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APPENDIX A: PROOFS FROM SECTION 3

A.1. Stronger Properties of Bank Account Mechanisms

IN ADDITION TO (DIC) AND (EPIR), bank account mechanisms satisfy stronger versions
of both IC and IR, which we describe below. The mechanism is per-period incentive com-
patible, that is, the buyer’s utility in each given period is maximized by reporting truthfully
in that period,

θt ∈ arg max
θ̂t

ut

(
θt;θt−1� θ̂t

) ∀t� θt ∈ Θt� (PPIC)

and the expected continuation utility is independent of the type reported, that is,

Ut

(
θt−1� θ̂t

)
is independent of θ̂t ∀t� θt−1 ∈ Θt−1� θ̂t ∈ Θ� (INDU)

It is straightforward from the definition of (DIC) that (PPIC) and (INDU) imply (DIC).
The mechanism also satisfies a stronger version of (EPIR): It is ex post individually

rational for every prefix and every realization of the random variables,

t∑
τ=1

uτ

(
θτ;θτ

) ≥ 0 ∀t� θt ∈ Θt� (PFIR)

Moreover, each individual period is individually rational in expectation:

Eθt

[
ut

(
θt;θt

)] ≥ 0 ∀t� θt−1 ∈Θt−1� (PEIR)

The fact that bank account mechanisms also satisfy (PPIC), (INDU), (PFIR), and (PEIR)
follows directly from the proof of Lemma 3.2.
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A.2. Proof of Lemma 3.2

PROOF OF LEMMA 3.2: First, we prove that conditions (IC) and (BI) imply that the
mechanism satisfies (DIC). By definition,

ut

(
θt; θ̂t−1� θ̂t

) = θt · xt

(
θ̂t−1� θ̂t

) −pt

(
θ̂t−1� θ̂t

)
= θt · xB

t

(
θ̂t� bt−1

(
θ̂t−1

)) −pB
t

(
θ̂t� bt−1

(
θ̂t−1

))
�

Combined with (IC), we have

ut

(
θt; θ̂t−1� θ̂t

) = θt · xB
t

(
θ̂t� bt−1

(
θ̂t−1

)) −pB
t

(
θ̂t� bt−1

(
θ̂t−1

))
≤ θt · xB

t

(
θt� bt−1

(
θ̂t−1

)) −pB
t

(
θt� bt−1

(
θ̂t−1

)) = ut

(
θt; θ̂t−1� θt

)
� (A.1)

By (BI), Eθτ [uτ(θτ; θ̂t−1� θ̂t� θt+1� � � � � θτ)] is constant with respect to bτ−1 = bτ−1(θ̂
t−1� θ̂t�

θt+1� � � � � θτ−1) and hence also constant in θ̂t , namely,

Eθτ

[
uτ

(
θτ; θ̂t−1� θ̂t� θt+1� � � � � θτ

)] = Eθτ

[
uτ

(
θτ; θ̂t−1� θt� θt+1� � � � � θτ

)]
�

Therefore,

Eθt+1�����θT

[
T∑

τ=t+1

uτ

(
θτ; θ̂t−1� θ̂t� θt+1� � � � � θτ

)]

= Eθt+1�����θT

[
T∑

τ=t+1

uτ

(
θτ; θ̂t−1� θt� θt+1� � � � � θτ

)]
� (A.2)

Adding (A.1) and (A.2) together, we have

ut

(
θt; θ̂t−1� θ̂t

) +Eθt+1�����θT

[
T∑

τ=t+1

uτ

(
θτ; θ̂t−1� θ̂t� θt+1� � � � � θτ

)]

≤ ut

(
θt; θ̂t−1� θt

) +Eθt+1�����θT

[
T∑

τ=t+1

uτ

(
θτ; θ̂t−1� θt� θt+1� � � � � θτ

)]
�

which directly implies (DIC).
We then show that (BU) implies (EPIR). Summing up (BU) for t = 1 to T , we have

T∑
t=1

bt ≤
T∑
t=1

(
bt−1 + θt · xB

t (θt� bt−1)−pB
t (θt� bt−1)

)
�

=⇒
T∑
t=1

(
θt · xB

t (θt� bt−1)−pB
t (θt� bt−1)

) ≥ bT − b0 ≥ 0� (A.3)

Again, by definition,

ut

(
θt;θt

) = θt · xt

(
θt

) −pt

(
θt

) = θt · xB
t (θt� bt−1)−pB

t (θt� bt−1)�
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Condition (EPIR) is then implied by (A.3), that is,

T∑
t=1

ut

(
θt;θt

) =
T∑
t=1

(
θt · xB

t (θt� bt−1)−pB
t (θt� bt−1)

) ≥ 0�
Q.E.D.

A.3. Proof of Lemma 3.3

The first step of the proof is a symmetrization lemma. Central to this lemma is the
concept of partially realized utility, which measures the expected utility of an agent con-
ditioned on some prefix of the type vector:

Ūt

(
θt

) =
t∑

τ=1

ut

(
θτ;θτ

) +Ut

(
θt

)
�

In addition, the dynamic mechanism after symmetrization will satisfy the payment-
frontloading and symmetry properties.

DEFINITION A.1—Payment Frontloading: A dynamic mechanism is payment front-
loading if

ut

(
θt

) = 0 for t < T and uT

(
θT

) ≥ 0 ∀θT � (PF)

The property is a stronger version of (EPIR).

DEFINITION A.2—Symmetry Condition: A dynamic mechanism satisfies the symmetry
condition if for every t < s and θt� θ′t ∈ Θt ,

if Ūt

(
θt

) = Ūt

(
θ′t)� then

xs

(
θt� θt+1� � � � � θs

) = xs

(
θ′t � θt+1� � � � � θs

)
and ps

(
θt� θt+1� � � � � θs

) = ps

(
θ′t � θt+1� � � � � θs

)
�

(SYMM)

LEMMA A.3—Payment Frontloading: For any mechanism (xt�pt) satisfying (DIC) and
(EPIR), there is a mechanism also satisfying (DIC) and (EPIR) with the same allocation and
ex post revenue such that the agent is charged her full surplus in each period except the last.

LEMMA A.4—Symmetrization: Any dynamic mechanism satisfying (DIC) and (PF) can
be transformed into a mechanism (xt�pt)t with at least the same welfare and at least the same
revenue as the original dynamic mechanism, satisfying: (i) (DIC), (ii) (PF), and (iii) (SYMM).

At first glance, our symmetrization lemma resembles the promised utility framework
of Thomas and Worrall (1990), which can be viewed as a symmetrization of the mech-
anism with respect to the continuation utilities Ut . Their result can be viewed as an ap-
plication of the principle of optimality of the theory of dynamic programming (Bertsekas
(2000)), which describes the structure of an optimal solution that can be obtained by
solving an infinite-size dynamic program. The symmetrization obtained in Thomas and
Worrall (1990) is insufficient for our needs. Our solution is to transform the optimiza-
tion program to a different space and apply the principle of optimality to the transformed
program.

Next, we prove the frontloading and symmetrization lemmas leading to the proof of
Lemma 3.3.
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PROOF OF LEMMA A.3: Given a mechanism (xt�pt) that satisfies (DIC) and (EPIR),
define mechanism (xt� p̃t) such that p̃t(θ

t) = θt · xt(θ
t) for t < T and

p̃T

(
θT

) =
T∑
t=1

pt

(
θt

) −
T−1∑
t=1

θt · xt

(
θt

)
�

The mechanism clearly has the same revenue as the original, since for any θT , we have∑T

t=1 pt(θ
t) = ∑T

t=1 p̃t(θ
t). Since the ex post allocation and ex post revenue are the same

in the two mechanisms for every θT , the ex post utility should also be the same. In par-
ticular, it should always be nonnegative and therefore (EPIR) holds. Since (DIC) can be
formulated in terms of ex post utilities, it also holds after the transformation. Q.E.D.

One important property that we will use heavily is that since ut(θ
t) = 0 for all t < T ,

the continuation utility Ut and the partially realized utility Ūt become synonymous.

