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APPENDIX B: ESTIMATION APPENDIX

B.1. Estimation of the Model Primitives

THE PRIMITIVES TO BE ESTIMATED ARE THE COST PARAMETERS αd , βd , αp, and βp; the
distribution of defendants’ types F(·); and the distribution of trial sentences, character-
ized by ν(z) and g(·|Z = z).

For z ∈ {l�h}, I can trivially estimate ν(z) by using the empirical probabilities that
Ψ = 0, conditional on Z = z. To recover the other primitives, I follow the steps outlined
in the proof of Proposition 2, which shows how to recover F(·) and g(·|Z = z), based on
the parameters αd�βd�αp, and βp. Equation (A.1) holds for all t ∈ [̄t� t̄], and thus defines
a system of infinitely many equations. Notice that, besides αd�βd�αp, and βp, the system
contains the parameter μ, which captures the behavior of F(·) for values of θ lower than
θ̃(¯t).

46 Let ω ≡ [αd βd αp βp μ] be the vector of all unknown variables in (A.1). The model
is overidentified, so I estimate ω by maximum likelihood.

Specifically, let Ω ≡ �4
++ × [0�1] be the space of possible values for ω, and consider

ω̈ ∈Ω. From ŝ(·) and (5.10), I numerically obtain θ̈(·; ω̈), the function θ̃(·) consistent
with ω̈. Using (5.11) and (5.12), I then obtain f̈ (·|ω̈), the density function f (·) consistent
with ω̈. Similarly, from (5.13) and the estimated density b̂(·|Ψ = 1�Z = z), I numeri-
cally compute g̈(·|Z = z; ω̈), the density g(·|Z = z) consistent with ω̈. Using f̈ (·|ω̈) and
g̈(·|Z = z; ω̈), I obtain the likelihood that Ψ = 3, given Z, and consistently with ω̈. Such
likelihood is

P̈[Ψ = 3|Z = z; ω̈] =
∫

[ˆ¯t�
ˆ̄t]

∫ θ̈(t;ω̈)

¯θ
(1 − x)f̈ (x|ω̈)g̈(t|Z = z; ω̈)dxdt


From (5.4), I can compute the likelihood that Ψ = 1, given Z, and consistently with ω̈.
This likelihood is given by

P̈[Ψ = 1|Z = z; ω̈] =
∫

[ˆ¯t�
ˆ̄t]

1 − F̈[
θ̈(t; ω̈)|ω̈]

g̈(t|Z = z; ω̈)dt�

where F̈[·|ω̈] is a CDF obtained from f̈ (·|ω̈). From (5.7) and (5.8), the likelihood that
T = t and Ψ = 2, given Z, and consistently with ω̈, is

P̈[Ψ = 2|Z = z; ω̈]g̈(t|Ψ = 2�Z = z; ω̈)=
∫ θ̈(t;ω̈)

¯θ
xf̈ (x|ω̈)dxg̈(t|Z = z; ω̈)


46The system also implicitly contains π ≡ ∫ θ̃(¯t)
¯θ

xf (x)dx. Like μ, the parameter π depends on the behavior
of F(·) outside of the range of the support over which this function is identified. In estimating the model, I set
π = 0. My empirical results suggest that μ is very close to 1. Since π ≤ 1 −μ, setting π = 0 is unlikely to make
any practical difference in the estimation.
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I am ready to define an observation’s likelihood contribution. I consider the likelihood,
conditional on Ψ �= 0.47 Let Wi be the data corresponding to observation i.48 Given ω̈, the
likelihood contribution of an observation i, conditional on Ψi �= 0, is

l(ω̈�Wi)= P̈[Ψ = 1|Z = z; ω̈]1{Ψi=1}

× {
P̈[Ψ = 2|Z = z; ω̈]g̈(ti|Ψ = 2�Z = z; ω̈)}1{Ψi=2}

× P̈[Ψ = 3|Z = z; ω̈]1{Ψi=3}


(B.1)

I obtain an estimate ω̂ forω by performing a numerical search to find the parameters that
maximize the sum of the logarithms of l(ω̈�Wi) over all observations for which ψ �= 0.49

Finally, estimates for g(·|Z = z) and f (·) are defined by g̈(·|Z = z; ω̂) and f̈ (·|Z = z; ω̂),
respectively.

