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THESE SUPPLEMENTARY MATERIALS PROVIDE the derivation of Equations (9)–
(12) (Appendix C), the proofs of technical lemmas used in the paper (Ap-
pendix D), the link of our no-arbitrage pricing restrictions with Chamberlain
and Rothschild (1983) results (Appendix E), the check that the high-level as-
sumptions in the paper hold under block-dependence (Appendix F), and the
results of Monte Carlo experiments that investigate the finite sample proper-
ties of the estimators and test statistics (Appendix G). Finally, we investigate
the effects of model misspecification on risk premia estimation and give esti-
mates of the pseudo-true values (Appendix H).

APPENDIX C: DERIVATION OF EQUATIONS (9)–(12)

C.1. Derivation of Equations (9) and (10)

From Equation (8) and by using vec[ABC] = [C ′ ⊗ A] vec[B] (MN, The-
orem 2, p. 35), we get Z′

t−1B
′
ift = vec[Z′

t−1B
′
ift] = [f ′

t ⊗ Z′
t−1] vec[B′

i], and
Z′
i�t−1C

′
ift = [f ′

t ⊗Z′
i�t−1] vec[C ′

i], which gives Z′
t−1B

′
ift +Z′

i�t−1C
′
ift = x′

2�i�tβ2�i.
Let us now consider the first two terms in the RHS of Equation (8).
(a) By definition of matrix Xt in Section 3.1, we have

Z′
t−1B

′
i(Λ− F)Zt−1 = 1

2
Z′
t−1

[
B′
i(Λ− F)+ (Λ− F)′Bi

]
Zt−1

= 1
2

vech[Xt]′ vech
[
B′
i(Λ− F)+ (Λ− F)′Bi

]
�

By using the Moore–Penrose inverse of the duplication matrix Dp, we get

vech
[
B′
i(Λ− F)+ (Λ− F)′Bi

]
=D+

p

[
vec

[
B′
i(Λ− F)] + vec

[
(Λ− F)′Bi

]]
�

Finally, by the properties of the vec operator and the commutation matrix Wp,
and the definition of matrix Np, we obtain

1
2
D+
p

[
vec

[
B′
i(Λ− F)] + vec

[
(Λ− F)′Bi

]]
= 1

2
D+
p(Ip2 +Wp) vec

[
B′
i(Λ− F)]

=Np

[
(Λ− F)′ ⊗ Ip

]
vec

[
B′
i

]
�
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(b) By the properties of the tr and vec operators, we have

Z′
i�t−1C

′
i(Λ− F)Zt−1 = tr

[
Zt−1Z

′
i�t−1C

′
i(Λ− F)]

= vec
[
Zi�t−1Z

′
t−1

]′
vec

[
C ′
i(Λ− F)]

= (Zt−1 ⊗Zi�t−1)
′[(Λ− F)′ ⊗ Iq

]
vec

[
C ′
i

]
�

By combining (a) and (b), we get Z′
t−1B

′
i(Λ−F)Zt−1 +Z′

i�t−1C
′
i(Λ−F)Zt−1 =

x′
1�i�tβ1�i and β1�i = ((Np[(Λ− F)′ ⊗ Ip] vec[B′

i])′� ([(Λ− F)′ ⊗ Iq] vec[C ′
i])′)′.

C.2. Derivation of Equation (11)

We use β1�i = (( 1
2D

+
p [vec[B′

i(Λ−F)]+vec[(Λ−F)′Bi]])′� (vec[C ′
i(Λ−F)])′)′

from Section C.1. (a) From the properties of the vec operator and the commu-
tation matrix Wp, we get

vec
[
B′
i(Λ− F)] + vec

[
(Λ− F)′Bi

]
= (Wp + Ip2) vec

[
(Λ− F)′Bi

]
= (Wp + Ip2)

(
B′
i ⊗ Ip

)
vec

[
Λ′ − F ′]�

From ν = vec[Λ′ − F ′] we obtain

1
2
D+
p

[
vec

[
B′
i(Λ− F)] + vec

[
(Λ− F)′Bi

]]
= 1

2
D+
p(Ip2 +Wp)

(
B′
i ⊗ Ip

)
ν =Np

(
B′
i ⊗ Ip

)
ν�

(b) From the properties of the vec operator and the commutation matrix Wp�q,
we get

vec
[
C ′
i(Λ− F)] =Wp�q vec

[
(Λ− F)′Ci

] =Wp�q

(
C ′
i ⊗ Ip

)
ν�

C.3. Derivation of Equation (12)

We use vec[β′
3�i] = (vec[{Np(B

′
i ⊗ Ip)}′]′� vec[{Wp�q(C

′
i ⊗ Ip)}′]′)′ from Equa-

tion (11).
(a) By MN, Theorem 2, p. 35 and Exercise 1, p. 56, and by writing IpK =

IK ⊗ Ip, we obtain

vec
[
Np

(
B′
i ⊗ Ip

)]
= (IpK ⊗Np) vec

[
B′
i ⊗ Ip

]
= (IpK ⊗Np)

{
IK ⊗ [

(Wp ⊗ Ip)
(
Ip ⊗ vec[Ip]

)]}
vec

[
B′
i

]
= {
IK ⊗ [

(Ip ⊗Np)(Wp ⊗ Ip)
(
Ip ⊗ vec[Ip]

)]}
vec

[
B′
i

]
�
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Moreover, vec[{Np(B
′
i ⊗ Ip)}′] =Wp(p+1)/2�pK vec[Np(B

′
i ⊗ Ip)].

(b) Similarly, vec[Wp�q(C
′
i ⊗ Ip)] = {IK ⊗ [(Ip ⊗ Wp�q)(Wp�q ⊗ Ip) ×

(Iq ⊗ vec[Ip])]} vec[C ′
i] and vec[{Wp�q(C

′
i ⊗ Ip)}′] =Wpq�pK vec[Wp�q(C

′
i ⊗ Ip)].

By combining (a) and (b), the conclusion follows.

APPENDIX D: PROOFS OF STATEMENTS AND TECHNICAL LEMMAS

D.1. Proof of Lemma 2

Let vector (z1� � � � � zn) be such that
∑

i z
2
i = 1. From Equation (25), we have∑

i

∑
j

zi[Σε̃�1�n]i�jzj(35)

=
∑
k

∑
l

∑
i

∑
j

z∗
k�iz

∗
l�j Cov

(
ε
[
G−1
k (γi)

]
� ε

[
G−1
l (γj)

]|F0

)
�

where z∗
k�i =wk[G−1

k (γi)]zi. Now, by the Cauchy–Schwarz inequality, we have∑
i

∑
j

z∗
k�iz

∗
l�j Cov

(
ε
[
G−1
k (γi)

]
� ε

[
G−1
l (γj)

]|F0

)
= Cov

(∑
i

z∗
k�iε

[
G−1
k (γi)

]
�
∑
j

z∗
l�jε

[
G−1
l (γj)

]∣∣∣F0

)

≤ V
(∑

i

z∗
k�iε

[
G−1
k (γi)

]∣∣∣F0

)1/2

V

(∑
j

z∗
l�jε

[
G−1
l (γj)

]∣∣∣F0

)1/2

=
(∑

i

∑
j

z∗
k�iz

∗
k�j Cov

(
ε
[
G−1
k (γi)

]
� ε

[
G−1
k (γj)

]|F0

))1/2

×
(∑

i

∑
j

z∗
l�iz

∗
l�j Cov

(
ε
[
G−1
l (γi)

]
� ε

[
G−1
l (γj)

]|F0

))1/2

�

Moreover,∑
i

∑
j

z∗
k�iz

∗
k�j Cov

(
ε
[
G−1
k (γi)

]
� ε

[
G−1
k (γj)

]|F0

)
≤

(∑
i

(
z∗
k�i

)2
)

eigmax

(
Σε�1�n(Gk)

)
≤ w̄2

k eigmax

(
Σε�1�n(Gk)

)
�
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Thus, for any vector (z1� � � � � zn) such that
∑

i z
2
i = 1, we have∑

i

∑
j

zi[Σε̃�1�n]i�jzj

≤
∑
k

∑
l

w̄kw̄l eigmax

(
Σε�1�n(Gk)

)1/2
eigmax

(
Σε�1�n(Gl)

)1/2
�

Since the largest eigenvalue of a symmetric matrix is equal to the sup of the
associated quadratic form w.r.t. vectors with unit length, the conclusion fol-
lows.

D.2. Proof of Lemma 3(iii)

We have ŵi − wi = 1χi ((diag[v̂i])−1 − (diag[vi])−1) + (1χi − 1)(diag[vi]−1)
and (diag[v̂i])−1 − (diag[vi])−1 = −(diag[v̂i])−1 diag[v̂i − vi](diag[vi])−1.
Since ‖(diag[vi])−1‖ is uniformly lower bounded from part (ii), we have
1
n

∑
i ‖ŵi − wi‖ ≤ C 1

n

∑
i 1
χ
i

‖v̂i−vi‖
C−‖v̂i−vi‖ + C 1

n

∑
i(1 − 1χi ). The second term in the

RHS is op(1) from Lemma 7. To prove that the first term is op(1), it is sufficient
to show

sup
i

1χi ‖v̂i − vi‖ = op(1)�(36)

We use Equation (30). Since ν̂1 − ν = Op(T
−c), for some c > 0 (by repeating

the proof of Proposition 3 with known weights equal to 1), 1χi ‖Q̂−1
x�i‖ ≤ Cχ2

1�T ,
1χi τi�T ≤ χ2�T , ‖Sii‖ ≤M , and by using Assumption B.5, the uniform bound in
(36) follows if we prove

sup
i

1χi ‖Ŝii − Sii‖ =Op
(
T−c)�(37)

sup
i

1χi
∥∥Q̂−1

x�i −Q−1
x�i

∥∥ =Op
(
T−c)�(38)

sup
i

1χi |τi�T − τi| =Op
(
T−c)�(39)

for some c > 0. To prove the uniform bound (37), we use Equation (32). As
in the proof of Lemma 3(i), we have supi T

−1/2‖Yi�T‖ = Op�log(T
−η/2) from

Assumption B.1(c), and similarly supi T
−1/2‖W1�i�T + W2�i�T‖ = Op�log(T

−η/2)
and supi T

−1/2‖W3�i�T‖ = Op(T
−η/2), from Assumptions B.1(e) and (f), respec-

tively. Moreover, ‖Q̂(4)
x�i‖ ≤M , 1χi ‖Q̂−1

x�i‖ ≤ Cχ2
1�T and 1χi τi�T ≤ χ2�T . Thus, from

Assumption B.5, bound (37) follows. To prove (38), we use Equation (33)
whereWi�T is such that supi ‖Wi�T‖ =Op�log(T

−η/2) from Assumption B.1(b). Fi-
nally, (39) follows from |τi�T − τi| ≤ τi�T τi| 1

T

∑
t(Ii�t − E[Ii�t |γi])|, 1χi τi�T ≤ χ2�T ,
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τi ≤M , and by using supi | 1
T

∑
t(Ii�t −E[Ii�t |γi])| =Op�log(T

−η/2) from Assump-
tion B.1(d).

D.3. Proof of Lemma 4

By applying MN, Theorem 2, p. 35, Theorem 10, p. 55, and using Wn�1 = In,
we have

Ab= vec[Ab]
= (
b′ ⊗A)

vec[In]
= vec

[(
b′ ⊗A)

vec[In]
]

= (
vec[In]′ ⊗ Im

)
vec

[
b′ ⊗A]

= (
vec[In]′ ⊗ Im

)
(In2 ⊗ Im) vec

[
vec[A]b′]

= (
vec[In]′ ⊗ Im

)
vec

[
vec[A]b′]�

D.4. Proof of Lemma 6

D.4.1. Part (i)

Let us write I131 as I131 = (Id1 ⊗E′
2)Ĩ131 and

Ĩ131 = 1√
n

∑
i

τ2
i�T

(
ŵi ⊗

[
Q̂−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q̂−1
x�i

])
= 1√

n

∑
i

τ2
i�T

(
ŵi ⊗

[
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

τ2
i�T

(
ŵi ⊗

[(
Q̂−1
x�i −Q−1

x�i

)(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

τ2
i�T

(
ŵi ⊗

[
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)(
Q̂−1
x�i −Q−1

x�i

)])
+ 1√

n

∑
i

τ2
i�T

(
ŵi ⊗

[(
Q̂−1
x�i −Q−1

x�i

)(
Yi�TY

′
i�T − Sii�T

)
× (
Q̂−1
x�i −Q−1

x�i

)])
=: I1311 + I1312 + I ′

1312 + I1313�

We control the terms separately.
Proof that I1311 = 1√

n

∑
i τ

2
i (wi ⊗[Q−1

x�i(Yi�TY
′
i�T −Sii�T )Q

−1
x�i])+Op�log(

√
n/T)=

Op(1)+Op�log(
√
n/T). We use a decomposition similar to term I111 in the proof
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of Lemma 5:

I1311 = 1√
n

∑
i

τ2
i

(
wi ⊗

[
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

τ2
i

(
1χi − 1

)(
wi ⊗

[
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

1χi
(
τ2
i�T − τ2

i

)(
wi ⊗

[
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

1χi τ
2
i�T

((
diag[v̂i]−1 − diag[vi]−1

)
⊗ [
Q−1
x�i

(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
=: I13111 + I13112 + I13113 + I13114�

To simplify the notation, let us treat xi�t as a scalar. We first prove I13111 =
Op(1). We have

E
[
I2

13111|FT �
{
IT (γi)�γi

}]
= 1
n

∑
i�j

wiwjτ
2
i τ

2
j Q

−2
x�iQ

−2
x�j cov

(
Y 2
i�T �Y

2
j�T |FT � IT (γi)� IT (γj)�γi� γj

)
= 1
nT 2

∑
i�j

∑
t1�t2�t3�t4

wiwjτ
2
i τ

2
j Q

−2
x�iQ

−2
x�j

× cov(εi�t1εi�t2� εj�t3εj�t4 |FT �γi� γj)Ii�t1Ii�t2Ij�t3Ij�t4xi�t1xi�t2xj�t3xj�t4 �

From Assumptions B.3(b) and B.4, it follows that E[I2
13111] = O(1). Hence,

I13111 = Op(1). We can prove that I13112 = op(1) and I13113 = op(1) by using
arguments similar to terms I1112 and I1113 in the proof of Lemma 5. Finally, let
us prove that I13114 =Op�log(

√
n/T). Similarly to I1114 in the proof of Lemma 5,

we use

v̂−1
i − v−1

i = −v−2
i (v̂i − vi)+ v̂−1

i v
−2
i (v̂i − vi)2�(40)

and Equation (30). We focus on the term

I131141 = − 1√
n

∑
i

1χi v
−2
i τ

3
i�TC

′
ν̂1
Q̂−1
x�i(Ŝii − Sii)Q̂

−1
x�iCν̂1Q

−2
x�i

(
Y 2
i�T − Sii�T

);
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the other contributions to I13114 can be controlled similarly. Now, we use Equa-
tion (32). We have

I131141 = − 1√
nT

∑
i

1χi v
−2
i τ

4
i�TC

′
ν̂1
Q̂−1
x�iW1�i�T Q̂

−1
x�iCν̂1Q

−2
x�i

(
Y 2
i�T − Sii�T

)
− 1√

nT

∑
i

1χi v
−2
i τ

4
i�TC

′
ν̂1
Q̂−1
x�iW2�i�T Q̂

−1
x�iCν̂1Q

−2
x�i

(
Y 2
i�T − Sii�T

)
+ 2

1√
nT

∑
i

1χi v
−2
i τ

5
i�TC

′
ν̂1
Q̂−1
x�iW3�i�T Q̂

−1
x�iYi�T

× Q̂−1
x�iCν̂1Q

−2
x�i

(
Y 2
i�T − Sii�T

)
− 1√

nT

∑
i

1χi v
−2
i τ

6
i�TC

′
ν̂1
Q̂−1
x�iQ̂

(4)
x�i Q̂

−1
x�iY

2
i�T

× Q̂−2
x�iCν̂1Q

−2
x�i

(
Y 2
i�T − Sii�T

)
=: −C ′

ν̂1
(I1311411 + I1311412 + I13211413 + I1311414)Cν̂1 �

Let us focus on term I1311411 and prove that it is Op�log(
√
n/T). We have

I1311411 = 1√
nT

∑
i

1χi v
−2
i τ

4
i�T Q̂

−2
x�iQ

−2
x�iW1�i�TY

2
i�T

− 1√
nT

∑
i

1χi v
−2
i τ

4
i�T Q̂

−2
x�iQ

−2
x�iW1�i�T Sii�T

=: I13114111 + I13114112�

Term I13114111 is such that∣∣E[
I13114111|FT �

{
IT (γi)�γi

}]∣∣
≤ Cχ4

1�Tχ
4
2�T√

nT 2

∑
i

∑
t1�t2�t3

∣∣E[ηi�t1εi�t2εi�t3 |FT �γi]
∣∣�

and

V
[
I13114111|FT �

{
IT (γi)�γi

}]
≤ Cχ8

1�Tχ
8
2�T

nT 4

∑
i�j

∑
t1�����t6

∣∣cov(ηi�t1εi�t2εi�t3�ηj�t4εj�t5εj�t6 |FT �γi� γj)
∣∣�
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From Assumptions B.2, B.3(f), and B.5, we get E[I13114111] = Olog(
√
n/T) and

V [I13114111] = o(1), which implies I13114111 = Op�log(
√
n/T). The other terms

making I13114 can be controlled similarly, and we get I13114 =Op�log(
√
n/T).