PROOF OF LEMMA A.4: By Lemma A.3, we can assume that (xt�pt) is a payment-
frontloading mechanism. Let us first define property (SYMt):

if Ūt

(
θt

) = Ūt

(
θ′t)� then ∀s ≥ t� θs ∈ Θs�θ′t ∈Θt�

xs

(
θt� θt+1� � � � � θs

) = xs

(
θ′t � θt+1� � � � � θs

)
and ps

(
θt� θt+1� � � � � θs

) = ps

(
θ′t � θt+1� � � � � θs

)
�

(SYMt)

We will show that (SYMt) works for all t by induction. Precisely, we show that if
(xt�pt) is payment-frontloading satisfying (SYMt) for t ≤ τ− 1, we can transform it into a
payment-frontloading mechanism with at least the same revenue such that (SYMt) holds
for all t ≤ τ.

For the inductive step, partition the set of all possible type vectors θτ into classes with
the same partially realized utility, that is,

Sτ(z) = {
θτ|Ūτ

(
θτ

) = z
}
�

For each z, choose θ∗τ(z) ∈ Sτ(z) maximizing the expected welfare of future periods

Wτ

(
θτ

) = Eθτ+1�����θT

[
T∑

t=τ+1

θt · xt

(
θτ�θτ+1� � � � � θt

)]
�

We define mechanism (x̃� p̃) such that x̃t = xt and p̃t = pt for t ≤ τ. For t > τ, we have

x̃t

(
θt

) = xt

(
θ̃τ� θτ+1� � � � � θt

)
� where θ̃τ = θ∗τ(Ūτ

(
θτ

))
�

p̃t

(
θt

) = pt

(
θ̃τ� θτ+1� � � � � θt

)
� where θ̃τ = θ∗τ(Ūτ

(
θτ

))
�

We argue that (x̃t� p̃t) has the desired properties:
• It is still a payment-frontloading mechanism, since the allocation and payments from

each type vector of length t are replaced by the allocation and payments of another
type vector of length t, so the agent still has zero utility in all steps except the last.
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• It is still (EPIR). Let ũt(θ
t) be the period utility of mechanism (x̃t� p̃t). Since it is still

payment-frontloading, ũt(θ
t) = 0 for all t < T . Therefore, it is enough to argue that

ũT (θ
T )≥ 0. By the transformation, there is another type vector θ′T−1 such that

ũT

(
θT

) = θt · x̃t

(
θt

) − p̃t

(
θt

) = θt · xt

(
θ′t−1� θt

) −pt

(
θ′t−1� θt

) ≥ 0�

since the original mechanism is also (EPIR) and payment-frontloading.
• It is still (DIC). For t > τ, the (DIC) condition follows directly from the fact that the

original mechanism is (DIC). For t = τ, we use the fact that

θτ = arg max
θ̂τ

ut

(
θτ; θ̂τ

) +Ut

(
θ̂τ

) = arg max
θ̂τ

ũt

(
θτ; θ̂τ

) + Ũt

(
θ̂τ

)
�

where Ũt is the continuation utility of the transformed mechanism. This expression
holds since (i) we did not change the period utility of period τ, (ii) we were careful
to change the mechanism to preserve partially realized utilities, and (iii) since the
mechanism was a payment-frontloading mechanism, the partially realized utilities
coincide with continuation utilities, so we are also preserving continuation utilities.
Finally, for t < τ, we can use the same argument. Since the continuation utilities of
period τ are preserved and the period utilities between periods t and τ are preserved,
the continuation utility of period t is also preserved.

• Condition (SYMt) holds for t = τ. This condition holds by design.
• Condition (SYMt) holds for t ≤ τ − 1: The condition is clearly true for s ≤ τ. For
s < τ ≤ u, consider two type vectors θ′s and θ′′s with the same continuation util-
ity in the original mechanism. They must also have the same continuation utility in
the new mechanism, since we argue that the continuation utilities are preserved for
t ≤ τ. By the induction hypothesis, the allocation and payments must be the same
in the original mechanism for (θ′s� θs+1� � � � � θu) and (θ′′s� θs+1� � � � � θu) for any type
vector θs+1� � � � � θu. Therefore, Uτ(θ

′s� θs+1� � � � � θτ)= Uτ(θ
′s� θs+1� � � � � θτ) := z, which

means that both types are in the class, that is, (θ′s� θs+1� � � � � θτ)� (θ
′′s� θs+1� � � � � θτ) ∈

Sτ(z). Therefore,

x̃u

(
θ′s� θs+1� � � � � θu

) = xu

(
θ∗τ(z)�θτ+1� � � � � θu

) = x̃u

(
θ′′s� θs+1� � � � � θu

)
�

p̃u

(
θ′s� θs+1� � � � � θu

) = pu

(
θ∗τ(z)�θτ+1� � � � � θu

) = p̃u

(
θ′′s� θs+1� � � � � θu

)
�

• The expected welfare does not decrease, since we always replace a suffix of the mech-
anism by one with at least the same expected welfare:

SW = Eθτ

[
τ∑

t=1

θt · xt

(
θt

) +Wτ

(
θτ

)] ≤ Eθτ

[
τ∑

t=1

θt · xt

(
θt

) +Wτ

(
θ∗τ(Ūτ

(
θτ

)))]

= Eθτ

[
τ∑

t=1

θt · x̃t

(
θt

) + W̃τ

(
θτ

)] = S̃W�

• The expected revenue does not decrease, since expected revenue is the difference
between expected welfare and expected utility, and we argue that welfare does not
decrease, and the expected utility is the same. Q.E.D.
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PROOF OF LEMMA 3.3: A direct consequence of Lemma A.4 is that we can write
xt = xt(θt� Ūt−1) and pt = pt(θt� Ūt−1). Additionally, Ūt = Ūt(θt� Ūt−1) because by the
payment-frontloading property,

Ūt = Eθt+1�����θT

[
T∑

s=t+1

θs · xs(θt� � � � � θs� Ūt−1)−ps(θt� � � � � θs� Ūt−1)
∣∣∣θt

]
�

This allows us to define a bank account mechanism as follows. First, we define the balance

bB
t

(
θt

) = Ūt

(
θt

) −μt for t < T and bB
T

(
θT

) = −μT = 0�

where μt = minθt Ūt(θ
t) for t < T and μT = 0. Note that by Jensen’s inequality, μ0 ≥ μ1 ≥

· · · ≥ μT = 0. The allocation is the same as the original mechanism xB
t (θ

t) = xt(θ
t) and

payments are computed as

pB
t

(
θt

) = pt

(
θt

) − bB
t

(
θt

) + bB
t−1

(
θt−1

)
�

Since there is a one-to-one mapping between Ūt and bB
t , allocations, payments, and bank

account updates can be computed from the previous state of the bank accounts, that is,
xB
t (θ

t) = xB
t (θt� bt−1) = xB

t (θt� b
B
t−1(θ

t−1)), and the same holds for payments pB
t . Note that

we set the payments and the balance such that

θt · xt −pt + bB
t = Ūt −μt� (♦)

This is true because for t < T , the per-period utility θt ·xt −pt is zero since the mechanism
is payment frontloading; for t = T , bB

T = −μT = 0, and θT · xT − pT = ŪT , since by the
payment-frontloading property, the agent has nonzero utility only in the last period.

We will use this fact to check that the mechanism is a valid bank account mechanism.
First, note that by design, bB

t (θ
t) is always nonnegative and bB

0 = 0. It remains to check
conditions (IC), (BI), and (BU).

