robustness

Table A-IV presents the minimum pooled price ratio evaluated at other
points along the distribution of Pr{L|X} in each sample. The table presents
the estimates at the 20th, 50th, and 80th quantiles of the Pr{L|X} distribu-
tion. The first set of rows presents the results for the reject samples. The first
row presents the point estimates, followed by the 5/95% confidence intervals,
and, finally, by the value of Pr{L|X} corresponding to the given quantile. The
second set of rows repeats these figures for the nonrejectees. In general, the
results are quite similar to the values reported in Tables V and VI, which con-
sidered a characteristic that corresponds to the mean loss, Pr{L|X} = Pr{L}.

E.3. Estimation Results Details

Measurement Error Parameters

Table A-V presents the estimated measurement error parameters. In gen-
eral, I estimate values of σ between 0.29 and 0.46, indicating that elicitations
are quite noisy measures of true beliefs. Roughly 30–42% of respondents are
focal point respondents, and the focal point window estimate ranges from 0 to
0.173. The estimate of κ = 0 indicates that focal point respondents choose to
report an elicitation of 50%, regardless of their true beliefs. Finally, I estimate
the moderate bias of magnitudes less than 10% in all samples except the LTC
rejectees, for whom I estimate a substantial 28.6 percentage point downward
bias. Although many factors could be driving this result, it is consistent with
the hypothesis that many individuals do not want to admit to a surveyor that
they are going to have to go to a nursing home.

Beta Mixture Parameters

Table A-VI presents the estimated parameters for fP(p|X), along with the
bootstrapped standard errors.

APPENDIX F: SELECTED PAGES FROM GENWORTH FINANCIAL
UNDERWRITING GUIDELINES

The following four pages contain a selection from Genworth Financial’s
LTC underwriting guideline that is provided to insurance agents for use in
screening applicants. Although marked “[n]ot for use with consumers or to
be distributed to the public,” these guidelines are commonly left in the pub-
lic domain on the websites of insurance brokers. The printed version here was
found in public circulation at http://www.nyltcb.com/brokers/pdfs/Genworth_
Underwriting_Guide.pdf on November 4, 2011. I present four of the 152 pages

http://www.nyltcb.com/brokers/pdfs/Genworth_Underwriting_Guide.pdf
http://www.nyltcb.com/brokers/pdfs/Genworth_Underwriting_Guide.pdf


PR
IV

A
T

E
IN

F
O

R
M

A
T

IO
N

A
N

D
IN

SU
R

A
N

C
E

R
E

JE
C

T
IO

N
S

27

TABLE A-IV

MINIMUM POOLED PRICE RATIO: ROBUSTNESS TO ALTERNATIVE Pr{L|X} LOCATIONS

LTC Disability Life

Quantile of Index, Pr{L|X} Mean 20% 50% 80% Mean 20% 50% 80% Mean 20% 50% 80%

Reject 1�827 2�090 1�849 1�776 1�661 1�687 1�659 1�741 1�428 1�416 1�436 1�609
5%a 1�657 1�901 1�684 1�562 1�524 1�550 1�522 1�550 1�076 0�987 0�987 0�987

95% 2�047 2�280 2�280 2�280 1�824 1�825 1�825 1�879 1�780 1�846 1�846 2�054

Pr{L|Reject} 0�225 0�124 0�207 0�314 0�441 0�293 0�430 0�578 0�572 0�351 0�589 0�791

No Reject 1�163 1�168 1�160 1�171 1�069 1�064 1�068 1�072 1�350 1�621 1�390 1�336
5%a 1�000 1�000 1�000 1�000 0�932 0�926 0�926 0�926 1�000 1�000 1�000 1�000

95% 1�361 1�665 1�665 1�665 1�840 1�967 1�967 1�967 1�702 2�050 2�050 2�050

Pr{L|No Reject} 0�052 0�021 0�041 0�076 0�115 0�069 0�105 0�147 0�273 0�073 0�194 0�458

Difference (Reject − No Reject) 0�664 0�922 0�689 0�605 0�592 0�623 0�591 0�669 0�077 −0�204 0�045 0�272
5%b 0�428 0�583 0�444 0�341 0�177 0�069 0�069 0�069 −0�329 −5�050 −5�050 −5�050

95% 0�901 1�261 1�261 1�261 1�008 1�178 1�178 1�178 0�535 4�641 4�641 4�641
a5/95% CI computed using bootstrap block re-sampling at the household level (N = 250 repetitions); 5% level extended to include 1.00 if p-value of F -test for presence of

private information is less than 0.05; Bootstrap CI is bias corrected using the nonaccelerated procedure in Efron (1982).
b5/95% CI computed using bootstrap block re-sampling at the household level (N = 1000 repetitions); 5% level extended to include 1.00 if p-value of F -test for presence of

private information for the rejectees is less than 0.05; Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (nonaccelerated) percentile intervals from Efron
and Gong (1983).
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TABLE A-V

ELICITATION ERROR PARAMETERSa

LTC Disability Life

No Reject Reject No Reject Reject No Reject Reject

Standard deviation (σ) 0�293 0�443 0�298 0�311 0�422 0�462
s.e. (0�015) (0�009) (0�025) (0�016) (0�014) (0�013)

Fraction focal respondents (λ) 0�364 0�348 0�292 0�417 0�375 0�383
s.e. (0�046) (0�01) (0�032) (0�018) (0�014) (0�013)

Focal window (κ) 0�173 0�001 0�000 0�000 0�001 0�000
s.e. (0�058) (0�015) (0�073) (0�053) (0�014) (0�003)

Bias (α) −0�078 −0�286 0�086 −0�099 0�034 0�014
s.e. (0�025) (0�01) (0�041) (0�017) (0�014) (0�016)

aBootstrapped standard errors computed using block re-sampling at the household level (results shown for N =
1000 repetitions).

of the guidelines. The conditions documented below are not exhaustive for the
list of conditions that lead to rejection: they constitute the set of conditions
that solely lead to rejection (independent of other health conditions); combi-
nations of other conditions may also lead to rejections and the details for these
are provided in the remaining pages not shown here.

