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APPENDIX D: ONLINE

D.1. Streak Selection Bias and a Quantitative Comparison to Sampling Without
Replacement

WE SHOW HOW THE DOWNWARD BIAS in the estimator f’k(X ) is driven by two sources
of selection bias. One is related to sampling-without-replacement, and the other to the
overlapping nature of streaks.

Recall from the proof of Theorem 1 that E[Isk(X)|Ik(X) 0] =P(X, =1|1,(X) #0),
where 7 is drawn (uniformly) at random from I, (X). Because any sequence X € {0, 1}",
such that I, (X) # ¢, that a researcher encounters will contain a certain number of suc-
cesses N;(X) = n; and failures ny :=n — ny, for ny = k,...,n we can write P(X, =
HL(X) #9) = 3, L P(X; = 1N(X) = ny, [ (X) # DP(N1(X) = m| [ (X) # 7). To ex-
plore the nature of the downward bias, we discuss why P(X, = 1|N;(X) = ny, [,(X)) <
P(X, = 1IN (X) = ny) = ny/n, that is, why the probability that a randomly drawn trial
from I, (X) is less than the overall proportion of successes in the sequence p = n;/n, that
is, the prior probability that a trial is a success when it is drawn (uniformly) at random
from 1, ..., n under the knowledge that N;(X) = n;.%®

Suppose that the researcher were to know the overall proportion of successes p = n,/n
in the sequence. Now, consider the following two ways of learning that trial  immediately
follows k consecutive successes: (i) a trial 7y, drawn uniformly at random from {k +
1,..., n}, is revealed to be trial 7y = ¢, and preceded by k consecutive successes, or (ii)
a trial 7;, drawn (uniformly) at random from [, (X) = {i : ]_[f;tl_k Xi=1}Clk+1,...,n},
is revealed to be trial 7; = ¢. In each case, the prior probability of success is P(X, =1) =
ni/n, which can be equivalently represented with the odds ratio P(X, =1)/P(X, =0) =
ny/ny, indicates the n,/n, : 1 prior odds in favor of X, =1 (relative to X; =0).

In the first case, the probability distribution for 7y is given by P(ry =1t) = 1/(n — k)
forallt e {k+1,...,n}, and is independent of X. Upon finding out that 7y = ¢, one then
learns that Hij{ X; =1. As aresult, the posterior odds can be represented by a sampling-
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Note that P(N,(X) = m |1 (X) # 0) > P(N;(X) = n;) because the exclusion of sequences without a streak
of k successes in the first n — 1 trials biases upwards the number of successes. We do not consider this upward
bias here as Theorem 1 shows that the downward biases predominate.
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without-replacement formula, via Bayes’s rule:
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Observe that the prior odds in favor of success are attenuated by the likelihood ratio %
of producing k consecutive successes given either hypothetical state of the world: X, =1
or X, =0, respectively. That this is a sampling-without-replacement effect can be made
most transparent by re-expressing the posterior odds as “=¢ /-2 3960

In the second case, the probability that 7; = ¢ is drawn from [, (X) is completely de-
termined by M := |I;(X)|, and equal to 1/M. Upon learning that ; = ¢, one can in-
fer the following three things: (i) I,(X) # @, that is, M > 1, which is informative if
ny < (k—=1)(n—n) +k, (ii) t is a member of I; (X), and (iii) ]_[i:llc X; =1, as in sampling-
without-replacement. As a result, the posterior odds can be determined via Bayes’s rule

3The numerator is the probability of drawing a 1 at random from an urn containing n; 1’s and n, 0’s, once
k 1’s (and no 0’s) have been removed from the urn. The denominator is the probability of drawing a 0 from
the same urn.

89This effect calls to mind the key behavioral assumption made in Rabin (2002), that believers in the law of
small numbers view outcomes from an i.i.d. process as if they were instead generated by random draws without
replacement.
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in the following way:
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For the first term in (16), the event M > 1 is dropped from the conditional argument

PM>11X,=1,TT""} x;=1)
=t does not
P(M>1|X,=0,]T' "} X;=1)

because it is implied by the event []'~, X; =1, and the term

appear because it is equal to 1.