Condition (IC) follows from the definition of pB
t and the fact that the original mech-

anism is (DIC), since the maximization problem in (IC) becomes the same optimization
in (DIC) with an additional constant term. For t = T , this is trivial since bB

T (θ
t) = 0. For

t < T , we have

uB
t

(
θt;θt−1� θ̂t

) = θt · xB
t

(
θt−1� θ̂t

) −pB
t

(
θt−1� θ̂t

)
= θt · xt(θ̂t� Ūt)−pt

(
θt−1� θ̂t

) + Ūt

(
θt−1� θ̂t

) − (
Ūt−1

(
θt−1

) +μt −μt−1

)
�

since the term Ūt−1(θ
t−1)+μt −μt−1 is a constant in θ̂t and Ūt(θ

t−1� θ̂t) = Ut(θ
t−1� θ̂t) by

the payment-frontloading property. To check condition (BI), we apply equation (♦):

Eθt

[
θt ·xB

t −pB
t

] = Eθt

[
θt ·xt −pt +bB

t −bB
t−1

] = Eθt

[
Ūt −μt −(Ūt−1 −μt−1)

] = μt−1 −μt ≥ 0�

This establishes (BI), since the outcome is a constant that depends solely on t and not on
the value of bB

t . For condition (BU), we again apply equation (♦),

bB
t−1 + θt · xt −pB

t = bB
t−1 + θt · xt −pt + bB

t − bB
t−1 = Ūt −μt ≥ bB

t �

where the last inequality holds with equality for all t < T . Q.E.D.



NON-CLAIRVOYANT DYNAMIC MECHANISM DESIGN 7

APPENDIX B: DIFFERENT NOTIONS OF IC AND IR

B.1. Stronger IR Notions

The main body of the paper focuses on satisfying (DIC) and (EPIR) and the main de-
sign goals. In Lemma 3.2, we argue that bank account mechanisms satisfy even stronger
notions. There are various variations over those notions that we can satisfy by slightly
changing the mechanism. For example, Lemma 3.2 implies that we satisfy the following
notion of expected IR continuation:

Eθt �����θT

[
T∑
τ=t

uτ

(
θτ;θτ

)∣∣∣θt−1

]
≥ 0 ∀t� θt−1 ∈ Θt−1�

The reader might ask whether it is possible to satisfy the same notion ex post with respect
to the tth type θt . In other words, can we satisfy the notion

Eθt+1�����θT

[
T∑
τ=t

uτ

(
θτ;θτ

)∣∣∣θt

]
≥ 0 ∀t� θt ∈Θt?

Note that they only differ in the conditioning of the expectations. This can be achieved by
any bank account mechanism by changing the payment rule to

p̂t(θt� b)= pt(θt� b)+ bt(θt� b)− b for t < T�

p̂T (θT �b)= pT(θT �b)− b�

The reader can verify that all properties studied are preserved under this notion. In fact,
condition (BU) implies that the previous transformation satisfies the even stronger notion
of ex post per-period IR. That is, under the p̂t payment rules, the mechanism satisfies for
all realization of types θt and all periods t,

ut

(
θt;θt

) ≥ 0� (PPIR)

This transformation almost preserves non-clairvoyance. If the original mechanism was
non-clairvoyant, the new mechanism is what we call quasi-non-clairvoyant. A quasi-non-
clairvoyant mechanism is the one that needs to be told when the last period is in that
period so that it can tailor its allocation and payment to the fact that we are in the last
period. This is exactly what is required to implement the previous transformation.

We know that there is a mechanism that is per-period individually rational, dynamic in-
centive compatible, and quasi-non-clairvoyant. Can we obtain the previous combination
with actual non-clairvoyance instead of quasi-non-clairvoyance? The answer is unfortu-
nately no.

LEMMA B.1: Any revenue that can be obtained by a non-clairvoyant mechanism that sat-
isfies (DIC) and (PPIR) can also be obtained by running a static, individually rational, and
incentive compatible auction in each period.

PROOF: The proof follows directly from Lemma C.1 in the following section, which
states that a non-clairvoyant (DIC) mechanism must also satisfy per-period IC. Q.E.D.
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B.2. Stronger IC Notions

Similarly, we can ask the same question about IC. Can we achieve even stronger notions
of IC? For example, can we achieve a version of (DIC) that holds for every realization
of types in future periods instead of in expectation over future periods? We call such a
mechanism super dynamic incentive compatible:

θt = arg max
θ̂t

T∑
τ=t

uτ

(
θτ; θ̂t−1� θ̂t� θt+1� � � � � θτ

) ∀θ̂t−1� θt+1� � � � � θT � (SDIC)

Unfortunately, this notion is too strong, as shown in Lemma B.2, which is restated here
for convenience.

LEMMA B.2: Any revenue that can be obtained in a mechanism satisfying (SDIC) and
(EPIR) can be obtained by running a static individually rational and incentive compatible
mechanism in each period.

PROOF: Consider the single-period mechanism with allocation defined by x̂(θ̂) =
x1(θ̂). By the (SDIC) property, for every θ2� � � � � θT , the payment rule p̂(θ̂) = p1(θ̂) −∑T

t=2 ut(θt; θ̂� θ2� � � � � θt) implements x̂. Since the payment rule p̂ is determined from x̂

up to a constant, the term
∑T

t=2 ut(θt; θ̂� θ2� � � � � θt) must be decomposable into a term
that depends only on θ1 and a term that depends on θ2� � � � � θT . Consider

T∑
t=2

ut(θt; θ̂� θ2� � � � � θt)= α(θ1)+β(θ2� � � � � θT )�

Since uT = u1(θ1;θ1) + α(θ1) + β(θ2� � � � � θT ) is nonnegative for every type profile, we
can adjust α and β such that u1(θ1;θ1)+α(θ1)≥ 0 for every θ1 and β(θ2� � � � � θT )≥ 0 for
every θ2� � � � � θT . We can then define the following mechanism.

• For the first period, allocate according to x1(θ1) and charge p1(θ1)− α(θ1).
• For all remaining periods, allocate according to Eθ1[xt(θ1� θ2� � � � � θt)] and charge
Eθ1[pt(θ1� θ2� � � � � θt)] with an additional payment of Eθ1[α(θ1)] in the last period
only.

We obtain a mechanism that is single-period incentive compatible and individually ratio-
nal for the first period and a mechanism satisfying (SDIC) and (EPIR) for periods 2 to T .
Note that the revenue remains the same.

By induction, we can find a mechanism that runs a static auction in each period and has
the same revenue as the original mechanism. Q.E.D.

APPENDIX C: PROOF OF THE NON-CLAIRVOYANCE GAP THEOREMS

C.1. Characterization of Non-Clairvoyant Mechanisms

We start by proving the following strong property of non-clairvoyant mechanisms.

LEMMA C.1: If xt(F
t� θt), pt(F

t� θt) represent a non-clairvoyant mechanism satisfying
(DIC) and Ut�T (F

T �θt) for t < T is the continuation utility of the corresponding clairvoyant
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mechanism,

Ut�T

(
FT �θt

) = Eθt+1�����θT ∼Ft+1�����FT

[
T∑

s=t+1

θs · xs

(
Fs�θs

) −ps

(
Fs�θs

)]
�

then Ut�T (F
T �θt) does not depend on θt , that is, Ut�T (F

T �θt)=Ut�T (F
T �θ′t).

PROOF: Fix FT and θt . First, we show that Ut�T (F
T �θt−1� θ̂t) does not depend on

θ̂t . Define the single-period mechanism for a buyer with valuation θ̂t ∼ Ft that allo-
cates according to x̂t(θ̂t) = xt(F

t� θt−1� θ̂t) and charges payments according to p̂(θ̂t) =
pt(F

t� θt−1� θ̂t) − Ut�T (F
T �θt−1� θ̂t). By the fact that the dynamic mechanism satisfies

(DIC), this mechanism must be incentive compatible, so the payment rule is uniquely
defined by the allocation rule up to a constant. Define an alternative payment rule
p′

t(θ̂t) = pt(F
t� θt−1� θ̂t). The mechanism defined by x̂t , p′

t must also be incentive com-
patible since the clairvoyant mechanism corresponding to the prior distribution sequence
Ft is also (DIC). Since these are two single-period incentive compatible mechanisms with
the same allocation rule, the payment rule must differ by a constant. Thus, the difference
Ut�T (F

T �θt−1� θ̂t) cannot depend on θ̂t .
We use induction to show that Ut�T (F

T �θt−1� θ̂t) does not depend on θt−1. Since we
know that Ut�T does not depend on θt , we indicate it by writing Ut�T (F

T �θt−1). By defini-
tion,

Ut−1�T

(
FT �θt−2

) = Ut−1�t

(
Ft� θt−2

) +Eθt∼Ft

[
Ut�T

(
FT �θt−1

)]
�

Since the last term does not depend on θt , we can remove the expectation:

Ut�T

(
FT �θt−1

) = Ut−1�T

(
FT �θt−2

) −Ut−1�t

(
Ft� θt−2

)
�

Hence, Ut�T (F
T �θt−1) does not depend on θt−1. Repeating the same argument, we can

show that Ut�T depends only on the distributions FT . Q.E.D.

