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This Supplemental Material includes various extensions of the paper’s main results,
namely, (i) deviations from power laws in the ¢, coefficients, (ii) the presence of multi-
ple sources of noise in the network, (iii) the possibility of non-integrable limiting power
spectra, and (iv) heterogeneity in the agents’ responses. It also includes the description
of a simple and stylized variant of the Loss—Plosser model as well as a “toy” application
based on the “input-output accounts” database compiled by the Bureau of Economic
Analysis.

S1. SOME EXTENSIONS
S1.1. Deviations From Power Laws

THE ASSUMED POWER LAW BEHAVIOR for ¢, in Theorem 1 may seem specific, but other
natural possibilities yield either uninteresting or implausible results. One obvious gener-
alization is ¢, = ef"n~1~* for a, B € R. However, the B < 0 case falls under case (ii) of
Theorem 1 and yields a short-memory process. The case 8 > 0 yields a spectrum that di-
verges at all A such that |7(A)| > e ? and not just at A = 0. In that case, even a perturbation
of a finite duration would be magnified by the network to such an extent that the overall
economy would leave the local equilibrium considered in a finite time and visit another
equilibrium. The process would then presumably repeat itself until a stable equilibrium
(with non-explosive ¢,) is found. In a sense, the economy should plausibly self-organize
to rule out cases where z*(A) diverges for A # 0. In this sense, 8 = 0 is the only nontriv-
ial and plausible case. It is straightforward to extend Theorem 1 to allow for « > 1, thus
covering cointegrated processes (e.g., Avarucci and Velasco (2009)) or “mildly explosive”
processes (e.g., Phillips and Magdalinos (2007)). (The necessary adjustments are outlined
in footnote 11 in the Appendix of the main text, to avoid cluttering the main proof with
lengthy manipulations.)

While the results of Theorem 1 are already robust to deviations from exact power laws
that are absolutely summable, we can also handle deviations of the ¢, coefficients from
a power law that are bigger than absolutely summable. For instance, consider the case
where the ¢, (for n > 1) admit an expansion of the form

=Y An "% ¢, (S1)

i=1

where @ > a; > -+ >a;and ) |c,| < co. One can apply Theorem 1 to each individual
term to yield the conclusion that the resulting power spectrum |2*°(A)|*> would then have
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the behavior

22 =Y O0(IA179) = O(IAI ) as |A] - 0,

i=1

since a; > a; for i =2, ..., 1. Taking 7 finite is without much loss of generality, since even-
tually, for some «;, the power law would become absolutely integrable (if consecutive
exponents «; are at least some finite distance from each other). Expansions of the form
(S1) can be obtained, for instance, if the ¢, coefficients can be written as ¢, = g(n™"),
where g(-) is a function such that (g(«))* admits a Taylor expansion around u = 0 for
some real a, so this extension brings considerable generality.

S1.2. Multiple Sources of Noise

In this section, we consider the effect of multiple sources of noise with an arbitrary co-
variance structure introduced at multiple points of the network. We maintain the Gaus-
sian assumption. It turns out that the general covariance case can always be reduced
to the uncorrelated noise case (across the spatial dimension) by a suitable redefini-
tion of the network. Specifically, consider again our general vector autoregressive setup
X, =Y 2 WX,y +V"?u,, but where the noise now has the general form V"'/?y, for some
general correlation matrix V' and with u, being an N (0, I) noise vector. This model can
equivalently be written via an augmented state vector (X;, X*)" as

X, =W, V7Ps=0}]TX,., 0
=2l TR

s=0

which has the same basic form as Equation (1) with a noise that is spatially uncorrelated.
This construction amounts to building a network with twice the number of nodes contain-
ing the original network (as modeled via ;) and an additional network (modeled via ")
whose role is solely to propagate each component of the uncorrelated noise vector u, to
multiple nodes of the original network.

For uncorrelated noise sources, we can easily compute the ¢, coefficients via Equa-
tion (4) associated with one source node i at the time (setting all but one element of e° to
zero) while considering a given fixed set of destination nodes (via e?). Let |2>°(A)|* denote
the power spectrum obtained when only source node i is active. Since the noise sources
are independent, the overall power spectrum is simply the sum of the individual power
spectra ), |Z°(A) %

S1.3. Non-integrable Power Spectra

One can also establish a convergence result similar to Theorem 2 that covers both inte-
grable (a < 1/2) and non-integrable (@ > 1/2) limiting power spectra |Z*°(A)|?* by focus-
ing on increments of the processes. Working with increments is a standard technique (see
Mandelbrot and Ness (1968) and Comte and Renault (1996), for instance) that offers the
advantage of providing finite-variance quantities even in the presence of nonstationarity
in the process.

