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THIS SUPPLEMENTAL MATERIAL GIVES PROOFS for the results of Sections 4
and 5 of the paper as well as some additional results and discussions.

S1. DISCUSSION AND AN EXAMPLE FOR LEMMA 3

The first item we consider is discussion and examples of the genericity re-
sult in Lemma 3. Below, we provide examples for Lemma 3 for the case
A = B = L2[0�1] that highlight the range of algorithms permitted by condi-
tions 1 and 2 preceding Lemma 3, including cases where various restrictions
on m′ are imposed: boundedness, compactness, weak positivity, and density
restrictions. Genericity arguments use the idea of randomization, and are of-
ten employed in economic theory, functional analysis, and probability the-
ory; see, for example, Anderson and Zame (2000), Marcus and Pisier (1981),
Ledoux and Talagrand (2011). Andrews (2011) previously used a related no-
tion of genericity, called prevalence within bounded sets, to argue that rich
classes of operators induced by densities in nonparametric IV areL2-complete.
Though inspired in part by Andrews (2011), Lemma 3 of the main article
(Chen, Chernozhukov, Lee, and Newey (2014)) uses a somewhat different no-
tion of genericity than prevalence.1 We also note that while this construction
implies identification with probability 1, it does not regulate in any way the
strength of identification, and hence has no bearing on the choice of an infer-
ential method.

It is useful to give explicit examples of the randomization algorithms obeying
conditions 1 and 2 listed in Section 3. Suppose A= B =L2[0�1], and thatm′ is
an integral operator

m′δ=
∫
K(·� t)δ(t)dt�

1Informally speaking, prevalence requires that it should be possible to construct a randomiza-
tion device such that all finite dimensional distributions for λj ’s are absolutely continuous, that
is, the distribution of (λj1 � � � � �λjk ) needs to be continuous with respect to the Lebesgue measure
on R

k, for any (j1� � � � � jk)⊂ {1�2� � � � �N}, and any k ∈ {1�2� � � �}. The notion that we use requires
only that the one-dimensional marginal distributions for λj are absolutely continuous for any j.
The distinction is actually important to cover cases, where perfect dependence between some λj ’s
may be required to maintain conditions imposed on the operator, such as, for example, the kernel
of the operator being a conditional density.
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The kernel K of this operator is generated as follows. The nature performs
step 1 by selecting two, possibly different, orthonormal bases {φj} and {ϕj}
in L2[0�1]. The nature performs step 2 by first selecting a bounded sequence
0 < σj < σ for j = 0�1� � � � , sampling uj as i.i.d. U[−1�1], and then setting
λj = ujσj . Finally, for some scalar κ > 0, it sets

K = κ
( ∞∑
j=0

λjφjϕj

)
�

The operator defined in this way is well-defined over A and is bounded, but it
need not be compact. If compactness is required, we impose

∑∞
j=1σ

2
j <∞ in

the construction. If K ≥ 0 is required, we can impose φ0 = 1, ϕ0 = 1, |ϕj| ≤ c,
and |φj| ≤ c, for all j, where c > 1 is a constant, and

∑∞
j=0σj <∞, and define

instead λ0 as c
∑∞

j=1 λj + |u0|σ0. If in addition to positivity,
∫
K(z� t)dt = 1

is required, for example if K(z� t) = f (t|z) is a conditional density, then we
select κ > 0 so that κλ0 = 1. This algorithm for generating m′ trivially obeys
conditions 1 and 2 stated above Lemma 3. Furthermore, uj need not be i.i.d.
Take the extreme, opposite example, and set uj =U[−1�1] for all j, that is, uj ’s
are perfectly dependent. The resulting algorithm for generatingm′ still trivially
obeys conditions 1 and 2. The latter point—of allowing perfect dependence—is
useful for highlighting the differences with the approach and various examples
given in Andrews (2011); other than that, our point is the same.

An important example where dependence matters is the case with normal
instrumental regression, where the endogenous variable X conditional on the
instrument Z = z follows a normal distribution with mean ρz (and variance
normalized to 1). Here we let A = B =L2(R) equipped with standard normal
density as a measure. In this case, m′ is an integral operator

m′δ=
∫
K(·� t)δ(t) 1√

2π
e−t2/2 dt�

similarly to what we had above, where K(t� z) has the following well-known
representation:

K(t� z)=
∞∑
j=0

ρjφj(t)ϕj(z)�

where (φj)∞j=0 and (ϕj)∞j=0 are the orthonormal (Hermite) polynomials. Hence,
if the nature draws ρ from an absolutely continuous density on (−1�1), then
the full rank condition holds with probability 1. Note that the generalized
Fourier coefficients (ρj)∞j=0 exhibit perfect dependence here. To see that our
randomization algorithm permits this, let the nature draw ρ as specified above
and draw λ0 as an independent from ρ random variable with support (0�∞)
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having an absolutely continuous distribution. Then nature sets λj = ρjλ0,
κ= 1/λ0, and

K(t� z)= κ
( ∞∑
j=0

λjφj(t)ϕj(z)

)
�

S2. PROOFS FOR SECTION 4

The next part of the supplemental material is proofs for the general semi-
parametric model considered in Section 4. Before proving these results, we
give two useful intermediate results.

S2.1. Useful Results on Projections on Linear Subspaces

Let Proj(b|M) denote the orthogonal projection of an element b of a
Hilbert space on a closed linear subset M of that space.