Equation (17) gives the posterior odds Z3==7 in favor of observing X, = 1 (relative
to X, =0), for a representative trial 7 = ¢ drawn at random from /,(X). Observe that
the prior odds ratio n;/n, is multiplied by two separate updating factors, which we now
discuss.

The first updating factor % is clearly strictly less than 1 and reflects the restriction
that the finite number of available successes places on the procedure for selecting trials
into I, (X). In particular, it can be thought of as the information provided upon learning
that k of the n; successes are no longer available, which leads to a sampling-without-
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replacement effect on the prior odds n;/n,. Clearly, the attenuation in the odds due to
this factor increases in the streak length k.

Elg 1T} Xi=1,.X=1]
El3 1 TIE T, Xi=1,X,=0]
striction that the arrangement of successes and failures in the sequence places on the pro-
cedure for selecting trials into I, (X). It can be thought of as the additional information
provided by learning that the k successes, which are no longer available, are consecu-
tive and immediately precede ¢. To see why the odds are further attenuated in this case,
we begin with the random variable M, which is defined as the number of trials in 7, (X).
The probability of any particular trial ¢ € I, (X) being selected at random is 1/M. Now,
because the expectation in the numerator conditions on X, = 1, this means that 1/M is
expected to be smaller in the numerator than in the denominator, where the expectation
instead conditions on X, = 0. The reason why is the same as that given in the proof of
Theorem 1. For a sequence in which X, =1, the streak of 1’s continues on, meaning that
trial # 4+ 1 must also be in 1, (X), and trials ¢ + 2 through ¢ + k each may also be in I, (X).
By contrast, for a sequence in which X, = 0, the streak of 1’s ends, meaning that trials
t + 1 through ¢ + k cannot possibly be in I (X), which leads the corresponding 1/M to be
smaller in expectation.®! This last argument provides intuition for why the attenuation of
the odds due to this factor increases in k.

. . 1 Elglxoi=lx=1 _ 1
Interestingly, for the special case of k =1, Bl amtom0 — L DD

The second updating factor < 1, for t < n, reflects an additional re-

<1lwhent <n,
Elglxu1=Lxa=11 _ p
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familiar sampling-without-replacement formula:

and

> 1 when ¢t = n.”* These contrasting effects combine to yield the

n1—1

E[POIL(X) # 0, Ny (X) =] = T

(18)

as demonstrated in Lemma 1, in Appendix A.3. On the other hand, when k > 1, the bias
is substantially stronger than sampling-without-replacement (see Figure 6), though the
formula does not admit a simple representation.® For further discussion on the relation-
ship between the bias, sampling-without-replacement, and the overlapping words paradox
(Guibas and Odlyzko (1981)), see Supplemental Material Appendix F.

A Quantitative Comparison With Sampling-Without-Replacement

For the general case, in which p = n;/n is unknown, juxtaposing the bias with sampling-
without-replacement puts the magnitude of the bias into context. Let the probability
of success be given by p = P(X; = 1). In Figure 6, the expected empirical probabil-
ity that a randomly drawn trial in 7, (X) is a success, which is the expected proportion,

E [ﬁk(X)|I «(X) # @], is plotted along with the expected value of the probability that a
randomly drawn trial ¢ € {1, ..., n}\T; is a success, given that the k success trials 7} C

®1This is under the assumption that ¢ < n — k. In general, the event X, = 0 excludes the next min{k, n — ¢}
trials from ¢ + 1 to min{z + k, n} from being selected, while the event X, =1 leads trial ¢ + 1 to be selected,
and does not exclude the next min{k, n — ¢t} — 1 trials from being selected.