Proof that I1312 = op(1). We have

I1312 = 1√
n

∑
i

1χi τ
2
i�T

(
diag[vi]−1

⊗ [(
Q̂−1
x�i − Q̂−1

x�i

)(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
+ 1√

n

∑
i

1χi τ
2
i�T

((
diag[v̂i]−1 − diag[vi]−1

)
⊗ [(

Q̂−1
x�i − Q̂−1

x�i

)(
Yi�TY

′
i�T − Sii�T

)
Q−1
x�i

])
=: I13121 + I13122�

We focus on term I13121, use Equation (33), and treat xi�t as a scalar to ease
notation. We have I13121 = − 1√

n

∑
i 1
χ
i v

−1
i τ

3
i�T Q̂

−1
x�iWi�TQ

−2
x�i(Y

2
i�T − Sii�T ). Then,

E
[‖I13121‖2|FT �

{
IT (γi)�γi

}]
≤ Cχ4

1�Tχ
6
2�T

nT 2

∑
i�j

∑
t1�����t4

‖Wi�T‖‖Wj�T‖

× ∣∣cov(εi�t1εi�t2� εj�t3εj�t4 |FT �γi� γj)
∣∣�

By the Cauchy–Schwarz inequality, we get

E
[‖I13121‖2|{γi}

]
≤ Cχ4

1�Tχ
6
2�T sup

i

E
[‖Wi�T‖4|γi

]1/2

× 1
nT 2

∑
i�j

∑
t1�t2�t3�t4

E
[∣∣cov(εi�t1εi�t2� εj�t3εj�t4 |FT �γi� γj)

∣∣2|γi�γj
]1/2
�

From Assumptions B.1(b), B.3(b), B.4(a), and B.5, we deduce E[‖I13121‖2] =
o(1), which implies I13121 = op(1). Similar arguments can be used to prove that
the other terms making I1312 are op(1).

Proof that I1313 = op(1). This step uses arguments similar to those for I1312.

D.4.2. Part (ii)

Let us treat xi�t as a scalar to ease notation. We have I132 = (Id1 ⊗ E′
2)Ĩ132,

where Ĩ132 = 1√
nT

∑
i ŵiτ

2
i�T Q̂

−1
x�iW1�i�T Q̂

−1
x�i , and W1�i�T is as in Equation (32).
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Write

Ĩ132 = 1√
nT

∑
i

1χi v
−1
i τ

2
i�T Q̂

−1
x�iW1�i�T Q̂

−1
x�i

+ 1√
nT

∑
i

1χi
(
v̂−1
i − v−1

i

)
τ2
i�T Q̂

−1
x�iW1�i�T Q̂

−1
x�i

=: I1321 + I1322�

Let us first consider I1321. We have

E
[‖I1321‖2|FT �

{
IT (γi)�γi

}]
≤ Cχ8

1�Tχ
4
2�T

1
nT 2

∑
i�j

∑
t1�t2

∣∣cov(ηi�t1�ηj�t2 |FT �γi� γj)
∣∣�

From Assumptions B.3(a) and B.5, it follows that E[‖I1321‖2] =Olog(1/T), and
thus I1321 =Op�log(1/

√
T).

Let us now consider term I1322. We use Equation (40), and plug in the decom-
positions (30) and (32). We focus on term C2

ν̂1
I13221 of the resulting expansion,

where I13221 = − 1√
nT

∑
i 1
χ
i v

−2
i τ

4
i�T Q̂

−4
x�iW

2
1�i�T . The other terms can be treated sim-

ilarly. We have

E
[
I13221|FT �

{
IT (γi)�γi

}]
≤ Cχ8

1�Tχ
4
2�T

1√
nT 2

∑
i

∑
t1�t2

∣∣cov
(
ε2
i�t1
� ε2

i�t2
|FT �γi

)∣∣�
and

V
[
I13221|FT �

{
IT (γi)�γi

}]
≤ Cχ16

1�Tχ
8
2�T

1
nT 4

∑
i�j

∑
t1�t2�t3�t4

∣∣cov(ηi�t1ηi�t2�ηj�t3ηj�t4 |FT �γi� γj)
∣∣�

From Assumptions B.3(a) and B.5, it follows that E[I13221] = Olog(
√
n/T). By

Assumptions B.3(d) and B.5, we can prove that V [I13221] = o(1), and it follows
that I13221 =Op(√n/T).
D.4.3. Part (iii)

We have I133 = (Id1 ⊗ E′
2)Ĩ133, where I133 = − 2√

nT

∑
i ŵiτ

3
i�T Q̂

−3
x�iW3�i�TYi�T +

1√
nT

∑
i ŵiτ

4
i�T Q̂

−4
x�iQ̂

(4)
x�iY

2
i�T and W3�i�T and Q̂(4)

x�i are as in Equation (32) and we
treat xi�t as a scalar to ease notation. By similar arguments as in part (ii), we
can prove that I133 =Op�log(

√
n/T).
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D.4.4. Part (iv)

The statement follows from Lemma 3(ii)–(iii), 1χi τi�T ≤ χ2�T , 1χi ‖Q̂−1
x�i‖ ≤

Cχ2
1�T , bound (37), ‖Sii‖ ≤M , and Assumption B.5.

D.4.5. Part (v)

The statement follows from Equation (28), Lemma 3(iv), I11 = Op(1), and
1
n

∑
i ŵiτ

2
i�T Q̂

−1
x�iYi�TY

′
i�T Q̂

−1
x�i =Op�log(1).

D.5. Proof of Lemma 7

We have P[1χi = 0] ≤ P[τi�T ≥ χ2�T ] + P[CN(Q̂x�i) ≥ χ1�T ] =: P1�nT + P2�nT .
Let us first control P1�nT . We have P1�nT ≤ P[ 1

T

∑
t Ii�t ≤ χ−1

2�T ] ≤ P[ 1
T

∑
t(Ii�t −

τ−1
i ) ≤ χ−1

2�T − M−1], where we use τi ≤ M for all i (Assumption B.4(c)).
Then, for 0 < δ < M−1/2 and T large such that M−1 − χ−1

2�T > δ, we get
the upper bound P1�nT ≤ P[| 1

T

∑
t(Ii�t − τ−1

i )| ≥ δ]. By using that τ−1
i =

E[Ii�t|γi], and P[| 1
T

∑
t(Ii�t −τ−1

i )| ≥ δ] =E[P[| 1
T

∑
t(Ii�t −E[Ii�t |γi])| ≥ δ|γi]] ≤

supγ∈[0�1]P[| 1
T

∑
t(It(γ) − E[It(γ)])| ≥ δ], from Assumption B.1(d), it follows

that P1�nT =O(T−b̄), ∀b̄ > 0.
Let us now consider P2�nT . By using ‖Q̂x�i‖ ≤M (Assumption B.4(a)), we get

eigmax(Q̂x�i) ≤ M , and thus CN(Q̂x�i) ≤ M1/2[eigmin(Q̂x�i)]−1/2. Hence P2�nT ≤
P[eigmin(Q̂x�i) ≤ M/χ2

1�T ]. By using that eigmin(Q̂x�i) ≥ eigmin(Qx�i) − ‖Q̂x�i −
Qx�i‖, we get P2�nT ≤ P[‖Q̂x�i −Qx�i‖ ≥ eigmin(Qx�i)−M/χ2

1�T ]. Now, let δ > 0
be such that eigmin(Qx�i)−M/χ2

1�T > δ uniformly in i for large T (see Assump-
tion B.4(d)). Then, by using P[‖Q̂x�i−Qx�i‖ ≥ δ] ≤ P[| 1

T

∑
t Ii�t(xi�txi�t−Qx�i)| ≥√

δ]+P[τi�T ≥ √
δ], we get P2�nT ≤ P[| 1

T

∑
t Ii�t(xi�txi�t −Qx�i)| ≥

√
δ]+O(T−b̄).

The first term in the RHS is O(T−b̄) by using P[| 1
T

∑
t Ii�t(xi�txi�t − Qx�i)| ≥√

δ] ≤ supγ∈[0�1]P[| 1
T

∑
t It(γ)(xt(γ)xt(γ)

′ − E[xt(γ)xt(γ)′])| ≥ √
δ] and As-

sumption B.1(b). Then, P2�nT =O(T−b̄), for any b̄ > 0.

D.6. Proof of Lemma 8

Let WT(γ) := 1
T

∑
t(It(γ)− E[It(γ)]) and rT := T−a for 0 < a < η/2. Since

|WT(γ)| ≤ 1 for all γ ∈ [0�1], and from Assumption B.1(d), we have

sup
γ∈[0�1]

E
[∣∣WT(γ)

∣∣4]
≤ sup

γ∈[0�1]
E

[∣∣WT(γ)
∣∣] = sup

γ∈[0�1]

∫ 1

0
P

[∣∣WT(γ)
∣∣ ≥ δ]dδ
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≤ rT + sup
γ∈[0�1]

∫ 1

rT

P
[∣∣WT(γ)

∣∣ ≥ δ]dδ
≤ rT +C1T

∫ 1

rT

exp
{−C2δ

2Tη
}
dδ+C3 exp

{−C4T
η̄
}∫ 1

rT

1
δ
dδ

≤ rT +C1T exp
{−C2r

2
TT

η
} +C3 exp

{−C4T
η̄
}

log(1/rT )= o(1)�

D.7. Proof of Lemma 9

By definition of S̃ij , we have

1
n

∑
i�j

‖S̃ij − Sij‖

= 1
n

∑
i�j

‖Ŝij1{‖Ŝij‖≥κ} − Sij‖

≤ 1
n

∑
i�j

‖Sij1{‖Sij‖≥κ} − Sij‖ + 1
n

∑
i�j

‖Ŝij1{‖Ŝij‖≥κ} − Sij1{‖Sij‖≥κ}‖

=: I31 + I32�

By Assumption A.4,

I31 = 1
n

∑
i�j

‖Sij‖1{‖Sij‖<κ} ≤ max
i

∑
j

‖Sij‖q̄κ1−q̄(41)

≤ κ1−q̄c0(n)=Op
(
κ1−q̄nδ̄

)
�

where c0(n) := maxi
∑

j ‖Sij‖q̄ =Op(nδ̄).
Let us now consider I32:

I32 = 1
n

∑
i�j

‖Ŝij‖1{‖Ŝij‖≥κ�‖Sij‖<κ} + 1
n

∑
i�j

‖Sij‖1{‖Ŝij‖<κ�‖Sij‖≥κ}

+ 1
n

∑
i�j

‖Ŝij − Sij‖1{‖Ŝij‖≥κ�‖Sij‖≥κ}

≤ max
i

∑
j

‖Ŝij‖1{‖Ŝij‖≥κ�‖Sij‖<κ} + max
i

∑
j

‖Sij‖1{‖Ŝij‖<κ�‖Sij‖≥κ}

+ max
i

∑
j

‖Ŝij − Sij‖1{‖Ŝij‖≥κ�‖Sij‖≥κ}

=: I33 + I34 + I35�
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From Assumption A.4, we have

I35 ≤ max
i�j

‖Ŝij − Sij‖max
i

∑
j

‖Sij‖q̄κ−q̄ =Op
(
ψnT c0(n)κ

−q̄)�(42)

Let us study I33:

I33 ≤ max
i

∑
j

‖Ŝij − Sij‖1{‖Ŝij‖≥κ�‖Sij‖<κ} + max
i

∑
j

‖Sij‖1{‖Sij‖<κ}

=: I36 + I37�

By Assumption A.4,

I37 ≤ κ1−q̄c0(n)�(43)

Now take v ∈ (0�1). Let Ni(ε) := ∑
j 1{‖Ŝij−Sij‖>ε}, for ε > 0; then

I36 = max
i

∑
j

‖Ŝij − Sij‖1{‖Ŝij‖≥κ�‖Sij‖≤vκ}

+ max
i

∑
j

‖Ŝij − Sij‖1{‖Ŝij‖≥κ�vκ<‖Sij‖<κ}

≤ max
i�j

‖Ŝij − Sij‖max
i
Ni

(
(1 − v)κ) + max

i�j
‖Ŝij − Sij‖c0(n)(vκ)

−q̄�

Moreover, by the Chebyschev inequality, for any positive sequence RnT , we
have

P
[
max
i
Ni(ε)≥RnT

]
≤ nP[

Ni(ε)≥RnT
] ≤ n

RnT
E

[
Ni(ε)

]
≤ n2

RnT
max
i�j
P

[‖Ŝij − Sij‖ ≥ ε]�
which implies maxi Ni(ε)=Op(n2 maxi�j P[‖Ŝij − Sij‖ ≥ ε]). Thus,

I36 =Op
(
ψnTn

2ΨnT

(
(1 − v)κ) +ψnTc0(n)(vκ)

−q̄)�(44)

Finally, we consider I34. We have

I34 ≤ max
i

∑
j

(‖Ŝij − Sij‖ + ‖Ŝij‖
)
1{‖Ŝij‖<κ�‖Sij‖≥κ}(45)

≤ max
i�j

‖Ŝij − Sij‖max
i

∑
j

1{‖Sij‖≥κ} + κmax
i

∑
j

1{‖Sij‖≥κ}

= Op
(
ψnTc0(n)κ

−q̄ + c0(n)κ
1−q̄)�

Combining (41)–(45), the result follows.
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D.8. Proof of Lemma 10

By using ε̂i�t = εi�t − x′
i�t(β̂i −βi) and Ŝ0

ij = 1
Tij

∑
t Iij�tεi�tεj�txi�tx

′
j�t , we have

Ŝij = Ŝ0
ij −

1
Tij

∑
t

Iij�tεi�tx
′
j�t(β̂j −βj)xi�tx′

j�t

− 1
Tij

∑
t

Iij�tεj�tx
′
i�t(β̂i −βi)xi�tx′

j�t

+ 1
Tij

∑
t

Iij�t(β̂i −βi)′xi�tx′
j�t(β̂j −βj)xi�tx′

j�t

=: Ŝ0
ij −Aij −Bij +Cij�

where Aij = Bji. Then, for any i� j, we have ‖Ŝij − Sij‖ ≤ ‖Ŝ0
ij − Sij‖ + ‖Aij‖ +

‖Bij‖ + ‖Cij‖. We get, for any ξ≥ 0,

ΨnT (ξ) ≤ max
i�j
P

[∥∥Ŝ0
ij − Sij

∥∥ ≥ ξ

4

]
+ max

i�j
P

[
‖Aij‖ ≥ ξ

4

]
(46)

+ max
i�j
P

[
‖Bij‖ ≥ ξ

4

]
+ max

i�j
P

[
‖Cij‖ ≥ ξ

4

]
= Ψ 0

nT (ξ/4)+ 2P1�nT (ξ/4)+ P2�nT (ξ/4)�

where Ψ 0
nT (ξ/4) := maxi�j P[‖Ŝ0

ij − Sij‖ ≥ ξ

4 ], P1�nT (ξ/4) := maxi�j P[‖Aij‖ ≥ ξ

4 ],
and P2�nT (ξ/4) := maxi�j P[‖Cij‖ ≥ ξ

4 ]. Let us bound the three terms in the RHS
of inequality (46).