LEMMA S1: If (a) M is a closed linear subspace of a Hilbert space H; (b) bj ∈
H (j = 1� � � � �p); (c) the p × p matrix Π with Πjk = 〈bj − Proj(bj|M)�bk −
Proj(bk|M)〉 is nonsingular, then, for b = (b1� � � � � bp)

T , there exists ε > 0 such
that, for all a ∈ R

p and ζ ∈M,∥∥bTa+ ζ∥∥ ≥ ε(|a| + ‖ζ‖)�
PROOF: Let b̄j = Proj(bj|M), b̃j = bj − b̄j , b̄ = (b̄1� � � � � b̄p)

T , and b̃ =
(b̃1� � � � � b̃p)

T . Note that, for ε1 = √
λmin(Π)/2,

∥∥bTa+ ζ∥∥
=

√∥∥b̃T a+ ζ + b̄T a∥∥2 =
√∥∥b̃T a∥∥2 + ∥∥ζ + b̄T a∥∥2

≥ (∥∥b̃T a∥∥ + ∥∥ζ + b̄T a∥∥)
/
√

2 = (√
aTΠa+ ∥∥ζ + b̄T a∥∥)

/
√

2

≥ ε1|a| +
∥∥ζ + b̄T a∥∥/√2�

Also note that, for any C∗ ≥
√∑

j ‖b̄j‖2, it follows by the triangle and Cauchy–
Schwarz inequalities that

∥∥b̄T a∥∥ ≤
∑
j

‖b̄j‖|aj| ≤ C∗|a|�
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Choose C∗ big enough that ε1/
√

2C∗ ≤ 1. Then by the triangle inequality,

∥∥ζ + b̄T a∥∥/√2 ≥ (
ε1/

√
2C∗)∥∥ζ + b̄T a∥∥/√2 = ε1

∥∥ζ + b̄T a∥∥/2C∗

≥ ε1

(‖ζ‖ − ∥∥b̄T a∥∥)
/2C∗ ≥ ε1

(‖ζ‖ −C∗|a|)/2C∗

= (
ε1/2C∗)‖ζ‖ − ε1|a|/2�

Then combining the inequalities, for ε= min{ε1/2� ε1/2C∗},
∥∥bTa+ ζ∥∥ ≥ ε1|a| +

(
ε1/2C∗)‖ζ‖ − ε1|a|/2

= (ε1/2)|a| +
(
ε1/2C∗)‖ζ‖ ≥ ε(|a| + ‖ζ‖)� Q.E.D.

LEMMA S2: If Assumption 4 is satisfied, then there is an ε > 0 such that, for all
(β�g) ∈R

p ×N ′
g,

ε
(|β−β0| +

∥∥m′
g(g− g0)

∥∥
B

) ≤ ∥∥m′(α− α0)
∥∥
B�

PROOF: Apply Lemma S1 with H being the Hilbert space B described in
Section 4, M in Lemma S1 being the closed linear span of M = {m′

g(g −
g0) :g ∈ N ′

g}, bj = m′
βej for the jth unit vector ej , and a = β − β0. Then, for

all (β�g) ∈ R
p ×N ′

g, we have

m′(α− α0)= bTa+ ζ� bTa=m′
β(β−β0)�

ζ =m′
g(g− g0) ∈M�

The conclusion then follows from the conclusion of Lemma S1. Q.E.D.

We next give the proofs of Theorems 7 and 8.

S2.2. Proof of Theorem 7

Since Assumption 4 is satisfied, the conclusion of Lemma S2 holds. Let ε
be from the conclusion of Lemma S2. Also let Ng = N ′

g ∩ N β
g for N ′

g from
Assumption 4 and N β

g from Assumption 5. In addition, let B be from Assump-
tion 5 with

sup
g∈Nβ

g

E
[
sup
β∈B

∣∣∂E
[
ρ(Y�X�β�g)|W ]

/∂β− ∂E
[
ρ(Y�X�β0� g0)|W

]
/∂β

∣∣2
]

< ε2�
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Then by m(β0� g) linear in g and expanding each element of m(β�g)(W ) =
E[ρ(Y�X�β�g)|W ] in β, it follows that, for each (β�g) ∈ B×Ng, if β �= β0,∥∥m(α)−m′(α− α0)

∥∥
B = ∥∥m(β�g)−m(β0� g)−m′

β(β−β0)
∥∥
B

= ∥∥[
∂m(β̃�g)/∂β−m′

β

]
(β−β0)

∥∥
B

≤ ∥∥m′
β(β̃� g)−m′

β

∥∥
B|β−β0|

< ε|β−β0| ≤ ε
(|β−β0| +

∥∥m′
g(g− g0)

∥∥
B

)
≤ ∥∥m′(α− α0)

∥∥
B�

where β̃ is a mean value depending on W that actually differs from row to row
of

m′
β(β̃� g)= ∂E

[
ρ(Y�X� β̃�g)|W ]

/∂β�

Thus, ‖m(α)−m′(α− α0)‖B < ‖m′(α− α0)‖B, implying m(α) �= 0, giving the
first conclusion.

To show the second conclusion, consider (β�g) ∈ N . If β �= β0, then it fol-
lows as above that m(α) �= 0. If β= β0 and g �= g0, then, by linearity in g, we
have ‖m(α)−m′(α−α0)‖B = 0, while ‖m′(α−α0)‖B = ‖m′

g(g− g0)‖B > 0, so
m(α) �= 0 follows as in the proof of Theorem 1. Q.E.D.

S2.3. Proof of Theorem 8

Since Assumption 4 is satisfied, the conclusion of Lemma S2 holds. Let ε
be from the conclusion of Lemma S2. Define B as in the proof of Theorem 7.
By Assumption 2, for g ∈N ′′

g , ‖m(β0� g)−m′
g(g− g0)‖B ≤L‖g− g0‖rA. Then,

similarly to the proof of Theorem 7 for all α ∈N with α �= α0,∥∥m(α)−m′(α− α0)
∥∥
B

≤ ∥∥m(β�g)−m(β0� g)−m′
β(β−β0)

∥∥
B

+ ∥∥m(β0� g)−m′
g(g− g0)

∥∥
B

< ε|β−β0| +L‖g− g0‖rA ≤ ε|β−β0| + ε
∥∥m′(g− g0)

∥∥
B

≤ ∥∥m′(α− α0)
∥∥
B�

The conclusion follows as in the conclusion of Theorem 2. Q.E.D.