2The likelihood ratios can be derived following the proof of Lemma 1 in Appendix A.3. In particular,
P(r=t|x;_1=1,x,=1)
> P(r=t|x,_1=1,x,=0)’

used to show that the denominator is equal to ﬁ % + :ij ). Further, in the case of # = n, it is clear that

for the equivalent likelihood ratio the approach used to derive the numerator can also be

P(r=nlx,_1=1,x,=0)= % Each likelihood ratio then follows from dividing and collecting terms.
3See Supplemental Zip file for the formula used to produce Figure 6.



SURPRISED BY THE HOT HAND FALLACY? 5

0.5

0.45

©
~

o
w
o

Expected value
o
w

o
N
()

o
N
T
1

0.15

T
~.
|

0.1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

n

FIGURE 6.—The dotted lines correspond to the bias from sampling-without-replacement. It is the expected
probability of a success, given that k successes are first removed from the sequence (assuming p =.5). The
solid lines correspond to the expected proportion from Figure 1.

{1, ..., n} have already been drawn from the sequence (sampling-without-replacement),
E[MX% | N (X) > k]. The plot is generated using the combinatorial results discussed
in Section 2.1. Note that in the case of k = 1, the bias is identical to sampling-without-
replacement, as shown in Equation (18).% Observe that for & > 1, and » not too small,
the bias in the expected proportion is considerably larger than the corresponding bias
from sampling-without-replacement.

%This appears to contradict Equation (17), that is, that the bias in the procedure used to select the subset of
trials 14 (X) is stronger than sampling-without-replacement for ¢ < n, whereas it is non-existent (thus weaker)
for t = n. This disparity is due to the second updating factor, which relates to the arrangement. It turns out that
for k =1, the determining aspect of the arrangement that influences this updating factor is whether or not the
final trial is a success, as this determines the number of successes in the first n — 1 trials, where M = n; — X,.
If one were to instead fix M rather than n,, then sampling-without-replacement relative to the number of
successes in the first n — 1 trials would be an accurate description of the mechanism behind the bias, and it
induces a negative dependence between any two trials within the first n — 1 trials of the sequence. Therefore,
it is sampling-without-replacement with respect to M that determines the bias when k = 1.
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APPENDIX E: THE FORMULA USED TO GENERATE THE SAMPLING DISTRIBUTION
AND CALCULATE EXPECTATIONS

We describe the formula used to build the exact sampling distribution of the proportion,
and difference in proportions, from which we calculate expectations and plot histograms.

E.1. Proportion

Given n trials and streaks of length k, we observe that the proportion of successes on

the trials that immediately follow k& consecutive success Pi(x) can be represented simply
as the the number of successes on trials that immediately follow a streak of k consecutive
successes divided by the total number of trials—i.e. failures and success—that immedi-
ately follow a streak of k consecutive successes. In particular, for a sequence x € {0, 1}" of
successes and failures, we have:

5. M
P = o T

where M°(x) :=|{ie{k+1,...,n}: (1 — x,-)]_[;j_k x; = 1}| is the number of failures
that immediately follow k consecutive successes (suppressing the k to ease notation).
Similarly, the number of successes that immediately follow &k consecutive successes is

defined as M'(x) :={ie{k+1,...,n}: x,—]_[H x; = 1}. Finally, the expected value of

j=i—k
f’k (x) is uniquely determined by the joint distribution of counts P((M°(X), M'(X)) =
(m°, m")).

The algorithm described below (recursively) constructs the exact joint distribution of
counts, by associating each unique count realization, which we call a key, with its cor-
responding probability.® In general, for a sequence of length n and a streak of length
k this joint distribution can be represented as a dictionary of (key:probability) pairs
D :=(m: pp(m))yep,, where m := (m°, m') is a unique pair, D, corresponds to the set of
count realizations with non-zero probability, i.e.

D.:={m e N°|pp(m) > 0}

and pp(m) :=P((M°(X), M' (X)) = (m’, m")).