To prove Lemma 5.2, we first prove a symmetrization lemma in the style of Lemma A.4.
There are some important differences: Instead of the partially realized utility used in
Lemma A.4, we will use the utility observed to date, which is a quantity we have access
to in non-clairvoyant mechanisms since it only involves the past. The second major dif-
ference is that it will not involve payment frontloading, since we have no access to the
future. The reason that we can do without those is the stronger property satisfied by the
non-clairvoyant mechanism described in Lemma C.1.

LEMMA C.2—Non-Clairvoyant Symmetrization: Given a non-clairvoyant dynamic
mechanism xt(F

t� θt), pt(F
t� θt), there is a non-clairvoyant mechanism x̃t(F

t� θt), p̃t(F
t� θt)

with the same revenue for each sequence of prior distributions, that is, for each FT ,

Eθt∼Ft

[
T∑
t=1

pt

(
Ft� θt

)] = Eθt∼Ft

[
T∑
t=1

p̃t

(
Ft� θt

)]
�

satisfying the following symmetry property: If
∑t

s=1 ũs(F
s� θs)= ∑t

s=1 ũs(F
s� θ′s), then

x̃t′
(
Ft�Ft+1� � � � �Ft′� θ

t� θt+1� � � � � θt′
) = x̃t′

(
Ft�Ft+1� � � � �Ft′� θ

′t � θt+1� � � � � θt′
)
�

p̃t′
(
Ft�Ft+1� � � � �Ft′� θ

t� θt+1� � � � � θt′
) = p̃t′

(
Ft�Ft+1� � � � �Ft′� θ

′t � θt+1� � � � � θt′
)
�
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PROOF: To prevent notations from becoming too verbose, we define ut(Ft� θt) =∑t

s=1 us(F
s� θs). Assume that the symmetric property holds for t < τ. We will construct

a mechanism for which the symmetric property holds for any t ≤ τ. Define x̃t and p̃t as
follows. For t ≤ τ, let x̃t = xt and p̃t = pt . For t > τ, define

x̃t

(
Ft� θt

) = Eθ′τ∼Fτ

[
xt

(
Ft� θ′τ� θτ+1� � � � � θt

)|uτ
(
Fτ�θτ

) = uτ
(
Fτ�θ′τ)]�

p̃t

(
Ft� θt

) = Eθ′τ∼Fτ

[
pt

(
Ft� θ′τ� θτ+1� � � � � θt

)|uτ
(
Fτ�θτ

) = uτ
(
Fτ�θ′τ)]�

In other words, we replace the allocation and payments in periods t > τ by the expected
allocation and payments for types θ′τ� θτ+1� � � � � θt such that the total utility accrued by the
buyer in periods 1� � � � � τ is the same as for θτ . We argue that this mechanism still has the
desired properties:

• It is still non-clairvoyant: This is clear by construction since at period t, the mecha-
nism is only a function of Ft and θt . Note that it is crucial that we symmetrize using a
quantity that we can measure with information available at period t.

• It is still (EPIR). To check this property, let ũt be the utility under the new mechanism;
then, if E is the event that uτ(Fτ�θτ)= uτ(Fτ�θ′τ),

ũT
(
FT �θT

) = uτ
(
Fτ�θτ

) +Eθ′τ

[
T∑

s=τ+1

us

(
Fs�θ′τ� θτ+1� � � � � θs

)∣∣∣E]

= Eθ′τ

[
uτ

(
Fτ�θ′τ) +

T∑
s=τ+1

us

(
Fs�θ′τ� θτ+1� � � � � θs

)∣∣∣E]
≥ 0�

• It is still (DIC). The (DIC) condition holds for t > τ since at that point the mecha-
nism is simply a distribution of mechanisms satisfying the (DIC) condition. For t ≤ τ,
we will use Lemma C.1 to argue that the expression in the maximization problem
remains the same. In the following expression, we omit Ft for clarity of presentation:

ũt

(
θt

) + Ũt

(
θt

) = ut

(
θt

) +E

[
τ∑

s=t+1

us

(
θs

)] +Eθ′t
[
Uτ

(
θ′τ)|E(

θτ
)]
�

where E(θτ) is the event determining the set of θ′τ on which we will condition. This
event is a function of θτ. However, by Lemma C.1, Uτ is a constant, so the expectation
and the event we are conditioning on are irrelevant; therefore, we have

ũt

(
θt

) + Ũt

(
θt

) = ut

(
θt

) +E

[
τ∑

s=t+1

us

(
θs

)] +Uτ

(
θ′τ) = ut

(
θt

) +Ut

(
θt

)
�

• The symmetry condition holds for t = τ by design.
• The symmetry condition holds for t < τ using an argument analogous to that used in

Lemma C.1.
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• The expected revenue is the same for the following reasons (again, we omit FT ):

EθT

[
T∑
t=1

p̃t

(
θt

)]

= Eθτ

[
τ∑

t=1

pt

(
θτ

)] +EθTEθ′τ

[
T∑

t=τ+1

pt

(
θ′τ� θτ+1� � � � � θT

)∣∣∣uτ
(
θτ

) = uτ
(
θ′τ)]�

which equals the original revenue since the distributions of θτ and θ′τ are the same.
Q.E.D.

The symmetrization condition is the main ingredient to show that all non-clairvoyant
mechanisms are bank account mechanisms. The reader is invited to contrast how much
simpler this proof is than the proof of its clairvoyant counterpart. In a sense, Lemma C.1
already provides us with most of the proof.

PROOF OF LEMMA 5.2: Assume that xt and pt satisfy the conditions in the non-
clairvoyant symmetrization lemma (Lemma C.1). Define the bank balance as bt(F

t� θt) =∑t

s=1 ut(F
t� θt). From symmetrization, it is clear that xt , pt can be written as a bank ac-

count mechanism. The (BI) condition follows directly from Lemma C.1. With the current
definition of bank accounts, condition (BU) becomes trivial: The first inequality follows
from (EPIR) and the second holds with equality. Q.E.D.

C.2. Lower Bound for Non-Clairvoyant Mechanisms

In this section, we will prove Theorem 5.1. To do so, let us initially define two distribu-
tions defined by their cumulative density functions and parameterized by a constant μ> 0
to be defined later:

F1(θ) = (
1 − e−μ2) θμ

θμ+ 1
for θ ≤ eμ

2
and F1(θ) = 1 otherwise�

F2(θ) =
[

1 − ε

θ

]+
�

We will consider two scenarios: In the first, there is a single item with distribution F1,
and in the second, there are two items, the first with distribution F1 and the second with
distribution F2. It is instructive to start by computing the optimal clairvoyant dynamic
mechanism in each of the settings. By Lemma 3.3, we can restrict our attention to bank
account mechanisms.

SCENARIO 1—One item with distribution F1: Since there is only one period, the opti-
mal mechanism is Myerson’s auction. For the single-buyer case, it can be described as the
posted-price mechanism at ρ maximizing ρ(1 − F1(ρ)), which is ρ= eμ

2 , and the revenue
is

REV∗(F1)= ρ
(
1 − F1(ρ)

) = 1 + 1
μ

+O
(
e−μ2)

�
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SCENARIO 2—Two items with distributions F1 and F2: Since the optimal mechanism
can be described as a bank account mechanism, assume that xt , pt is the optimal bank
account mechanism. By condition (BU), the state of the bank account at the end of period
1 is at most u1, which is at most eμ2 . The mechanism in the second period can be described
as spending some amount that is at most the balance from the account and running an
incentive compatible and individually rational mechanism. Since the distribution F2 is
such that ρ(1 − F2(ρ)) = ε for all ρ (i.e., it is an equal-revenue distribution), the revenue
obtained from the second period is at most b1 + ε ≤ u1 + ε. Therefore, the total revenue
is at most the welfare of the first period plus ε. In other words, an upper bound to optimal
revenue is Eθ1∼F1[θ1] + ε.