S3. A SINGLE INDEX IV EXAMPLE

We next turn to the single index IV model as an example of the results for
local identification of semiparametric models. We focus on how imposing a
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single index structure can lower the need for instrumental variables. This ex-
ample is motivated by econometric applications that have too many covariates
for fully nonparametric estimation to be practical, that is, they suffer from the
curse of dimensionality. A single index model can help with this problem be-
cause it only has one nonparametric dimension. Here, we consider a single
index model with endogeneity, given by

Y = g0

(
X1 +XT

2 β0

) +U� E[U |W ] = 0�(S3.1)

where β0 is a vector of unknown parameters, g0(·) is an unknown function,
and W are instrumental variables. Here, the nonparametric part is just one
dimensional rather than having the same dimension as X . This model is non-
linear in Euclidean parameters, and so is an example where our results apply.
Our results add to the literature on dimension reduction with endogeneity, by
showing how identification of an index model requires fewer instrumental vari-
ables than a fully nonparametric IV model. We could generalize the results to
multiple indices, but focus on a single index for simplicity.

The location and scale of the parametric part are not identified separately
from g0, and hence, we normalize the constant to zero and the coefficient of
X1 to 1. Here,

m(α)(W )= E
[
Y − g(X1 +XT

2 β
)|W ]

�

Let V =X1 +XT
2 β0 and, for differentiable g0(V ), let

m′
β = −E

[
g′

0(V )X
T
2 |W ]

�

Let ζ∗
j denote the projection ofm′

βej = −E[g′
0(V )X2j|W ] on the mean squared

closure of the set {E[h(V )|W ] : E[h(V )2] <∞} and Π the matrix with Πjk =
E[(m′

βej − ζ∗
j )(m

′
βek − ζ∗

k)].

THEOREM S3: Consider the model of equation (S3.1). If (a) g0(V ) is contin-
uously differentiable with bounded derivative g′

0(V ) satisfying |g′
0(Ṽ )− g′

0(V )| ≤
Cg|Ṽ − V | for some Cg > 0, (b) E[|X2|4] <∞, and (c) Π is nonsingular, then
there is a neighborhood B of β0 and δ > 0 such that, for

N δ
g =

{
g :g(v) is continuously differentiable and

sup
v

∣∣g′(v)− g′
0(v)

∣∣ ≤ δ
}
�

β0 is locally identified for N = B × N δ
g . Furthermore, if there is N ′

g such that
E[g(V ) − g0(V )|W ] is bounded complete on the set {g(V ) − g0(V ) :g ∈ N ′

g},
then (β0� g0) is locally identified for N = B× (N δ

g ∩N ′
g).
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PROOF: The proof will proceed by verifying the conditions of Theorem 7.
Note that Assumption 4 is satisfied. We now check Assumption 5. Note that,
for any δ > 0 and g ∈ N δ

g , g(X1 + XT
2 β) is continuously differentiable in β

with ∂g(X1 +XT
2 β)/∂β= g′(X1 +XT

2 β)X2. Also, for Δ a p× 1 vector and B̄ a
neighborhood of zero, it follows by boundedness of g′

0 and the specification of
N δ
g that, for some C > 0,

E
[
sup
Δ∈B̄

∣∣g′(X1 +XT
2 (β+Δ))X2

∣∣∣∣W ]
≤ CE

[|X2||W
]
<∞ a.s.

Therefore, by the dominated convergence theorem,m(α)(W )= E[Y −g(X1 +
XT

2 β)|W ] is continuously differentiable in β a.s. with

∂m(α)(W )/∂β= −E
[
g′(X1 +XT

2 β
)
X2|W

]
�

Next, consider any ε > 0 and let B and δ satisfy

B= {
β : |β−β0|2 < ε2/4C2

gE
[|X2|4

]}
and δ2 < ε2/4E

[|X2|2
]
�

Then, for g ∈N δ
g , we have, for v(X�β)=X1 +XT

2 β,

E
[
sup
β∈B

∣∣∂m(α)(W )/∂β−m′
β(W )

∣∣2
]

= E
[
sup
β∈B

∣∣E[{
g′(v(X�β)) − g′

0(V )
}
X2|W

]∣∣2
]

≤ E
[
|X2|2 sup

β∈B

∣∣g′(v(X�β)) − g′
0(V )

∣∣2
]

≤ 2E
[
|X2|2 sup

β∈B

∣∣g′(v(X�β)) − g′
0

(
v(X�β)

)∣∣2
]

+ 2E
[
|X2|2 sup

β∈B

∣∣g′
0

(
v(X�β)

) − g′
0(V )

∣∣2
]

≤ 2δ2E
[|X2|2

] + 2C2
gE

[|X2|4
]

sup
β∈B

|β−β0|2 < ε2�

Thus, Assumption 5 is satisfied, so the first conclusion follows by the first con-
clusion of Theorem 7. Also, m′

g(g− g0)= E[g(V )− g0(V )|W ] the rank condi-
tion for m′

g follows by the last bounded completeness on N ′
g, so that the final

conclusion follows by the final conclusion of Theorem 7. Q.E.D.

Since this model includes as a special case the linear simultaneous equa-
tions model, the usual rank and order conditions are still necessary forΠ to be
nonsingular for all possible models, and hence are necessary for identification.
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Relative to the linear nonparametric IV model in Newey and Powell (2003),
the index structure lowers the requirements for identification by requiring that
m′
gh= −E[h(V )|W ] be complete on N ′

g, rather than completeness of the con-
ditional expectation of functions ofX givenW . For example, it may be possible
to identify β0 and g0 with only two instrumental variables, one of which is used
to identify g0 and functions of the other being used to identify β0.

To further explain, we can give more primitive conditions for nonsingularity
ofΠ. The following result gives a necessary condition forΠ to be nonzero (and
hence nonsingular) as well as a sufficient condition for nonsingularity of Π.

THEOREM S4: Consider the model of (S3.1). IfΠ is nonsingular, then the con-
ditional distribution of W given V is not complete. Also, if there is a measurable
function T(W ) such that the conditional distribution of V given W depends only
on T(W ) and, for every p× 1 vector λ �= 0, E[g′

0(V )λ
TX2|W ] is not measurable

with respect to T(W ), then Π is nonsingular.

