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THIS SUPPLEMENT PROVES Theorems 2 and 3, supporting lemmas for Theorems 1 and 4,
and Theorem 5.

S.1. PROOF OF THEOREMS 2 AND 3

Theorem 2 follows by applying Theorem 1 in the following way. If § grows faster than
S0, then there is m <5 such that sy < m < K,, and m/s, exceeds c.(K,) = O(1), giving a
contradiction. The first statement of the theorem follows from applying the bound on .
Theorem 3 follows by [[6 — 111 < V5 501l 60 — Ol < v/5F 5000in 5+ 50)(G) ' E, [ (x;60
x,6)%1'2.

S.2. PROOF OF LEMMAS 3 AND 4
S.2.1. Proof of Lemma 3

It was already shown that Z(IO\) < €(6y) + Sot Pmin (5 + 59) (G)~'. Expanding the above two
quadratics in £(-) gives

E,[(x,60 — x,0)"] < |2E.[£:/(8 — 00)]| + S0t @uin(F + 50)(G) !
< 2| ELexi| 1160 — Olli + Sot@umin( + 50)(G) "
To bound ||6y — 0],
180 — Bl < v/5+ 50160 — Bl
< V5 500min G+ $0)(G) R, [ (x,600 — x,0) ],

If E,[(x;6) — x;’(ﬂ\)z]l/2 = 0, then the first conclusion of Theorem 1 holds. Otherwise,
combining the above bounds and dividing by E, [(x6, — x,0)*]'/* gives
E.[(x0 - x0)"]" < 2| Euleixil| V5 + So@min G+ 50)(G) 2

S0t¢min(§+ SO)(G)71
Ed[ (00— x0)]"
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2 DAMIAN KOZBUR

Finally, either E,[(x/6, — xﬁ)z]l/2 < /S0t @min(5 + 50)(G)~172, in which case Lemma 3
holds, or alternatively E,[(x}6, — x;.a)z]l/ 2> /80t @Pmin (5 + 50)(G)~1/2, in which case

E[(x,0 — x,0)"]" < 2| Euleixd]| _v/5 + S0@min G+ 5)(G) 2
+ /S0t @rin (5 + 50) (G) .

S.2.2. Proof of Lemma 4

For any S, define 65 to be the minimizer of £(S). For any S, define also ds =
05 — 0§0US. Finally, let 6,5 = 6y — 0§0U5. Note that £(S) — E(So U S) = d E[G]ds. By ar-
guments in the earlier sections, dzE[G]ds < 50Ctest @min (Kiest) (E[G]) L. But dzE[Glds >
@énllI;(Ktest)(E[G])”dsnz So [|d5ll2 < /50Ciest @min (Kiest) (E[G]) ™. In addition, 8y_s is bound-
ed by

180,512 = | E[Ea[xis,0s&:]] ],

1 -
= (|S| + SO)l/szlX|E[ [xzjgl]“ =< E (|S| + SO)ctestQDmin(Ktest)(E[G]) 1;

where the last bound comes from Cauchy-Schwarz (passing to E[E,[x;]1]'*E[E,[£;*1]"/*)
along with the assumed condition on &? and the fact that c|., < Cieq. Next

0=G;'B,[x5(x505 + & — X555 + Xi55,805)]
= 05+ G5 'E[xgei] + G5 'Eu[xi5x 5, (—ds + 805)]
= [0- 6, < eain®(G) 2| Eulxisad], + | G5 Ea[ x50, (—ds + 8],
< Emin()(G) S|, lxisd] |
+ Enin () (G) @+ 50)(G) (Il sl + 118,5112)-
Finally,

(B[ (48— x;00)"])
< @uax(80 + D(G)' [0 — 6,2
< @uax(50 + ()20 — 62, + 180112 + 115112
< Pmax (50 +5)(G)* @uin(80 +5)(G) V5 |Eulxiei]|

+ @max(s() +§)(G)1/2 <% + %Qomax(s() +§)(G)1/2§Dmin (TS‘\—F SO)(G)_1/2>
X y/ CS‘\"_ SO)thstQDmin(Ktcst)(E[G])_l

= QDmax(sO +®(G)1/2§Dmin(s(] +®(G -
+ 3§Dmax(s0 +§)(G)€Dmm(§+ SO)(G)_UZV (§+ SO)ctestﬁpmin(Ktest)(E[G])q
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S.3. PROOF OF SUPPORTING LEMMAS FOR SPARSITY BOUNDS FOR THEOREMS 1 AND 4
S.3.1. Additional Notation

Additional notation is used for the proof of the lemmas which follow. The inner prod-
uct from H is hereafter denoted simply with (-, - )y = (-, -). The symbol ' is kept for use
for transposition of finite-dimensional real matrices and vectors derived from certain el-
ements of H defined below. For a, b € L?(2,R"), a'b is defined pointwise (over ) and
thus defines a random variable {2 — R and (a, b) = E[a’b]. In the case of Theorem 1,
a'b=/{a,b).