We present a mechanism that achieves that much revenue. In the first period, the item
is given for free to the buyer and we add her value of the item to her bank account. In
the second period, we first spend the entire balance of the bank account and then post a
price p(b1) satisfying condition (BI). Regardless of the price we post, the revenue will be
b1 + ε. Therefore, the expected revenue of this mechanism is

REV∗(F1�F2)= Eθ1∼F1[θ1] + ε= 1 +μ+ ε+O
(
μe−μ2)

�

Comparison of the Two Scenarios. We note that depending on whether there will be
a second item, two entirely different approaches are taken for the first item. If there is
no second item, we allocate the second item with very low probability and charge a very
high price if it is allocated. If there is a second item, we always allocate the first item
and charge nothing for it. A non-clairvoyant mechanism must attempt to balance those
two extremes: It needs to allocate the first item such that if there is no second item, the
revenue is sufficient compared to the optimal single-item auction. However, it also needs
to ensure that the bank balance after the first period is large enough to allow for greater
freedom in allocating the second item.

Non-Clairvoyant Mechanism. Consider a non-clairvoyant mechanism and let x1(F1�
θ1), p1(F1� θ1) be the auction for the first item with distribution F1. This auction must be
incentive compatible and individually rational, so it must be a distribution over posted-
price mechanisms, say a random posted price ρ ∼G. Therefore,

REVM(F1) = Eρ∼G

[
ρ
(
1 − F1(ρ)

)]
�

and since every non-clairvoyant mechanism can be written as a bank account mechanism
(Lemma 5.2), we can use the same argument as in Scenario 2 above to argue that

REVM(F1�F2) ≤ ε+Eρ∼G

[
E[θ1 · 1θ1≥ρ]

]
�

We are ready to prove the lower bound theorem.

PROOF OF THEOREM 5.1: Assume that the non-clairvoyant mechanism is an α-
approximation to the clairvoyant benchmark, and consider the setup with F1 and F2 de-
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scribed in this section. Then

2
α

= 2 min
(

REVM(F1)

REV∗(F1)
�

REVM(F1�F2)

REV∗(F1�F2)

)
≤ REVM(F1)

REV∗(F1)
+ REVM(F1�F2)

REV∗(F1�F2)

≤ Eρ∼G

[
β(ρ)

] ≤ max
ρ

[
β(ρ)

]
�

where β(ρ)= ρ
(
1 − F1(ρ)

)
REV∗(F1)

+ ε+E[θ1 · 1θ1≥ρ]
REV∗(F1�F2)

�

The remainder of the proof is calculus heavy1, and involves explicitly substituting the
values of those expressions and evaluating the maximum of β(ρ). Taking the limit as
μ→ ∞ will provide us the desired bound.

Denote r1 = 1/REV∗(F1) and r12 = 1/REV∗(F1�F2). Then

β(ρ)= r1ρ
(
1 − F1(ρ)

) + r12

(
ε+

∫ eμ
2

ρ

θdF1(θ)

)
�

Taking the derivative of β,

β′(ρ)= r1

(
1 − F1(ρ)− ρF ′

1(ρ)
) − r12ρF

′
1(ρ)

= r1 − (
1 − eμ

2)
r1

ρμ

ρμ+ 1
− (r1 + r12)

(
1 − eμ

2) ρμ

(ρμ+ 1)2 �

Denoting ζ = 1 − eμ
2 and letting β′(ρ)= 0,

r1(1 − ζ)(ρμ+ 1)2 − r12ζ(ρμ+ 1)+ (r1 + r12)ζ = 0

=⇒ ρμ+ 1 = r12ζ

2r1(1 − ζ)

(
1 ±

√
1 − 4r1(1 − ζ)

r12ζ

(
1 + r1

r12

))
�

Since

r1

r12
= REV∗(F1�F2)

REV∗(F1)
= 1 +μ+ ε+O

(
μe−μ2)

1 + 1/μ+O
(
e−μ2) = μ+ ε+ o(1)�

4r1(1−ζ)

r12ζ
(1 + r1

r12
) ≈ 4μ2e−μ2 � 1. Hence, β′(ρ) = 0 has two roots. Because β′(0) = r1 > 0,

the local maximum of β(ρ) is reached at the smaller root:

ρ∗μ+ 1 = r12ζ

2r1(1 − ζ)

(
1 −

(
1 − 4r1(1 − ζ)

r12ζ

(
1 + r1

r12

)
+ o

(
e−μ2)))

= 1 +μ+ ε+ o(1)

=⇒ ρ∗ = 1 + o(1)�

1We will omit some less important calculation details and Taylor expansion will be repeatedly used.
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Therefore, the maximum value is reached at either ρ∗ or eμ2 , and for sufficiently large
μ,

max
ρ

β(ρ)= max
(
β

(
ρ∗)�β(

eμ
2)) = 1 + 1/μ+ o(1/μ) ≤ 1 + 2/μ�

Hence, the lower bound of α is obtained, which is 2 as μ → ∞:

α≥ 2
max

ρ
β(ρ)

≥ 2
1 + 2/μ

�
Q.E.D.

APPENDIX D: DETAILS OMITTED FROM MULTIPLE BUYERS

D.1. Multiple-Buyer Dynamic Mechanism Design

We start by extending the concepts in the paper to multiple buyers. Consider a set N of
n agents who participate in the mechanism for T periods. For each agent i ∈ N and each
t ∈ {1� � � � �T }, the type θi

t of agent i in period t is drawn independently from a distribution
Fi
t . When we omit the superscript i, we refer to the vector of types θt = (θ1

t � � � � � θ
n
t ). As

is usual in mechanism design, we refer to θ−i
t as the vector of types of all agents except i.

Agent i has a value vi : Θ × [0�1] → R+. A dynamic mechanism corresponds to pairs of
maps,

• outcome, xt :ΘtN × (�Θ)TN → [0�1],
• payment, pt :ΘtN × (�Θ)TN → R.
Similar to the single-buyer case, we can define the notion of continuation utility

Ui
t (θ̂

t;FT) as the expected total utility of a buyer in periods t + 1 to T if her history of
reports up to period t is θ̂t and all the buyers report truthfully from period t + 1 onward.
This allows us to define the analogue of condition (DIC) for multiple buyers, which we
call dynamic Bayesian incentive compatibility. We call it Bayesian since each buyer takes
expectations over the behavior of all other buyers and assumes they bid truthfully. The
condition can be written as

θi
t = arg max

θ̂it

Eθ−i
t

[
ui
t

(
θi
t; θ̂t−1�

(
θ−i
t � θ̂i

t

);FT
) +Ui

t

(
θ̂t−1�

(
θ−i
t � θ̂i

t

);FT
)]

∀i ∈ [n]� t ∈ [T ]� θ̂t−1� θi
t ∈Θt�

(DBIC)

Recall that while the condition (DIC) for a single buyer can be justified by the dynamic
version of the revelation principle, no such equivalence can be obtained for multiple buy-
ers. What we have here is ex post IC: It is optimal for a buyer to report her type truthfully
as long as all the other buyers also do so. We refer to Athey and Segal (2013) or Pavan,
Segal, and Toikka (2014) for a discussion of the relation between IC in dynamic settings
and the revelation principle, as well as Mookherjee and Reichelstein (1992) and Berge-
mann and Morris (2005) for the comparison of dominant strategy implementation, ex
post implementation, and Bayesian implementation.

The condition (EPIR) is generalized in the natural way. Every buyer derives nonnega-
tive utility on every sample path if she is behaving truthfully.

