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S-1. MORAL HAZARD WITH UNOBSERVED CAPITAL AND INVESTMENT

SUPPOSE AN AGENT’S EFFORT IS UNOBSERVABLE as in the moral hazard (MH)
regime and, in addition, the principal also cannot observe the agent’s current
capital stock, k, and the choice for next period, &’. The unobserved state k adds
a dynamic adverse selection problem to the moral hazard problems arising
from the two unobserved actions, z and k'.

To write this setting as a mechanism design problem, suppose the agent sends
a message about k to the principal who offers him a contract conditional on
the message which consists of transfer 7, recommended effort z, investment
k', and future promised utility. Because of the dynamic adverse selection prob-
lem in k, following Fernandes and Phelan (2000) and Doepke and Townsend
(2006),' the proper state variable in the recursive representation of this prob-
lem is not a scalar (as in the MH regime) but a promised utility schedule,
w= {w(k),w(ky), ..., w(ksx)} belonging to some set of schedules W (to be
determined), where k1, k,, etc., are the elements of the grid K.

The set of feasible promise schedules W is endogenously determined (not
all promise-assets combinations are feasible) and must be iterated upon to-
gether with the value/policy functions (Abreu, Pierce, and Stacchetti (1990)).
Specifically, using the incentive compatibility constraints, we restrict attention
to nondecreasing promise vectors w(k). We “discretize” the set W by starting
from a large set W, consisting of linear functions w(k) with intercepts that take
values on the grid W = {wpin, Wy, - - . , Winax}, With Wi, and wy,., defined in our
discussion of the MH regime, and a discrete set of nonnegative slopes. We ini-
tially iterate on the unobserved investment (UI) dynamic program using value
function iteration, that is, we iterate over the promise set W together with the
value function V', dropping all infeasible vectors w at each iteration and thus
“shrinking” W as a result. Once we have successively eliminated all elements
w in W for which the respective linear programs have no feasible solution, that
is, once we have converged to a self-generating feasible promise set W*, we
switch to (much faster) policy function iteration and continue iterating on the
Bellman equation until convergence. We also verified our results against pro-
ceeding with value function iteration all the way.

The computational method we use to solve for the optimal contract in
this UI regime requires separability in consumption and leisure, U(c, z) =

!All references not listed at the back are in the main paper.
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u(c) — d(z). Note, this was not needed for the MH, FI, or the exogenously
incomplete regimes. The separability allows us to split each time period into
two subperiods and use dynamic programming within the time periods. This
helps keep dimensionality in check, since the resulting subproblems are of
much lower dimension. The first subperiod includes the announcement of k
by the agent, the principal’s effort recommendation z, the agent’s actual effort
supply, and the realization of the output g. The second subperiod includes the
transfer, the investment recommendation, and the agent’s consumption and
actual investment decisions. To tie the two subperiods together, we introduce
the extra variables, w,,, that we call “interim promised utility”—a represen-
tation of the agent’s expected utility from the end of subperiod 1 (i.e., from
the middle of the period) onward. The interim promised utility is a schedule
(vector), w,, = {w,,(k1), w,(k2), ...} € W, similar to w. Like W, the set W,, is
endogenously determined along the value function iteration.

The first subperiod problem for computing the optimal contract with an
agent who has announced & and has been promised w is:

PROGRAM UI1:

(S-1) Vik,w) = {ﬂ(q’?wifk,w)}q%:m (G, 2, Wl K, W)[q + V,u(k, W) ].
The choice variables are the probabilities over allocations (g, z, w,,) € O x Z x
W,... The function V,,(k,w,,) is defined in the second subperiod problem (see
Program UI2 below). The maximization in (S-1) is subject to the following
constraints. First, the optimal contract must deliver the promised utility on the
equilibrium path, w(k):

(S2) > g,z Walk, W)[—d(2) + w, (k)] = w(k).