Let V =[vy, ..., v,] with the understanding that } and similar quantities are formally
defined as linear mappings R* — H. Then y = V', + ¢ is well defined for both Theorems
1 and 4.

Let M, denote projection in H onto the space orthogonal to span({v, ..., vt}). Then
~ My _ .y ~ My, &
note that v, = W fork=1,...,s. In addition, £ = W For more general

sets S, let Qg be projection onto the space orthogonal to span({x;, j € S}). For each se-
lected covariate, wj, set Spee.; to be the set of (both true and false) covariates selected
prior to w;.

S.3.2. Proof of Lemma 5

It is needed to calculate C;, C, such that 5/}(5 > 6,C, for j € Ay, and 6, > 6,C, for I > k.
Define

A;£(S) in the case of Theorem 1,

AH(S) =
i) A;E(S) in the case of Theorem 4.

Also recall that #, = ¢ in the case of Theorem 1 and " = ¢/, in the case of Theorem 4.
Note that ¢,y is not defined in the context of Theorem 1. In the case of Theorem 1,
during the proof of this lemma, ¢/, is taken to be equal to 1.

A simple derivation can be made to show that

_1 1 1

T
_A.feH(SprC-wj) = ;(y, w_,)((w_,, wj)) (w;, y) = —

~ ~ 2
——(0'y; + 0:¥z) -

Note the slight abuse of notation in —A;£"(Sye.;) signifying change in loss under inclu-
sion of w; rather than x;. Next,

(é,i’j =+ é.'si’jé)z =< 2(6/77]')2 + 2(éé7~’j§)2-

Since 0; = (&, y) = (&, M, y)/ (&, My, &)"/> = (&, M, &)/, |1;||3 > 1, and j € A, it follows
that

11 -, 1 1 o 22 N\
———(0:73)" < - —— 6 n) =3
n il nlwilE (3, My, ) 3
This implies
1 11 .0
—(=ALYS o)) < — 0y, =
3 (A Se)) = g (7)) 43
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By the condition that the false j is selected, it holds that —A;€"(Spe.,) > t and so
3 (=A% (Spre;)) > %, which implies that —% > $A;£"(Spre.;,) and

1 th 1
5(—Aj£H(Spre.wj)) - EH g( A Z (Spre w}))
Finally, this yields that
1 =2 1
a0 = (A S,

By the fact that w; was selected ahead of vy, it holds that

_A E (Sprew ) > Akg (Spre w/)ct

est*

Next, to lower bound —AkEH(Spre_wj), define a perturbed version of ¢". Let ¢ € H.

Let €, be defined analogously to ¢" except with the role of y in ¢ played by y + &
in Z;‘+§ Choose ¢ such that (&, w;) =0for j=1,...,m, (§,vn) =0for v, =1,...,5,

and (£, &) =0. In the case of Theorem 1, ¢ # 0 exists provided m + s, + 1 < n. If not,
then H can be enlarged appropriately to allow ¢ to exist, for example, with the inclusion
t:H—-H®R, x+— (x,0), £=(0,1). Then, due to the orthogonality of & to w; and vy
and ¢, it follows that

_AkKH (Spre]) - Ak€y+§(Spre—j)’

with the right-hand side possibly defined on an enlarged H as described above.
Next, the following reduction holds:

Akew.g(sprc-w-) = _Akg;l_;_g (Sprc-w/- U {f)k+l ék+l +- 4+ f)so éso + &g + g})
Avl‘z;trg(spre-w/ U {f)k+1 ék+1 + -+ f)so ésg + é + f})
¢
Let M, be prO]CCthIl on the correspondmg orthogonal space to the span of the vectors
listed in Spre_wj U {vk+10k+1 +-- 41, 030 +&+ &} (The accent - is meant to emphasize that

covariates selected before and after v, (or not at all) are considered.) Then the above
term is further reduced by

¢ ¢
1 M) 14(0 M 1- ¢
:;((Y‘Ff);g k) :;( kvk,%kvﬁ :;0i<ﬁkamkﬁk>~
(O, M V) (Og, My V)

¢
Then seek a lower bound on = (vk, M, 7). Note that for some vector 7y, it holds that
U = (U, Mio1v) ™20 — [v1, ..., ve_11mx. Then (Uk,MkUk) (V> Mi—1vi) ™ (Uk,MkUk)-

3
Let H=[V W].Lety, = ﬁk+16k+1 +- -+, HSO + &. A lower bound on the term (v, M vy)
follows from a lower bound on the eigenvalues of the below matrix for any ¢ > 0:

¢

(vka Mk”k) mm (<[H(yk + g)C] [H(_)N)k + g)c]))
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That is, it is enough to bound the spectrum of nG. ; defined by

G _1[ (H, H) c(Ji+ & H) ]
TR H G+ e G+ ET+ O]

Using the fact that ¢ is orthogonal to H and &, G, ¢ reduces to

G :1[<H,H> c(§i. H) ]
f (H,S’/JC cz<5}ks_’)}k)+cz<§’§> '

As a result of the above reductions, for each c, &,
1 -
_Akg (Spre wj ) jul <Uk; Mk 1vk> 1n)\min(Gc,§)gi-

And therefore,

1 ~ .
_AkeH(Spre—wj) = Z (Uk, Mk—lvk>_1nei 11_1;% /\min(Gc,g)-
Heo=c?