PROOF: Suppose first that the conditional distribution ofW given V is com-
plete. Note that by the projection definition, for all h(V ) with finite mean
squared, we have

0 = E
[{−E

[
g′

0(V )X2j|W
] − ζ∗

j (W )
}
E

[
h(V )|W ]]

= E
[{−E

[
g′

0(V )X2j|W
] − ζ∗

j (W )
}
h(V )

]
�

Therefore,

E
[−E

[
g′

0(V )X2j|W
] − ζ∗

j (W )|V
] = 0�

Completeness of the conditional distribution of W given V then implies that
−E[g′

0(V )X2j|W ]− ζ∗
j (W )= 0, and henceΠjj = 0. Since this is true for each j,

we have Π = 0, Π is singular.
Next, consider the second hypothesis and λ �= 0. Let ζ∗

λ(W ) denote the pro-
jection of −E[g′

0(V )λ
TX2|W ] on M. Since E[h(V )|W ] = E[h(V )|T(W )], it

follows that ζ∗
λ(W ) is measurable with respect to (i.e., is a function of) T(W ).

Since E[g′
0(V )λ

TX2|W ] is not measurable with respect to T(W ), we have
−E[g′

0(V )λ
TX2|W ] − ζ∗

λ(W ) �= 0, so that

λTΠλ= E
[{−E

[
g′

0(V )λ
TX2|W

] − ζ∗
λ(W )

}2]
> 0�

Since this is true for all λ �= 0, it follows that Π is positive definite, and hence
nonsingular. Q.E.D.

To explain the conditions of this result, note that if there is only one variable
in W , then the completeness condition (of W given V ) can hold and hence Π
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can be singular. If there is more than one variable in W , then generally com-
pleteness (of W given V ) will not hold, because completeness would be like
identifying a function of more than one variable (i.e., W ) with one instrument
(i.e., V ). If W and V are joint Gaussian and V and W are correlated, then
completeness holds (and hence Π is singular) when W is one dimensional but
not otherwise. In this sense, having more than one instrument in W is a nec-
essary condition for nonsingularity of Π. Intuitively, one instrument is needed
for identification of the one-dimensional function g0(V ), so that more than
one instrument is needed for identification of β.

The sufficient condition for nonsingularity of Π is stronger than noncom-
pleteness. It is essentially an exclusion restriction, where E[g′

0(V )X2|W ] de-
pends on W in a different way than the conditional distribution of V depends
on W . This condition can be shown to hold if W and V are Gaussian, W is
two-dimensional, and E[g′

0(V )X2|W ] depends on all of W .

S4. PROOFS FOR SECTION 5

This section provides proofs for the results for identification of the CCAPM
model in Section 5. We also give two supplementary results. One is a global
identification result (Theorem S5) based on boundedness of g and the other
is a functional version of the Perron–Frobenius theorem that is used to prove
Theorem 11.

S4.1. Proof of Theorem 9

The proof will proceed by verifying the conditions of Theorem 7 for
ρ(Y�β�g) from Section 5 of Chen et al. (2014). We first check the first
part of Assumption 4. Note that the mapping m′ :R2 × G −→ B is given by
m′(α− α0)=m′

β(β−β0)+m′
g(g− g0), where

m′
β(β−β0)= E

[
Atg0(ct+1)X

T
t |Wt

]
(β−β0) and

m′
g(g− g0)= E

[
At

{
g(ct+1)− g0(ct+1)

}|Wt

] − {
g(ct)− g0(ct)

}
e�

Therefore, the mapping m′ is obviously linear. Note that E[D2
t |Wt] and

E[Dt |Wt] exist with probability 1 by E[D2
t ] <∞ and that |At |2 ≤ CD2

t . Then
by the Cauchy–Schwarz inequality, for any h ∈ G, we have, by Dt ≥ 1, E[D2

t |
Wt] ≥ 1: ∥∥E

[
Ath(ct+1)|Wt

] − h(ct)e
∥∥2

B

≤ CE
[
E

[
AT
t h(ct+1)|Wt

]
E

[
Ath(ct+1)|Wt

] + h(ct)2
]

≤ CE
[
E

[
D2
t |Wt

]
E

[
h(ct+1)

2|Wt

]] +CE
[
E

[
D2
t−1|Wt−1

]
h(ct)

2
]

≤ C‖h‖2
G�
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Thus m′
g :G −→ B is bounded. Also, noting that |m′

β| ≤ E[Dtg0(ct+1)|Wt], the
Cauchy–Schwarz inequality gives

E
[∣∣m′

β(W )
∣∣2] ≤ E

[
E

[
D2
t |Wt

]
E

[
g0(ct+1)

2|Wt

]] ≤ ‖g0‖2
G <∞�

and hence m′
β :R2 −→ B is bounded. Therefore, the first part of Assumption 4

is satisfied with N ′
g = G.

Turning now to Assumption 5, let Ht(β�g) = δRt+1c
−γ
t+1g(ct+1) and B =

[δ0 − Δ�δ0 + Δ] × [γ0 − Δ�γ0 + Δ]. Note that Ht(β�g) is twice continuously
differentiable in β and, by construction of Dt , that

sup
β∈B

∣∣∣∣∂Ht(β�g)

∂β

∣∣∣∣ ≤Dtg(ct+1)�

sup
β∈B

∣∣∣∣∂2Ht(β�g)

∂βj ∂β

∣∣∣∣ ≤Dtg(ct+1) (j = 1�2)�

Therefore, by standard results, E[ρ(Yt�β�g)|Wt] = E[Ht(β�g)|Wt] − g(ct)
is twice continuously differentiable in β on B, ∂E[ρ(Yt�β�g)|Wt]/∂β =
E[∂Ht(β�g)/∂β|Wt]. We also have

∣∣E[
∂Ht(β�g)/∂β− ∂Ht(β�g0)/∂β|Wt

]∣∣2

≤ E
[
D2
t |Wt

]
E

[∣∣g(ct+1)− g0(ct+1)
∣∣2|Wt

]
�∣∣E[

∂Ht(β�g0)/∂β− ∂Ht(β0� g0)/∂β|Wt

]∣∣2

≤ E
[
D2
t |Wt

]
E

[
g0(ct+1)