THEOREM S1: Let the Assumptions of Theorem 1 hold. Assume that |F(A)| < 1 for A €
10, 7], that |y(A)| is uniformly bounded for A € [0, 7], and consider the differenced process

AZ'=Z7'-Z7},,



NOTE 3

for a given At € Z and any n € N (with corresponding moving average representation Az =
Z" — 2z, and spectrum AZ"(A) = (1 — e*2)z"(X)). Let Z*°(A) = lim,,_, , 2" () with a corre-
sponding moving average representation z>°. Then, there exists a stationary process AZ> with
moving average representation' Az =z — z°, and spectrum Az*(A) = (1 — e™*)2>(A)
satisfying [ IAZ"(A) —AZ® (M) [P dA — 0,37 |Az —Az®)* — 0,and E[|AZ! = AZ>* )] —
0 forany given t € Zand Y- E[|AZ! — AZ>*|*lw, — 0 for a given absolutely summable
weighting sequence w,.

PROOF: The proof is similar to the one of Theorem 2 and we focus here on the differ-
ences. It is clear that the differenced process AZ! admits the moving average representa-
tion:

t

AZ = (21, — 2 s)Gss

§=—00

where the kernel z}' | — z! ,, . is absolutely summable since it is a difference of two abso-

lutely summable terms. Its Fourier transform is thus well-defined and equal to

AZ' (M) =) (21— 21y, )eM =Z"(N) — ™ F"(N) = (1 — ") 2" (M),

t=0
The pointwise limit of Az"(A) also poses no problem (as in Theorem 2):

Az*®(A) = lim (1 — e™)2" (1) = (1 — ™) 2™(V),

with the additional advantage that Az"(0) = 0 and therefore Az*(0) =0 (so the A =0
point is no longer exceptional). B
Now observe that, for some sufficiently small A > 0,

/7|AE°°()\)|2d)\:/ _|(1—e’“’)éw()\)|2d/\+[ﬁ|(1—e”“)é“"()t)fdx\
0 A< A

<A

5/ C1|At)\|2|/\|2“d/\+/ 2[z22()|" dA
A<A A

5/ C1|/\|2‘1")d)\—|—/ 2[5V dA < o0
A=A A

<A

for some finite constant C; > 0 and where 1 — a > 0. Hence Az* € £,(R) and therefore
the corresponding Az is also in ¢* and the corresponding process AZ> is stationary.
Next, we again make use of Lebesgue’s dominated convergence theorem to show that
Jo 1AZ*(A) — AZ®(M)|*dA — 0, which requires the existence of a square-integrable z(A)
such that [AZ"(A) — AZ®(A)| < z(A). For |A| > A, we proceed as in Theorem 2 after noting
that the prefactor (1 — e*) is bounded in magnitude by 2. For |A| < A, we proceed as in
Theorem 2, after noting that the prefactor (1 — e™*) is bounded in magnitude by C,|A|
for some finite C, > 0. This leads to a Z(A) that has the form |A|'"* (instead of |A|),
which is clearly square-integrable for |A| < A for any « € [0, 1]. QO.E.D.

'We take the convention that z*° = 0 for ¢ < 0.
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S1.4. Heterogeneity

To allow for heterogeneity in the agents’ responses, we relax Assumption 1 as follows.

ASSUMPTION S1: The autoregressive coefficient matrix in Equation (1) factors as W, ; =
ry. ;Wi where the W are fixed constants (satisfying Z;'V=1 Wy=1fori=1,...,N), while the
impulse response function r, ; of each agent is chosen at random once at t = —oo and kept
constant thereaffter.

The assumption allows for the effect of each input j on the output of each node i of the
network to be characterized by a different convolution operation. We view the network
structure as fixed (via the deterministic ;) and allow for heterogeneity in the agents (via
the random impulse response functions r; ;). We place no specific assumption regarding
the covariance structure between the different elements of 7, ;, although we will need to
constrain the amount of possible dependence.

This section provides conditions under which the conclusion of Theorem 1 actually
holds with probability 1 for such randomly constructed networks. A key feature of the re-
sult is the existence of an average spectral representation denoted 7(A). In essence, there
are so many very long pathways that connect the origin and the destination, that the fluc-
tuations in the r, ; across the different i, j quickly average out to a single effective value
representative of the whole network. To state our result, we introduce a few convenient
definitions that are heterogeneous analogues of previously defined quantities.