By continuity of eigenvalues for symmetric matrices, passing to the limit gives

1 iz 1[(H,H) 0
_AkeH(Spre-w/') = E(vka Mk*lvk> 1nei)\min (; |:< 0 ) 1})

1
— (Ui, M0 /1) 0 kqomm(m+so)(GH)>— 1+ 62 @uin(m + 50)(Gh).

3

This gives
1

11
m(%e) > ¢ teSt6 — Qmin(M 4 50) (Gn) 6.
JUIH

Using the fact that ||w;||y > 1 implies that

v /" 1
('}’10) 02 Crest 6 — @min(M + 59)(Gy).

Now suppose no true variables remain when j is selected. Then (w;, w;) = (i;, ;) =1
and

1
_AjZH(Spre-wj) - 71302 > tH

Note that 6; is given by 6; = (e, M,,&)"/. Therefore, Vi =
j € A,. Therefore, set

o M . This implies that

1
C2 test 6QDmm(m + 50)(Gh).

Next, construct C,. For each selected true covariate, v, set S, to be the set of (both
true and false) covariates selected prior to v,. Note that

1.
;oi = —AkEH({v]’ (RS kal}) = _AkZH(Sprc-vk)
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since {vi, ..., Vg_1} € Spre—y, . In addition, if v is selected before v; (or v, is not selected),
then

1~
_Akg (Spre vk) = Ctest( AZEH(Spre—vk )) > Ct”estgomin(m + SO)(GH); 0[2
Therefore, taking

C22 testQDmm(m + SO)(GH)

implies that 6, > 6,C, for any / > k. 5 5
As a final remark, consider the case that 6, = 0. Then 6, = 0 for / > k. Then if
j € Ay, it follows that Y0 = 0. Therefore, using reasoning as above, —A;£"(Sp..;) =

%W(ég:};ﬁ.)z < %H But this is impossible, because being selected into the model requires

—A"(Sprej) > tw. Therefore, Ay is empty if 6, = 0.

S.3.3. Proof of Lemma 6

The desired element Z of G, is constructed as the covariance matrix of certain real,
mean-zero, random vectors

X=X, Y=(Y)

The random variables X;, Y, constituting X, Y are defined as follows. Let 8, = 0, / 6,_, for
k=2,...,s. Then note that the components of B can be expressed By, = ]_[lq:k +1 Bg for
k < [, and extended symmetrically for components / < k.

Decompose the elements of the sequence B into

B = BiB;
in such a way that for all / > k > 2,
!
<[]Bi=G",
q=k
and for all k > 2,
0<p<1.

Induction establishes the existence of such a decomposition with the additional prop-
erty that: B§ > B only if there is ¢ < k such that g7 - ... B = C,. The case sy = 2 fol-

lows by taking B85 = max{C,, B,} and noting that 8, = 6, /61 < C2 . Assume the complete
induction hypothesis that the decomposition exists for sequences with s, =2, ..., s for
some s. Consider a sequence B, ..., By1. Apply the decomposition to obtain 8, = B4 5%
for k < s. The existence of the decomposition fails at k =s+ 1 only if B;,; > 1 and there
is an index j such that 8§ -...- B{ - By > C,'. Then there must be an index o > j such
that B2 > B, as otherw1$e thls contradicts 6,/ 6] | < C;'. If there are multiple such in-
dices o, then consider the largest one. There must then also be an index g such that
Bg - - By = Co. There are two cases to consider: g < j and g > j. Consider the first case



ANALYSIS OF TESTING-BASED FORWARD MODEL SELECTION 7

q < j. In this case, the above conclusions can be visualized by:

>C271
By BBy BY Bost o Bova.
—_—
=C SC{I
<1
These imply that 87 - ... - B, < C; which contradicts the inductive hypothesis. The case
q > j is similar. This completes the inductive argument and therefore establishes the de-

composition B, = B4BL, k=2, ..., s, for all s.

Using the fact that 82 < 1 for all k allows the definition of the following autoregressive
process. Let U; ~ N(0, 1) and let W; = U;. Define U, ~ N(0, 1) independently of previous
random variables. Define W, inductively as

Wi =B; - Wi + V1- (,32)2 - Ug.

Note that E[W?] =1 and E[W,W,] = ]_[;:k+1 BZ if k < [. Then set X, Y, as follows:

X -2, 12
X = C;Wy (H B;) ( I1 Bi’,) :
q=2

q=k+1

% -2, 12

Y, = C2W1< 1_[ BZ) (1_[ BZ) .
q=I+1 q=2

By construction,
E[X,Y,1=C:By, fork<I.

Next, note that E[X;] < 1 and E[Y?] < 1. This then implies (taking H, to be the span of
Ui, ..., Uy, within the set of square integrable random variables) that both

E[XY'] €S, and E[XY] €.