Table E.I reports the distribution over the sample space of sequences, and the corre-
sponding dictionary, for the simple case of n =3 and k& = 1. From the dictionary one
can derive the sampling distribution of the proportion and directly compute the expected
proportion:

A rn1
E[Pc(x)|x(x) # 0] = Z ml’;}(m),

meD§

where D* =D, \ {(0,0)} and p}(m) := pD(m)/Zm,ED? pp(m’).
Let D(¥, r) be the dictionary that represents the count—probability pairs for the remain-
ing r trials of a sequence that has £ < k consecutive successes immediately preceding the

85This algorithm, which builds upon an algorithm suggested by Michael J. Wiener, replaces an exact formula
based on the joint distribution of runs of various lengths that we derived in a previous working paper version
of this manuscript. The previous formula, while numerically tractable, was less efficient.
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TABLE E.I
DICTIONARY REPRESENTATION OF COUNT-PROBABILITY PAIRS?

Sample space of sequences

Dictionary

Sequence Probability Count Count Probabilit

ount robability
000 q3 (0, 0) m : pp(m)
001 q*p 0,0)

0,0) : e
010 <p (1,0 0,0 : ,
100 ¢p 0,0 Gn v
011 g’ (0.1 w1 o
101 g (1,0) o . 5
110 ap* (1,1 Y P
111 P 0,2)

4In the table to the left column one lists the sample space of eight possible sequence realizations from three trials. Column two
lists the probability with which the sequence occurs, where p is the probability of success and ¢ is the probability of failure. The third
column lists the number of (failures, successes) that immediately follow a success. In the table to the right the joint distribution is
represented as a dictionary of count—probability pairs. Each unique count m = (m%, m!) has a unique associated probability equal to
the sum of the probabilities of all sequences with the same associated count (see the table on the left).

current trial. For example, if £ =2 then D(0,0) = D(1,0) = D(2,0) = ((0,0) : 1), as
when zero trials remain in the sequence the only count possible is (0, 0), which occurs
with probability 1. Also note that D(1,1) = ((0,0) : 1), D(2,1) = ((1,0) : g, (0, 1) : p),
and D(2,2) = ((1,0): ¢, (1,1) : pq, (0,2) : p?), as a trial can only be counted as a fail or
success if it is immediately preceded by ¢ = k = 2 consecutive successes. The key observa-
tion is that given the initial condition D(¢,0) = ((0,0) : 1) for 0 < ¢ < k, the dictionaries
D(¢, r) can be defined recursively for » > 0 and 0 < ¢ < k, and take the following form:

D(e.ry = | PO~ DYy DE+1,r —1)OV7, ife <k,
’ D0, r — 1)y D(k,r — 1)V, ifl=k,

where: (i) the operation D™ := (m 4+ m’ : pp(m) X p')mep, increments each count m
with the addition of m', and scales its corresponding probability pp(m) by the probability
p’ of the increment, and (ii) given the dictionaries 4 and B, the operation A ¥ B :=
(m: (p4g+ pp)(M))mca.up, defines the union of two dictionaries as the union of their
counts, where the corresponding probabilities for a key that appears in both dictionaries
are summed together (we assume that p4(m) = 0 for m ¢ A4,; also for B). If a trial is
immediately preceded by ¢ < k consecutive successes, then with probability g (p) the
next trial to its right will be immediately preceded by 0 (£ + 1) consecutive successes;
regardless of the outcome of the trial, m’ = (0, 0) additional failures and successes will be
counted as immediately preceded by k successes and r — 1 trials will remain. If, on the
other hand, a trial is immediately preceded by ¢ = k consecutive successes (and there is
at least one trial remaining, i.e. r > 0), then with probability g (p) the next trial to its right
will be immediately preceded by 0 (k) consecutive successes and we will count m’' = (1, 0)
((0, 1)) additional failures and successes; regardless of the outcome of the trial, » — 1 trials
will remain.

Algorithm 1 describes the complete recursive procedure.
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Algorithm 1 Recursive formula that builds the collection of dictionaries D. Of interest are
the dictionaries D(0, n) forn =k +1, ..., N which correspond to the joint distribution of
the total number of (successes, failures) that immediately follow k consecutive successes
in n trials.