B.2. Observed Heterogeneity

I divide the observations in the data into a finite number of covariate groups and imple-
ment the estimator described in Section 5 separately for each one of them. The first step
of the estimator consists of computing two types of conditional densities: that of trial sen-
tences, conditional on a conviction at trial, and that of settlement offers, conditional on a
plea bargain. These conditional densities must be estimated for cases under the respon-
sibility of both lenient and harsh judges. Therefore, for each one of the covariate groups
under consideration in my analysis, I must estimate four conditional densities. I use the
smoothing method by Li and Racine (2007), which I briefly describe below. Notice that
the notation employed in this part of the Supplemental Material differs from that of the
rest of the paper.

Let Y be a univariate continuous random variable andX an r-dimensional discrete ran-
dom variable. Denote by f (·), g(·), and μ(·) the joint density of (X�Y) and the marginal
densities of Y and X , respectively. For each dimension s of X , let cs be the number of
values in the support of Xs and λs be a real number between zero and (cs − 1)/cs. Define
the vector λ= (λ1� 
 
 
 � λr) and consider the following estimators of f (·) and μ(·):

f̂ (x� y)= n−1
n∑
i=1

L(x�Xi�λ)kh0(y −Yi) and

μ̂(x)= n−1
n∑
i=1

L(x�Xiλ)�

where n is the sample size, kh0(·) is a kernel function with bandwidth h0, and

L(x�Xiλ)=
r∏
s=1

[
λs/(cs − 1)

]1(Xis �=xs)(1 − λs)1(Xis=xs)


47Notice that the empirical probability that Ψ = 0 is useful only for identifying ν(z).
48That is, if Ψi ∈ {1�3}, Wi consists of zi and ψi , the realizations of Zi and Ψi . If Ψi = 2, Wi also includes

ti , the realization of Ti. Notice that I do not take into account the realization si of Si , which is observed when
Ψi = 1. That is because the likelihood of S = s, given Ψ = 1 and Z = z, is simply b̂(z|Ψ = 1�Z = z), which
does not depend on ω̈.

49I constrain α̈d and β̈d to satisfy the conditions in footnote 32.
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Finally, define the estimator of the conditional density g(y|x) as

ĝ(y|x)= f̂ (x� y)/μ̂(x)

Notice that ĝ(y|x) is obtained using all observations in the data—even those in which
X �= x. These observations are weighted down, relative to the ones satisfying X = x. The
weights are given by the vector λ= (λ1� 
 
 
 � λr). In one extreme case, λs is zero for all s,
and ĝ(y|x) is calculated employing only observations such that the realization of X is x.
In the other extreme case, λs = (cs − 1)/cs for all s, and ĝ(y|x) becomes the estimate
of g(·), the unconditional density of Y . The vector λ can be regarded as a collection of
smoothing parameters—one for each dimension of X . Together, λ and h0 determine the
extent to which points away from (y�x) affect ĝ(y|x). As argued by Li and Racine (2007),
positive values of λ increase the finite sample bias of ĝ(y|x) but also reduce its variance,
with an ambiguous effect on the mean squared error.

The greatest challenge in implementing this estimator, therefore, is the choice of the
smoothing parameters λ and h0. In my application, I follow Li and Racine (2007) and se-
lect λ by maximum likelihood cross-validation. For any given sample size and any covari-
ate dimension c, this method aims to select relatively large values of λc if the distribution
of Y is not largely affected by variations in Xc , and small values of λc if the distribution
of Y varies considerably with Xc . Moreover, the selected values of λc tend to decrease as
the sample size increases.

For each covariate group, I estimate four conditional densities. Using the notation of
Li and Racine’s estimator presented above, Y may represent four random variables: trial
sentences assigned by lenient judges, trial sentences assigned by harsh judges, settlement
offers made under lenient judges, and settlement offers made under harsh judges. The
discrete random variable X refers to the covariates used to divide the data into groups.50

This random variable has the following five dimensions: (i) defendant’s gender (male
or female), (ii) defendant’s race (African-American or non-African-American), (iii) the
type of defense counsel (public defender, court-assigned attorney, or privately-held at-
torney), (iv) the length of the defendant’s criminal record (short or long, as defined in
Section 6), and (v) Superior Court division (numbers one to eight). The function kh0(·) is
the Epanechnikov kernel.