Take Z = E[XY']. Let C; = C5 2. Note I' is upper triangular due to the way y; are de-
fined. Because I is upper triangular, only lower triangular components of E[XY']’ matter
for computing the product I'C;Z. Using this fact and the above calculations gives the
desired factorization

I'B=TICZ =TGE[xY].

S.3.4. Proof of Lemma 8

Collect the m, false selections into W = [w),, ..., zI)jml]. Set R = [Fiys s ?jml], U=
[, ..., ﬁjml]' Decompose W =R+ U. Then (W, W) = (R,R) + (l~], U). Here, the ob-
jects (W, W), (I?, Ié), and (0 ,U ), etc. are formally defined as m; x m; real matrices with
k, [ entry given by (wy, w;), {F¢, 1), (i, W), etc. (which, note, are genuine inner products
on H).
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Next, by the above normalization, diag((U, f])) =1 if (i;, u;) =1forall j € A;. Recall
that this normalization is possible provided ¢, (7 + s0) (Gy) > 0. Since diag((U ,U) =
I, it follows that the average inner product between the i;, given by

1

p= > iy, ),
my(my —1) 7=
must be bounded below by
. 1
p= my — 1

This can be checked as a direct consequence

due to the positive definiteness of (U, U). (
0.) This implies an upper bound on the average

of the fact that 1), X](U, (7)1,,,1X1 >

off-diagonal term in (R, R) since (W, W) is a diagonal matrix. Since v, are orthonor-
mal, the sum of all the elements of (R~ )~ is given by [ 3, ¥;l13. Since || D iea, ¥ills =
ZjeAl 19,113 + Z#leAl ¥;¥: and since (W, W) is a diagonal matrix, it must be the case that

m1(m1— ) Z ij:—

J#leA;

Therefore,

_ 1
P i (m, — 1)( Zy’

jeAy

-y ||y,||2)

jed;

This implies that
2

Y H| =m D 1wl

jed; 2 jed;
Next, bound max;c 4, [|7;]l5-
Note ||%;13 = IIF;|I3 since V' is orthonormal. Note that |w;||Z is upper bounded
by @min(m + 50)(G)~'. To see this, note that ||, = Il¢;Qprejwjllf < ¢fllwjll} = ¢/n,

where ¢; is the normalizing constant such that W; = ¢;Qpr.;. At the same time, c; sat-
isfies ||V, Qprej w1 = cj‘2 whenever w; ¢ span(}). Note also that 1M, Qpre-jw; I >
| Qsyupre-jW; I, Where the notation Qg e, denotes projection onto the space orthogonal
to covariates indexed in S, or selected before w;. To see this, consider an arbitrary Hilbert

space H, projections onto closed subspaces 1,2, 12 = span(1 U 2), Py, P,, Py,, projections
onto the respective orthogonal complements Q,, Q,, Qy,, and any vector w. Then w =
lew + (Puw. Then Qlew = Qlelew + Qle‘:P]zw = lew + QzQ]iPlzw. Note that the in-
ner product between the above two terms vanishes: (Q,w, Q91 Ppw)y = (w, QpPrw)y =
(w, Ow) = 0. Then by the Pythagorean theorem, [|Q,Q,w||Z = | Quwl|} + 122 Prw|} >
||lew||§. So [|1Qpwllgy < 19:9w]|y. Therefore, the quantity ||QSUUprc-jwj|||2-| is lower bounded
by n@min(m + 50)(Gy). As a result, cl? < @min(m + 50)(Gy) ™', giving the desired bound on
l;]17. Therefore, ||F|IZ = Wil — 1 < @min(m + 5)(Gu)~' — 1. It follows that

max || 7113 < @min(m + 50)(Gy) ™' —
jed;



ANALYSIS OF TESTING-BASED FORWARD MODEL SELECTION 9

This then implies that

2

< My @min(m + 50)(Gp) ™.
2

2.7

jedy

The same argument as above also shows that for any choice ¢; € {—1, 1} of signs, it holds
that

2

< M @uin(m + 5)(Gr) ™.
2

> e

jeAr

(In more detail, take We =[w;ej, ..., 1I)jm1 ej,, 1, etc. and rerun the same argument.)

S.3.5. Proof of Lemma 10

In this proof, the number of elements of A, is bounded. Recall that the criterion for j €

. _ 22
Az is that |’ng| > a0 H

Guiay7- Note also that ¥;; is found by the coefficient in the expression
> Vs €

- .- 1 .
= 580 =0 )

Next, let H be H =[vy, ..., vy, Wi, ..., wy,]. Note that

1

— M, W, € span(H).
(o o P

Therefore,

- _ 1 -
Yiz = <87 H><H7 H) 1<H7 WMSOw]>

Let u; be the sign +1 for each j € A4, such that y;; > 0 and —1 for each j € A, such that
/2,172
<3<s,?vts0 ent/2?

¥jz < 0. By the fact that j € 4, yjzu; > summing over j € A, gives

1 1*n'?