(a) Bound of Ψ 0
nT (ξ/4). We use that

Ŝ0
ij − Sij = 1

Tij

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t − Sij

)
= τij�T

1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t −E

[
εi�tεj�txi�tx

′
j�t |γi�γj

])
and τij ≤M . Then:∥∥Ŝ0

ij − Sij
∥∥

≤M
∥∥∥∥ 1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t −E

[
εi�tεj�txi�tx

′
j�t |γi�γj

])∥∥∥∥
+ |τij�T − τij|

∥∥∥∥ 1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t −E

[
εi�tεj�txi�tx

′
j�t |γi�γj

])∥∥∥∥�
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We deduce:

Ψ 0
nT (ξ/4)

≤ max
i�j
P

[∥∥∥∥ 1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t

−E[
εi�tεj�txi�tx

′
j�t |γi�γj

])∥∥∥∥ ≥ ξ

8M

]

+ max
i�j
P

[
|τij�T − τij| ≥

√
ξ

8

]
+ max

i�j
P

[∥∥∥∥ 1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t

−E[
εi�tεj�txi�tx

′
j�t |γi�γj

])∥∥∥∥ ≥
√
ξ

8

]
≤ 2 max

i�j
P

[∥∥∥∥ 1
T

∑
t

Iij�t
(
εi�tεj�txi�tx

′
j�t

−E[
εi�tεj�txi�tx

′
j�t |γi�γj

])∥∥∥∥ ≥ ξ

8M

]

+ max
i�j
P

[
|τij�T − τij| ≥

√
ξ

8

]
=: 2P3�nT + P4�nT �

for small ξ. We use

P3�nT ≤ sup
γ�γ̃∈[0�1]

P

[∥∥∥∥ 1
T

∑
t

It(γ)It(γ̃)
(
εt(γ)εt(γ̃)xt(γ)xt(γ̃)

′

−E[
εt(γ)εt(γ̃)xt(γ)xt(γ̃)

′])∥∥∥∥ ≥ ξ

8M

]
and Assumption B.1(e) to get P3�nT ≤ C1T exp{−C∗

2ξ
2Tη}+C∗

3ξ
−1 exp{−C4T

η̄},
for some constants C1�C

∗
2 �C

∗
3 �C4 > 0. To bound P4�nT , we use τij ≤ M

and |τij�T − τij| ≤ τijτij�T |τ−1
ij�T − τ−1

ij | ≤ τij
|τ−1
ij�T−τ−1

ij |
τ−1
ij −|τ−1

ij�T−τ−1
ij | ≤ 2M2|τ−1

ij�T − τ−1
ij |, if

|τ−1
ij�T − τ−1

ij | ≤ M−1/2. Thus, we have P4�nT ≤ 2maxi�j P[|τ−1
ij�T − τ−1

ij | ≥ 1
2M2

√
ξ

8 ],
for small ξ. By using τ−1

ij�T = 1
T

∑
t Iij�t and τ−1

ij = E[Iij�t|γi�γj], from Assump-
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tion B.1(d) we get

max
i�j
P

[∣∣τ−1
ij�T − τ−1

ij

∣∣ ≥ 1
2M2

√
ξ

8

]

≤ sup
γ�γ̃∈[0�1]

P

[∣∣∣∣ 1
T

∑
t

(
It(γ)It(γ̃)−E[

It(γ)It(γ̃)
])∣∣∣∣ ≥ 1

2M2

√
ξ

8

]
≤ C1T exp

{−C∗
2ξT

η
} +C∗

3ξ
−1/2 exp

{−C4T
η̄
}
�

We deduce

Ψ 0
nT (ξ/4)≤ C∗

1T exp
{−C∗

2ξ
2Tη

} +C∗
3ξ

−1 exp
{−C4T

η̄
}
�(47)

(b) Bound of P1�nT (ξ/4). For some constant C , we have

‖Aij‖ ≤ Cτij�T max
k�l�m

∣∣∣∣ 1
T

∑
t

Iij�tεi�txi�t�kxi�t�lxj�t�m

∣∣∣∣‖β̂j −βj‖�
Let χ3�T = (logT)a, for a > 0. From a similar argument as in the proof of
Lemma 7, and Assumption B.1(d), we have maxi�j P[τij�T ≥ χ3�T ] =O(T−b̄), for
any b̄ > 0. Thus,

P1�nT (ξ/4)(48)

≤ max
i�j
P

[
τij�T max

k�l�m

∣∣∣∣ 1
T

∑
t

Iij�tεi�txi�t�kxi�t�lxj�t�m

∣∣∣∣‖β̂j −βj‖ ≥ ξ

4C

]
≤ max

i�j
P[τij�T ≥ χ3�T ]

+ max
i�j
P

[
max
k�l�m

∣∣∣∣ 1
T

∑
t

Iij�tεi�txi�t�kxi�t�lxj�t�m

∣∣∣∣ ≥
√

ξ

4χ3�TC
and

τij�T ≤ χ3�T

]

+ max
i�j
P

[
‖β̂j −βj‖ ≥

√
ξ

4χ3�TC
and τij�T ≤ χ3�T

]

≤ d3 max
i�j

max
k�l�m

P

[∣∣∣∣ 1
T

∑
t

Iij�tεi�txi�t�kxi�t�lxj�t�m

∣∣∣∣ ≥
√

ξ

4χ3�TC

]

+ P
[
‖β̂j −βj‖ ≥

√
ξ

4χ3�TC
and τj�T ≤ χ3�T

]
+O(

T−b̄)�
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By Assumption B.1(f),

max
i�j

max
k�l�m

P

[∣∣∣∣ 1
T

∑
t

Iij�tεi�txi�t�kxi�t�lxj�t�m

∣∣∣∣ ≥
√

ξ

4χ3�TC

]
(49)

≤ C1T exp
{
−C

∗
2ξ

χ3�T
T η

}
+C∗

3

√
χ3�T

ξ
exp

{−C4T
η̄
}
�

Let us now focus on P[‖β̂j −βj‖ ≥
√

ξ

4χ3�T C
and τj�T ≤ χ3�T ]. By using

‖β̂j −βj‖ ≤ χ3�T

∥∥Q−1
x�j

∥∥∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥
+χ3�T

∥∥Q̂−1
x�j −Q−1

x�j

∥∥∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥
when τj�T ≤ χ3�T , we get

P

[
‖β̂j −βj‖ ≥

√
ξ

4χ3�TC
and τj�T ≤ χ3�T

]
(50)

≤ P
[∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥ ≥ 1
2

√
ξ

4χ3�TC
χ−1

3�T

∥∥Q−1
x�j

∥∥−1
]

+ P
[∥∥Q̂−1

x�j −Q−1
x�j

∥∥∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥ ≥ 1
2

√
ξ

4χ3�TC
χ−1

3�T

]

≤ P
[∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥ ≥
√

ξ

16χ3
3�TC

∥∥Q−1
x�j

∥∥−1
]

+ P
[∥∥Q̂−1

x�j −Q−1
x�j

∥∥ ≥
(

ξ

16χ3
3�TC

)1/4]

+ P
[∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥ ≥
(

ξ

16χ3
3�TC

)1/4]

≤ 2P
[∥∥∥∥ 1
T

∑
t

Ij�txj�tεj�t

∥∥∥∥ ≥
√

ξ

16χ3
3�TC

∥∥Q−1
x�j

∥∥−1
]

+ P
[∥∥Q̂−1

x�j −Q−1
x�j

∥∥ ≥
(

ξ

16χ3
3�TC

)1/4]
�
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for small ξ. From Assumption B.4(d), ‖Q−1
x�j‖ is bounded uniformly in j. Then,

from Assumption B.1(c), the first probability in the RHS of inequality (51) is
such that

P

[∥∥∥∥ 1
T

∑
t

Ij�tx�jtεj�t

∥∥∥∥ ≥
√

ξ

16χ3
3�TC

∥∥Q−1
x�j

∥∥−1
]

(51)

≤ C1T exp
{
−C

∗
2ξ

χ3
3�T

T η
}

+C∗
3

√
χ3

3�T

ξ
exp

{−C4T
η̄
}
�

To bound the second probability in the RHS of inequality (51), we use the next
lemma.

LEMMA 13: For any two nonsingular matrices A and B such that ‖A− B‖<
1
2‖A−1‖−1, we have∥∥B−1 −A−1

∥∥ ≤ 2
∥∥A−1

∥∥2‖A−B‖�
From Lemma 13, we get

P

[∥∥Q̂−1
x�j −Q−1

x�j

∥∥ ≥
(

ξ

16χ3
3�TC

)1/4]

≤ P
[
‖Q̂x�j −Qx�j‖ ≥ 1

2

(
ξ

16χ3
3�TC

)1/4∥∥Q−1
x�j

∥∥−2
]

+ P
[
‖Q̂x�j −Qx�j‖ ≥ 1

2

∥∥Q−1
x�j

∥∥−1
]

≤ 2P
[
‖Q̂x�j −Qx�j‖ ≥ 1

2

(
ξ

16χ3
3�TC

)1/4∥∥Q−1
x�j

∥∥−2
]
�

for small ξ > 0. From Assumptions B.1(b) and B.1(c),

P

[
‖Q̂x�j −Qx�j‖ ≥ 1

2

(
ξ

16χ3
3�TC

)1/4∥∥Q−1
x�j

∥∥−2
]

(52)

≤ C1T exp
{
−C∗

2

√
ξ

χ3
3�T

T η
}

+ 2C∗
3

(
χ3

3�T

ξ

)1/4

exp
{−C4T

η̄
}
�

Then, from (48)–(52), we get

P1�nT (ξ/4) ≤ C∗
1T exp

{−C∗
2ξT

η/χ3
3�T

}
(53)

+ C∗
3χ

3/2
3�T√
ξ

exp
{−C4T

η̄
} +O(

T−b̄)�
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for small ξ > 0 and some constants C∗
1 �C

∗
2 �C

∗
3 �C4 > 0.

(c) Bound of P2�nT (ξ/4). We have, from Assumption B.4,

‖Cij‖ ≤ ‖β̂i −βi‖‖β̂j −βj‖ sup
k�l�m�p

∣∣∣∣ 1
Tij

∑
t

Iij�txi�t�kxj�t�lxi�t�mxj�t�p

∣∣∣∣
≤ C‖β̂i −βi‖‖β̂j −βj‖�

Thus, we have

P2�nT (ξ/4) ≤ max
i�j
P

[
C‖β̂i −βi‖‖β̂j −βj‖ ≥ ξ

4

]

≤ 2P
[
‖β̂i −βi‖ ≥

(
ξ

4C

)1/2]
�

By the same arguments as above, we get

P2�nT (ξ/4)≤ C∗
1T exp

{−C∗
2ξT

η/χ3
3�T

} + C∗
3χ

3/2
3�T√
ξ

exp
{−C4T

η̄
}
�(54)

for small ξ > 0 and some constants C∗
1 �C

∗
2 �C

∗
3 �C4 > 0.

(d) Conclusion. From inequalities (46), (47), (53), and (54), we deduce

ΨnT (ξ)≤ C∗
1T exp

{−C∗
2ξ

2
TT

η
} + C∗

3

ξT
exp

{−C4T
η̄
} +O(

T−b̄)�
where ξT := min{ξ�

√
ξ/χ3

3�T }, for small ξ > 0, and constants C∗
1 �C

∗
2 �C

∗
3 �

C4 > 0. For ξ = (1 − v)κ and κ =M
√

logn
Tη

, we get ξT = (1 − ν)κ for large T
and

n2ΨnT

(
(1 − v)κ) ≤ C∗

1n
2T exp

{−C∗
2M

2(1 − v)2 logn
}

+ n2C∗
3

(1 − v)M

√
Tη

logn
exp

{−C∗
4T

η̄
}

+O(
n2T−b̄)

= O(1)�

for b̄ and M sufficiently large, when n�T → ∞ such that n=O(T γ̄) for γ̄ > 0.



TIME-VARYING RISK PREMIA 19

Finally, let us prove that ψnT =Op(
√

logn
Tη
). Let ε > 0. Then,

P

[
ψnT ≥

√
logn
Tη

ε

]
≤ n2 max

i�j
P

[
‖Ŝij − Sij‖ ≥

√
logn
Tη

ε

]

= n2ΨnT

(√
logn
Tη

ε

)
≤ n2ΨnT

(
(1 − v)κ) =O(1)�

for large ε. The conclusion follows.

D.9. Proof of Lemma 11

Under the null hypothesis H0, and by definition of the fitted residual êi, we
have

êi = β1�i −β3�iν̂+C ′
ν̂(β̂i −βi)(55)

= β1�i −β3�iν+C ′
ν̂(β̂i −βi)−β3�i(ν̂− ν)

= C ′
ν̂(β̂i −βi)−β3�i(ν̂− ν)�

By definition of Q̂e, it follows that

Q̂e = 1
n

∑
i

(β̂i −βi)′Cν̂ŵiC ′
ν̂(β̂i −βi)

− 2(ν̂− ν)′ 1
n

∑
i

β′
3�iŵiC

′
ν̂(β̂i −βi)

+ (ν̂− ν)′ 1
n

∑
i

β′
3�iŵiβ3�i(ν̂− ν)

=: 1
n

∑
i

(β̂i −βi)′Cν̂ŵiC ′
ν̂(β̂i −βi)− 2I71 + I72�

Let us study the second term in the RHS:

I71 = 1√
nT
(ν̂− ν)′ 1√

n

∑
i

τi�Tβ
′
3�iŵiC

′
ν̂Q̂

−1
x�iYi�T =: 1√

nT
(ν̂− ν)′I711�

where I711 = Op(1) by the same arguments used to control term I11 in the
proof of Proposition 4. We have ν̂ − ν = Op�log(

1√
nT

+ 1
T
) and Cν̂ = Op(1) by

Lemma 6(v). Thus� I71 =Op�log(
1
nT

+ 1
T

√
nT
).

Let us now consider I72. From Lemma 3(ii)–(iii) and Lemma 6(v), we have
I72 =Op�log(

1
nT

+ 1
T 2 ). The conclusion follows.
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D.10. Proof of Lemma 12

Under H1, and using Equation (55), we have êi = ei + C ′
ν̂(β̂i − βi) −

β3�i(ν̂− ν∞). By definition of Q̂e, it follows that

Q̂e = 1
n

∑
i

e′
iŵiei + 2

1
n

∑
i

(β̂i −βi)′Cν̂ŵiei(56)

− 2(ν̂− ν∞)′
1
n

∑
i

β′
3�iŵiei

+ 1
n

∑
i

(β̂i −βi)′Cν̂ŵiC ′
ν̂(β̂i −βi)

− 2(ν̂− ν∞)′
1
n

∑
i

β′
3�iŵiC

′
ν̂(β̂i −βi)

+ (ν̂− ν∞)′
1
n

∑
i

β′
3�iŵiβ3�i(ν̂− ν∞)

=: I81 + I82 + I83 + I84 + I85 + I86�

From Equations (30) and (32) and similar arguments as in Section B.4(c), we
have I81 = 1

n

∑
i wie

2
i + Op�log(

1√
T
). By similar arguments as for term I11 in the

proof of Proposition 4, we have I82 = 2√
nT
( 1√

n

∑
i τi�TY

′
i�T Q̂

−1
x�iCν̂ŵiei)=Op( 1√

nT
).

By using 1
n

∑
i β

′
3�iŵiei = 1

n

∑
i β

′
3�iwiei +Op�log(

1√
T
)= Op(

1√
n
)+Op�log(

1√
T
) and

ν̂− ν∞ =Op�log(
1√
n
+ 1

T
), we get I83 =Op�log(

1
n
+ 1√

nT
+ 1√

T 3 ). Similarly as for I82,
we have I85 =Op�log(

1
n
√
T

+ 1√
nT 3
). From ν̂− ν∞ =Op�log(

1√
n
+ 1

T
), we have I86 =

Op�log(
1
n
+ 1

T 2 ). The conclusion follows.

D.11. Proof of Lemma 13

Write B−1 −A−1 = [A(I −A−1(A−B))]−1 −A−1 = {[I −A−1(A−B)]−1 −
I}A−1, and use that, for a square matrix C such that ‖C‖ < 1, we have
(I −C)−1 = I +C +C2 +C3 + · · · and ‖(I −C)−1 − I‖ ≤ ‖C‖ + ‖C‖2 + · · · ≤

‖C‖
1−‖C‖ . Thus, we get

∥∥B−1 −A−1
∥∥ ≤

∥∥A−1(A−B)∥∥
1 − ∥∥A−1(A−B)∥∥∥∥A−1

∥∥ ≤
∥∥A−1

∥∥2‖A−B‖
1 − ∥∥A−1

∥∥‖A−B‖
≤ 2

∥∥A−1
∥∥2‖A−B‖�

if ‖A−B‖< 1
2‖A−1‖−1.
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APPENDIX E: LINK TO CHAMBERLAIN AND ROTHSCHILD (1983)

In this appendix, we establish the link between the no-arbitrage conditions
and asset pricing restrictions in CR on the one hand, and the asset pricing re-
striction (3) on the other hand. As in Appendix B.1, for any sequence (γi)
in Γ let Pn be the set of portfolios investing in the n assets γ1�γ2� � � � � γn
with F0-measurable shares. By assuming that the shares are finite P-a.s., we
have E[p2

n|F0] < ∞, P-a.s., and we can build on the framework of Hansen
and Richard (1987) with conditionally square integrable payoffs. Moreover,
we denote by P = ⋃∞

n=1 Pn the set of finite portfolios with conditionally square
integrable payoff.

Let J ∗ ⊂ Γ be the set of countable collections of assets (γi) such that Condi-
tions (i) and (ii) hold for any portfolio sequence (pn) ∈P , where Conditions (i)
and (ii) are: (i) If V [pn|F0] a�s�→ 0 and C(pn)

a�s�→ 0, then E[pn|F0] a�s�→ 0. (ii) If
V [pn|F0] a�s�→ 0, C(pn) ≥ 0, P-a.s�� lim supn→∞ |C(pn)| ≥ ε on a set of nonzero
measure, for a constant ε > 0, and E[pn|F0] a�s�→ δ̄, for a constant δ̄, then δ̄ > 0.
Condition (i) means that, if the conditional variability and cost vanish, so does
the conditional expected return. Condition (ii) means that, if the conditional
variability vanishes and the cost is positive, the conditional expected return
is positive. They correspond to Conditions A.1(i) and (ii) in CR written condi-
tionally on F0 and for a given countable collection of assets (γi). Hence, the set
J ∗ is the set permitting no asymptotic arbitrage opportunities in the sense of
CR in a conditional setting (see also Chamberlain (1983)). We use the conver-
gence of conditional expectations as in Hansen and Richard (1987), and focus
on a.s. convergence as opposed to convergence in probability (see Hansen and
Richard (1987, footnote 5 on p. 594)) since this helps when defining the exten-
sion of the cost function C(·) to the completion of set P . Let J ∗∗ ⊂ Γ be the
set of sequences (γi) such that infν∈RK

∑∞
i=1[a(γi)−b(γi)′ν]2 <∞, P-a.s. These

sequences met the summability condition of CR in a conditional setting. In the
proof of the following proposition, we assume that β is bounded on [0�1] ×Ω
and E[f1|F0] is bounded on Ω.