TABLE A-VI

BETA MIXTURE PARAMETERSa

LTC Disability Life

No Reject Reject No Reject Reject No Reject Reject

Weight on Beta 1 0�005 0�848 0�001 0�890 0�000 0�714
s.e. (0�066) (0�247) (0�134) (0�421) (0�377) (0�388)

Weight on Beta 2 0�142 0�065 0�059 0�007 0�094 0�285
s.e. (0�057) (0�246) (0�093) (0�182) (0�341) (0�281)

Noncentrality of Beta 1 0�500 0�065 0�059 0�007 0�094 0�285
s.e. (0�057) (0�246) (0�093) (0�182) (0�341) (0�281)

Noncentrality of Beta 2 −0�527 0�021 −0�054 0�030 0�410 0�000
s.e. (0�036) (0�058) (0�116) (0�111) (0�062) (0�154)

Shape parameter for Beta 1 11�185 31�488 190�752 11�261 16�005 10�941
s.e. (38�499) (81�148) (57�545) (14�604) (19�697) (14�208)

Shape parameter for Beta 2 and Beta 3 27�940 36�318 66�992 18�272 17�977 10�714
s.e. (36�391) (46�674) (46�846) (11�719) (18�026) (27�965)

Weight on point mass at mean 0�817 0�833
s.e. (0�116) (0�263)

aBootstrapped standard errors computed using block re-sampling at the household level (results shown for N =
1000 repetitions).
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INTRODUCTION

Underwriting is the process by which an applicant’s current health, medical
history and lifestyle are evaluated to determine a risk profile. The underwriter’s
decision to accept or decline an applicant is determined by matching the profile
to guidelines, which outline the limits of acceptable risk to the company.

We underwrite applicants in the age range 18–79. We do not modify the cov-
erage applied for, nor do we apply extra premiums. We make every attempt to
issue the desired coverage at the corresponding published premium.

The information in this manual reflects over 30 years of experience. . . the
longest in the Long Term Care insurance industry. While not all-inclusive,
enough information is presented to help you in most situations you will en-
counter. A hotline number is included should you have questions or run into
an unusual circumstance.

An appeal process is also outlined in the event you disagree with our underwrit-
ing evaluation. We are always willing to have a second look, especially when ad-
ditional information not included in the original application file is made avail-
able.

We value our relationship with you and look forward to providing high quality
service and underwriting for you and your clients.
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UNINSURABLE CONDITIONS

Acquired Immune Deficiency Syndrome (AIDS)
ADL limitation, present
AIDS Related Complex (ARC)
Alzheimer’s Disease
Amputation due to disease, e.g., diabetes or atherosclerosis
Amyotrophic Lateral Sclerosis (ALS), Lou Gehrig’s Disease
Ascites present
Ataxia, Cerebellar
Autonomic Insufficiency (Shy–Drager Syndrome)
Autonomic Neuropathy (excluding impotence)
Behçet’s Disease
Binswanger’s Disease
Bladder incontinence requiring assistance
Blindness due to disease or with ADL/IADL limitations
Bowel incontinence requiring assistance
Buerger’s Disease (thromboangiitis obliterans)
Cerebral Vascular Accident (CVA)
Chorea
Chronic Memory Loss
Cognitive Testing, failed
Cystic Fibrosis
Dementia
Diabetes treated with insulin
Dialysis, Kidney (Renal)
Ehlers–Danlos Syndrome
Forgetfulness (frequent or persistent)
Gangrene due to diabetes or peripheral vascular disease
Hemiplegia
Hoyer Lift
Huntington’s or other forms of Chorea
Immune Deficiency Syndrome
Korsakoff’s Psychosis
Leukemia-except for Chronic Lymphocytic Leukemia (CLL) and Hairy Cell

Leukemia (HCL)
Marfan’s Syndrome
Medications

Antabuse (disulfiram)
Aricept (donepezil HCI)
Camprai (acamprosate calcium)
Cognex (tacrine)
Depade (naltrexone)
Exelon (rivastigmine)
Hydergine (ergoloid mesylate)
Namenda (memantine)
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Razadyne (galantamine hydrobromide)
Reminyl (galantamine hydrobromide)
ReVia (naltrexone)
Vivitrol (naltrexone)

Memory Loss, chronic
Mesothelioma
Multiple Sclerosis (MS)
Muscular Dystrophy (MD)
Myelofibrosis
Organ Transplants, except kidney transplants
Organic Brain Syndrome (OBS)
Oxygen use except if used for headaches or sleep apnea
Paralysis/Paraplegia
Parkinson’s Disease
Pneumocystis Pneumonia
Polyarteritis Nodosa
Postero-Lateral Sclerosis
Quad Cane use
Quadriplegia
Senility
Spinal Cord Injury with ADL/IADL limitations
Stroke (CVA)
Surgery scheduled or anticipated (except cataract surgery under local

anesthesia)
Takayasu’s Arteritis
Thalassemia Major
Total Parenteral Nutrition (TPN) for regular or supplementary feeding or

administration of medication
Waldenstrom’s Macroglobulinemia
Walker use
Wegener’s Granulomatosis
Wernicke–Korsakoff Syndrome
Wheelchair use
Wilson’s Disease
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