2|Wt

]|β−β0|2�

Therefore, we have

∣∣∣∣∂E[ρ(Y�β�g)|W ]
∂β

− ∂E[ρ(Y�β0� g0)|W ]
∂β

∣∣∣∣
2

= ∣∣E[
∂Ht(β�g)/∂β− ∂Ht(β0� g0)/∂β|Wt

]∣∣2

≤ 2E
[
D2
t |Wt

]{
E

[∣∣g(ct+1)− g0(ct+1)
∣∣2|Wt

]
+ E

[
g0(ct+1)

2|Wt

]|β−β0|2
}
�

Note that by iterated expectations,

E
[
E

[
D2
t |Wt

]
E

[∣∣g(ct+1)− g0(ct+1)
∣∣2|Wt

]] = ‖g− g0‖2
G�

E
[
E

[
D2
t |Wt

]
E

[
g0(ct+1)

2|Wt

]] = ‖g0‖2
G�
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Consider any ε > 0. Let

N β
g = {

g :‖g− g0‖G ≤ ε/2}
and

B̃= B ∩ {
β : |β−β0|< ε/

(
2‖g0‖G

)}
�

Then, for g ∈N β
g , we have

E
[
sup
β∈B̃

∣∣∂m(α)(W )/∂β−m′
β(W )

∣∣2
]

≤ 2‖g− g0‖2
G + 2‖g0‖2

G sup
β∈B̃

|β−β0|2 < ε2�

Therefore, Assumption 5 holds with B there equal to B̃ here. The conclusion
then follows from Theorem 7. Q.E.D.

S4.2. Proof of Theorem 10

Let ā(ct+1� W̃t) = E[Atj|ct+1� W̃t] and d̄(ct+1) = E[E[D2
t |W̃t]|ct+1]. Let B̃ =

{b(W̃t) : E[b(W̃t)
2]<∞} and the operator L :G −→ B̃ be given by

Lg= E
[
Atjg(ct+1)|W̃t

] =
∫
ā(c� W̃t)g(c)

fc�W̃ (c� W̃t)

fW̃ (W̃t)
dc

=
∫
g(c)K(c� W̃t)fc(c)d̄(c)dc�

K(c� W̃t)= ā(c� W̃t)fc�W̃ (c� W̃t)

fW̃ (W̃t)fc(c)d̄(c)
�

Note that d̄(c)≥ 1 by D2
t ≥ 1. Therefore,∫

K(c�w)2d̄(c)fc(c)fW̃ (w)dc dw

=
∫
ā(c�w)2fc�W̃ (c�w)

fW̃ (w)fc(c)d̄(c)
fc�W̃ (c�w)dc dw

≤
∫
ā(c�w)2fc�W̃ (c�w)

fW̃ (w)fc(c)
fc�W̃ (c�w)dc dw

= E
[

E[Atj|ct+1� W̃t]2 fc�W̃ (ct+1� W̃t)

fc(ct+1)fW̃ (W̃t)

]

≤ E
[
A2
tjfc(ct+1)

−1fW̃ (W̃t)
−1fc�W̃ (ct+1� W̃t)

]
<∞�
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It therefore follows by standard results that L is Hilbert–Schmidt and thus
compact. Furthermore, it follows exactly as in the proof of Theorem 3.2 of
Kress (1999), that

M̃= {
E

[
Atjg(ct+1)|W̃t

] − g(ct) :g ∈ G
}

is closed.
Next, let b= (b1� b2)

T be a constant vector and Δ(c)= b1/δ0 −b2 ln(c). Sup-
pose bTΠb= 0. Then, by the definition of Π, there is gk ∈ G such that

E
[
Atgk(ct+1)|W̃t

] − gk(ct)e−→ E
[
Atg0(ct+1)Δ(ct+1)|W̃t

]
in mean squared as k−→ ∞. It follows that, for any j,

E
[
Atjgk(ct+1)|W̃t

] − gk(ct)−→ E
[
Atjg0(ct+1)Δ(ct+1)|W̃t

]
in mean squared. By M̃ a closed set, there exists g∗(c) such that

E
[
Atjg0(ct+1)Δ(ct+1)|W̃t

] = E
[
Atjg

∗(ct+1)|W̃t

] − g∗(ct)�(S4.1)

If g∗(ct+1) = 0, then E[Atjg0(ct+1)Δ(ct+1)|W̃t] = 0, and by completeness of
E[Atjh(ct+1� ct)|W̃t], it follows that g0(ct+1)Δ(ct+1)= 0. Then, by Pr(g0(ct+1) �=
0)= 1, we have Δ(ct+1)= 0.

Next, suppose Pr(g∗(ct) �= 0) > 0. Then Pr(min{|g∗(ct)|� g0(ct)} > 0) > 0,
so for small enough ε > 0 and C = {ct : min{|g∗(ct)|� g0(ct)} ≥ ε}, we have
Pr(C) > 0. Let 1εt = 1(ct ∈ C). Then, multiplying through equation (S4.1) by
1εt /g

∗(ct) and subtracting the conditional expectation on the right-hand side
gives

E
[
Atj1εt

g0(ct+1)Δ(ct+1)− g∗(ct+1)

−g∗(ct)

∣∣W̃t

]
= 1εt �

By the moment condition from Section 5 of Chen et al. (2014), we also have

E
[
Atj1εt

{
g0(ct+1)

g0(ct)

}∣∣W̃t

]
= 1εt �

By the completeness condition in part (a), it then follows that

1εt
g0(ct+1)Δ(ct+1)− g∗(ct+1)

−g∗(ct)
= 1εt

g0(ct+1)

g0(ct)
�

Multiplying, dividing, and subtracting gives

1εt

[
g0(ct+1)Δ(ct+1)− g∗(ct+1)

−g0(ct+1)
− g∗(ct)
g0(ct)

]
= 0�
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Then, by the additive separability condition in part (a) of the conditions, it fol-
lows that g0(ct+1)Δ(ct+1)− g∗(ct+1)= Cg0(ct+1) for some nonzero constant C.
Then by equation (S4.1) and the second kind equation for g0, we have

g∗(ct)= −E
[
Atj

{
g0(ct+1)Δ(ct+1)− g∗(ct+1)

}|W̃t

]
= −CE

[
Atjg0(ct+1)|W̃t

] = −Cg0(ct)�

Then by equation (S4.1),

E
[
Atjg0(ct+1)Δ(ct+1)|W̃t

] = E
[
Atjg

∗(ct+1)|W̃t

] − g∗(ct)

= −C{
E

[
Atjg0(ct+1)|W̃t

] − g0(ct)
} = 0�

By the completeness condition in part (a) of the conditions, it follows that
g0(ct+1)Δ(ct+1) = 0, so Δ(ct+1) = 0 follows by Pr(g0(ct) = 0) = 0. Therefore,
we find that bTΠb = 0 implies Δ(ct+1) = 0. But we know that, for b �= 0, it
is the case that Δ(ct+1) �= 0. Therefore, b �= 0 implies bTΠb > 0, that is, Π is
nonsingular.