The notion of non-clairvoyance again corresponds to the restriction that the allocation
and payment functions at time t must depend only on (θt�Ft), that is, cannot depend on
distributional knowledge of future periods.
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D.2. Multiple-Buyer Bank Account Mechanisms

We define a bank account mechanism for n buyers as follows.
• A static single-period mechanism xB

t (θt� b), pB
t (θt� b) parameterized by an n-

dimensional bank balance b ∈R
n
+ that is single-period Bayesian incentive compatible,

that is, satisfies the multiple-buyer version of (IC) and the multiple-buyer version of
(BI):

Eθt

[
θi
t · xB

t (θt� b)−pB
t (θt� b)

]
is a nonnegative constant not depending on b�

• A balance update policy bB
t (θt� b) satisfying a multiple-buyer equivalent of condition

(BU):

0 ≤ bB�i
t (θt� b)≤ bi + uB�i

t (θt� b) and bi
0 = 0�

As before, it is useful to define a notion of spend sit as

sit(bt−1)=
[
−min

θit

Eθ−i
t

[
θi
t · xt(θt� bt−1)−pi

t(θt� bt−1)
]]+

�

Both the clairvoyant (Lemma 3.3) and non-clairvoyant (Lemma 5.2) reductions still
hold in the multiple-buyer setting with essentially the same proofs by adapting the nota-
tion.

D.3. Proof of Theorem 6.1

In addition to the notion of the spend, it will also be useful to define an auxiliary notion
called the deposit,

di
t(θt� bt−1)= bi

t(θt� bt−1)− bi
t−1 + sit(bt−1)�

so that we can describe the balance update policy in terms of the spend and deposit:

bi
t = bi

t−1 + di
t − sit �

In particular, if we write pi
t as pi

t = p′i
t + sit and ui

t = u′i
t − sit , then the (BU) condition

can be rewritten as

di
t ≤ u′i

t �

PROOF OF THEOREM 6.1: Fix a time horizon T and distributions Fi
t for t = 1� � � � � T

and i = 1� � � � � n. Let (x∗�p∗) be the optimal clairvoyant mechanism for this setting. By the
multiple-buyer version of Lemma 3.3, we can write the bank account mechanism in terms
of a spend policy s∗

t , a deposit policy d∗
t , and an incentive compatible and individually

rational payment function p′∗
t such that:

p∗i
t = p′∗i

t + s∗i
t � b∗i

t = b∗i
t−1 − s∗i

t + d∗i
t �

Similarly, let xt , p′
t , st , and dt describe the NONCLAIRVOYANTBALANCE mechanism where

the spend term corresponds to the expected utility of the money-burning component.
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Step 1: Bounding p′∗ Using the Myerson Component. Our first observation is that since
for each period x∗

t , p
′∗
t is individually rational and Bayesian incentive compatible, its rev-

enue must be dominated by the Myerson auction: Eθt [
∑

i p
′∗i
t (θ

t)] ≤ Eθt [
∑

i p
M�i
t (θt)]. This

already tells us that the revenue we obtain from selling the 1/5 fraction of each item us-
ing Myerson’s auction dominates within a factor of 5 the E[∑i�t p

′∗i
t ] component of the

revenue of the optimal clairvoyant mechanism.

Step 2: Lower Bound on the Balance of the Non-Clairvoyant Mechanism. We are left
to show that the remaining component E[∑i�t s

∗i
t ] of the revenue of the optimal clair-

voyant mechanism is dominated by the combination of the second-price auction and the
money-burning auction within a factor of 5. We will show by induction that for every fixed
sequence of types and for all buyers θT , the following invariant holds. Since the types for
all buyers are fixed for all periods, we omit the type vectors in the notation

bi
t +

t∑
τ=1

siτ ≥ 2
5

(
b∗i
t +

t∑
τ=1

s∗i
τ −

t∑
τ=1

θ(2)
τ x∗i

τ

)
� (D.1)

where θ(2)
τ is the second-highest type. This is true for t = 0 since both balances are initially

zero. Assume that it is valid for t. Then substituting the balance update formula bi
t+1 =

bi
t − sit+1 + di

t+1 for both the non-clairvoyant and the clairvoyant mechanism, we obtain

bi
t+1 +

t+1∑
τ=1

siτ − di
t+1 ≥ 2

5

(
b∗i
t+1 +

t+1∑
τ=1

s∗i
τ −

t∑
τ=1

θ(2)
τ x∗i

τ − d∗i
t+1

)
�

By (BU), d∗i
t+1 ≤ u′∗i

t+1 ≤ θi
t+1x

∗i
t+1. If i is not the agent with the highest type, then θi

t+1 ≤ θ(2)
t+1,

and this step is completed given the fact that di
t+1 ≥ 0 and θ(2)

t+1x
∗i
t+1 ≥ d∗i

t+1. If i is the agent
with the highest type, then

di
t+1 = 2

5
(
θi
t+1 − θ(2)

t+1

) ≥ 2
5
(
θi
t+1 − θ(2)

t+1

)
x∗i
t+1 ≥ 2

5
(
d∗i
t+1 − θ(2)

t+1x
∗i
t+1

)
�

since we only deposit for the top agent in the second-price auction mechanism. By substi-
tuting this bound, we obtain the invariant for t + 1.

Step 3: Charging Scheme for Spend. We will construct a charging scheme to re-attribute
the spend in the non-clairvoyant mechanism such that it better resembles the spend of the
optimal clairvoyant mechanism. For each fixed θT , we will define a charging scheme cit ≥ 0
such that for each period t, we have

∑
i c

i
t ≤ ∑

i s
i
t . We will do so in such a way that we can

more easily compare s∗i
t with cit .

We know by (BI) that there is a solution to the money-burning problem in period t with
E[ũi

t] ≥ s∗i
t , since the clairvoyant mechanism with balance b∗

t−1 provides such a solution.
Thus, by rescaling the mechanism, there must be a solution to the money-burning problem
with constraints E[ũi

t] ≤ 5
2b

i
t−1 such that E[ũi

t] = min(s∗i
t �

5
2b

i
t−1). In particular, it means

∑
i

sit ≥
2
5

∑
i

min
(
s∗i
t �

5
2
bi
t−1

)
�
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This motivates us to define the charging scheme

cit = min
(

2
5
s∗i
t � b

i
t−1

)
�

Based on how we compute the charge, we divide the set of agents in each period into a
set At of agents ahead and a set Bt of agents behind. We say that agent i is behind (i ∈ Bt)
if bi

t−1 ≤ 2
5s

∗i
t , and we say that i is ahead (i ∈ At) otherwise. For i ∈ Bt , we can produce a

good bound on the total spend using (D.1):

cit = bi
t−1 ≥ 2

5

(
b∗i
t−1 +

t−1∑
τ=1

s∗i
τ −

t−1∑
τ=1

θ(2)
τ x∗i

τ

)
−

t−1∑
τ=1

siτ�

Reorganizing the expression and using that s∗i
t ≤ b∗i

t−1, we obtain

cit +
t−1∑
τ=1

siτ + 2
5

t−1∑
τ=1

θ(2)
τ x∗i

τ ≥ 2
5

t∑
τ=1

s∗i
τ � (D.2)

A similar bound applies to an ahead agent i ∈ At . Let t ′ be the last period before t where
i ∈ Bt′ . This is well defined since all agents are behind in period zero. Therefore, (D.2)
holds for t ′. Therefore, we can sum

∑t

τ=t′+1 c
i
τ ≥ 2

5

∑t

τ=t′+1 s
∗i
τ to that bound and obtain

t′−1∑
τ=1

siτ +
t∑

τ=t′
ciτ + 2

5

t′−1∑
τ=1

θ(2)
τ x∗i

τ ≥ 2
5

t∑
τ=1

s∗i
τ � (D.3)

Step 4: Bounding the Spend of the Non-Clairvoyant Mechanism. If either i ∈ Bt (D.2)
or i ∈At (D.3), we can bound the spends as

t∑
τ=1

siτ +
t∑

τ=1

ciτ + 2
5

t∑
τ=1

θ(2)
τ x∗i

τ ≥ 2
5

t∑
τ=1

s∗i
τ �

Summing over all agents i and using the fact that
∑

i c
i
t ≤ ∑

i s
i
t , we have

2
∑
i

T∑
τ=1

siτ + 2
5

t∑
τ=1

θ(2)
τ ≥ 2

5

∑
i

t∑
τ=1

s∗i
τ �

Dividing the expression by 2, we see that the sum of total spends of the non-clairvoyant
mechanism together with the revenue obtained from the second-price auction component
gives us a five-approximation to the total spend of the optimal clairvoyant mechanism.