PROPOSITION APR: Under Assumptions APR.1–APR.3, and
(i) infn≥1 eigmin(Σε�t�n) > 0, P-a.s., for a.e. (γi) in Γ ,

(ii) eigmin(V [ft |Ft−1]) > 0, P-a.s.,
we have: either μ̄Γ (J ∗)= μ̄Γ (J ∗∗)= 1, or μ̄Γ (J ∗)= μ̄Γ (J ∗∗)= 0. The former
case occurs if, and only if, the asset pricing restriction (3) holds.

When we condition on F0, the fact that the set of sequences such that
infν∈RK

∑∞
i=1[a(γi) − b(γi)

′ν]2 < ∞ has μΓ -measure equal to either 1, or 0,
is a consequence of the Kolmogorov zero–one law (e.g., Billingsley (1995)).
Indeed� infν∈RK

∑∞
i=1[a(γi)− b(γi)′ν]2 <∞ if, and only if� infν∈RK

∑∞
i=n[a(γi)−

b(γi)
′ν]2 < ∞, for any n ∈ N. Thus, the zero–one law applies since the
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event infν∈RK
∑∞

i=1[a(γi) − b(γi)
′ν]2 < ∞ belongs to the tail sigma-field T =⋂∞

n=1σ(γi� i = n�n+ 1� � � �), and the variables γi are i.i.d. under measure μΓ .
Proposition APR shows that this zero–one measure property applies also for
the set J ∗∗. Proposition APR shows that the asset pricing (3) characterizes
the functions β = (a�b′)′ defined on [0�1] × Ω that are compatible with ab-
sence of asymptotic arbitrage opportunities in the continuum economy under
the definitions of arbitrage used in CR and in Hansen and Richard (1987).
Moreover, Proposition APR also provides a reverse implication compared to
Proposition 1: when the asset pricing restriction (3) does not hold, asymptotic
arbitrage in the sense of Assumption APR.4, or of Assumptions A.1(i) and (ii)
of CR, exists for μ̄Γ -almost any countable collection of assets.

PROOF OF PROPOSITION APR: The proof involves four steps.
Step 1: If the asset pricing restriction (3) holds, then μ̄Γ (J ∗∗) = 1. Indeed,

if the asset pricing restriction (3) holds for some F0-measurable function ν,
we have for a.e. ω ∈ Ω: a(γ�ω) − b(γ�ω)′ν(ω) = 0 for a.e. γ ∈ [0�1]. Since
functions a and b are jointly measurable on [0�1]×Ω, this implies that for a.e.
γ ∈ [0�1]: a(γ�ω)− b(γ�ω)′ν(ω)= 0 for a.e. ω ∈Ω. Then, the set {(γi) ∈ Γ :∑∞

i=1[a(γi)−b(γi)′ν]2 = 0�P-a.s.} = ⋂∞
i=1{(γi) ∈ Γ : a(γi�ω)−b(γi�ω)′ν(ω)=

0� for a.e.ω ∈Ω} has μΓ -measure 1. Since this set is a subset of J ∗∗, it follows
that μ̄Γ (J ∗∗)= 1.

Step 2: If the asset pricing restriction (3) does not hold, then μ̄Γ (J ∗∗)= 0. If
the asset pricing restriction (3) does not hold, the quantity δ= infν∈RK

∫ [a(γ)−
b(γ)′ν]2 dγ is such that δ(ω)≥ δ for all ω ∈A, for a set A ∈F0 with P(A) > 0
and a scalar δ > 0. To prove μ̄Γ (J ∗∗)= 0, we show J1 ∩ J ∗∗ = ∅, where J1 is
the set with μΓ -measure 1 defined in Lemma 1. Indeed�J1 ∩ J ∗∗ = ∅ implies
that J ∗∗ ⊂J c

1 is a negligible set under measure μΓ , and thus has μ̄Γ measure 0.
The proof of J1 ∩J ∗∗ = ∅ is by contradiction. Let us assume that sequence (γi)
is in J1 ∩ J ∗∗, and let ξn := infν∈RK 1

n

∑n

i=1[a(γi) − b(γi)
′ν]2. Since (γi) ∈ J1,

from inequality (19), we have ξn1A∩S∗
n
≥ 2−1δ1A∩S∗

n
, where the set S∗

n defined
in the proof of Proposition 1 is such that P(S∗

n)→ 1 as n→ ∞. This implies
that E[ξ2

n] ≥E[ξ2
n|1A∩S∗

n
= 1]P(A∩ S∗

n)≥ (δ2/4)P(A∩ S∗
n)→ (δ2/4)P(A), and

thus

lim inf
n→∞

E
[
ξ2
n

]
> 0�(57)

Since (γi) ∈ J ∗∗, we have ξn → 0, P-a.s. Moreover, since function β is
bounded, we have |ξn| ≤ C , P-a.s., for some constant C. Then, by the Lebesgue
dominated convergence theorem, it follows that E[ξ2

n] → 0. This is impossible,
if (57) holds.

Step 3: If the asset pricing restriction (3) holds, then μ̄Γ (J ∗) = 1. If (3)
holds, it follows that μn = Bnλ, P-a.s., for all n, for μΓ -almost all sequences
(γi), where λ = ν + E[f1|F0]. Then, for any portfolio sequence (pn), we
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get E[pn|F0] = R0C(pn) + α′
nBnλ. From Assumption APR.2(iv) and bound-

edness of E[f1|F0], it follows that λ is bounded on Ω. Moreover, we have
V [pn|F0] = (B′

nαn)
′V [f1|F0](B′

nαn) + α′
nΣε�1�nαn ≥ eigmin(V [f1|F0])‖B′

nαn‖2,
where eigmin(V [f1|F0]) > 0, P-a.s. Then, Conditions (i) and (ii) in the defi-
nition of set J ∗ follow, for μΓ -almost any sequence (γi), that is�μΓ (J ∗) =
μ̄Γ (J ∗)= 1.

Step 4: If the asset pricing restriction (3) does not hold, then μ̄Γ (J ∗)= 0. To
prove that μ̄Γ (J ∗) = 0, we show that J ∗ ∩ J ∩ J1 = ∅, where J and J1 are
the sets with μΓ -measure 1 defined in Assumption APR.3 and in Lemma 1,
respectively. The proof is by contradiction. Let us assume that sequence (γi) is
in set J ∗ ∩J ∩J1. By following the same arguments as in CR on pp. 1292 and
1295, we have

μ′
nΣ

−1
n μn = sup

pn∈Pn:C(pn)=0
E[pn|F0]2/V [pn|F0]�(58)

Σ−1
n ≥ eigmax(Σε�1�n)

−1
[
In −Bn

(
B′
nBn

)−1
B′
n

]
�(59)

P-a.s. Let us prove that the RHS of (58) is upper bounded uniformly in n.
We use Hilbert space methods as in Hansen and Richard (1987) applied to
the conditional economy generated by the countable collection of assets (γi).
Let 〈p�q〉F0 = E[pq|F0] and ‖p‖F0 = 〈p�p〉1/2

F0
be the conditional scalar prod-

uct and norm in the linear space of F1-measurable random variables, which
are square integrable conditionally to F0. Conditional convergence of (pn) to
p is defined as ‖pn − p‖F0

a�s�→ 0 for n → ∞. Conditional Cauchy sequences
are defined similarly. Since (γi) ∈ J ∗, Condition (ii) is satisfied for any port-
folio sequence in P . This implies that Condition (iii): If E[p2

n|F0] a�s�→ 0, then
C(pn)

a�s�→ 0, holds for any portfolio sequence (pn) in P . Indeed, suppose that
(pn) is such that E[p2

n|F0] a�s�→ 0 but C(pn) does not converge to 0 a.s. De-
fine the new portfolio sequence (p′

n), such that p′
n = pn if C(pn) ≥ 0, and

p′
n = −pn otherwise. Then, portfolio sequence (p′

n) violates Condition (ii),
which is impossible. Condition (iii) implies conditional continuity of function
C(·) at the zero payoff in P , and corresponds to Assumption 2.3 in Hansen
and Richard (1987). Now, by using Condition (iii), we can extend the cost
function C(·) to the linear space P̄ , that is, the conditional completion of P
w.r.t. the limits of conditional Cauchy sequences. Indeed, let p ∈ P̄ , and let
(pn) be a conditional Cauchy sequence in P converging conditionally to p.
Then�C(pn) is a Cauchy sequence in R�P-a.s. By the completeness prop-
erty of R, this Cauchy sequence converges to a unique value�P-a.s., which
we define as C(p). For any p ∈ P̄ , random variable C(p) is F0-measurable
by Theorem 20.A in Halmos (1950). This extension of the function C(·) on
P̄ is conditionally linear and conditionally continuous at the zero payoff. By
Theorem 2.1 in Hansen and Richard (1987), there exists a F1-measurable ran-
dom variable c such that E[c2|F0] <∞ and C(p) = E[cp|F0], P-a.s., for any
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portfolio p ∈ P̄ . This property is the conditional analogue of the Riesz Repre-
sentation Theorem. Any portfolio p ∈ P̄ can be written as p= π0 + π1c + p̃,
where π0 and π1 are F0-measurable, and p̃ is conditionally orthogonal to 1
and c, namely�E[p̃|F0] = E[cp̃|F0] = 0. If the portfolio p has zero cost, that
is�C(p)= 0, then p= π0(1 −E[c|F0]E[c2|F0]−1c)+ p̃=: π0p

∗ + p̃. The pay-
off p∗ is the residual of the conditional projection of the constant payoff 1 on
the payoff c. Since the component p̃ contributes to the conditional variance of
portfolio p but not to its conditional mean, we deduce that, for any portfolio
p ∈ P̄ such that C(p)= 0, we get

E[p|F0]2/V [p|F0] ≤E[
p∗|F0

]2
/V

[
p∗|F0

] =: ρ2 <∞�(60)

P-a.s. (see CR, Corollary 1, for a similar result in their unconditional frame-
work). From (58), (59), and (60), we get ρ2 eigmax(Σε�1�n) ≥ μ′

n(In −
Bn(B

′
nBn)

−1B′
n)μn = minλ∈RK ‖μn − Bnλ‖2 = minν∈RK ‖An − Bnν‖2 =

minν∈RK
∑n

i=1[a(γi) − b(γi)
′ν]2, for any n ∈ N, P-a.s. Hence, we deduce that

ξn = minν∈RK 1
n

∑n

i=1[a(γi) − b(γi)
′ν]2 is such that ξn ≤ ρ2 1

n
eigmax(Σε�1�n), for

any n, P-a.s. Since (γi) ∈ J , from Assumption APR.3, the RHS converges in
L2 to 0. Then, we get E[ξ2

n] → 0 as n→ ∞. However, since the asset pricing
restriction (3) does not hold and (γi) ∈ J1, we know from inequality (57) that
E[ξ2

n] is bounded away from 0, and we get a contradiction. Q.E.D.

APPENDIX F: CHECK OF ASSUMPTIONS UNDER BLOCK-DEPENDENCE

In this appendix, we verify that the eigenvalue condition in Assump-
tion APR.3, and the cross-sectional/time series dependence and CLT condi-
tions in Assumptions A.1–A.5, are satisfied under a block-dependence struc-
ture in a time-invariant and serially i.i.d. framework. We start by providing
the main result (Section F.1), we prove it (Section F.2), and then prove two
auxiliary lemmas (Sections F.3 and F.4).

F.1. Main Result

Let us assume that:
BD.1. The errors εt(γ) are i.i.d. over time with E[εt(γ)] = 0 and

E[εt(γ)3] = 0, for all γ ∈ [0�1]. For any n, there exists a partition of the interval
[0�1] into Jn ≤ n subintervals I1� � � � � IJn , such that εt(γ) and εt(γ′) are inde-
pendent if γ and γ′ belong to different subintervals, and Jn → ∞ as n→ ∞.

BD.2. The blocks are such that n
∑Jn

m=1B
2
m = O(1)�n3/2

∑Jn
m=1B

3
m = o(1),

where Bm = ∫
Im
dG(γ).

BD.3. The factors (ft) and the indicators (It(γ)), γ ∈ [0�1], are i.i.d. over
time, mutually independent, and independent of the errors (εt(γ)), γ ∈ [0�1].

BD.4. There exists a constant M such that ‖ft‖ ≤ M , P-a.s. Moreover,
supγ∈[0�1]E[|εt(γ)|6]<∞, supγ∈[0�1] ‖β(γ)‖<∞ and infγ∈[0�1]E[It(γ)]> 0.
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The block-dependence structure as in Assumption BD.1 is satisfied, for
instance, when there are unobserved industry-specific factors independent
among industries and over time, as in Ang, Liu, and Schwarz (2008). In empir-
ical applications, blocks can match industrial sectors. Then, the number Jn of
blocks amounts to a couple of dozens, and the number of assets n amounts to
a couple of thousands. There are approximately nBm assets in blockm, when n
is large. In the asymptotic analysis, Assumption BD.2 on block sizes and block
number requires that the largest block size shrinks with n and that there are
not too many large blocks, that is, the partition in independent blocks is suffi-
ciently fine grained asymptotically. Within blocks, covariances do not need to
vanish asymptotically.

LEMMA 14: Let Assumptions BD.1–BD.4 on block-dependence and Assump-
tions SC.1–SC.2 on random sampling hold. Then, Assumptions APR.3, A.1, A.2,
A.3, A.4 (with any q̄ ∈ (0�1) and δ̄ ∈ (1/2�1)), and A.5 are satisfied.

The proof of Lemma 14 uses a result on almost sure convergence in Stout
(1974), a large deviation theorem based on the Hoeffding inequality in Bosq
(1998), and CLTs for martingale difference arrays in Davidson (1994) and
White (2001).

Instead of a block structure, we can also assume that the covariance matrix
is full, but with off-diagonal elements vanishing asymptotically. We could also
accommodate weak serial dependence and conditioning information. In those
settings, we can carry out similar checks, although at the cost of increased no-
tational complexity.

F.2. Proof of Lemma 14

F.2.1. Assumption APR.3

We use that eigmax(A)≤ maxi=1�����n
∑n

j=1 |ai�j| for any matrix A= [aij]i�j=1�����n.
Then, for any sequence (γi) in [0�1], we have

eigmax(Σε�1�n) ≤ max
i=1�����n

n∑
j=1

∣∣Cov
[
εt(γi)� εt(γj)

]∣∣(61)

≤ C max
m=1�����Jn

n∑
j=1

1{γj ∈ Im}�

where C := supγ∈[0�1]E[εt(γ)2]. Define J = {(γi) : maxm=1�����Jn
1
n

∑n

i=1 1{γi ∈
Im} = o(1)}. Then Assumption APR.3(ii) holds if μΓ (J ) = 1. From Theo-
rem 2.1.1 in Stout (1974), it is enough to show that

∑∞
n=1μΓ (maxm=1�����Jn

1
n
×∑n

i=1 1{γi ∈ Im} > ε) < ∞, for any ε > 0. Now, since maxm=1�����Jn Bm = o(1),
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we have μΓ (maxm=1�����Jn
1
n

∑n

i=1 1{γi ∈ Im} > ε) ≤ μΓ (maxm=1�����Jn | 1
n

∑n

i=1 1{γi ∈
Im} −Bm|> ε/2), for large n. Thus, we get

μΓ

(
max

m=1�����Jn

1
n

n∑
i=1

1{γi ∈ Im}> ε
)

≤ Jn max
m=1�����Jn

μΓ

(∣∣∣∣∣1
n

n∑
i=1

1{γi ∈ Im} −Bm
∣∣∣∣∣> ε/2

)
�

for large n. To bound the probability in the RHS, we use |1{γi ∈ Im} −Bm| ≤ 1
and the Hoeffding inequality (see Bosq (1998, Theorem 1.2)) to get

μΓ

(∣∣∣∣∣ 1
n

n∑
i=1

1{γi ∈ Im} −Bm
∣∣∣∣∣> ε/2

)
≤ 2 exp

(−nε2/8
)
�

Then, since Jn ≤ n, we get

∞∑
n=1

μΓ

(
max

m=1�����Jn

1
n

n∑
i=1

1{γi ∈ Im}> ε
)

≤ 2
∞∑
n=1

nexp
(−nε2/8

)
<∞�

and the conclusion follows.