Next, under condition (b) of Theorem 10, if E[Atjg(ct+1)|W̃t] = g(ct) for g ∈
Gc̄ , it follows that, for c̄ as given there,

E
[
Atj

g(ct+1)

g(c̄)

∣∣w(Zt)� ct = c̄
]

= 1 = E
[
Atj

g0(ct+1)

g0(c̄)

∣∣w(Zt)� ct = c̄
]
�

Then, by the completeness condition in part (b) of the hypotheses, it follows
that g(ct+1)/g(c̄)= g0(ct+1)/g0(c̄), that is,

g(ct+1)= g0(ct+1)g(c̄)/g0(c̄)�

so g is equal to g0 up to scale. This also implies that g0 is the unique solution
to E[Atg(ct+1)|Wt] = g(ct) up to scale. Q.E.D.

S4.3. Proof of Theorem 11

Note that K(c� s) = r(c� s)s−γ0f (s� c)/[f (s)f (c)] > 0 almost everywhere by
r(c� s) > 0 and f (s� c) > 0 almost everywhere. Therefore, the conclusion fol-
lows from Lemma S6 with f (s)ds = dμ(s). Q.E.D.

S4.4. Completeness and Global Identification in the CCAPM

In this subsection, we give a result showing that a certain completeness con-
dition is sufficient for global identification of the CCAPM model we consider,
when g(c) is bounded and bounded away from zero.
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THEOREM S5: Consider model of Section 5 of Chen et al. (2014). If (Rt�j� ct)
is strictly stationary, ct is continuously distributed with support [0�∞), g0(c) ≥ 0
is bounded and bounded away from zero, E[|Rt+1�jc

−γ0
t |]<∞, and there is c̄ such

that E[Rt+1�jh(ct+1)|w(Zt)� c̄] = 0 and E[|Rt+1�jh(ct+1)|]<∞ implies h(ct+1)=
0, then (δ0�γ0� g0) is identified (g0 up to scale) among all (δ�γ�g) with g(c)≥ 0,
g(c) bounded and bounded away from zero, and E[|Rt+1�jc

−γ
t |]<∞.

PROOF: Consider any two solutions (β0� g0) and (β1� g1) to the moment
conditions satisfying the conditions of Theorem S5. Then, by iterated expec-
tations,

E
[
Rt+1�jδ0c

−γ0
t+1

g0(ct+1)

g0(c̄)

∣∣w(Zt)� c̄
]

= 1 = E
[
Rt+1�jδ1c

−γ1
t+1

g1(ct+1)

g1(c̄)

∣∣w(Zt)� c̄
]
�

By completeness with h(ct+1) = δ0c
−γ0
t+1 g0(ct+1)/g0(c̄)− δ1c

−γ1
t+1 g1(ct+1)/g1(c̄), it

follows by multiplying and dividing that

c
γ1−γ0
t+1 = g1(ct+1)

g0(ct+1)

[
δ1g0(c̄)

δ0g1(c̄)

]
�

Since the object on the right is bounded and bounded away from zero and the
support of ct+1 is I = [0�∞), it follows that γ0 = γ1. Then we have

g0(ct+1)= g1(ct+1)

[
δ1g0(c̄)

δ0g1(c̄)

]
a.e. in I2�

so that there is a constant D > 0 such that g0(ct+1) = Dg1(ct+1) a.e. in I. We
can also assume that g0(c̄)=Dg1(c̄) since ct is continuously distributed. Sub-
stituting then gives D= (δ1/δ0)D, implying δ1 = δ0. Q.E.D.

Previously, Chen and Ludvigson (2009) showed global identification of
(δ0�γ0� g0) under different conditions. In their results, E[Rt+1�jh(ct+1� ct)|
w(Zt)� ct] was assumed to be complete, which is similar to condition (a) in
Theorem 10 and is stronger than completeness at ct = c̄, but g(c) is not as-
sumed to be bounded or bounded away from zero on [0�∞).

S4.5. A Functional Perron–Frobenius Theorem

The following result and its proof rely in part on the fundamental results
of Krein and Rutman (1950), specifically their Theorem 6.1 and example β′.
Krein and Rutman (1950) is one of many extensions of the Perron–Frobenius
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theory of positive matrices to the case of operators leaving invariant a cone in
a Banach space.

Let I be a Borel subset of Rm and μ be a σ-finite measure with support I.
Consider the space L2(μ), equipped with the standard norm ‖ · ‖. We consider
the following conditions on the kernel K:

1. K(s� t) is a nonnegative, measurable kernel such that∫ ∫
K2(s� t)dμ(t)dμ(s) <∞�

2. K(s� t)= 0 on a set of points (t� s) of measure zero under μ×μ.
Consider an integral operator L from L2(μ) to L2(μ) defined by

Lϕ :=
∫
K(·� t)ϕ(t)dμ(t)�

and its adjoint operator

L∗ψ :=
∫
K(t� ·)ψ(t)dμ(t)�

It is known that these operators are compact under condition 1. The lemma
given below shows that, under these assumptions, we have existence and global
uniqueness of the positive eigenpair (ρ�ϕ) such thatLϕ= ρϕ, in the sense that
is stated below. This lemma extends example β′ outlined in Krein and Rutman
(1950) that looked at the complex Hilbert space L2[a�b], 0 < a < b <∞, an
extension which we were not able to track easily in the literature, so we simply
derived it; we also provided an additional step (3), not given in the outline,
to fully verify uniqueness. Note that we removed the complex analysis-based
arguments, since they are not needed here.