> (e, H)(H, H>-1<H,

M 11)-,u->>mz
1727 0 iz
iety ((e, M, )

(3 M)
This implies that

. 1 _ tli/an/z
(H,H) '(H, 12 stowj/""f

((8, M508>) jeA,

||<8’H>”oo>m2 12°
1

(3 (&, M, s))
which further implies that

t:‘/2n1/2

v m—+ S

1 -
<H7H>I<H7 1/2 ZMsijMj>

((8’ Mso‘g)) jeAy

||(3,H)||oo>m2 12"
2

(3(2, Myy2))
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Next, further upper bound the || - ||, term on the left side above by

_ 1 i
” (H,H) '<H, W>ZMfowjﬂj> 2
>0 jeA,
nl2
< 5 Pmn(So +m)(Gu) | M, Dy
((e, My, 8)) > H

Next, by the fact that M, is a projection (hence non-expansive) and w; are mutually

orthogonal,
n-12
S 77 Pmin(S0 + m)(Gy)~"? Z ;117
((&; My, €)) \ etz

Earlier, it was shown that max; [|0;]|3 < @min(so +m)(Gy)~'. Therefore, putting the above
inequalities together,

-1/2 t1/2 1/2
va—}—so(pmm(m—f—so)(GH)lJm—2||(s,H)||w>m2 n
e, My, e

This implies that

n
2"

(3(e, My,e))

ma < =2 (8,1 s))(m—i—s)M 01+ 50)(Go) 2
2 n2 t ’ S0 0 S/M P @min 0 H .

S0

In the case of Theorem 1, this is further bounded by

AN

; Pmin(M + 5)(G) 2.

<3(m+so)
Under the assumed condition that /2 > 2||E,[x;&] || so @min (71 + 50) (G) 7!, it follows that
3
m; < I (m+sp).

Similarly, the condition of Theorem 4 that E[E,[¢¥]] < %gomm(E[G])’]c;est yields m, <
2(m + sy) in the same way. Finally, substituting m = m; + m, gives

m, < 3m1 + 3S().
S.3.6. Proof of Lemma 11
Combining m; < @uin(m + so)(GH)‘le2C32(K§)2s0 and m, < 3(m, + s,) gives
m < [4@min(m + 50)(Gw) " C2C2(KE) + 3]s,

In addition, in the case of Theorem 1, C} =  @umin(m + 50)(Gy), C; = @min(m + 50)(Gy),
C? = (G712 = @uin(m + 50)(GR) ™2, C2C2 = 6@min(m + 5)(Gw) 7%, and K& < 1.783.
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Therefore, m < (3424 x 1.783% X @pmin(m +50)(Gy)™)s,. Because @pin(m +50)(Gy)~' > 1
and 3 + 24 x 1.7832 =79.2981 < 80, it holds that

m < 80 X @uin(m + 50)(Gy) ~*s0.

This bound holds for each positive integer m of wrong selections, provided #!/? >
2@0min(m + $0)(G) ' |E,[x;&]]|s- This concludes the proof of the sparsity bound for The-
orem 1. Using similar reasoning in the case of Theorem 4, on the event T, it follows that
m < 80 X @umin(m 4 50)(Gp)~*cioiso provided E[E,[£%]] < §@min(m + 50) (E[G]) ' ¢, Set-
ting m = K.y — o contradicts Condition 2 by K., < 80 x gomin(Ktcst)(E[G])"‘ct”est_3 + 5y <
K. Therefore, m < Ki.i; — 5o and thus

/S\S (80 X gomin(l<test)((;H)ch/i3 + 1)S0,

test

completing the proof of the sparsity bound for Theorem 4.

S.4. PROOF OF THEOREM 5

The strategy is to apply Theorem 4 using the conditional distribution P, for D,,
conditional on x. The unconditional result is then shown to follow. Let &,(S) =
E[£(S)|x]. In addition, for j ¢ S, let 0;‘;‘ = (x}sxl-s)‘lx}SE[x}S(x00 + &*)|x] so that [ij‘sx]j =
(x}Qij)‘lE[x}Qs(xGO + &*)|x]. Throughout the proof of Theorem 5, use an abuse of
notation by writing I//\js = [I//\js] ;i Let

Z‘S = f/;;]/z([b\js]j - [ej‘SX]J)

Let z, = ®7'(1 — a/p). Let A be the event given by

~ 1
A= {|Zj5| < ( —;CT>?J-Sta for all j, |S| < K,,}.

Note that —A;€,(S) = [0} A;s for Ajs defined by A;s =[G1;;.
The next lemma states size, power, and continuity properties of the tests of Definition 1.

LEMMA 12: The following implications are valid on A for all j, |S| < K,:

L Tisa =1if —=A;€.(S) = AjsVis(2¢,)* Tt

2. —0E(S) = AusVis(52 T2 if Tis, = 1.

3. —AE(S) < FR(+ G (14 29))2(—A84(8)) if Tis = 1, Wis = Wis.