DEFINITION S1: Let 7;;(A) = Y o r, ;™. Let P, denote the set of paths connecting
the origin nodes to the destination nodes in 7 steps (each element p of P, is an (n + 1)-
dimensional vector of integer specifying which sequence of nodes are visited by the path).
For any maximum path length 7 € N, the spectral representation of the aggregate output
of the destination nodes is given by

N =30 Y [ Foires MDWop)s (52)

n=0 pePy (=1

andwe let ¢, =3, TT,_, Wy,p,,, (Which coincides with the earlier definition via Equa-
tion (4) after expanding the matrix product).

Equation (S2) merely states that the output is the sum of the effect of the input noise
(modeled via y(A)) through the various possible pathways p, of lengths up to 7, joining the
origin and the destination nodes. Along each path, the noise is filtered as it goes through
the network. Going from node p, to node p,.1, its spectral representation is multiplied by
Fpepess (A) (the spectral response of node p,.1) and weighted by the link strength W,

tPe+1®

THEOREM S2: Let y satisfy Assumption 2 and let Assumption S1 hold. Let r(A) =
lim,Hoo(ZpEpn(]_['Z:l W pe VE 1oz Poupey (MDY™. Assume that 7(A) exists, satisfies As-
sumption 3, and is such that

2
- T Toerea (V) 3me
E[(pszpn (E szpm> (E A 1)) :| <Dn (S3)

for some D, e > 0 for all A in some neighborhood of the origin. Then, the conclusion of
Theorem 1 for z" () holds with probability 1.



NOTE 5

To prove this result, we first need a simple lemma.

LEMMA S1: Let ¢, be a deterministic sequence and let the corresponding z*°(\) satisfy
Z%(A) = AN+ o((ir) ™) (for A e R and a € RY). Let ¢, be a random sequence such
that E[(c,, — ¢,)*] < D(14 n)="¢ for some &, D > 0; then the corresponding Z*°'(\) satisfies
Z%(A) = A(IA) ™ 4+ o((iA) ™) with probability 1.

PROOF: To simplify the notation, let the sequence start at index » = 1 instead of 0.
By Lemma 5, it suffices to show that ) - |c/ — ¢,| is finite with probability 1, that is,
Py 2 lc, — ¢l = Cl = 0 as C — oo. Let Ac, = ¢, — ¢,, and for a given C, let ¢ =
C(Y_2 n'=*%)~1. Note that Y>>, n~'"*/* < 0o and that C — co = ¢ — oo. Then note
that |Ac,| < cn™'7/ for all n € N* implies that )~ |Ac,| < C. Taking the contrapositive
of that statement yields that the event > - |Ac,| > C implies the event |Ac,| > cn™'"*/3
for some n € N*. Then write

P|:Z |Ac,| > C:| < P[|Ac,| = en™ '~ for some n € N*]

n=1

o o0
< Z (1A, = en ] = 3" P[|Ac, [P = &n > 2P
n=1

o] oo _3— o]

[|AC | ] - Dn—* . D pol-e/3
§ : —2-(2/3)e — E : 2. 2-(2/3)¢ _2§ : >
o n —cn i

where we have used, in turn, (i) the fact that if two events are such that 4 = B, then
P[B] > P[A], (ii) for any sequence of events A;, we have P[| J, A;] <), P[A;], (iii) mono-
tonicity of the function x? for x > 0, (iv) Markov’s inequality P[X > x] < E[X]/x ap-
plied to the random variable X = |Ac,|?, (v) the assumption E[|Ac,|*] < Dn=3~¢. Since
Yoo nm 7B < oo, it follows that, as C — oo, ¢ — oo and P[Y .~ |X,| > C] — 0, as de-
sired. Q.E.D.

hPROOF OF THEOREM S2: From Definition S1, we have ¢, =}~ _, [];—; Wp,p,,, and
thus

FACSESTOND DI | (LN

n=0 pePy (=1
=5}(/\)Z(l_’(l\) n Z (1_[ VVPZWﬂ) ( I’e!’zﬂ()‘))
n=0 PEPn =1 r(A)
=y Z r(/\) Z 1_[ Wpipe + Z ( Plle) (1_[ M - 1)
PEPn t=1 pePn \t=1 e T
=yA) Z(f()\)) <c + Z (l—[ Pzpm) ( Foopn M) ))
n=0 pePn \t=1 =1 r(A)

=50 D (e +Ac)(F)",

n=0
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where

. - - szpe+1()‘) .
=% (n W) (n P ) 1).