Q.E.D.

D.4. Other Omitted Proofs From Section 6

PROOF OF LEMMA 6.2: By the (BI) property, the expected utility in subsequent rounds
is not a function of the current reported type, so it is enough to argue that the three com-
ponents of the NONCLAIRVOYANTBALANCE mechanism are dominant strategy incentive
compatible in the static sense. This is trivial to check for the second-price and Myerson
components. For the money-burning auction, we refer the reader to Appendix E, where
we discuss how to construct this component. Q.E.D.
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PROOF OF THEOREM 6.3: The proof is almost implied by the arguments we made in
the proof of Theorem 6.1. Since there are only two periods in total, we have the following
characteristics:

• The spend of the clairvoyant mechanism in the first period is zero:
∑

i s
∗i
1 = 0. There-

fore, the non-clairvoyant mechanism does not lose any spend for not including
money-burning auction in the first period.

• The total spend only depends on the balance from the first period (b1). Therefore,
the non-clairvoyant mechanism does not lose any spend for not including the second-
price auction in the second period.

• The total spend only comes from the second period. Hence, the money-burning auc-
tion is optimal in the spend.

By combining these observations, we can conclude that for any type vector sequence θ2,

θ(2)
1 +

∑
i

si1 + si2 ≥ 1
2

∑
i

s∗i
1 + s∗i

2 �

Combining this with the fact that the non-clairvoyant mechanism sells half of the item via
Myerson’s auction, we conclude that it is a non-clairvoyant two-approximation. Q.E.D.

APPENDIX E: IMPLEMENTATION OF NONCLAIRVOYANTBALANCE

Here we show that all three components of the NONCLAIRVOYANTBALANCE mecha-
nism are simple auctions: Each of them corresponds to maximizing some notion of virtual
values.

The first component of the NONCLAIRVOYANTBALANCE mechanism is a second-price
auction that does not use any information about the distribution, and the virtual value is
simply the buyer’s value. The second component is the Myerson auction, which, of course,
is a virtual value maximizer.

Most of our work will focus on arguing that the third component—the money-burning
auction with utility constraints—has a simple format and can be implemented as a virtual
value maximizer. In what follows, for ease of presentation, we focus on discrete distribu-
tions. Assume therefore that the space of valuation functions is a finite set of nonnegative
numbers, that is, Θ = {θ1� � � � � θK} ⊂ R+. As we focus on a single period, we ignore the
subscript t. Instead, θj will refer to the jth value in support of the distribution. As before,
let n be the number of buyers. The distributions Fi will be discrete distributions repre-
sented by a vector of K nonnegative numbers f i(θ1)� � � � � f

i(θK) summing to 1. We will
also denote the cumulative density function of the distribution by Fi(θ) = ∑

θj≤θ f
i(θj).

E.1. Optimal Money Burning With Caps Is a Scaled Virtual Value Maximizer

Since the optimal money-burning mechanism can be written as an optimization prob-
lem in the reduced form, it is possible to directly obtain an algorithm using the framework
of Cai, Daskalakis, and Weinberg (2012a, 2012b). For the special case of money burning,
an alternative solution goes through the techniques developed by Hartline and Rough-
garden (2008). A black-box application of Cai, Daskalakis, and Weinberg (2012a, 2012b)
guarantees that the auction is Bayesian incentive compatible. For Lemma 6.2, it will be
useful to describe the auction via the virtual value technique of Hartline and Roughgar-
den (2008) to show that the optimal capped money-burning auction is dominant strategy
incentive compatible. We discuss the construction below.
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Without any caps on the utilities, the optimal money-burning auction is analyzed by
Hartline and Roughgarden (2008) and shown to be a virtual value maximization for a dif-
ferent notion of virtual values known as virtual values for utility. As in the Myerson auction,
the virtual values of Hartline and Roughgarden (2008) can be computed as a function of
the distribution, and if not monotone, they must be ironed using the same procedure used
to iron the Myersonian virtual values. While originally developed for continuous distribu-
tions, the exact approach2 described by Elkind (2007) can be used to compute ironed
virtual values for utility for all buyers. We can summarize their results as follows.

THEOREM E.1—Hartline and Roughgarden (2008): Given distributions F1� � � � �Fn of
support Θ = {θ1� � � � � θK}, there exist nondecreasing maps ϑi : Θ → R (called ironed virtual
values for utility) such that for any Bayesian incentive compatible and individually rational
mechanism (xi�pi) and for every agent i,

Eθ∼F

[
ui(θ)

] = Eθ∼F

[
ϑi

(
θi

)
xi(θ)

]
�

Moreover, the optimal mechanism (with or without utility caps) is such that the allocation
and payments only depend on the virtual values ϑi(θi).

The proof of the theorem follows from combining Lemma 2.6, Lemma 2.8, and The-
orem 2.9 in Hartline and Roughgarden (2008). For the “moreover” part, although their
paper does not consider any sort of utility caps, the presence of caps does not affect any
of their proofs.

From Theorem E.1, we can describe the optimal auction as a monotone allocation that
depends only on virtual values. We abuse notation and use f i to denote the distribution
on the virtual values, that is, f i(ϑ̄i) = ∑

θi∈Θ;ϑi(θi)=ϑ̄i f i(θi). We also define the allocation
directly in terms of virtual values xi(ϑ). We then describe the format of the optimal auc-
tion.

THEOREM E.2—Optimal Capped Money Burning: The auction maximizing capped util-
ity

∑
i min(bi�E[ui]) is parameterized by wi, qi, which chooses the agent with largest scaled

virtual value wiϑi (subject to some tie-breaking rule) and allocates to this agent with proba-
bility qi.

PROOF: Using Theorem E.1, we can formulate the optimal money burning with caps
problem as finding a monotone allocation function xi(ϑ) defined on the virtual values
maximizing E[ϑixi(ϑ)]. We solve the problem

max
∑
i

min
(
bi�E

[
ϑixi(ϑ)

])
s.t. monotonicity

2Given a discrete distribution described by f (θ1)� � � � � f (θK) nonnegative and summing to 1 with θ1 < θ2 <

· · · < θK , Elkind (2007) defines a discrete notion of the Myersonian virtual value as ϕi
j = θj −(θi

j+1 −θi
j)

1−Fi(θj )

f i(θj )
.

Those are then ironed by defining for each i a set of K two-dimensional points (F(θi
j)�

∑
j′≤j f

i
j′ϕ

i
j′), computing

the lower convex hull, and defining the ironed virtual values as the slopes of segments of the convex hull
corresponding to each point. The same exact computation can be done by replacing the original Myersonian

notion of virtual values ϕi
j with the definition of virtual values for utility ϑi

j = (θi
j+1 − θi

j)
1−Fi(θj )

f i(θj )
.