Next, define a sequence of sets X = X, which will be shown to have the property that
both P(x € X) — 1 and

PX(A) =ess in£P(A|x) — 1.
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/"

In addition, there will be constants Cieq, Cp.> Crng, > 0 Which are independent of » and
the realization of x, such that for Cieq = 2 Ciests Cloqy = =+ Croqe and for the set B defined by

test

74 220 2
1. AjSI/jS(ZCT) 'Tjsta = Ctests

~ (1—c\
2. AjSI/jS( T> 2>

2 JjSTa — “test? |S| <Kn
AsVi 1+ec, Tes )\ 2
3. ksl‘s(u te (1+E)> >l
AjsVis l—c¢ Tjs

it holds that P*(B) — 1.
Define sets X = X, as follows. Set X = X; N X, N X5 N X, with

Xy = {x : max;., E,[x;?] = O(1)},

Xy ={x: emn(K,)(G) ' =0(1)},

X5 = {x :max; jg<x, 1,5l = O(1)},

Xy = {x : P(@min (K (Eu[e7x,x]) ' = O(D)|x) =1 — o(1)}.

Note that P(X,), P(X,), P(X;) — 1 by assumption. In addition, failure of P(Xy) — 1
would contradict the unconditional statement in Condition 4 that

P(emin (K (E,[e]x:2]]) " = O() =1 - o(D).

Therefore, P(X) — 1.
The next two sections prove the following two lemmas.

LEMMA 13: PY¥(A) — 1.

LEMMA 14: PX(B) — 1 for some ciq, Clost> Croge A8 described in the definition of B above.

The previous results show that for each n, Theorem 4 can be applied conditionally on x
With Ciest Clogr Crly defined above, with Koy = K, — 1, and with 1 — a — 8¢ = P*(A N B).
Note that renormalizing the covariates to satisfy E”[x?j] = 1 does not affect £,(S) and
therefore does not affect the conclusions above. Moreover, on X, renormalizing does
not affect boundedness of sparse eigenvalues of G. The unconditional result is shown as
follows. By Theorem 4,

Px(En[(x;O;Lx — x,@)z]l/2 <O(/slogp/n)) — 1.
Note that 9;::‘ — 6= (x’soxso)*lxgoE[sﬂx]. As a result,

|60 — 65

|, < @min(50)(G) || B, [xi, E[21x]]
< @uin(50)(G) 250 | EW[x,E[ 21x]] |

o0

By the assumed rate conditions, sparse eigenvalue conditions, and by max; E[&}] =
O(n~'?), the bound on |6, — 0;{'f||2 implies further that PX(En[(xQGE‘)X — x;00)%V? <
O(y/splog p/n)) — 1. Theorem 5 follows by triangle inequality.
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S.5. PROOF OF SUPPORTING LEMMAS FOR THEOREM 5
S.5.1. Proof of Lemma 12
For this proof, work on A and suppose |S| < K,. To prove the first statement, suppose

that —A;€,(S) > AJSVS(2C )*7Tit;. Then

[ *‘x] Ajs > AJSVJS(ZC )’T: jzstczp

[6:5],] = Vi*2c)Tists

035);] = V§* e Fiste — |[635°], — (05151

14c¢, )\~
(651 = V> 2c)Fjsta — V”( 5 )r,sra,

—~ i
|[9js]j| > I/jS/ CrTislas

which implies 75, = 1.
Next, prove the second statement. By construction, if Tjs, = 1, then |V_1/ [0]«3] il >
¢, Tistq, which is equivalent to

(051)] = e Tsta V™
Note that |[/0\jS]] [0*‘)(] | < V]/Z(HCT)T]SI,‘ Then Tj5, = 1=
*x 1 +c; . c, — 1
|[ | ] | > T,St Vjé/2 I/jyz(T)T/s a—V,ézT,sl‘ ( : >
tZ(C—fl )2.

Therefore, —A;&,(S) > A;sVs7 ista

Finally, prove the third statement. Note that Wy < Wy implies Zg1/2|[§ks]k| <
Vis|[0js];]. Then

- *X ]‘+C *x 1+CT o~
Vs 1[0, |—( 5 )mt <56 ]k|+(—2 )Tjsfa

- o o 1+ T\~ -~
S G R TR Cy R

1/2

= T4 (-AE)

- T+c\ o o
SV_,-EI/ 1/2( A&, (S))l/z ( _;C )(TkS+TjS)ta

172

=V AP (—A8.(9))

172

AV e\ P
1 +CT R R 2 TjS a
+ | —— | (Frs +Tjs) e

2 ~(1—c )\
AjsVJS< 5 )Tfsti
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Using the fact that —A;E,(S) > 4 jSI’/\js(l’z"T)zﬁgti (because Tis, = 1), gives that the
previous expression is bounded by

I+e\ ~ <
3 (Trs +Tis)ta

 —c 2 12
(5 7)

- 1+c, Tus + 7
_poe Aj;/z(l . iu)( Aj($)".

CT—l Tis

1/2 1/2

IA

A (—AE(S)) (—4,€4(8))

This gives —A;E.(S) < V’“A"S(l + 1+C’(l + 2 T“ )) (—4;E.(5)).