LEMMA S6: Under conditions 1 and 2, there exists a unique eigenpair (ρ�ϕ),
consisting of an eigenvalue ρ and eigenfunction ϕ such that Lϕ= ρϕ and ρ > 0,
‖ϕ‖ = 1, ϕ≥ 0; moreover, ϕ> 0 μ-a.e.

PROOF: The proof is divided in five steps.
(1) Let Co be the cone of nonnegative functions in A=L2(μ). In the proof,

we shall use the following result on the existence of nonnegative eigenpair from
Krein and Rutman (1950, Theorem 6.1).

Consider a cone Co in a Banach space A such that the closure of the linear hull of Co

is A. Consider a linear, compact operator L :A �→A such that LCo ⊂ Co, and that has
one point of spectrum different from zero. Then it has a positive eigenvalue ρ, not less in
modulus than every other eigenvalue, and to this eigenvalue there corresponds at least one
eigenvector ϕ ∈ Co of the operator L (Lϕ= ρϕ) and at least one eigenvector ψ �= 0 of the
dual operator L∗ (L∗ψ= ρψ).
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The theorem requires that the closure of the linear hull of the cone is A.
This is true in our case for A = L2(μ) and the cone Co of the nonnegative
functions in A, since Co −Co is dense in A. Moreover, since

σ2 =
∫
K(s� t)K(t� s)dμ(s)dμ(t) > 0�

which is equal to sum of squared eigenvalues ofL, the spectrum ofLmust have
at least one point different from zero. Therefore, application of the theorem
quoted above implies that there exist ρ > 0 and ϕ and ψ s.t. μ-a.e.

ϕ(s)= ρ−1

∫
K(s� t)ϕ(t)dμ(t)� ϕ≥ 0�‖ϕ‖ = 1�ρ > 0;(S4.2)

ψ(s)= ρ−1

∫
K(t� s)ψ(t)dμ(t)� ‖ψ‖ = 1�(S4.3)

(2) We would like to prove that any eigenvalue ρ > 0 associated to a non-
negative eigenfunction ϕ≥ 0 must be a simple eigenvalue, that is, ϕ is the only
eigenfunction inL2(μ) associated with ρ. For this purpose, we shall use the fol-
lowing standard fact on linear compact operators, for example stated in Krein
and Rutman (1950) and specialized to our context: An eigenvalue ρ of L is
simple if and only if the equations Lϕ= ρϕ and L∗ψ= ρψ have no solutions
orthogonal to each other, that is, satisfying ϕ �= 0,ψ �= 0,

∫
ψ(s)ϕ(s)dμ(s)= 0.

So for this purpose, we will show in steps (4) and (5) below that ψ is of constant
sign μ-a.e. and ϕ and ψ only vanish on a set of measure 0 under μ. Since ϕ≥ 0,
this implies∫

ψ(s)ϕ(s)dμ(s) �= 0�

and we conclude from the quoted fact that ρ is a simple eigenvalue.
(3) To assert the uniqueness of the nonnegative eigenpair (ρ�ϕ) (meaning

that Lϕ = ρϕ, ρ > 0, ϕ ≥ 0, ‖ϕ‖ = 1), suppose to the contrary that there is
another nonnegative eigenpair (r� ζ). Then r is also an eigenvalue of L∗ by the
Fredholm theorem (Kress (1999, Theorem 4.14)), which implies, by definition
of the eigenvalue, that there exists a dual eigenfunction η �= 0 such that L∗η=
rη and ‖η‖ = 1.

By step (4) below, we must have ζ > 0, ϕ > 0 μ-a.e. Hence, by step (5),
the dual eigenfunctions η and ψ are non-vanishing and of constant sign μ-a.e.,
which implies

∫
η(s)ϕ(s)dμ(s) �= 0. Therefore, r = ρ follows from the equality

r

∫
η(s)ϕ(s)dμ(s)=

∫ ∫
K(t� s)η(t)dμ(t)ϕ(s)dμ(s)

= ρ

∫
η(t)ϕ(t)dμ(t)�
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(4) Let us prove that any eigenfunction ϕ≥ 0 of L associated with an eigen-
value ρ > 0 must be μ-a.e. positive. Let S denote the set of zeros of ϕ. Evi-
dently, μ(S) < μ(I). If s ∈ S, then∫

K(s� t)ϕ(t)dμ(t)= 0�

Therefore,K(s� t) vanishes almost everywhere on (s� t) ∈ S× (I \S). However,
the set of zeroes ofK(s� t) is of measure zero under μ×μ, so μ(S)×μ(I \S)=
0, implying μ(S)= 0.

(5) Here we show that any eigen-triple (ρ�ϕ�ψ) solving (S4.3) and (S4.2)
obeys

sign
(
ψ(s)

) = 1 μ-a.e. or sign
(
ψ(s)

) = −1 μ-a.e.(S4.4)

From equation (S4.3), it follows that μ-a.e.

∣∣ψ(s)∣∣ ≤ ρ−1

∫
K(t� s)

∣∣ψ(t)∣∣dμ(t)�
Multiplying both sides by ϕ(s), integrating, and applying (S4.2) yields∫ ∣∣ψ(s)∣∣ϕ(s)dμ(s) ≤ ρ−1

∫ ∫
K(t� s)ϕ(s)

∣∣ψ(t)∣∣dμ(t)dμ(s)
=

∫ ∣∣ψ(t)∣∣ϕ(t)dμ(t)�
It follows that μ-a.e.

∣∣ψ(s)∣∣ = ρ−1

∫
K(t� s)

∣∣ψ(t)∣∣dμ(t)�
that is, |ψ| is an eigenfunction of L∗.

Next, equation |ψ(s)| =ψ(s) sign(ψ(s)) implies that μ-a.e.