Table X contains the smoothing parameters λ obtained by maximum likelihood cross-
validation for each of the four conditional densities of my analysis. Notice that, for every
covariate c, lambda must belong to the interval [0� (cs − 1)/cs], where cs is the covariate’s
support. The upper endpoints of this interval are shown in the last column of the table.
All the selected smoothing parameters are far away from these endpoints, suggesting that
the covariates under consideration are important in explaining the distributions of trial
sentences and settlement offers. In particular, the smoothing parameters associated with
the defendant’s previous criminal record are very close to zero. The parameters associated
with race are also relatively low—ranging from 0.05 to 0.12. The gender parameters are
larger for the densities of trial sentences than for those of settlement offers, which can be
explained by the larger sample sizes used to compute the latter.

As explained in Section 5, the supports of trial sentences and settlement offers are
bounded, which complicates the estimation of the conditional densities described above.

50To be sure, I estimate four conditional densities. The densities of trial sentences are conditional on a
conviction at trial, and those of settlement offers are conditional on a plea bargain. Besides conditioning on
the case outcome, I estimate these densities conditioning on five covariates. In the notation of this supplement,
X refers only to these covariates.
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TABLE X

CONDITIONAL DENSITY ESTIMATORS—COVARIATES’ SMOOTHING PARAMETERSa

Conditional Density Estimator

Trial Sentences Offers

Covariate Lenient Harsh Lenient Harsh Upper Endpoint

Gender 0.39 0.11 0.03 0.03 0.50
Race 0.12 0.05 0.09 0.09 0.50
Counsel 0.23 0.18 0.20 0.25 0.67
Record 0.02 0.03 0.01 0.00 0.50
Division 0.41 0.33 0.44 0.41 0.88

aCovariates’ smoothing parameters selected by maximum likelihood cross-validation. The param-
eters are used for smoothing across covariate groups in the kernel estimation of conditional densities
of trial sentences and settlement offers.

I use a boundary correction proposed by Karunamuni and Zhang (2008). Using the nota-
tion of this Supplemental Material, the approach consists of reflecting a transformation
of the data near the boundary of Y . The reflected data points have the same x as the
corresponding observations in the original data set, but y is modified. The estimator uses
separate bandwidths h0 for points near the boundary and away from it. Differently from
the naive reflection of the untransformed data, this method allows the partial derivative
of g(y|x) with respect to y to be different from zero at the boundary of the support. See
Karunamuni and Zhang (2008) for details.

Table XI reports the bandwidths h0 for points away from the boundary, which are com-
puted using Silverman’s “rule-of-thumb” (Silverman (1986)). The bandwidths for trial
sentences are 21.83 months (lenient judges) and 25.31 months (harsh judges). Those for
settlement offers are 6.59 months (lenient judges) and 7.37 months (harsh judges). The
larger bandwidths for trial sentences reflect the relative scarcity of cases that result in an
incarceration conviction at trial.

B.3. Standard Errors

I use 1200 bootstrap samples for each group to compute standard errors for the param-
eters reported in Table VI. For each such sample, I estimate the densities of trial sentences
and settlement offers using the same bandwidths and smoothing parameters employed in
the main data. There are two main issues with this procedure. First, I do not offer a proof
of the validity of the bootstrap for my estimator. Subsampling methods (Politis, Romano,
and Wolf (1999)) are more robust than the bootstrap, but, to apply these methods, the

TABLE XI

CONDITIONAL DENSITY ESTIMATORS—TRIAL SENTENCES AND
SETTLEMENT OFFERS’ BANDWIDTHSa

Trial Sentences Settlement Offers

Lenient Harsh Lenient Harsh

Bandwidth 21.83 25.31 6.59 7.37

aBandwidths selected by Silverman’s “rule-of-thumb” (Silverman (1986)). Mea-
sured in months.
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convergence rate of the estimator must be known. The second issue is that, for part of the
bootstrap samples, the last step of the estimation procedure—that is, obtaining maximum
likelihood estimates for αd , βd , αp, βp, and μ—becomes computationally too costly. This
is the case whenever the estimated settlement offer function is too convex. I do not imple-
ment the last estimation step for these samples.51 Thus, the standard deviations reported
in Table VI may slightly overstate the actual precision of my estimator.
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2.43 for covariate group one and 1.27 for group two. This procedure eliminates 13.83% and 32.50% of the 1200
bootstrap samples for groups one and two, respectively.
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