1 Function Count Distribution(N, k, p):
/* For the definition of D({,r), A™* and AW B below, see text. */
g«<1-p
forn=20,...,N do
L + min{k,n}
for/{=1L,...,0do
r<n-—1~{
if r =0 then
| D(t,r) < ((0,0) : 1)
else if r > 0 then
if £ <k then
| D(t,r) « D(0,7 — 1)y D¢ +1,r — 1)
else if ¢{ = k then
| D(t,r) + D(0,r — 1)y D(k,r — 1))

© 00 N O R WN

R e
N = O

[y
w

end

=
IS

end

[y
ot

return D

Jury
=)

E.2. Difference in Proportions

The difference in proportions can be computed from a dictionary D := (m : pp(m))nep, ,
where D, corresponds to the set of count realizations with non-zero probability i.e.

D.:={meN'|pp(m) > 0}

and pp(m) := P((M)(X), M} (X), M)(X), M} (X)) = (m), m},m},m})). The variables
M?(X) and M| (X) yield the total number of failures and successes (respectively) on those
trials that immediately follow a streak of k successes, whereas M{(X) and M (X) yield
the total number of failures and successes (respectively) on those trials that immediately
follow a streak of k failures.

Let D(£y, £1,r) be the dictionary that represents the count—probability pairs for the
remaining r trials of a sequence in which there are ¢, < k consecutive failures and ¢; <
k consecutive successes on the immediately preceding trials (so that £,¢; = 0). These
dictionaries can be constructed recursively in a way similar to that shown in Supplemental
Material Appendix E.1:

D(y+1,0,r — 1)®004w D0, ¢, + 1, r — 1) 00007,

if max{¢y, ¢,} <k,
D(k,0,r — 1)10009 g D0, 1, r — 1)OL00P - if g =k,
D(1,0,r — DMLYy DO, k, r — 1) OO0V if g = k.

D(KO’Kbr):

See Supplemental Zip File for the corresponding code.
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APPENDIX F: THE RELATIONSHIP BETWEEN THE STREAK SELECTION BIAS AND
KNOWN BIASES AND PARADOXES

E1. Sampling-Without-Replacement and the Bias for Streaks of Length k =1

A brief inspection of Table I in Section 1 reveals how the dependence between the first
n — 1 flips in the sequence arises. In particular, when the coin is flipped three times, the
number of H’s in the first two flips determines the number of observations of flips that
immediately follow an H. Because TT must be excluded, the first two flips will consist
of one of three equally likely sequences: HT, TH, or HH. For the two sequences with
a single H—HT and TH—if a researcher were to find an H within the first two flips of
the sequence and then select the adjacent flip for inspection, the probability of heads on
the adjacent flip would be 0, which is strictly less than the overall proportion of heads
in the sequence. This can be thought of as a sampling-without-replacement effect. More
generally, across the three sequences, HT, TH, and HH, the expected probability of the
adjacent flip being a heads is (0 + 0 + 1)/3 = 1/3. This probability reveals the (negative)
sequential dependence that exists between the first two flips of the sequence. Further, the
same negative dependence holds for any two flips in the first n — 1 flips of a sequence of
length n, regardless of their positions. Thus, when k = 1, it is neither time’s arrow nor the
arrangement of flips within the sequence that determines the bias.

This same sampling-without-replacement feature also underlies a classic form of selec-
tion bias known as Berkson’s bias (aka Berkson’s paradox). Berkson (1946) presented a
hypothetical study of the relationship between two diseases that, while not associated in
the general population, become negatively associated in the population of hospitalized
patients. The cause of the bias is subtle: patients are hospitalized only if they have at least
one of the two particular diseases. To illustrate, assume that someone from the general
population has a given disease (Y = “Yes”) or does not (N = “No”), with equal chances.
Just as in the coin flip example, anyone with neither disease (NN) is excluded, while a pa-
tient within the hospital population must have one of the three equally likely profiles: YN,
NY, or YY. Thus, just as with the coin flips, the probability of a patient having another
disease, given that he already has one disease, is 1/3.