F.2.2. Assumption A.1

Conditions (a) and (b) are clearly satisfied under Assumptions BD.1, BD.3,
and BD.4. Let us now consider condition (c). We have σij�t = E[εt(γi)εt(γj)|
γi�γj] =: σij independent of t. Thus�E[σ2

ij�t|γi�γj]1/2 = σij . By Assumptions
BD.1, BD.4, and the Cauchy–Schwarz inequality�σij = ∑Jn

m=1 1{γi�γj ∈ Im} ×
E[εt(γi)εt(γj)|γi�γj] ≤ C

∑Jn
m=1 1{γi�γj ∈ Im}, where C = supγ∈[0�1]E[εt(γ)2].

Hence, we get

E

[
1
n

∑
i�j

E
[
σ2
ij�t|γi�γj

]1/2
]

≤ C 1
n

∑
i

Jn∑
m=1

E
[
1{γi ∈ Im}] +C 1

n

∑
i �=j

Jn∑
m=1

E
[
1{γi�γj ∈ Im}]

= C
Jn∑
m=1

Bm +C(n− 1)
Jn∑
m=1

B2
m =O

(
1 + n

Jn∑
m=1

B2
m

)
�

From Assumption BD.2, the RHS isO(1), and condition (c) in Assumption A.1
follows.
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F.2.3. Assumption A.2

Let us consider condition (a). In the time-invariant case under Assump-
tions BD.1 and BD.3, we have Sij = σijQx and v3 = wibi, where Qx = E[xtx′

t].
Then, Assumption A.2(a) is equivalent to 1√

n

∑n

i=1wiτiYi�T ⊗ bi ⇒ N(0� Sb),
where Sb := limn→∞E[ 1

n

∑
i�j wiwj

τiτj

τij
σij(Qx ⊗ bib′

j)]. This limit is finite (if it ex-

ists), since from Assumption BD.4 we have ‖ 1
n

∑
i�j wiwj

τiτj

τij
σij(Qx ⊗ bib

′
j)‖ ≤

C 1
n

∑
i�j |σi�j|, and E[ 1

n

∑
i�j |σi�j|] =O(1) from Assumption A.1. Moreover,

1√
n

n∑
i=1

wiτiYi�T ⊗ bi = 1√
Tn

T∑
t=1

n∑
i=1

wiτiIi�t(xt ⊗ bi)εi�t

= 1√
T

T∑
t=1

ξn�t�

where ξn�t = 1√
n

∑n

i=1wiτiIi�t(xt ⊗ bi)εi�t . The triangular array (ξn�t) is a martin-
gale difference sequence w.r.t. the sigma-field Fn�t = {ft� εi�t� γi� i = 1� � � � � n}.
From a multivariate version of Corollary 5.26 in White (2001), the CLT in con-
dition (a) follows if we show:

(i) 1
T

∑T

t=1E[ξn�tξ′
n�t] → Sb,

(ii) 1
T

∑T

t=1(ξn�tξ
′
n�t −E[ξn�tξ′

n�t])= op(1),
(iii) supt=1�����T E[‖ξn�t‖2+δ] =O(1), for some δ > 0.

Moreover, we prove the alternative characterization of the asymptotic
variance–covariance matrix:

(iv) Sb = a.s.-limn→∞ 1
n

∑
i�j wiwj

τiτj

τij
σij(Qx ⊗ bib′

j).
Let us check these conditions. (i) Let Gn = {γi� i= 1� � � � � n}. We have

1
T

∑
t

E
[
ξn�tξ

′
n�t |Gn

]
= 1

Tn

∑
t

∑
i�j

wiwjτiτjE
[
Ii�tIj�t

(
xtx

′
t ⊗ bib′

j

)
εi�tεj�t |γi�γj

]
= 1

Tn

∑
t

∑
i�j

wiwjτiτj

×E[Ii�tIj�t |γi�γj]
(
E

[
xtx

′
t

] ⊗ bib′
j

)
E[εi�tεj�t|γi�γj]

= 1
n

∑
i�j

wiwj
τiτj

τi�j
σij

(
Qx ⊗ bib′

j

)
�

By taking expectation on both sides, condition (i) follows.
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Let us now consider condition (ii). Define ζn�T = 1
T

∑
t(ξn�t�kξn�t�l −

E[ξn�t�kξn�t�l]), where ξn�t�k is the kth element of ξn�t . Since E[ζn�T ] = 0, it is
enough to show V [ζn�T ] = o(1), for any k� l. We show this for k= l; the proof
for k �= l is similar. For expository purposes, we omit the index k, and we write
x2
t�k ≡ x2

t . We have

V [ζn�T ] = 1
T 2

∑
t

V
[
ξ2
n�t

] + 1
T 2

∑
t �=s

Cov
(
ξ2
n�t� ξ

2
n�s

)
�(62)

where ξ2
n�t = 1

n

∑
i�j wiwjτiτjIi�tIj�tx

2
t bibjεi�tεj�t .

• Consider first the terms Cov(ξ2
n�t� ξ

2
n�s) for t �= s. By the variance decom-

position formula,

Cov
(
ξ2
n�t� ξ

2
n�s

) =E[
Cov

(
ξ2
n�t� ξ

2
n�s|Gn

)] + Cov
[
E

(
ξ2
n�t

∣∣Gn)�E(
ξ2
n�s

∣∣Gn)]�
We have Cov(ξ2

n�t� ξ
2
n�s|Gn)= 0 from the i.i.d. assumption over time. Moreover,

E
[
ξ2
n�t |Gn

] = 1
n

∑
i�j

wiwj
τiτj

τij
Qxσijbibj = 1

n

Jn∑
m=1

∑
i�j

αijσij1{γi�γj ∈ Im}�

where αij =wiwj τiτjτij bibjE[x2
t ]. Thus,

Cov
[
E

(
ξ2
n�t

∣∣Gn)�E(
ξ2
n�s

∣∣Gn)]
= 1
n2

Jn∑
m�p=1

∑
i�j�k�l

Cov
(
αijσij1{γi�γj ∈ Im}�αklσkl1{γk�γl ∈ Ip}

)
�

In the above sum, the terms such that sets {i� j} and {k� l} do not have a com-
mon element, vanish. Consider now the sum of the terms such that i= k (terms
such that i= l, or j = k, or j = l are symmetric). Therefore, let us focus on the
sum

Sn := 1
n2

Jn∑
m�p=1

∑
i�j�l

Cov
(
αijσij1{γi�γj ∈ Im}�αilσil1{γi�γl ∈ Ip}

)

= 1
n2

Jn∑
m=1

∑
i�j�l

Cov
(
αijσij1{γi�γj ∈ Im}�αilσil1{γi�γl ∈ Im})

− 1
n2

Jn∑
m�p=1�m �=p

∑
i�j�l

E
[
αijσij1{γi�γj ∈ Im}]E[

αilσil1{γi�γl ∈ Ip}
]
�

From Assumption BD.4, we have αij ≤ C and σij ≤ C . Thus, we get Sn =
O( 1

n2

∑Jn
m=1

∑
i�j�l E[1{γi�γj�γl ∈ Im}]) + O( 1

n2

∑Jn
m�p=1�m �=p

∑
i�j�l E[1{γi�γj ∈
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Im}]E[1{γi�γl ∈ Ip}]). By using that
∑

i�j�l E[1{γi�γj�γl ∈ Im}] = O(nBm +
n2B2

m + n3B3
m) and

∑
i�j�l E[1{γi�γj ∈ Im}]E[1{γi�γl ∈ Ip}] = O(nBmBp +

n2(B2
mBp +BmB2

p)+ n3B2
mB

2
p)), we get Sn =O(1/n+ ∑Jn

m=1B
2
m + n∑Jn

m=1B
3
m +

n(
∑Jn

m=1B
2
m)

2). The RHS is o(1) from Assumption BD.2. Thus, we have shown
that

Cov
(
ξ2
n�t� ξ

2
n�s

) = o(1)�(63)

uniformly in t �= s.
• Consider now V [ξ2

n�t]. By the variance decomposition formula, V [ξ2
n�t] =

E[V (ξ2
n�t |Gn)] + V [E(ξ2

n�t|Gn)]. By similar arguments as above, we have
V [E(ξ2

n�t|Gn)] = o(1) uniformly in t. Consider now term E[V (ξ2
n�t |Gn)]. We

have

V
(
ξ2
n�t |Gn

) = 1
n2

∑
i�j�k�l

wiwjwkwlτiτjτkτlbibjbkbl

× Cov
(
Ii�tIj�tx

2
t εi�tεj�t� Ik�tIl�tx

2
t εk�tεl�t|γi�γj�γk�γl

)
�

Moreover,

Cov
(
Ii�tIj�tx

2
t εi�tεj�t� Ik�tIl�tx

2
t εk�tεl�t|γi�γj�γk�γl

)
=E[Ii�tIj�tIk�tIl�t |γi�γj�γk�γl]E[εi�tεj�tεk�tεl�t|γi�γj�γk�γl]E

[
x4
t

]
− σijσklτ−1

ij τ
−1
kl E

[
x2
t

]2
�

From the block-dependence structure in Assumption BD.1, the expectation
E[εi�tεj�tεk�tεl�t|γi�γj�γk�γl] is different from zero only if a pair of indices is
in a same block Im, and the other pair is also in a same block Ip, say, possibly
with m= p. Similarly�σijσkl is different from zero only if γi and γj are in the
same block and γk and γl are in the same block. From Assumption BD.4, we
deduce that V (ξ2

n�t |Gn) ≤ C 1
n2

∑
i�j�k�l

∑Jn
m�p=1 1{γi�γj ∈ Im}1{γk�γl ∈ Ip}, where

in the double sum the elements withm �= p are not zero only if the pairs (γi� γj)
and (γk�γl) have no element in common. Thus,

E
[
V

(
ξ2
n�t |Gn

)]
=O

(
1

n2

∑
i�j�k�l

Jn∑
m=1

E
[
1{γi�γj�γk�γl ∈ Im}])

+O
(

1

n2

∑
i�j�k�l:i �=k�l;j �=k�l

Jn∑
m�p=1:m �=p

E
[
1{γi�γj ∈ Im}]E[

1{γk�γl ∈ Ip}])�
By using

∑
i�j�k�l

∑Jn
m=1E[1{γi�γj�γk�γl ∈ Im}] = O(

∑Jn
m=1(nBm + n2B2

m +
n3B3

m + n4B4
m)) and

∑
i�j�k�l

∑Jn
m�p=1E[1{γi�γj ∈ Im}]E[1{γk�γl ∈ Ip}] =



30 P. GAGLIARDINI, E. OSSOLA, AND O. SCAILLET

O(
∑Jn

m�p=1(n
2BmBp + n3B2

mBp + n4B2
mB

2
p)), we get

E
[
V

(
ξ2
n�t |Gn

)] =O
(

1 + n
Jn∑
m=1

B2
m +

(
n

Jn∑
m=1

B2
m

)2

+ n2
Jn∑
m=1

B4
m

)
�

By Assumption BD.2, nmaxm=1�����Jn B
2
m = O(1), and we get E[V (ξ2

n�t |Gn)] =
O(1).

Thus, we have shown

V
(
ξ2
n�t

) =O(1)�(64)

uniformly in t.
From (62), (63), and (64), we get V [ζnT ] = o(1), and condition (ii) follows.
From (64) and by using E[ξ2

n�t] = O(1), condition (iii) follows for δ = 2. Fi-
nally, condition (iv) follows from 1

n

∑
i�j wiwj

τiτj

τij
σijbib

′
j = (1 + λ′V [ft]λ)−2 ×

1
n

∑
i�j

1
τij

σij

σiiσjj
bib

′
j and the next Lemma 15.

LEMMA 15: Under Assumptions BD.1–BD.4: 1
n

∑
i�j

1
τij

σij

σiiσjj
bib

′
j → L, P-a.s.,

where

L= lim
n→∞

E

[
1
n

∑
i�j

1
τij

σij

σiiσjj
bib

′
j

]

=
∫ 1

0
ω(γ)dγ+ lim

n→∞
n

Jn∑
m=1

∫
Im

∫
Im

ω
(
γ�γ′)dγ dγ′�

with ω(γ�γ′) :=E[It(γ)It(γ′)] E[εt (γ)εt (γ′)]
E[εt (γ)2]E[εt (γ′)2]b(γ)b(γ

′)′ and ω(γ) :=ω(γ�γ).
Then, we have proved part (a). Part (b) follows by a standard CLT.

F.2.4. Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third
moment (Assumption BD.1).

F.2.5. Assumption A.4

We have to show that maxi
∑

j ‖Sij‖q̄ = Op(n
δ̄), for any q̄ ∈ (0�1) and

δ̄ > 1/2. From Sij = σijQx, and an argument similar to (61),

max
i

∑
j

‖Sij‖q̄ ≤ C max
m=1�����Jn

n∑
j=1

1{γj ∈ Im}

≤ Cn max
m=1�����Jn

Bm +C max
m=1�����Jn

∣∣∣∣∣
n∑
j=1

[
1{γj ∈ Im} −Bm

]∣∣∣∣∣�
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for any q̄ > 0. Let us derive (probability) bounds for the two terms in the RHS.
From Assumption BD.2,

nmax
m

|Bm| ≤ √
n

(
n

∑
m

|Bm|2

)1/2

=O(√n)�

Let εn := nδ̄, with δ̄ > 1/2. Then,

P

[
max

m=1�����Jn

∣∣∣∣∣
n∑
j=1

[
1{γj ∈ Im} −Bm

]∣∣∣∣∣ ≥ εn
]

≤ Jn max
m=1�����Jn

P

[∣∣∣∣∣
n∑
j=1

[
1{γj ∈ Im} −Bm

]∣∣∣∣∣ ≥ εn
]

≤ 2Jn exp
(−ε2

n/(2n)
) = o(1)�

from the Hoeffding inequality (see Bosq (1998, Theorem 1.2)), and Jn ≤ n.
Thus, we have shown that maxm=1�����Jn |∑n

j=1[1{γj ∈ Im} − Bm]| = op(n
δ̄), and

the conclusion follows.

F.2.6. Assumption A.5

In the time-invariant i.i.d. case, we have Sii�T = σiiQ̂x�i and Sij = σijQx. Then,
Assumption A.5 boils down to ΥnT := 1√

n

∑
i wiτ

2
i [Yi�T ⊗Yi�T − S̃ii�T ] ⇒N(0�Ω),

as n�T → ∞, where S̃ii�T = σii vec(Q̂x�i) andΩ= limn→∞E[ 1
n

∑
i�j wiwj

τ2
i τ

2
j

τ2
ij

σ2
ij]×

[Qx ⊗ Qx + (Qx ⊗ Qx)WK+1]. Let us denote by H = σ((ft)� (It(γ))�γ ∈
[0�1]�γi� i = 1�2� � � �) the information in the factor path, the indicators paths,
and the individual random effects. The proof is in two steps.

Step 1: We first show that, conditional on H, we have

ΥnT ⇒N(0�Ω)� n�T → ∞�(65)

P-a.s. For this purpose, we apply the Lyapunov CLT for heterogeneous inde-
pendent arrays (see Davidson (1994, Theorem 23.11)). Write

ΥnT = 1√
n

∑
i

Jn∑
m=1

1{γi ∈ Im}wiτ2
i [Yi�T ⊗Yi�T − S̃ii�T ] = 1√

Jn

Jn∑
m=1

Wm�nT �

where

Wm�nT :=
√
Jn

n

∑
i

1{γi ∈ Im}wiτ2
i [Yi�T ⊗Yi�T − S̃ii�T ]�

Conditional on H, the variablesWm�nT , form= 1� � � � � Jn, are independent, with
zero mean. The conclusion follows if we prove:
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(i) limn�T→∞ 1
Jn

∑
m V [Wm�nT |H] =Ω, P-a.s., and

(ii) limn�T→∞ 1
J

3/2
n

∑
m E[‖Wm�nT‖3|H] = 0, P-a.s.

To show (i), we use

V [Wm�nT |H]

= Jn

n

∑
i�j∈Im

wiwjτ
2
i τ

2
j Cov[Yi�T ⊗Yi�T �Yj�T ⊗Yj�T |H]

= Jn

n

∑
i�j∈Im

wiwjτ
2
i τ

2
j

{
E

[
(Yi�T ⊗Yi�T )(Yj�T ⊗Yj�T )′|H

] − S̃ii�T S̃
′
jj�T

}
�

where
∑

i�j∈Im denotes double sum over all i� j = 1� � � � � n such that γi�γj ∈ Im.
Now, we have, by the independence property over time,

E
[
(Yi�T ⊗Yi�T )(Yj�T ⊗Yj�T )′|H

]
= 1
T 2

∑
t

∑
s

∑
p

∑
q

E
[
εi�tεi�pεj�sεj�q|(ft)�γi� γj

]
× Ii�tIi�pIj�sIj�q

(
xtx

′
s ⊗ xpx′

q

)
=E[

ε2
itε

2
jt|γi�γj

] 1
T 2

∑
t

Ii�tIj�t
(
xtx

′
t ⊗ xtx′

t

)
+ σ2

ij

1
T 2

∑
t

∑
p�=t
Iij�tIij�p

(
xtx

′
t ⊗ xpx′

p

)
+ σ2

iiσ
2
jj

1
T 2

∑
t

∑
s �=t
Ii�tIj�s

(
xtx

′
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A3�T = 1
T 2
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Then, point (i) follows from 1
n

∑
i�j

τiτj

τ2
ij

σ2
ij

σiiσjj
→ L, P-a.s., where L =

limn→∞E[ 1
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], which is proved by similar arguments as Lemma 15.