4q,Z2,Wm

The utility from consumption and discounted future utility are incorporated in
w,,. Second, as in the MH regime, the optimal contract must satisfy incentive
compatibility in effort. That is, V(z,2) € Z x Z:

(S3) Y m(q, ZWalk, W)[—d(2) + w, (k)]
q,Wm
P(ql2, k)

> T ,E,ka,Wi_
> 7(q | )P(W,k)

q,Wm

[—d(2) +wn(k)].

Third, since the state k is private information, the agent needs incentives to
reveal it truthfully. On top of that, the agent can presumably consider joint
deviations in his announcement, k, and his effort choice, z. To prevent such
joint deviations, truth-telling must be ensured to hold regardless of whether
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the agent decides to follow the effort recommendation, z, or considers a devia-
tion to another effort level 6(z) € Z, where 6(z) denotes all possible mappings
from recommended to actual effort, that is, from the set Z to itself. Such be-
havior is ruled out by imposing the following “truth-telling” constraints, which

must hold for all k # k and 6(2):

P(q|5(2), k)

P(qlz. k) [—d(8(2) + wa(k)].

(S-4)  wk)= Y w(g, z, Walk, W)

q,2,Wm

In words, an agent who actually has k but considers announcing k, trigger-
ing (-|k,w), should find any such deviation unattractive. There are (#K —
1)#Z%Z such constraints in total. Finally, the contract must satisfy the already
familiar technological consistency, adding-up, and nonnegativity constraints
for the probabilities 7(q, z, w,, |k, w).

To solve Program UI1, we first need to compute the principal’s “interim
value function” V,,(k, w,,). The state variables are the schedule, w,,, of interim
utilities for each k € K and the agent’s actual announcement k. Constraints
will introduce truth-telling and obedience in the second-stage program. We
need to ensure that, when deciding on k', the agent cannot obtain more than
his interim utility, w,, (k) for any announcement k.

PROGRAM UI2:

(S-5)  Viulk, W) = max (7, ks Wk, W)

(r(r kW e wn) ) ok, KTl win)) e,

x [-1+ (1/R)V (k',w)].

Note that, in addition to the allocation lotteries, = (7, k', w'|k, w,,), we intro-
duce additional choice variables, v(k, 7, k'|k,w,,), that we refer to as “utility
bounds” (see Prescott (2003) for details). These bounds specify the maximum

expected utility that an agent who is actually at k receiving transfer = and an

investment recommendation £’ could obtain by reporting £ and doing k'. This
translates into the constraint

(S6) > w(r k Wik, w,)[u(r+ (1 — )k — k') + pw (k)]

w

< vk, 7, k'|k,w,),
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which must hold for all possible combinations 7, k', k # k, and k' #k'. To en-
sure truth-telling, the interim utility w,,(k) that the agent obtains in the second
subperiod by reporting k when the true state is k, must satisty, for all k, k,

S vk, 7,k kW) < w,(k).

7k’

The two sets of constraints, (S-6) and (S-7), rule out any joint deviations in the
report k and the action &’. Finally, by definition, the interim utility must satisfy

(S8)  wuk)= > (k' Wik, w,)[u(r+1—8k—k')+ pw (k)]

K W

and the probabilities 7 (7, k', w'|k, w,,) must satisfy nonnegativity and adding-
up.

S-2. HIDDEN OUTPUT

In this model, we allow output, g, to be unobservable to the financial in-
termediary, similarly to Townsend (1982) or Thomas and Worrall (1990). As-
sume effort, z, is contractible, so there is no problem with joint deviations. We
have

Vk,w)= max ) Z 77(7', q,z,k,w|k,w)

{m(1,q,2,k",w' |k, w)
7,q,2, k' w'

x [-7+ A/RV (k',w')],

subject to the promise keeping constraint

Z (7,4, z, k', w'|k, w)

7,4,z k", w'

x[U(g+7+1 =8k —k,z)+puw]=

and the truth-telling constraints (true output is g, but the agent considers an-
nouncing ), ¥(z,q,q# g€ Z x Q x Q):