S.5.2. Proof of Lemma 13
Note that

Zis = V5" (05s), — [0)5])
= zgl/z(x’.stj)flx’,Qs(s — E[elx])
= ((%]25%)) ' Ea[8551Q5;517] () 9sx,) ) () 0sx,) " x)Qs(e — Elelx])
e ,
[ (misx3s) T i (e — Elelx).
[z

& s(n}sxijs)z]_l/zn}sxjs(a" + &* — E[&%|x]).

sl Qsx;s]7] sz;-Qs (e — El&lx])

Let & = &° + &* — E[&*|x]. Define the Regularization Event by

ik€i

<t,foreveryk <p

E Xlk{-,‘

In addition, define the Variability Domination Event by

. 1
V= {foklez ( e > Zxkafjs for every k € jS, for every |S| < K,
i=1

The definitions of the Regularization Event and the Variability Domination Event are
useful because

RNV =A.
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To see this, note that on R, the following inequality holds for any conformable vector »:

2

(e <

i=1 kejS

(taZw >
_(1—|—CT>2 kejs i
= .

2

-~
§ ( i ) Eiis
i=1 “kejS

2 ' 2\1/2)2 2
_ <1+CT) 2 |» Diag(¥5s) | Z(ZV;JM) =
= P 75 i ijS*
2 v q’fSV i=1 “kej$
Specializing to the case that v = n;5 and using 7, IV DisgVy) Pl gives that
=T7;js s = ——F—
I+

|2j5|§ ’Tjsta onRNWV.

2

It is therefore sufficient to prove that R and V have probability — 1 under P*.
P*(R) — 1 follows immediately from the moderate deviation bounds for self-normalized
sums given in Jing, Shao, and Wang (2003). For details on the application of this result,
see Belloni, Chen, Chernozhukov, and Hansen (2012).

Therefore, it is only left to show that P*(V) — 1. Define g;5 =y, — x;js(ﬂgx. Further-
more, define ;5 through the decomposition g;5 = &; + &;5. Let g;5 and &5 be the respec-
tive stacked versions. Let ¢ = ((1 + ¢,)/2). Then

n n n n n
~ 220 _ = 2 (2 2 2 2 2 - 2 g2
Cr § :xikgijS = Cr|:§ :xik(gijs — &) + § X+ 2 § X Eikis + § :xikgszj|
i=1 i=1 i=1 i=1 i=1
n n n
~ 2 /\2 2 2 -.2 2 .
=G E ixik(gijs - 3ijs) + § X3 € +2 § X €iijs
i=1 i=1 i=1
n n ~ n
. ) ~ 2 (=2 2 (C'r - 1) 2 D
= § :xikei +c § :xik(gijS - SijS) + 3 § :xiksi
i=1 i=1 i=1

n

e ¢ —1 .
+ 2C,- Z X?ké‘,f,‘js + ( ) ) Z X?ké‘?.
i=1

i=1
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Define the two events

¢, — 1
V= {ETE,, [x% (825 — 25)] + =D

5 E,[x;&]>=0forall j, k < p,|S| < Kn},

V= {ZETEn [x?kéigijS] + @

VB[] = 0forall .k < p. 15| < Kn}.

Therefore, VNV = V.

Note that E,[x%&] > 1E,[x} &]] — E,[x%E[?|x]] > iE,[x} ] — max;., E[¥|x]"/? x
E,[x},1"/2. This is bounded below with P* — 1 by a positive constant independent of .
Therefore, to show that P*(V') — 1, P*(V") — 1, it suffices to show E,[x% (’éfjs — sfjs)]
and E, [x?, £:&;s], respectively, are suitably smaller order.

First consider E,[x% (’éfjs — sfjs)]. It is convenient to bound the slightly more general
sum E, [xy xu(2}5 — €)1, because this will show up again:

B [xixa (5 — 3]
=2E, [xikxilgifsxi‘jS(egx - /9\13)] +E,[xuxa (xi‘jS(O;‘sx - 5/8))2]

*|x -~ 2
075 — 0js]),-

0;‘: B /0\1'5 ”z + Amax sy [xikxilxijsx;js] |

< 2||En [xikxilgijsx;jS] ||2|

Standard reasoning gives that ||0;7'Sx - @5||2 < @umin(K,) (G) 2K, |IE, Xjjs€s || oo- There-
fore, the bound continues:

<2|E, [xicXasisxys] “ZQDmin(Kn)(G)_I/Z\/I?n”]EnxiszijS lloo
+ )\maxEn [xikxilxszx;'js] ¢min(Kn)(G)_lKn ”Enxijsgijs ”io

Note that )\max]En [x,-kxﬂx,-jsx;-js] < Kn maxX;, En [xj;]

< ZH]En [xikxilsifo;'js] “z‘Pmin (Kn)(G)_l/Z\/EHEnxzfsb‘ijs lloc
+ K,zl I?SE;XEYL [Xi] ¢min(Kn)(G)_1 ||]Enxij58ijs ”io

An application of Cauchy—Schwarz to the top line gives

< 2y/K, maxE, [x}]"" maxE,[s55x]]" onin (K (G) VK, B xysess o

+ Kﬁ I?j}JXE" [xi] ﬁomin(Kn)(G)_l ”Enxijsstjs ”io

Next, | E,x;s€is|l and I[-En[sfjsx?j]l/2 are bounded using &;5 = &; — E[&;|x] + &;5. Note that
by construction, ||E,[x;s&;s]llo = 0. Then

oo  [Ea[xE[sl1]]].