Let us now prove point (ii). We have
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By the independence property, the nonzero terms E[εi�t1 · · ·εi�t6 |γi] involve
at most three different time indices, which implies, together with Assump-
tion BD.4, that supi E[‖Yi�T ⊗ Yi�T‖3|H] = O(1), P-a.s. Similarly supi ‖S̃ii�T‖ =
O(1), P-a.s. Thus, we get

1
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E
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�

Then, point (ii) follows from the next Lemma 16.

LEMMA 16: Under Assumptions BD.1–BD.4: 1
n3/2

∑Jn
m=1(

∑
i 1{γi ∈ Im})3 → 0,

P-a.s.

Step 2: We show that (65) implies the asymptotic normality condition in As-
sumption A.4. Indeed, from (65), we have

lim
n�T→∞

P
[
α′ΥnT ≤ z|H] =�

(
z√
α′Ωα

)
�
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for any α ∈ R
2(K+1) and for any z ∈ R, and P-a.s. We now apply the Lebesgue

dominated convergence theorem, by using that the sequence of random vari-
ables P[α′ΥnT ≤ z|H] is such that P[α′ΥnT ≤ z|H] ≤ 1, uniformly in n and T .
We conclude that, for any α ∈ R

2(K+1), z ∈ R,

lim
n�T→∞

P
[
α′ΥnT ≤ z] = lim

n�T→∞
E

(
P

[
α′ΥnT ≤ z|H]) =�

(
z√
α′Ωα

)
�

since �( z√
α′Ωα) is independent of the information set H. The conclusion fol-

lows.

F.3. Proof of Lemma 15

Let us denote ξi�j = 1
τij

σij

σiiσjj
bib

′
j = w(γi�γj). We have 1
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∑
i�j ξi�j = 1
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∑
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i �=j ξi�j . By the LLN, we get 1
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∑
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0 ω(γ)dγ, P-a.s. Let
us now consider the double sum 1

n

∑
i �=j ξi�j . The proof proceeds in three steps.

Step 1: We first prove that 1
n

∑
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and

Cov(Xm�Xp)

= 1
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=
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V [Xm] +
Jn∑
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Cov(Xm�Xp)= o(1)�

from Assumption BD.2. Then, Step 1 follows.
Step 2: There exists a random variable L̃ such that 1

n

∑
i �=j ξi�j → L̃, P-a.s. To

show this statement, we use that the event in which series 1
n

∑
i �=j ξi�j converges

is a tail event for the i.i.d. sequence (γi). Indeed, we have that 1
n

∑
i �=j ξi�j con-

verges if, and only if� 1
n

∑
i�j≥N�i �=j ξi�j converges, for any integer N . Then, by the

Kolmogorov zero–one law, the event in which series 1
n

∑
i �=j ξi�j converges has

probability either 1 or 0. The latter case, however, is excluded by Step 1. There-
fore, the sequence 1

n

∑
i �=j ξi�j converges with probability 1, and Step 2 follows.

Step 3: We have L̃=L′, with probability 1. Indeed, by Steps 1 and 2, it follows
that 1

n

∑
i �=j ξi�j −L′ = op(1) and 1

n

∑
i �=j ξi�j − L̃= op(1). These equations imply

that L̃−L′ = op(1), which holds if and only if L̃= L with probability 1 (since
L̃ and L′ are independent of n).

F.4. Proof of Lemma 16

The proof is similar to the one of Lemma 15 and we give only the main steps.
First, we prove that 1

n3/2

∑Jn
m=1(

∑
i 1{γi ∈ Im})3 = op(1). Indeed, we have

E

[
1
n3/2

Jn∑
m=1

(∑
i

1{γi ∈ Im}
)3

]
= 1
n3/2

Jn∑
m=1

∑
i�j�k

E[1γi�γj�γk ∈ Im]

= O

(
n3/2

Jn∑
m=1

B3
m

)
= o(1)�



TIME-VARYING RISK PREMIA 37

from Assumption BD.2, and we can show V [ 1
n3/2

∑Jn
m=1(

∑
i 1{γi ∈ Im})3] = o(1).

Second, by using the monotone convergence theorem and the Kolmogorov
zero–one law, we can show that sequence 1

n3/2

∑Jn
m=1(

∑
i 1{γi ∈ Im})3 converges

with probability 1. Third, we conclude that the limit is 0 with probability 1.

APPENDIX G: MONTE CARLO EXPERIMENTS

In this appendix, we report the results of Monte Carlo experiments to in-
vestigate the finite sample behavior of our estimators and test statistics (Sec-
tion G.1) and the accuracy of the CLT asymptotic approximations underlying
Assumption A.2(a) (Section G.2).

G.1. Finite Sample Behavior of Estimators and Test Statistics

In this section, we perform simulation exercises on balanced and unbal-
anced panels in order to study the properties of our estimation and testing
approaches. We pay particular attention to the interaction between panel di-
mensions n and T in finite samples since we face conditions like n= o(T 3) for
inference with ν̂, and n= o(T 2) for inference with Q̂e and Q̂a, in the theoret-
ical results. The simulation design mimics the empirical features of our data.
The balanced case serves as a benchmark to understand when T is not suffi-
ciently large w.r.t. n to apply the theory. The unbalanced case shows that we
can exploit the guidelines found for the balanced case when we substitute the
average of the sample sizes of the individual assets, that is, a kind of operative
sample size, for T . To summarize our Monte Carlo findings, we do not face any
finite sample distortions for the inference with ν̂ when n= 1000 and T = 150,
and with Q̂e and Q̂a when n = 1000 and T = 350. In light of these results, we
do not expect to face significant inference bias in our empirical application.

G.1.1. Balanced Panel

We simulate S data sets of excess returns from a time-invariant one-factor
model (CAPM), we estimate the parameter ν, and compute the test statistics.
A simulated data set includes: a vector of intercepts as ∈ R

n, a vector of factor
loadings bs ∈ R

n, and a variance–covariance matrix Ωs ∈ R
n×n. At each simu-

lation s = 1� � � � � S, we randomly draw n≤ 9904 assets from the sample of our
empirical analysis that comprises 9904 individual stocks. The assets are listed
by industrial sectors. We use the classification proposed by Ferson and Har-
vey (1999). The vector bs is composed by the estimated factor loadings for the
n randomly chosen assets. At each simulation, we build a block-diagonal ma-
trix Ωs with blocks matching industrial sectors. The n elements of the main
diagonal ofΩs correspond to the variances of the estimated residuals of the in-
dividual assets. The off-diagonal elements of Ωs are covariances computed by
fixing correlations within a block equal to the average correlation of the indus-
trial sector computed from the 9904 × 9904 thresholded variance–covariance
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matrix of estimated residuals. Hence, we get a setting in line with the block-
dependence case developed in Appendix F.

In order to study the size and power properties of our procedure, we set the
values of the intercepts asi according to four data generating processes:

DGP1: The true parameter is ν0 = 0�00% and the asi are generated under
the null hypothesis H0 : asi = 0.

DGP2: The true parameter is the empirical estimate of ν, ν0 = 2�57%, and
the asi are generated under the null hypothesis H0 : asi = bsiν0.

DGP3: The asi are generated under the alternative hypothesis Ha : asi =
(0�5bsi + 0�5)ν0, where ν0 = 2�57%.

DGP4: The asi are generated under the three-factor alternative hypothesis:
Ha : asi = bs′i�(3)ν0�(3) where bsi�(3) ∈ R

3 and ν0�(3) = [2�92%�−0�63%�−9�96%]′ are
estimates for the Fama–French model on the CRSP data set.
DGP1 and DGP2 match two different null hypotheses. The null hypothesis
for DGP1 assumes that the factor comes from a tradable asset, and for DGP2
that it does not. DGP3 and DGP4 match two different alternative hypothe-
ses as suggested by MacKinlay (1995). DGP3 is a “nonrisk-based alternative.”
It represents a deviation from CAPM, which is unrelated to risk: we take the
one-factor model calibrated on the data with intercepts deviating from the no-
arbitrage restriction. DGP4 is a “risk-based alternative.” It represents a devi-
ation from CAPM, which comes from missing risk factors: we take intercepts
from a three-factor model calibrated on the data, and then we estimate a one-
factor model.

Let us define the simulated excess returns Rsi�t of asset i at time t as follows:

Rsi�t = asi + bsift + εsi�t� for i= 1� � � � � n� and t = 1� � � � �T�(66)

where ft is the market excess return and εsi�t is the error term. The n × 1 er-
ror vectors εst are independent across time and Gaussian with mean zero and
variance–covariance matrix Ωs . We apply our estimation approach on every
simulated data set of excess returns. We estimate the parameter ν and we
compute the statistics described in Section 3.5 of the paper. Since the panel
is balanced, we do not need to fix χ2�T . We only use χ1�T = 15. However, this
trimming level does not affect the number of assets n in the simulations. In
order to compute the thresholded estimator of the variance–covariance matrix
of ν̂, namely Σ̃ν (see Proposition 5 in the paper), and the thresholded variance
estimator Σ̃ξ (see Proposition 6) for the test statistics, we fix the parameter
M equal to 0.0780, that is used in the empirical application. We define the
parameter M using a cross-validation method as proposed in Bickel and Lev-
ina (2008). We build random subsamples from the CRSP sample. For each
subsample, we minimize a risk function that exploits the difference between a
thresholded variance–covariance matrix and a target variance–covariance ma-
trix (see Bickel and Levina (2008) for details).
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TABLE IV

ESTIMATION OF ν, BALANCED CASE

DGP 1 DGP 2

n n

1000 3000 6000 9000 1000 3000 6000 9000

T = 150
Bias(ν̂) −0�0742 −0�0567 −0�0585 −0�0586 −0�1630 −0�1472 −0�1484 −0�1493
Bias(ν̂B) −0�0244 −0�0063 −0�0082 −0�0083 −0�0319 −0�0156 −0�0169 −0�0178
Var(ν̂B) 0�1167 0�0394 0�0179 0�0121 0�1140 0�0401 0�0189 0�0121
RMSE(ν̂B) 0�3423 0�1985 0�1340 0�1102 0�3390 0�2007 0�1383 0�1114
Coverage 0�9320 0�9290 0�9350 0�9370 0�9370 0�9290 0�9320 0�9360

T = 500
Bias(ν̂) −0�0587 −0�0640 −0�0687 −0�0654 −0�0847 −0�0926 −0�0972 −0�0937
Bias(ν̂B) −0�0002 −0�0063 −0�0110 −0�0077 −0�0025 −0�0074 −0�0120 −0�0085
Var(ν̂B) 0�0343 0�0113 0�0060 0�0040 0�0341 0�0114 0�0061 0�0041
RMSE(ν̂B) 0�1851 0�1066 0�0781 0�0634 0�1846 0�1068 0�0788 0�0642
Coverage 0�9370 0�9340 0�9370 0�9390 0�9430 0�9370 0�9360 0�9320

In order to understand how our estimation approach works for different fi-
nite samples, we perform exercises combining different values of the cross-
sectional dimension n and the time dimension T . Table IV reports estimation
results for estimator ν̂, and for the bias-adjusted estimator ν̂B, under DGP 1
and 2. The results include the bias of both estimators, the variance and the
root mean square error (RMSE) of estimator ν̂B, and the coverage of the 95%
confidence interval for parameter ν based on Proposition 5. The bias of estima-
tor ν̂ is decreasing in absolute value with time series size T and is rather stable
w.r.t. cross-sectional size n. The analytical bias correction is rather effective,
and the bias of estimator ν̂B is small. For instance, for sample sizes T = 150
and n= 1000, under DGP 2 the bias of estimator ν̂B is equal to −0�03, which
in absolute value is about 1% of the true value of the parameter ν = 2�57. The
variance of estimator ν̂B is decreasing w.r.t. both time series and cross-sectional
sample sizes T and n. These features reflect the large sample distribution of the
estimators derived in Proposition 4. The coverage of the confidence intervals is
close to the nominal level 95% across the considered designs and sample sizes.

In Table V, we display the rejection rates for the test of the null hypothesis
ν = 0 (tradable factor). This null hypothesis is satisfied in DGP 1, and the re-
jection rates are rather close to the nominal size 5% of the test, with a slight
over-rejection. In DGP 2, parameter ν is different from zero, and the test fea-
tures a power equal to 100%.

Tables VI and VII report the results for the tests of the null hypotheses
H0 : a(γ)= 0 and H0 : a(γ)= b(γ)′ν, respectively. The test statistics are based
on Q̂a and Q̂e as defined in Proposition 6. DGP 1 satisfies the null hypothe-
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TABLE V

TEST OF ν = 0, BALANCED CASE

DGP 1 DGP 2

n n

1000 3000 6000 9000 1000 3000 6000 9000

T = 150
Rejection rate 0�0680 0�0710 0�0650 0�0630 1�0000 1�0000 1�0000 1�0000

T = 500
Rejection rate 0�0630 0�0660 0�0630 0�0610 1�0000 1�0000 1�0000 1�0000

sis for both tests. For T = 150, we observe an oversize, that is increasing w.r.t.
cross-sectional size n. The time series dimension T = 150 is likely too small
compared to cross-sectional size n = 1000 and this combination does not re-
flect the condition n = o(T 2) for the validity of the asymptotic Gaussian ap-
proximation of the statistics. For T = 500 instead, the rejection rates of the
tests are quite close to the nominal size. DGP 2 satisfies the null hypothesis of
the test based on Q̂e, but corresponds to an alternative hypothesis for the test
based on Q̂a. The former statistic features a similar behavior as under DGP 1,
while the power of the latter statistic is increasing w.r.t. n. Finally, the power
of both statistics under the “nonrisk-based” and “risk-based” alternatives in
DGP 3 and DGP 4 is very large, with rejection rates close to 100% for all con-
sidered combinations of sample sizes n and T .

G.1.2. Unbalanced Panel

Let us repeat similar exercises as in the previous section, but with unbal-
anced characteristics for the simulated data sets. We introduce these charac-
teristics through a matrix of observability indicators Is ∈R

n×T . The matrix gath-
ers the indicator vectors for the n randomly chosen assets. We fix the maximal
sample size T = 546 as in the empirical application. In the unbalanced setting,
the excess returns Rsi�t of asset i at time t are

Rsi�t = asi+bsift+εsi�t� if Isi�t = 1� for i= 1� � � � � n� and t = 1� � � � �T�(67)

where Isi�t is the observability indicator of asset i at time t in simulation s.
In Tables VIII and IX, we provide the operative cross-sectional and time se-

ries sample sizes in the Monte Carlo repetitions for trimming χ1�T = 15 and
four different levels of trimming χ2�T . More precisely, in Table VIII we report
the average number n̄χ of retained assets across simulations, as well as the
minimum min(nχ) and the maximum max(nχ) across simulations (rounded).
For the lowest level of trimming χ2�T = T/12, all assets are kept in all simula-
tions, while for the level of trimming χ2�T = T/60 on average we keep about
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TABLE VI

TEST OF THE NULL HYPOTHESIS H0 : a(γ)= 0, BALANCED CASE

DGP 1 DGP 2 DGP 3 DGP 4

n n n n

500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500

T = 150
Size/power 0.1180 0.1400 0.1500 0.3850 0.5720 0.7170 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 500
Size/power 0.0730 0.0610 0.0740 0.9240 0.9920 0.9970 0.9990 1.0000 1.0000 0.9990 1.0000 1.0000
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TABLE VII

TEST OF THE NULL HYPOTHESIS H0 : a(γ)= b(γ)ν, BALANCED CASE

DGP 1 DGP 2 DGP 3 DGP 4

n n n n

500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500

T = 150
Size/power 0.1110 0.1340 0.1460 0.1070 0.1360 0.1420 0.9970 1.0000 1.0000 1.0000 1.0000 1.0000

T = 500
Size/power 0.0710 0.0570 0.0730 0.0730 0.0690 0.0750 0.9990 1.0000 1.0000 0.9990 1.0000 1.0000
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TABLE VIII

OPERATIVE CROSS-SECTIONAL SAMPLE SIZE

Trimming Level

χ2�T = T/12 χ2�T = T/60

n 1000 3000 6000 9000 1000 3000 6000 9000
n̄χ 1000 3000 6000 9000 660 2000 4000 6000
min(nχ) 1000 3000 6000 9000 600 1900 3900 5900
max(nχ) 1000 3000 6000 9000 700 2100 4100 6100

Trimming Level

χ2�T = T/120 χ2�T = T/240

n 1000 3000 6000 9000 1000 3000 6000 9000
n̄χ 400 1250 2400 3600 140 430 850 1250
min(nχ) 350 1100 2300 3500 100 370 800 1200
max(nχ) 440 1300 2500 3650 170 470 900 1300

two thirds of the assets. In Table IX, we report the average across assets of
the T̄i, that are the average time series size Ti for asset i across simulations, as
well as the min and the max of the T̄i. Since the distribution of Ti for an asset
i is right-skewed, we also report the average across assets of the median Ti.
For trimming level χ2�T = T/60, the average mean time series size is about 180
months, while the average median time series size is 140 months.