9 Y w(rg.z kK wik,w)[U(g+7+ 1 -8k —k,z)+ pw]
7k W

> > w(r,q, 2k wik,w)[U(g+ 7+ (1 -8k — k', z) + pw],

k' w
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subject to the technological consistency and adding-up constraints:

> (g, 2, K, wk, w)

k' w

=P(glz,k) Y w(r,q,z, Kk, wlk,w) forall(g,2)eQxZ

7,q,k" W'

and

Y w(rgzk wik,w) =1,

7,q,z,k" ,w'
as well as nonnegativity: (7, q, z, k', w'|k,w) > 0 for all (r,q,z,k',w') €
TxOxZxKxW.

An important issue to take into account in numerically solving this model is
that, due to the truth-telling constraints (S-9) (w’' appears on both sides com-
bined with different g), the feasible set of promises W has to be determined
(iterated over) endogenously within the solution process. This, and the fact
that there are more constraints (see Table I), make this regime much harder
computationally (up to ten times slower per evaluation) than the MH regime,
even though they all have the same total number of variables.

S-3. EMPIRICAL RESULTS

Table S.I reports results from using our methods described in Sections 3 and
4 of the paper to compute and estimate two additional financial/information
regimes—a moral hazard regime with unobserved investment (UI) and a hid-
den output regime (HO); see Sections 1 and 2 for detailed descriptions. These
estimation runs demonstrate the generality of our approach and its ability
to accommodate variants of information constraints outside our six baseline
regimes, including those in the literature reviewed in the Introduction. Be-
cause of high computational time and memory requirements (computing over
100,000 linear programs per iteration), we are unable to estimate the Ul
regime with the baseline grids used in Tables V-VIII and instead use a coarse,
three-point grid specification (the UI results in Table S.I should be read to-
gether with line 5.9 in Table IX).? We use the parametric production function
specification to be able to compute the HO regime (see the footnote in Ta-
ble S.I).

2Currently, a single evaluation of the UI regime likelihood function with our baseline grids
takes about 45 minutes (as opposed to 7-9 sec for the MH regime). Over 1,500 such evaluations
(47 days) are typically required to find the MLE estimates for a single estimation run. We are
working on a parallel computing version of our estimation algorithm as well as optimizations
based on the NPL approach (Aguirregabiria and Mira (2002), Kasahara and Shimotsu (2011)).
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TABLE S.1
MODEL COMPARISONS—VUONG TEST RESULTS*

v MH v FIL vB vS VA vLC Best Fit
Rural data, 1999 (c, q, i, k)
Hidden output (HO) tie tie B S Ax LCH B,S
Unobserved investment (UI) U  UI*™  B** N tie ur+ B
Urban data, 2004 (c, q, i, k)
Hidden output (HO) HO** HO** HO** HO** HO** HO** HO
Unobserved investment (UI) UT** U UI** UI** U™ LC* LC

aFor computational reasons, the HO model is estimated using the parametric production function (read together
with Table VIII in the paper) and the UI model is computed with coarser grids (read with line 5.9 in Table IX in the

paper).

In the rural sample, using 1999 (c, g, i, k) data, the UI regime outperforms
the other mechanism design regimes (MH, FI, and LC) in likelihood. However,
the UI and HO regimes achieve worse fit with the rural data compared to the S
and B regimes, so our overall conclusions from the baseline runs stand. Kinnan
(2011) did find evidence in favor of hidden income in a related data set, but she
used a Euler-equation metric with consumption and lagged income data alone.
In our urban sample, using 2004 (c, ¢, i, k) data, the LC regime achieves the
highest likelihood in the coarse-grids specification, followed closely by UI (see
the last row of Table S.I), while the HO regime fits best, followed by MH,
in the parametric production function specification (the penultimate row in
Table S.I). We also did a run with (¢, g) data alone (not reported in the table)
in which MH achieved higher likelihood than HO.
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