The same sampling-without replacement feature again arises in several classic condi-
tional probability paradoxes. For example, in the Monty Hall problem, the game show
host inspects two doors, which can together be represented as one of three equally likely
sequences GC, CG, or GG (G = “Goat,” C = “Car”), then opens one of the G doors from
the realized sequence. Thus, the host effectively samples G without replacement (Selvin
(1975), Nalebuff (1987), Vos Savant (1990)).%

Sampling-without-replacement also underlies a well-known finite sample bias that
arises in standard estimates of autocorrelation in time series data (Yule (1926), Shaman
and Stine (1988)). This interpretation of finite sample bias, which does not appear to have
been previously noted, allows one to see how this bias is closely related to those above.
To illustrate, let x be a randomly generated sequence consisting of # trials, each of which
is an i.i.d. draw from some continuous distribution with finite mean and variance. For
a researcher to compute the autocorrelation, she must first determine its sample mean x
and variance *(x), then calculate the autocorrelation p, ,,;(x) = cOv, ,41(x)/5*(x), where
cOV; ,11(x) is the autocovariance.”’” The total sum of values nx in a sequence serves as the

%The same structure also appears in what is known as the boy-or-girl paradox (Miller and Sanjurjo (2015a)).
A slight modification of the Monty Hall problem makes it identical to the coin flip bias presented in Table I
(see Miller and Sanjurjo (2015a)).

7The autocovariance is given by cv, .41 (x) :== - Z;:ll(x,» — X)) (X — X).
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analogue to the number of H’s (or G’s/Y’s) in a sequence in the examples given above.
Given nx, the autocovariance can be represented as the expected outcome from a proce-
dure in which one draws (at random) one of the # trial outcomes x;, and then takes the
product of its difference from the mean (x; — x), and another trial outcome j’s difference
from the mean. Because the outcome’s value x; is essentially drawn from nx, without
replacement, the available sum total (nx — x;) is averaged across the remaining n — 1
outcomes, which implies that the expected value of another outcome j’s (j # i) difference
from the mean is given by E[x;[x;,X] — X = (nx —x;)/(n —1) =X = (X —x;)/(n — 1).
Therefore, given x; — X, the expected value of the product (x; — x)(x; — X) must equal
(x; —X)(X —x;)/(n—1) = —(x; — ¥)?/(n — 1), which is independent of j. Because x; and
J were selected at random, this implies that the expected autocorrelation, given x and
0%(x), is equal to —1/(n — 1) for all X and *(x). This result accords with known results
on the O(1/n) bias in discrete-time autoregressive processes (Yule (1926), Shaman and
Stine (1988)), and happens to be identical to the result in Theorem 4 for the expected dif-
ference in proportions (see Appendix A.3). In the context of time series regression, this
bias is known as the Hurwicz bias (Hurwicz (1950)), which is exacerbated when one intro-
duces fixed effects into a time series model with a small number of time periods (Nerlove
(1967, 1971), Nickell (1981)).5-6

E2. Pattern Overlap and the Bias for Streaks of Length k > 1

In Figure 6 of Supplemental Material Appendix D, we compare the magnitude of the
bias in the (conditional) expected proportion to the pure sampling-without-replacement
bias, in a sequence of length #n. As can be seen, the magnitude of the bias in the expected
proportion is nearly identical to that of sampling-without-replacement for k£ = 1. How-
ever, for the bias in the expected proportion, the relatively stronger sampling-without-
replacement effect that operates within the first n — 1 terms of the sequence is balanced
by the absence of bias for the final term.” On the other hand, for k > 1 the bias in the ex-
pected proportion is considerably stronger than the pure sampling-without-replacement
bias. One intuition for this is provided in the discussion of the updating factor in Sup-
plemental Material Appendix D. Here we discuss another intuition, which has to do with
the overlapping nature of the selection criterion when k > 1, which is related to what is
known as the overlapping words paradox (Guibas and Odlyzko (1981)).