20 MIRROKNI, PAES LEME, TANG, AND ZUO

and rescale xi by multiplying it by a probability qi such that it obeys the constraints
E[∑i ϑ

ixi(ϑ)] ≤ bi while keeping the same objective value. In the following formula-
tion, we relax the constraint that the allocation needs to be monotone and obtain the
primal-dual pair

max
x�u

∑
i

ui

s.t. ui ≤
∑
ϑ

ϑixi(ϑ)f (ϑ) ∀i (
wi

)
ui ≤ bi ∀i (

yi
)

∑
i

xi(ϑ)≤ 1 ∀ϑ (
z(ϑ)

)
xi(ϑ)≥ 0 ∀i�ϑ

min
w�y�z

∑
i

yibi +
∑
ϑ

z(ϑ)

s.t. z(ϑ)≥ ϑif (ϑ)wi ∀i�ϑ (
xi(ϑ)

)
yi +wi ≥ 1 ∀i (

ui
)

yi�wi� z(ϑ) ≥ 0 ∀i�ϑ
Assume that we have an optimal primal-dual pair. Then, if for some profile of virtual
values ϑ, agent i is allocated with nonzero probability, that is, xi(ϑ) > 0, then by comple-
mentary slackness, we must have for all j �= i,

ϑiwif (ϑ) = z(ϑ) ≥ ϑjwjf (ϑ)�

where the equality follows from complementary slackness and the inequality follows from
feasibility. This means that i ∈ arg maxi ϑ

iwi, except when f (ϑ) = 0.3
We still need to argue that the item is always allocated in an optimal solution. We again

use complementary slackness. If the item is not completely allocated for a profile ϑ, we
must have z(ϑ) = 0 and, therefore, for all agents i,

0 = z(ϑ) ≥ϑiwif (ϑ) ≥ 0�

so ϑiwi must be zero except when f (ϑ) = 0.
Finally, observe that although we relaxed monotonicity in the program, the comple-

mentarity constraints imply that under any tie-breaking rule, the allocation is mono-
tone. Q.E.D.

APPENDIX F: ASYMPTOTICALLY OPTIMAL MULTIPLE-BUYER MECHANISM

We now extend the construction in Theorem 5.4 to multiple buyers using the assump-
tion that the distribution of maxi vit is in Fε�v̄ for all periods and T → ∞. We will replace
the give for free mechanism by a second-price auction and the spend mechanism by a spend-
throttled second-price auction.

We use xSP�i and pSP�i to denote the allocation and payment of buyer i in a (static)
second-price auction. It is useful to define μi

t as the expected utility of agent i under a
second-price auction and define Wt as the expected welfare of the second-price auction,
that is,

μi
t = Eθt∼Ft

[
θi
t · xi�SP

t −pi�SP
t

]
� Wt = Eθt∼Ft

[∑
i

θi
t · xi�SP

t

]
�

3Assuming that these properties (xi(ϑ) > 0 =⇒ i ∈ arg maxi ϑ
iwi and z(ϑ) = 0 =⇒ ϑiwi = 0) still hold

when f (ϑ) = 0 never changes the optimality or the feasibility of the solution.
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The dynamic component will correspond to a throttled second-price auction. The item
is allocated to the highest bidder (breaking ties arbitrarily) if her balance exceeds the
expected utility of a second-price auction, that is, if bi

t−1 ≥ μi
t . If the highest bidder meets

the minimum balance condition, she is allocated and charged as in a second-price auction
plus an extra amount μi

t . Otherwise, the allocation and payment to this agent is zero.
Formally,

xi�ST
t = xi�SP

t · 1
{
bi
t−1 ≥ μi

t

}
� pi�ST

t = (
pi�SP

t +μi
t

) · 1
{
bi
t−1 ≥ μi

t

}
�

The ASYMPOPTIMALMULTI mechanism will be a combination of those mechanisms
with proportions given by weights qi

t . In other words, the final mechanism is defined as

xi
t = qi

t · xi�SP
t + (

1 − qi
t

) · xi�ST
t � pi

t = qi
t ·pi�SP

t + (
1 − qi

t

) ·pi�ST
t �

We update the balance by simply adding the per-period utility to it:

bi
t = bi

t−1 + θi
t · xi

t −pi
t�

To complete the description of the mechanism, we recursively define the weights as

qi
t = 1

{
t−1∑
τ=1

qi
τμ

i
τ ≤Wt

√
t ln t

}
�

Note that at any given point, different agents may have different weights for SP and ST.
This is possible since the difference between the two mechanisms is whether the winner
is throttled. The determination of the winner is the same for both mechanisms.

It is straightforward to check that ASYMPOPTIMALMULTI is a non-clairvoyant bank ac-
count mechanism. Below, we argue that it is also asymptotically optimal.

THEOREM F.1: For any positive numbers ε < v̄, there is a constant Cε�v̄ depending only on
those parameters such that the revenue of the ASYMPOPTIMALMULTI mechanism is at least

REV ≥
T∑
t=1

E

[
max

i
θi
t

]
− nCε�v̄ · √T lnT (F.1)

whenever the distribution of the highest value is in Fε�v̄ for all t. In particular, the optimal so-
lution to (MAXIMIN) tends to 1 as T → ∞ when the highest value distributions are restricted
to Fε�v̄.

The proof of Theorem F.1 follows a similar idea to that used in the proof of Theo-
rem 5.4. In the initial periods, the second-price auction SP is used, allowing each buyer
to accumulate a sufficient balance. After a sufficient number of rounds, the balance of an
agent is large enough with high probability or the suboptimality of applying the second-
price auction to her is sublinear. Whenever the balance is sufficient, the mechanism starts
allocating according to mechanism ST. For this auction, the allocation is efficient and the
expected utility of the agent is zero and, hence, the seller is able to extract full surplus.

PROOF OF THEOREM F.1: We first bound the revenue of ASYMPOPTIMALMULTI,

REV =
T∑
t=1

n∑
i=1

E
[
qi
t ·pi�SP

t + (
1 − qi

t

) ·pi�ST
t

]
�
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The first term can be bounded as

T∑
t=1

n∑
i=1

E
[
qi
t ·pi�SP

t

] =
T∑
t=1

n∑
i=1

qi
t

(
E
[
θi
t · xi�SP

t

] −μi
t

)
�

and the second as

T∑
t=1

n∑
i=1

E
[(

1 − qi
t

) ·pi�ST
t

] =
T∑
t=1

n∑
i=1

(
1 − qi

t

)
E
[
θi
t · xi�SP

t

] · Pr
[
bi
t−1 ≥ μi

t

]
�

Summing them up, we obtain

REV ≥
T∑
t=1

Wt −
T∑
t=1

n∑
i=1

qi
tμ

i
t +

(
1 − qi

t

) ·Wt · Pr
[
bi
t−1 <μi

t

]
� (F.2)

To conclude the proof, we argue that the last two terms grow sublinearly in T . It is
straightforward to bound the first term from the definition of qi

t and the fact that Wt ≤ v̄
for all t that

T∑
t=1

qi
tμ

i
t ≤ v̄+ max

t
Wt

√
t ln t ≤ v̄(1 + √

T lnT)�

To bound the remaining term, we observe that E[bi
t−1] = ∑t−1

τ=1 q
i
τμ

i
τ . Hence, qi

t = 0 occurs
when E[bi

t−1]>Wt

√
t ln t. When qi

t = 0, for t > exp(4v̄2/ε2), we have

E
[
bi
t−1

]
>Wt

√
t ln t ≥ ε

√
t ln t > 2v̄

√
t ln t ≥ v̄

√
t ln t + v̄� (F.3)

Similar to the proof of Theorem 5.4, we can define a martingale b̃i
t = bi

t −
∑t

τ=1 q
i
τμ

i
τ. Since

it has bounded variation |b̃i
t − b̃i

t−1| < v̄, we can apply the Azuma–Hoeffding inequality
(Azuma (1967)) to establish that

Pr
[
bi
t < E

[
bi
t−1

] − y
] = Pr

[
b̃i
t < −y

] ≤ exp
(

− y2

2tv̄2

)
� (F.4)

Therefore,

Pr
[
bi
t−1 <μi

t |qi
t = 0

] = Pr
[
bi
t−1 < E

[
bi
t−1

] − (
E
[
bi
t−1

] −μi
t

)|qi
t = 0

]
≤(F.3) Pr

[
bi
t−1 < E

[
bi
t−1

] − v̄
√
t ln t

]
≤(F.4) exp

(
−(v̄

√
t ln t)2

2tv̄2

)
= 1/

√
t�

This allows us to bound the second term in (F.2) as

T∑
t=1

(
1 − qi

t

) ·Wt · Pr
[
bi
t−1 <μi

t

] ≤ v̄ · exp
(

4v̄2

ε2

)
+ 2v̄

√
T �

Q.E.D.
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