In Table X, we display the results for estimators ν̂ and ν̂B. The bias adjust-
ment reduces substantially the bias for estimation of parameter ν. For trim-
ming level χ2�T = T/60, the coverage of the confidence interval is close to the
nominal size 95% for all considered cross-sectional sizes, while for χ2�T = T/12
the coverage deteriorates with increasing cross-sectional size. In comparison
with Table IV, the bias and variance of estimator ν̂B are larger than the ones
obtained in the balanced case with time series size T = 500. However, for trim-
ming level χ2�T = T/60, the results are similar to the ones with T = 150 in Ta-
ble IV. In fact, this time series size of the balanced panel reflects the operative

TABLE IX

OPERATIVE TIME SERIES SAMPLE SIZE

Trimming Level

χ2�T = T/12 χ2�T = T/60 χ2�T = T/120 χ2�T = T/240

mean(T̄i) 130 180 240 360
min(T̄i) 110 160 210 350
max(T̄i) 140 190 260 380
mean(median(Ti)) 90 140 197 330
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TABLE X

ESTIMATION OF ν, UNBALANCED CASE

DGP 1 DGP 2

n n

1000 3000 6000 9000 1000 3000 6000 9000

Trimming level: χ2�T = T/12
Bias(ν̂) −0�3059 −0�3119 −0�3047 −0�3021 −0�4211 −0�4324 −0�4202 −0�4201
Bias(ν̂B) −0�0893 −0�0954 −0�0880 −0�0854 −0�1127 −0�1233 −0�1113 −0�1113
Var(ν̂B) 0�1207 0�0409 0�0214 0�0124 0�1222 0�0405 0�0218 0�0124
RMSE(ν̂B) 0�3586 0�2235 0�1706 0�1402 0�3671 0�2360 0�1848 0�1574
Coverage 0�9230 0�9010 0�8740 0�8750 0�9180 0�8880 0�8410 0�8320

Trimming level: χ2�T = T/60
Bias(ν̂) −0�1703 −0�1738 −0�1675 −0�1596 −0�2454 −0�2478 −0�0411 −0�2329
Bias(ν̂B) −0�0349 −0�0381 −0�0318 −0�0238 −0�0453 −0�0474 −0�0411 −0�0325
Var(ν̂B) 0�1294 0�0436 0�0231 0�0141 0�1281 0�0438 0�0232 0�0144
RMSE(ν̂B) 0�3613 0�2122 0�1551 0�1212 0�3606 0�2145 0�1578 0�1241
Coverage 0�9360 0�9310 0�9240 0�9350 0�9430 0�9310 0�9200 0�9300

sample sizes for that trimming level observed in Table IX. Similar comments
apply for Table XI, where we report the results for the test of the hypothe-
sis ν = 0. For trimming level χ2�T = T/60, the size of the test is close to the
nominal level 5% under DGP 1, and the power is 100% under DGP 2.

In Tables XII and XIII, we display the results for the tests based on Q̂a

and Q̂e, respectively. For trimming level χ2�T = T/120, we observe an over-
size, that increases with the cross-sectional dimension. We get a similar be-
havior with more severe oversize with lower trimming levels (not reported).
We expect these findings from the results in the previous section. Indeed, for
trimming level χ2�T = T/120, the operative time series sample size in Table IX
is around 200 months, and in Tables VI and VII, for a balanced panel with

TABLE XI

TEST OF ν = 0, UNBALANCED CASE

DGP 1 DGP 2

n n

1000 3000 6000 9000 1000 3000 6000 9000

Trimming level: χ2�T = T/12
Rejection rate 0.0770 0.0990 0.1260 0.1250 1.0000 1.0000 1.0000 1.0000

Trimming level: χ2�T = T/60
Rejection rate 0.0640 0.0690 0.0760 0.0650 1.0000 1.0000 1.0000 1.0000
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TABLE XII

TEST OF THE NULL HYPOTHESIS H0 : a(γ)= 0, UNBALANCED CASE

DGP 1 DGP 2 DGP 3 DGP 4

n n n n

1000 3000 6000 9000 1000 3000 6000 9000 1000 3000 6000 9000 1000 3000 6000 9000

Trimming level: χ2�T = T/120
Size/power 0.1180 0.1710 0.2420 0.3030 0.6010 0.9410 0.9980 1.000 1.0000 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000

Trimming level: χ2�T = T/240
Size/power 0.0880 0.0860 0.1020 0.1310 0.5320 0.8730 0.9920 1.0000 1.0000 1.0000 1.0000 1.0000 0.9740 1.0000 1.0000 1.0000
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TABLE XIII

TEST OF THE NULL HYPOTHESIS H0 : a(γ)= b(γ)ν, UNBALANCED CASE

DGP 1 DGP 2 DGP 3 DGP 4

n n n n

1000 3000 6000 9000 1000 3000 6000 9000 1000 3000 6000 9000 1000 3000 6000 9000

Trimming level: χ2�T = T/120
Size/power 0.1130 0.1670 0.2370 0.3010 0.0940 0.2190 0.2590 0.3740 1.0000 1.0000 1.0000 1.0000 0.9990 1.0000 1.0000 1.0000

Trimming level: χ2�T = T/240
Size/power 0.0800 0.0790 0.1000 0.1290 0.0790 0.0870 0.1080 0.1440 0.9990 1.0000 1.0000 1.0000 0.9690 1.0000 1.0000 1.0000
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T = 150, the statistics are oversized. For trimming level χ2�T = T/240 with op-
erative size of about 350 months, the oversize of the statistics is moderate.
Finally, the power of the statistics is very large also in the unbalanced case, and
close to 100%.

G.2. The CLT in Assumption A.2(a)

In this section, we provide simulation exercises to assess the empirical va-
lidity of the CLT in Assumption A.2(a). We simulate S data sets of error
terms εi�t from a time-invariant one-factor model (CAPM). At each simulation
s = 1� � � � � S, we randomly draw n≤ 9904 assets from the sample of our empiri-
cal analysis, and we build a block-diagonal matrix Ωs as described in the previ-
ous section. For each s, the n× 1 error vectors εst are independent across time
and Gaussian with mean zero and variance–covariance matrix Ωs. We perform
the exercise for the unbalanced case. We fix the maximal sample size T = 546
as in the empirical application. In the time-invariant one-factor framework,
the statistic in Assumption A.2(a) reduces to 1√

n

∑
i wiτiQ

−1
x�iYi�T bi with asymp-

totic variance Sv3 = limn→∞E[ 1
n

∑
i�j wiwj

τiτj

τij
SQ�ijbibj]. At each simulation, we

compute the 2 × 1 vector Ψs = (Ssv3
)−1/2 1√

n

∑
i w

s
i τ
s
i (Q

s
x�i)

−1Ys
i�T b

s
i with Ys

i�T =
1√
T

∑
t I

s
i�txtε

s
i�t and Ssv3

= 1
n

∑
i�j w

s
iw

s
j

τsi τ
s
j

τsij
SsQ�ijb

s
ib
s
j , where scalars ws

i � τ
s
i � τ

s
ij� b

s
i ,

matricesQs
x�i� S

s
Q�ij , and indicator processes (Isi�t) for draw s are those estimated

for assets i and j in the empirical analysis.
Figures 3 and 4 compare the univariate distributions of the two components

of simulated vectors Ψs = [Ψs
1 �Ψ

s
2 ]′ ∈ R

2, s = 1� � � � �1000, with the standard
normal distribution through Q–Q plots. The cross-sectional size is n= 1000 in
Figure 3, and n= 3000 in Figure 4. Figures 3 and 4 show that the finite sample
distributions are well approximated by the asymptotic Gaussian distributions
already for n= 1000. This finding suggests that the possible heavy tails in the
cross-sectional distribution of asset characteristics should not affect the validity
of our CLT assumptions.

APPENDIX H: MISSPECIFICATION ANALYSIS

In this appendix, we first present theoretical results on the role of misspeci-
fication and aggregation (Section H.1) and we derive the pseudo-true value of
the risk premia parameter when we estimate a potentially misspecified time-
invariant model using either individual assets (Section H.2) or portfolios (Sec-
tion H.3). Then, we estimate these pseudo-true values using our data set (Sec-
tion H.4).

H.1. The Role of Misspecification and Aggregation

A potential explanation of the differences between the results on individ-
ual stocks and portfolios, as well as between sets of portfolios, is the uneven
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FIGURE 3.—Q–Q plots of the simulated components of Ψ for n= 1000. The figure compares
the finite sample distributions of the two components of vectorΨ (right panel and left panel) with
the standard normal distribution. We estimate the finite sample distributions with an unbalanced
panel of n= 1000 individual stocks in the Monte Carlo exercise.

degree of misspecification of a given model across universes of assets. Using
mimicking portfolio returns as observable factors and aggregating assets into
portfolios may induce misspecification in the functional form of the beta dy-
namics. Risk premia estimated by the two-pass methodology from misspecified
models converge to pseudo-true values. Estimation from individual stocks and
portfolios may yield different pseudo-true values. In this section, we present
theoretical and empirical arguments to support the plausibility of these claims
for explaining the findings in Sections 4.2 and 4.3 of the paper.

Suppose that the data generating process (DGP) for the excess returns in
the continuum economy is

Rt(γ)= ct(γ)+ dt(γ)′ht + εt(γ)�(68)

where ht is an r × 1 vector of “structural,” or “economic,” unknown factors
with time-varying loadings dt(γ). The intercepts are ct(γ)= dt(γ)′μt for some
stochastic vector μt because of the no-arbitrage restriction. We have μt = 0 for
tradable factors. In applying the two-pass methodology, we approximate the
unobservable factors by the excess returns of some mimicking portfolios. The
market, Fama–French, and momentum factors are standard examples.

Let us formalize the concept of mimicking portfolio construction. Take
a weighting function w(γ�ω), which is F0-measurable w.r.t. ω ∈ Ω for a.e.



TIME-VARYING RISK PREMIA 49

FIGURE 4.—Q–Q plots of the simulated components of Ψ for n= 3000. The figure compares
the finite sample distributions of the two components of vectorΨ (right panel and left panel) with
the standard normal distribution. We estimate the finite sample distributions with an unbalanced
panel of n= 3000 individual stocks in the Monte Carlo exercise.

γ ∈ [0�1], and Lebesgue measurable w.r.t. γ ∈ [0�1] for a.e. ω ∈Ω, such that∫
w(γ�ω)dγ = 1 for a.e. ω ∈ Ω. Quantities wt(γ�ω) = w[γ�St−1(ω)], for γ

varying, yield the portfolio weights wt(γi)/nwt at time t, where nwt = ∑
i wt(γi)

is the weighted number of the n sampled assets included in the portfolio w at
time t. The excess return of the portfolio w is Rwt = 1

nwt

∑
i wt(γi)Rt(γi). From

Equation (68), we have

Rwt = (
dwt

)′
(ht +μt)+ εwt �(69)

with factor sensitivities dwt = 1
nwt

∑
i wt(γi)dt(γi) and an error term εwt =

1
nwt

∑
i wt(γi)εt(γi). We have that εwt is close to zero for large n if the error

terms of the individual assets feature weak cross-sectional dependence and the
portfolio is sufficiently diversified. Thus, the k× 1 vector ft of excess returns
from k diversified portfolios is close to Dt(ht + μt), for some k× r matrix Dt

which is measurable w.r.t. the information Ft−1. To focus this section on spec-
ification analysis (see the online additional empirical results for discussion on
missing factor impact), we assume k = r, namely, that the number of observ-
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able factors corresponds to the number of unknown factors, and we neglect
approximation errors. Then, we have

ht +μt =D−1
t ft(70)

for nonredundant observable factors. Replacing Equation (70) into model (68)
shows that the asset returns satisfy model (1) with factors ft and sensitivities
bt(γ)= (D−1

t )
′dt(γ). By construction, we get νt = 0 because the factors ft are

returns of tradable portfolios. Thus, model (1) is correctly specified as long as
we set the correct number of factors, even if the observable factors ft do not
correspond to the unknown factors ht . Indeed, the vector ft dynamically spans
the true factor space. However, a constrained parametric model for the eco-
nomic factor sensitivities, instead of a generic unconstrained dt(γ), does not
necessarily transmit to the observable factor sensitivities. For instance, if the
economic factor sensitivities are linear functions of some instruments, the ob-
servable factor sensitivities are not necessarily linear functions of these instru-
ments. Choosing mimicking portfolio returns as observable factors jointly with
a constrained parameterization can lead to a first source of misspecification.

A second potential source of misspecification comes from the aggregation of
assets into portfolios. Let wj for j = 1� � � � �m be a set of portfolios. We use the
index j and the cardinality m for portfolios in order to distinguish them from
the corresponding i and n for the fundamental assets. Under model (1) for the
individual assets, the asset pricing restrictions yield the portfolio returns

R
j
t = ajt +

(
b
j
t

)′
ft + εjt �(71)

with factor sensitivities

b
j
t = 1

n
j
t

∑
i

w
j
t (γi)bt(γi)�(72)

intercepts ajt = (b
j
t )

′νt , and error terms εjt = 1
n
j
t

∑
i w

j
t (γi)εt(γi). Model (71)

is a factor model with the same factors as the original model for the indi-
vidual assets, and time-varying alphas and betas. Hence, as observed in Sec-
tion 2.2 for repackaging, we have robustness w.r.t. portfolio aggregation. How-
ever, if we choose a constrained parametric specification for the coefficients
of a time-varying model, that parametric choice does not transmit easily under
portfolio aggregation. First, the dynamics of the portfolio betas result from a
combination of the dynamics of the individual stock betas and of the portfo-
lio weights. Second, even with time-invariant portfolio weights, the aggrega-
tion of the asset-specific instruments is complex, and results in models with
portfolio-specific instruments which involve unknown model parameters. For
instance, let us consider the linear beta specification bi�t = BiZt−1 + CiZi�t−1

with a scalar stock-specific instrument estimated in our empirical analysis, and
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equally weighted portfolios, that is�wj
t = 1/|Aj| for γ ∈Aj , and 0 otherwise, for

all j and t, where Aj ⊂ [0�1] is a measurable set with nonzero measure |Aj|.
Then, from (72), the portfolio betas are bjt = BjZt−1 +CjZ

j
t−1, where the port-

folio coefficients Bj = 1
nj

∑
i:γi∈Aj Bi and Cj = 1

nj

∑
i:γi∈Aj Ci are averages of the

individual coefficients� nj is the number of indices i with γi ∈ Aj , and the
portfolio-specific instrument Zj

t−1 = ∑
i:γi∈Aj CiZi�t−1/

∑
i:γi∈Aj Ci is a weighted

average of the asset-specific instruments, with weights involving the unknown
coefficients Ci. If we use an ad hoc aggregation scheme to define the portfolio-
specific instruments, the resulting model is, in general, misspecified. If we try
to replace the unknown Ci with estimates to get a proxy for the Zj

t−1, we need
first to estimate the model for the individual assets and face an EIV problem.
For the FF portfolios, misspecification of the beta dynamics may result from
the time-varying portfolio weights and the ad hoc aggregation scheme used to
construct the portfolio-specific instrument, namely, the book-to-market equity
of the portfolio as in Section 4.3 of the paper.