ρ−1

∫
K(t� s)

∣∣ψ(t)∣∣dμ(t)= ρ−1

∫
K(t� s)ψ(t)dμ(t) sign

(
ψ(s)

)
�

It follows that, for a.e. (t� s) under μ×μ,∣∣ψ(t)∣∣ =ψ(t) sign
(
ψ(s)

)
�

By the positivity condition on K, |ψ|> 0 μ-a.e. by the same reasoning as given
in step (4). Thus, (S4.4) follows. Q.E.D.
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S5. TANGENTIAL CONE CONDITIONS

In this section, we discuss some inequalities that are related to identification
of α0. These inequalities are related to the discussion of Assumptions 1 and 2
in Section 2.3 of Chen et al. (2014). Throughout this section, we maintain that
m(α0)= 0. Define

N = {
α :m(α) �= 0

}
� N ′ = {

α :m′(α− α0) �= 0
}
�

N ′
η = {

α :
∥∥m(α)−m′(α− α0)

∥∥
B ≤ η∥∥m′(α− α0)

∥∥
B

}
� η > 0�

Nη = {
α :

∥∥m(α)−m′(α− α0)
∥∥
B ≤ η∥∥m(α)∥∥B

}
� η > 0�

Here, N can be interpreted as the identified set and N ′ as the set where the
rank condition holds. The set N ′

η is a set on which an inequality version of
equation (2.2) in Chen et al. (2014) holds. The inequality used to define Nη

is similar to the tangential cone condition from the literature on computa-
tion in nonlinear ill-posed inverse problems, for example, Hanke, Neubauer,
and Scherzer (1995) and Dunker, Florens, Hohage, Johannes, and Mammen
(2014).

The following result gives some relations among these sets:

LEMMA S7: For any η> 0,

Nη ∩N ′ ⊂N � N ′
η ∩N ⊂N ′�

If 0<η< 1, then

Nη ∩N ⊂N ′� N ′
η ∩N ′ ⊂N �

PROOF: Note that α ∈Nη and the triangle inequality gives

−∥∥m(α)∥∥B + ∥∥m′(α− α0)
∥∥
B ≤ η∥∥m(α)∥∥B�

so that ‖m(α)‖B ≥ (1+η)−1‖m′(α−α0)‖B. Therefore, if α ∈Nη∩N ′, we have
‖m(α)‖B > 0, that is, α ∈ N , giving the first conclusion. Also, if α ∈ N ′

η, we
have

−∥∥m′(α− α0)
∥∥
B + ∥∥m(α)∥∥B ≤ η∥∥m′(α− α0)

∥∥
B�

so that ‖m′(α−α0)‖B ≥ (1 +η)−1‖m(α)‖B. Therefore, if α ∈N ′
η ∩N , we have

‖m′(α− α0)‖B > 0, giving the second conclusion.
Next, for 0<η< 1 and α ∈Nη, we have∥∥m(α)∥∥B − ∥∥m′(α− α0)

∥∥
B ≤ η∥∥m(α)∥∥B�



LOCAL IDENTIFICATION OF NONPARAMETRIC MODELS 19

so that ‖m′(α − α0)‖ ≥ (1 − η)‖m(α)‖B. Therefore, if α ∈ Nη ∩ N , we have
‖m′(α − α0)‖B > 0, giving the third conclusion. Similarly, for 0 < η < 1 and
α ∈N ′

η, we have

∥∥m′(α− α0)
∥∥
B − ∥∥m(α)∥∥B ≤ η∥∥m′(α− α0)

∥∥
B�

so that ‖m(α)‖B ≥ (1 − η)‖m′(α− α0)‖B. Therefore, if α ∈ N ′
η ∩N ′, we have

‖m(α)‖B > 0, giving the fourth conclusion. Q.E.D.

The first conclusion shows that when the tangential cone condition is satis-
fied, the set on which the rank condition holds is a subset of the identified set.
The second condition is less interesting, but does show that the rank condi-
tion is necessary for identification when α ∈ N ′

η. The third conclusion shows
that the rank condition is also necessary for identification under the tangential
cone condition for 0<η< 1. The last conclusion shows that when α ∈N ′

η with
0<η< 1, the rank condition is sufficient for identification.

When the side condition that α ∈Nη or α ∈N ′
η is imposed for 0<η< 1, the

rank condition is necessary and sufficient for identification.

COROLLARY S8: If 0<η< 1, then

Nη ∩N ′ =Nη ∩N � N ′
η ∩N ′ =N ′

η ∩N �

PROOF: By intersecting both sides of the first conclusion of Lemma S7 with
Nη, we find that Nη ∩ N ′ ⊂ Nη ∩ N . For η < 1, it follows similarly from the
third conclusion of Lemma S7 that Nη ∩ N ⊂ Nη ∩ N ′, implying Nη ∩ N ′ =
Nη ∩N , the first conclusion. The second conclusion follows similarly. Q.E.D.

The equalities in the conclusion of this result show that the rank condition
(i.e., α ∈ N ′) is necessary and sufficient for identification (i.e., α ∈ N ) under
either of the side conditions that

α ∈N ′
η or α ∈Nη� 0<η< 1�

In parametric models, Rothenberg (1971) showed that when the Jacobian has
constant rank in a neighborhood of the true parameter, the rank condition is
necessary and sufficient for local identification. These conditions fill an anal-
ogous role here, in the sense that when α is restricted to either set, the rank
condition is necessary and sufficient for identification.

The sets Nη and N ′
η are related to each other in the way shown in the fol-

lowing result.

LEMMA S9: If 0<η< 1, then Nη ⊂N ′
η/(1−η) and N ′

η ⊂Nη/(1−η).
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PROOF: By the triangle inequality,∥∥m′(α− α0)
∥∥
B ≤ ∥∥m(α)−m′(α− α0)

∥∥
B + ∥∥m(α)∥∥B�∥∥m(α)∥∥B ≤ ∥∥m(α)−m′(α− α0)

∥∥
B + ∥∥m′(α− α0)

∥∥
B�

Therefore, for α ∈Nη,∥∥m(α)−m′(α− α0)
∥∥
B ≤ η∥∥m(α)−m′(α− α0)

∥∥
B

+η∥∥m′(α− α0)
∥∥
B�

Subtracting η‖m(α)−m′(α−α0)‖B from both sides and dividing by 1−η gives
α ∈N ′

η/(1−η). The second conclusion follows similarly. Q.E.D.
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