< |Eulxied|  + maXIEIn[xfj]]/Z]E,,[E[(c;‘;‘pc]z]”2 =0(/log p/n)
J=p

”En[xzjssijS]”oo = ||]En[xi8i]
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with P* — 1. Next,
E,[&sx;] < 3Ea[81x}] + 3B, [E[ &} |x]x5] + 3B, [ £%]
"5

1/2
i

< 3En[sfxfj] +3E, [xlzj] max E[sj‘zlx] + 3En[§ijs
Next, (IE,,[§4S])1/2 < O0(1)st on X; N X;5. To see this, note &5 = Qjsx0 = > 2, Qjsx,00, =
> Mus)Xiis = TjsXs,u;s for some new linear combination 7;5. Note that [|7);s]l; <
s500(1). Then (E, [51]5])1/4 < |95l maxg<, E,[x},]"/* from which the bound follows.

Next consider E, [x ké,-&,-s]. Consider two cases. In Case 1,

e _ 1@ =) E[xE]
[ lkgljs] — ZC 2 .271/2 "
v En[‘gi]

In this case, 2¢,E,[x7, &:&;is] < E,[x}, fljs]l/zEn[Zé?]“z C’ L and the requirement of V" for
k, j, S holds.

For Case 2, suppose the alternative that E,[xjx}] > 5= )E”[[xgkll;; holds. Then

E[E, [x,qusaz]lx] is bounded away from zero by conditions on E[&?|x] and max;|&?|. In
addltlon E[En[|xtk| |§sz| |8| ]lx] = maXzE[|81| |X]]E [lxzkl |§I/S| ] =< 0(1)]E [lxlkl |§sz| ]
This term is further bounded by O(1)E,[x/2]*E,[|£;s1°1"/?. Using the same reasomng
as bounding E, [} is earlier, it follows that IEI,1[|§US|(’]1/2 O(1)s;. In addition, E,[x}7] =
O(1). As a result, for those k, j, S which fall in Case 2, the self-normalized sum

\/ﬁ|En [x?kgifséi“
= max

J,k,SeCase 2
[ zk gl]Ss ]

is O(log(p¥")) with probability 1 — o(1) provided /log(p&r) = o(n'/°/(s3)"?). This
holds under the assumed rate conditions. Then max; g |E, [x,zkf,jslé‘ﬂ is bounded by
iO(log(pK"))ma .5y EalXj €571 Furthermore, E [xlqussz] <E [xlkfus]l/zEn[é;‘]l/zf
(E,[xZ1PE,[ %]1/3)1/2E,,[8?]1/2 < O(1)s2E,[£9]"2. Note that E,[£/]"? < O(1) with P* —
1. Together, these give that max; s E,[x7 &:&;s]1 = o(1) with P* — 1. Finally, P*(V) — 1.

S.5.3. Proof of Lemma 14

First, A;s depend only on x and are bounded above and below by constants which do
not depend on n on X from the assumption on the sparse eigenvalues of G. For bounding
7;s above and away from zero, since 1 < [[m;sl1, lIm;sll- < O(1) on X, it is sufficient to show
that the eigenvalues of ng = En[x,»jsx;js’s\és] remain bounded above and away from zero
and that the diagonal terms of ll’fs remain bounded above and away from zero. Note that
by arguments in the last section, it was shown that E,[x; X, (€5 — €;5)]1 = O(y/log p/n)
with P* — 1. Therefore, ||E, [x,jgxljssljs] E,,[xijsx;jssg.s]||g = O(K,+/log p/n) with
P* — 1. Here, 7 is the Frobenius norm. By the assumed rate condition, the above quan-
tity therefore vanishes with P* — 1.
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Next,
En[xiisxXjs€hs| = En[Xysx)s87 | + 2Ea[xy5X58: (€55 + E[&]1x])]
+ B, [xiis X (€55 + E[e}1x])]-

The first term above, ]E,,[x,-jsx;jssf], has eigenvalues bounded away from zero for all j,
S with P* — 1. The third term above, E, [xyis x5 (s + E[&?|x])?], is positive semidefinite
by construction. The second term above has Frobenius norm tending to zero for all j,
S with P* — 1. This, in conjunction with the fact that the eigenvalues of En[x,-jsx;js’e\,-js]

are bounded above and away from zero with P* — 1, shows that the eigenvalues of
IIfﬁg = IE,,[xi,»Sx;jS’é?jS] are bounded above and away from zero with P* — 1. Finally, for
bounding Vi, it is sufficient to show that max;., En[s?(ngsx,-js)z] be bounded above. This

follows immediately from E[&}|x] being uniformly bounded and max; s | ;s = O(1) and
max-, E,[x} ] = O(1). These imply that P*(B) — 1.
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