Hence, Lemma S1 applies directly when Ac, satisfies the variance bound assumed in the
present theorem. Q.E.D.

Condition (S3) is stated in somewhat high-level form for maximum generality, but it is
relatively easy to realize that it is a weak restriction. This condition places a limit on the or-
der of magnitude of the variance of a certain average. (The weighting factor [[,_, W,,,,.,
sums up to 1 over all paths in P, so the sum is a weighted average.) This average is taken
over all possible pathways and effectively samples the spectral representation of the im-
pulse response of a large number of agents. Typically, the number of possible pathways of
length # is an exponentially increasing function of n (because at each node, there are a
certain number of possible ways to go and these alternatives multiply to give the number
of paths). Hence, unless the covariance of the summand across two pathways is extremely
strong, the decrease of the variance of the average with » should often satisfy the bound
(S3).

Note that (S3) bounds the heterogeneity in the response of paths, while placing only
weak restrictions on the heterogeneity in the response of individual agents. Even if the
economy is characterized by agents whose response 7;;(A) varies significantly with i and
J, it is still plausible that the response [[;_, 7, ,,,, (A) of most paths p € P, could be very
similar due to an averaging effect over the responses of many different agents sampled
along the path. This assumption is plausible even in an economy with a mixture of very
large firms (e.g., banks that are “too big to fail,” such as some banks in the recent banking
crisis) and very small firms. In that case, as most paths will likely go through some of the
same large firms, the responses [[;_, 75, ,., (1) of two paths would tend to be quite simi-
lar, since they would often include some identical 7, ,,,, (A) terms. The fact that only the
average 7(A) needs to satisfy Assumption 3, and not the individual 7;;(A), brings consider-
able generality to the result. In particular, the constant results to scale assumption need
not hold at the node level but only at a global level.

S2. A SIMPLIFIED LONG AND PLOSSER MODEL
S2.1. Model

In this section, we show how the Long and Plosser model (hereafter LP) and its solution
can be specialized to our setup where there are no separate labor inputs. LP’s production
function has the form

N
b; Wi
Gir = Mirli_y l—[ Diji-15 (S4)
j=1

where £;, is labor inputs for the production of good i and b; is a parameter such that the
constant returns to scale b; + Zf’:l W, = 1 constraint holds. All other variables are as in
our model. LP’s representative consumer maximizes his expected discounted utility:

3] N

— 6 0;

w=EY B~Z"[]c;
s=t i=1

Qz—l, ntl}, (SS)



NOTE 7

where Z, is leisure, equal to H — Zf’;l ¢;, where H is the total labor available, and 6, is a
parameter and all other variables are as in our model. Defining

N
yi=0;+ BZ%‘sz,
i1

LP showed that the solution to this model is

Cit =\ — )4is>
Yi

N -1
Z, = 6’0(90 +B27ibi) H,

i=1

N ByiW;
qij.r = qjt
Yi

N -1
Li; = Byib; (90 + B Z ijj> H,
j=1

Ing,=Wlng,_,+k +Inn,

where k is a vector of constants and the In function is applied element-by-element.

Our production function is a special case of Equation (S4) obtained in the limit as
b; — 0 while adjusting W to preserve the constant returns to scale constraint. As a result,
the solution to our model reduces to

Ciy = | — )4ir»
Yi

Z,=H,
_ By:iW;
qij,t = it
Vi
Eit = O’

Ing =Wlng,_1+k+1nn,

and substituting the solution Z, = H into the utility yields

00 N
Uu; = E|:Z ﬁt_SHgn 1_[ C?Si qi-1, ntl} s
s=t i=1

which is equivalent to our utility (Equation (S5)) up to an irrelevant multiplicative con-
stant H%. Observe that the solution remains well-behaved in the limit of b; — 0. In par-
ticular, the form of the time-evolution of In g, is preserved; the only difference is that the
coefficients WW; must now satisfy Zj\’:l W; = 1 instead of Zjvzl W; =1—-b; < 1. Within the
original Long—Plosser model, when b; > 0, labor’s ability to adjust instantaneously effec-
tively dampens the noise and always yields exponentially decaying ¢, coefficients (since
Zj.vzl W; < 1) and thus short-memory processes as solutions. The limit b; — 0 leads to
more interesting long-memory dynamics in the large-network limit.
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It should be noted that the absence of a separate labor input (b; — 0 limit) does not
mean that the model does not allow for labor inputs. Labor can be supplied via the net-
work and treated symmetrically as part of the remaining inputs g,. The limit b; — 0 then
implies that the fraction of labor input that can adjust instantaneously to shocks is in-
finitesimal, which is arguably no less plausible than assuming that the entire labor force
can adjust instantaneously to shocks.