For simplicity, assume that a sequence is generated by n =5 flips of a fair coin. For
the simple case in which streaks have length k& = 1, the number of flips that immediately

%The bias that is exacerbated by the introduction of of exogenous variables is commonly known as the
“Nickell bias,” which was first explored by simulation by Nerlove (1967, 1971). It is an example of what is
known as the incidental parameter problem (Neyman and Scott (1948), Lancaster (2000)).

%In a comment on this paper, Rinott and Bar-Hillel (2015) assert that the work of Bai (1975) (and refer-
ences therein) demonstrate that the bias in the proportion of successes on the trials that immediately follow
a streak of k or more successes follows directly from known results on the finite sample bias of Maximum
Likelihood estimators of transition probabilities in Markov chains, as independent Bernoulli trials can be rep-
resented by a Markov chain with each state defined by the sequence of outcomes in the previous k trials. While
it is true that the MLE of the corresponding transition matrix is biased, and correct to note the relationship in
this sense, the cited theorems do not indicate the direction of the bias, and in any event do not directly apply in
the present case because they require that transition probabilities in different rows of the transition matrix not
be functions of each other, and not be equal to zero, a requirement which does not hold in the corresponding
transition matrix. Instead, an unbiased estimator of each transition probability will exist, and will be a function
of the overall proportion.

"The reason for this is provided in the alternative proof of Lemma 1 in Appendix A.3.
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follow a heads is equal to the number of instances of H in the first » — 1 = 4 flips. For
any given number of H’s in the first four flips, say three, if one were to sample an H from
the sequence and then examine an adjacent flip (within the first four flips), then because
any H could have been sampled, across all sequences with three H’s in the first four flips,
any H appearing within the first four flips is given equal weight regardless of the sequence
in which it appears. The exchangeability of outcomes across equally weighted sequences
with an H in the sampled position (and three H’s overall) therefore implies that for any
other flip in the first four flips of the sequence, the probability of an H is equal to 3= = 2,
regardless of whether or not it is an adjacent flip. On the other hand, for the case of streaks
of length k£ = 2, the number of opportunities to observe a flip that immediately follows
two consecutive heads is equal to the number of instances of HH in the first four flips.
Because the pattern HH can overlap with itself, whereas the pattern H cannot, then for
a sequence with three H’s, if one were to sample an HH from the sequence and examine
an adjacent flip within the first four flips, it is not the case that any two of the H’s from
the sequence can be sampled. For example, in the sequence HHTH, only the first two
H’s can be sampled. Because the sequences HHTH and HTHH each generate just one
opportunity to sample, this implies that the single instance of HH within each of these
sequences is weighted twice as much as any of the two (overlapping) instances of HH
within the two sequences HHHT and THHH that each allow two opportunities to sample,
despite the fact that each sequence has three heads in the first four flips. This implies that,
unlike in the case of k = 1, when sampling an instance of HH from a sequence with three
heads in the first four flips, the remaining outcomes H and T are no longer exchangeable,
as the arrangements HHTH and HTHH, in which every adjacent flip within the first four
flips is a tails, must be given greater weight than the arrangements HHHT and THHH, in
which half of the adjacent flips are heads.

This consequence of pattern overlap is closely related to the overlapping words paradox,
which states that for a sequence (string) of finite length 7, the probability that a pattern
(word) appears, for example, HTTHH_, depends not only on the length of the pattern
relative to the length of the sequence, but also on how the pattern overlaps with itself
(Guibas and Odlyzko (1981)).”" For example, while the expected number of (potentially
overlapping) occurrences of a particular two-flip pattern—TT, HT, TH, or HH—in a se-
quence of four flips of a fair coin does not depend on the pattern, its probability of occur-
rence does.”” The pattern HH can overlap with itself, so can have up to three occurrences
in a single sequence (HHHH), whereas the pattern HT cannot overlap with itself, so can
have at most two occurrences (HTHT). Because the expected number of occurrences of
each pattern must be equal, this implies that the pattern HT is distributed across more
sequences, meaning that any given sequence is more likely to contain this pattern.”
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