Under misspecification, the two-pass methodology may yield different
pseudo-true values for the risk premia depending on the selected universe
of assets. Let us assume that the DGP for the individual stock returns is
given by model (1)–(3), with possibly time-varying betas and risk premia,
but the researcher estimates a time-invariant model. For expository purposes,
we focus on the OLS estimator in the second pass. We show in Section H.2
that the pseudo-true value of parameter ν using individual stock returns is
ν∗ = (

∫
b∗(γ)b∗(γ)′ dG(γ))−1

∫
b∗(γ)a∗(γ)dG(γ), where the pseudo-true val-

ues of sensitivities and intercepts are

b∗(γ)= [
IK + V [ft]−1 Cov(ft� νt)

]
E

[
bt(γ)

]
+E[

ξt
(
bt(γ)−E[

bt(γ)
])]
�

a∗(γ)=E[
νt − Cov(νt� ft)V [ft]−1ft

]′
E

[
bt(γ)

]
−E[

η′
t

(
bt(γ)−E[

bt(γ)
])]
�

and the matrix and vector processes ξt and ηt are defined by ξt = V [ft]−1(ft −
E[ft])(νt + ft)′ and ηt = (E[ft]′V [ft]−1(ft −E[ft])− 1)(νt + ft). Expectations,
variances, and covariances are w.r.t. the DGP. The pseudo-true value ν∗ is
equal to the unconditional expectation E[νt] if the individual betas are un-
correlated with the conditional expectations of ft and νt given Ft−1, and pro-
cess νt is uncorrelated with ft . Then the pseudo-true risk premia vector is
λ∗ = ν∗ + E[ft] = E[λt]. Here, even if the model is misspecified, there is no
effect on the time-averaged risk premia. However, in general, time-variation
distorts risk premia estimates. Even if the factors ft are tradable, that is� νt = 0,
we may have ν∗ �= 0. The factors may appear as nontradable because of a mis-
specified time-invariant model as is likely in Section 4.2.
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If we estimate the time-invariant model using the returns on m port-
folios wj , with j = 1� � � � �m, the pseudo-true value of ν becomes ν∗∗ =
(
∑

j b
∗
j b

∗′
j )

−1
∑

j b
∗
j a

∗
j , where (see Section H.3)

b∗
j =

∫
E

[
w
j
t (γ)

]
b∗(γ)dG(γ)+

∫
Cov

(
ξtbt(γ)�w

j
t (γ)

)
dG(γ)�

a∗
j =

∫
E

[
w
j
t (γ)

]
a∗(γ)dG(γ)−

∫
Cov

(
η′
tbt(γ)�w

j
t (γ)

)
dG(γ)�

The pseudo-true portfolio loadings b∗
j are the sum of two components. The

first one is an aggregate of the pseudo-true individual loadings b∗(γ) weighted
by the time-averaged portfolio weights E[wj

t (γ)]. The second component is in-
duced by the time-variation of the portfolio weights and its interaction with ft ,
νt , and factor sensitivities. A similar comment applies to the pseudo-true port-
folio intercepts a∗

j . If the portfolio weights are time-invariant, building portfo-
lios corresponds to aggregating the individual pseudo-true alphas and betas.
The portfolio aggregation effect is more complex if portfolio weights are time-
varying. In general, the pseudo-true value ν∗∗ depends on the number m of
chosen portfolios and the weights wj

t (γ) they are built on, and we expect the
pseudo-true values ν∗∗ and ν∗ not to be equal, as the different estimated ν̂ in
Table I, Panel B, may indicate. Besides, even if we observe that the portfo-
lio betas are more stable over time, this does not imply that ν∗∗ will be closer
to zero than ν∗, when νt = 0. We give a simple estimation exercise (see Sec-
tion H.4) to check whether the numerical values for these pseudo-true values
and their differences are compatible with the order of magnitude observed in
Table I, Panel B, including values close to zero in some cases. For the value
factor, time-variation in the portfolio weights can explain the large discrep-
ancy between the pseudo-true values computed on the 25 FF portfolios and
the individual stocks.

The above discussion concentrates on the impact of misspecification when
the econometrician estimates a time-invariant model. Similar computations
and remarks apply for estimation of misspecified time-varying models.

H.2. Pseudo-True Value Using Individual Assets

The pseudo-true values of the regression coefficients are β∗(γ) =
(a∗(γ)�b(γ)∗′)′ = Q−1

x E[xtRt(γ)], for all γ ∈ [0�1], where the expectation is
w.r.t. the DGP. Let β∗

i = β∗(γi). If the OLS estimator is used in the second
pass, and matrix E[b∗

i b
∗′
i ] is positive definite, the pseudo-true value of param-

eter ν is ν∗
1 = E[b∗

i b
∗′
i ]−1E[b∗

i a
∗
i ]. The pseudo-true weights are w∗

i = (v∗
i )

−1 with
v∗
i = τic′

ν∗1
Q−1
x S

∗
iiQ

−1
x cν∗1 , where S∗

ii =E[(ε∗
i�t)

2xtxt |γi] and ε∗
i�t =Ri�t − x′

tβ
∗
i . If the
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WLS estimator is used in the second pass, and matrix E[w∗
i b

∗
i b

∗′
i ] is positive

definite, the pseudo-true value of parameter ν is

ν∗ =E[
w∗
i b

∗
i b

∗′
i

]−1
E

[
w∗
i b

∗
i a

∗
i

]
�(73)

Then, the pseudo-true value of the risk premia vector is λ∗ = ν∗ +E[ft].
Let ν̂ be the estimator defined in Equation (14) of the paper, using the first-

pass estimators β̂i and the weights ŵi for the second pass. The next lemma
states that the estimators converge to the corresponding pseudo-true values
and is proved at the end of this subsection.

LEMMA 17: Suppose Assumptions A.1(b), SC.1–SC.2, B.1, B.4, B.5 hold.
Moreover, let supγ∈[0�1]P[‖ 1

T

∑
t It(γ)xtε

∗
t (γ)‖ ≥ δ] satisfy the large deviation

bound in Assumption B.1, for any δ > 0 and T ∈ N, where ε∗
t (γ) = Rt(γ) −

x′
tβ

∗(γ) is the pseudo-true error. Then, as n�T → ∞ such that n = O(T γ̄) for
γ̄ > 0, we have: (i) supi 1

χ
i ‖β̂i − β∗

i ‖ = op(1); (ii) 1
n

∑
i ‖ŵi − w∗

i ‖ = op(1);
(iii) ν̂ = ν∗ + op(1).

Let us now derive more explicit expressions for the components a∗(γ) and
b∗(γ) of the pseudo-true coefficients vector. We have

b∗(γ)= V [ft]−1 Cov
(
ft�Rt(γ)

)
� a∗(γ)=E[

Rt(γ)
] −E[ft]′b∗(γ)�(74)

for all γ ∈ [0�1]. From Rt(γ)= (ft + νt)′bt(γ)+ εt(γ), we have:

E
[
Rt(γ)

] = E
[
(ft + νt)′bt(γ)

]
= E[νt]′E

[
bt(γ)

] +E[ft]′E
[
bt(γ)

]
+E[

(ft + νt)′
(
bt(γ)−E[

bt(γ)
])]
�

and

Cov
(
ft�Rt(γ)

) = Cov
(
ft� (ft + νt)′bt(γ)

)
= (
V [ft] + Cov(ft� νt)

)
E

[
bt(γ)

]
+ Cov

(
ft� (ft + νt)′

(
bt(γ)−E[

bt(γ)
]))

= (
V [ft] + Cov(ft� νt)

)
E

[
bt(γ)

]
+E[(

ft −E[ft]
)
(ft + νt)′

(
bt(γ)−E[

bt(γ)
])]
�

Then, by replacing into (74) and rearranging terms, we get

b∗(γ)= [
IK + V [ft]−1 Cov(ft� νt)

]
E

[
bt(γ)

]
(75)

+E[
ξt

(
bt(γ)−E[

bt(γ)
])]
�
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a∗(γ)=E[
νt − Cov(νt� ft)V [ft]−1ft

]′
E

[
bt(γ)

]
(76)

−E[
η′
t

(
bt(γ)−E[

bt(γ)
])]
�

for all γ ∈ [0�1], where ξt = V [ft]−1(ft − E[ft])(νt + ft)
′ and ηt = (E[ft]′ ×

V [ft]−1(ft −E[ft])− 1)(νt + ft).

PROOF OF LEMMA 17: We have β̂i − β∗
i = τi�T Q̂

−1
x�i

1
T

∑
t Ii�txtε

∗
i�t . Then part

(i) follows by similar arguments as in the proof of Lemma 3(i) for a well-
specified time-invariant model. The proof of part (ii) is similar to the proof
of Lemma 3(iii) and is omitted. Finally, using parts (i)–(ii) of this lemma, As-
sumption SC.2, and the LLN, we have

1
n

∑
i

ŵib̂ib̂
′
i =

1
n

∑
i

w∗
i b

∗
i b

∗′
i + op(1)=E[

w∗
i b

∗
i b

∗′
i

] + op(1)�

and

1
n

∑
i

ŵib̂iâi = 1
n

∑
i

w∗
i b

∗
i a

∗
i + op(1)=E[

w∗
i b

∗
i a

∗
i

] + op(1)�

Since matrix E[w∗
i b

∗
i b

∗′
i ] is invertible, part (iii) follows. Q.E.D.

H.3. Pseudo-True Value Using Portfolios

Let us now assume that we estimate the time-invariant model on a set of m
portfolios wj , with j = 1� � � � �m. If the portfolios are well diversified, and the
number of underlying assets n tends to infinity, the idiosyncratic error terms
ε
j
t vanish in Equation (71). Then, the portfolio returns are Rjt = (b

j
t )

′(ft + νt),
where the portfolio sensitivities are

b
j
t =

∫
w
j
t (γ)bt(γ)dG(γ)�(77)

Then, the pseudo-true values of the regression coefficients are obtained along
the lines of Section H.2 replacing Rt(γ) with Rjt , and bt(γ) with bjt . We get
β∗j = (a∗j� (b∗j)′)′, where

b∗j = [
IK + V [ft]−1 Cov(ft� νt)

]
E

[
b
j
t

] +E[
ξt

(
b
j
t −E

[
b
j
t

])]
�(78)

a∗j =E[
νt − Cov(νt� ft)V [ft]−1ft

]′
E

[
b
j
t

] −E[
η′
t

(
b
j
t −E

[
b
j
t

])]
�(79)

for all j = 1� � � � �m. Then, when the OLS estimator is used in the second
pass, the pseudo-true value of parameter ν is ν∗

1 = (
∑

j b
∗j(b∗j)′)−1

∑
j b

∗ja∗j .
When the WLS estimator is used, the pseudo-true value of parameter ν is ν∗ =
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(
∑

j(v
∗j)−1b∗j(b∗j)′)−1

∑
j(v

∗j)−1b∗ja∗j , where the reciprocal of the pseudo-true
weights are v∗j = c′

ν∗1
Q−1
x S

∗jQ−1
x cν∗1 , with S∗j =E[(ε∗j

t )
2xtxt] and ε∗j

t =Rjt −x′
tβ

∗j .
Let us now derive the expressions of the pseudo-true regression coefficients

given in Section H.1. From (77), we have

E
[
b
j
t

] =
∫
E

[
w
j
t (γ)

]
E

[
bt(γ)

]
dG(γ)+

∫
Cov

(
bt(γ)�w

j
t (γ)

)
dG(γ)�

b
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t −E

[
b
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∫
E

[
w
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](
bt(γ)−E[

bt(γ)
])
dG(γ)

+
∫ (
w
j
t (γ)−E[

w
j
t (γ)

])
bt(γ)dG(γ)

−
∫

Cov
(
bt(γ)�w

j
t (γ)

)
dG(γ)�

By replacing into (78), we get

b∗j =
∫
E

[
w
j
t (γ)

]
b∗(γ)dG(γ)

+ [
IK + V [ft]−1 Cov(ft� νt)−E[ξt]

]
×

∫
Cov

(
bt(γ)�w

j
t (γ)

)
dG(γ)

+
∫

Cov
(
ξtbt(γ)�w

j
t (γ)

)
dG(γ)�

Since E[ξt] = IK + V [ft]−1 Cov(ft� νt), the second term in the RHS vanishes,
and we get the expression of b∗j given in Section H.1. The proof of the expres-
sion of a∗j is similar, by using E[ηt] = −E[νt − Cov(νt� ft)V [ft]−1ft].

H.4. Empirical Pseudo-True Values

In Table XIV, we report the estimates of the pseudo-true values of pa-
rameter vector ν in a time-invariant four-factor model obtained with the in-
dividual stocks, the 25 FF portfolios, and the 44 Indu. portfolios. We get
the estimates by replacing the expectations in Equations (73), (75)–(76), and
(78)–(79) with sample averages. To assess the contributions of misspecifi-
cations along different directions, we consider several alternative assump-
tions on the DGP for process νt and factor sensitivities bt(γ) of the indi-
vidual stocks. Specifically, we assume that the vector νt is either (i) time-
invariant and equal to zero, or (ii) time-invariant and equal to the time-average
ν̄ = [1�3772�−0�2122�−6�1630�−2�5507]′ of the estimates ν̂t obtained with the
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TABLE XIV

ESTIMATED PSEUDO-TRUE VALUES OF PARAMETER ν FOR THE FOUR-FACTOR MODELa

n= 25 n= 44

n= 9936 CW TVW CW TVW

νt = 0, bi�t constant νm∗ 0�0000 0�0000 −0�3427 0�0000 −0�0801
νsmb∗ 0�0000 0�0000 0�6167 0�0000 0�1843
νhml∗ 0�0000 0�0000 1�1304 0�0000 −0�4866
νmom∗ 0�0000 0�0000 0�8850 0�0000 −2�3739

νt = 0, bi�t time-varying νm∗ −0�0251 1�5815 −0�0349 0�5738 −0�3040
νsmb∗ 0�6486 0�7998 0�8877 0�6075 1�2729
νhml∗ −1�1835 −4�9452 0�6012 −0�6365 −0�8209
νmom∗ −4�5639 −1�0871 −1�4821 −3�3692 −5�5221

νt = ν̄, bi�t constant νm∗ 1�3772 1�3772 0�4453 1�3772 1�0312
νsmb∗ −0�2122 −0�2122 0�4779 −0�2122 0�0657
νhml∗ −6�1636 −6�1636 −3�0085 −6�1636 −5�8395
νmom∗ −2�5507 −2�5507 −0�7216 −2�5507 −4�5657

νt = ν̄, bi�t time-varying νm∗ 1�3406 2�6374 0�6123 1�6079 0�9199
νsmb∗ 0�1490 0�1940 0�7492 0�1824 0�8432
νhml∗ −6�5468 −9�8461 −3�4016 −6�1935 −6�4573
νmom∗ −6�6899 −3�5831 −2�6132 −5�4675 −8�0675

νt = ν̂t , bi�t constant νm∗ 1�3788 1�3788 0�8521 1�3788 1�0816
νsmb∗ −0�2158 −0�2158 0�4970 −0�2158 0�1172
νhml∗ −6�1291 −6�1291 −3�9565 −6�1291 −5�9395
νmom∗ −2�4741 −2�4741 −0�9824 −2�4741 −4�2506

νt = ν̂t , bi�t time-varying νm∗ 1�0201 1�5269 −0�0080 1�4433 0�6526
νsmb∗ 0�1678 0�1870 0�8511 −0�3721 0�6996
νhml∗ −6�0848 −8�1776 −2�6871 −6�6668 −6�5043
νmom∗ −4�8815 −3�9304 −1�6555 −6�0449 −7�4999

aThe table contains the annualized estimates of the pseudo-true values of parameter ν for the market (ν∗m), size
(ν∗smb), book-to-market (ν∗hml), and momentum (ν∗mom) factors. We report the estimates ν∗ for individual stocks (n=
9936, nχ = 3900), the 25 FF, and 44 Indu. portfolios as base assets for several DGPs. For portfolios, we report both
the estimates with time-varying portfolio weights (TVW) and the estimates obtained assuming time-constant weights
(CW).

time-varying model applied on individual stocks in Section 4.3, or (iii) time-
varying and equal to the estimates ν̂t . Furthermore, we assume that the betas of
the nχ = 3900 individual stocks after trimming are either (a) time-invariant and
equal to the time averages of the estimates b̂i�t obtained with the time-varying
model in Section 4.3, or (b) time-varying and equal to the estimates b̂i�t . The
combination of (i)–(iii) and (a)–(b) yields six alternative (empirical) DGPs.
We compute the portfolio betas by aggregating the betas of the 3900 individual
stocks using weights ŵj

i�t . These weights are obtained by following the method-
ology underlying the FF and Indu. portfolios applied to the 3900 assets of our
trimmed sample. To assess the contribution of time-varying portfolio weights,
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we also compute the pseudo-true values using the returns of 25 and 44 portfo-
lios with time-invariant weights equal to the time-averages of the correspond-
ing weights ŵj

i�t . Thus, the pseudo-true values are computed for five different
universes of assets.

For the DGPs with time constant bi�t and νt , the time-invariant model is
correctly specified on individual stocks. This explains why the (pseudo-)true
values of ν with individual stocks, and with time-constant portfolio weights,
coincide in the first and third subpanels. Moreover, Equations (75)–(76) and
(78)–(79) imply that these pseudo-true values of ν coincide also when νt is
time-varying but the individual stock betas are constant, as observed in the fifth
subpanel. Instead, the pseudo-true values with time-varying portfolio weights
differ from the pseudo-true values with individual stocks for all DGPs. The
largest differences across universes of assets are observed for the value and
momentum factors. We get a substantial difference between ν∗

hml = −6�1636 on
the individual stocks and ν∗∗

hml = −3�0085 on the 25 FF portfolios (with time-
varying weights) already for the DGP with constant νt = ν̄ and constant bi�t .
The five pseudo-true values for νhml do not change a lot when we move to
DGPs with time-variation in νt and/or bi�t . Moreover, the estimates of νhml on
the 25 FF portfolios with time-varying weights are asymptotically larger than
the estimates with constant weights. These findings suggest that, for the value
factor, the difference between the results with the individual stocks and the
FF portfolios is due mainly to time-variation in the portfolio weights. For the
momentum factor, the largest discrepancies between individual stocks and FF
portfolios are observed for the DGPs with time-varying betas and weights. The
pseudo-true values for the 44 Indu. portfolios are more similar to the pseudo-
true values for individual stocks.
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