S2.2. Empirical Example

One way to empirically assess if the proposed mechanism for long-memory generation
is plausible is to verify if the ¢, coefficients in a toy model based on real economic net-
work data indeed obey a power law with the appropriate exponent. For this purpose, we
use the so-called “input-output accounts” database compiled by the Bureau of Economic
Analysis describing interactions between sectors of the U.S. economy. We use the most
disaggregated version of these data since it already contains all the information about
information propagation (or “diffusion”) over all scales, small and large. This strategy
enables a plot of (In(c,), In(n)) over as many orders of magnitude as possible, thus facili-
tating the identification of a linear trend.

We construct the network following the same procedure as in Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012), using a reconstructed Commodity-by-Commodity
Direct Requirements table for year 2002, available in their supplementary material. These
represent the equilibrium cost shares of each commodity j in the production of another
commodity i. (Following Acemoglu et al. (2012), we use the terms industries and com-
modities interchangeably.) In the Long and Plosser-type model, these shares are equal to
the Cobb-Douglas parameters W; of the production function (Equation (S4) with b; = 0).
We include an additional node ¢ in the network to model labor supply. In the same spirit
as in Acemoglu et al. (2012) (see p. 1998), and in accordance with our constant return to
scale assumption, we set the labor share in the production of good i to W, =1—-)_ o Wj.

To close the loop, the labor force must take input from the economy for their livelihood.
We do not have quantitative data on this; hence, we assume that the workers take inputs
from all industries j =1,..., (N — 1) with equal equilibrium share W; = p/(N — 1) and
from each other with share W,, =1 — p. We used p = 0.75, but the results are not very
sensitive to this parameter.

In this empirical example, there is no reason to expect that the ¢, coefficients should
be the same for every choice of source and destination node. As an example, we pick the
group of industries that are numbered, according to North American Industry Classifi-
cation System (NAICS), with a leading “2”. These correspond largely to primary sector
industries (such as mining and utilities). We compute the ¢, coefficients via Equation (4),
setting both the destination vector e and origin vector e° to be a vector selecting all indus-
tries in this group. This corresponds to computing the spectrum of the aggregate response
of this group of industries to a common shock.

The resulting ¢, coefficients are shown in Figure 1 and reveal evidence of a power law
¢, = n~" in this industry group with an exponent of y ~ 0.58, as obtained with a stan-
dard linear least squares regression of the data in logarithmic form. This corresponds to
a=1— 1y~ 0.42, that is, a power spectrum behaving as |A|72* = ||~ near the origin,
resulting in a long-memory network behavior of a fractionally integrated nature of order
a =~ 0.42. Although this is, strictly speaking, a finite network, one can still observe a be-
havior that would be expected from an infinite network for “short” paths, because “short”
paths do not “feel” the boundary of the network. Of course, if we increased the range
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FIGURE 1.—Evidence of power law scaling n~” with y ~ 0.58 in the ¢, coefficients (i.e., the probability of
reaching a given point of the network after n steps of a random walk) in a network representing the U.S.
economy as 418 “sectors.”

of n, the graph would flatten out, as would be expected for a finite network (since the ¢,
would be asymptotically constant in that case).

We can pursue this example a bit further and explicitly calculate the spectrum associ-
ated with the power law ¢, o« n=% for our simplified Long—Plosser model. We employ
the expression z"(A) =Y _"_; c,(F(1))"¥(A), in which (1) = e™* (since there is a single lag
in the autoregressive representation in this model) and y(A) = 1 (assuming a standard
white noise as noise source). Figure 2 illustrates how z"(A) converges to a power law A~
as n increases. One can see that, as 1 — oo, the oscillations around the limiting power
law decrease in magnitude and the interval over which the spectrum is well described by
a power law expands towards zero frequency.

100 ¢ . .
Z1000(A)
LK Z300(A)
T z100(M)
10 |
1 1 1
0.001 0.01 0.1

FIGURE 2.—Convergence of the simulated spectrum z"(\) to a power law (A~¢, with @ = 0.42), as the
maximum path length 7 increases to infinity.
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