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ONLINE APPENDIX

Problem of the Long-Run Player

WE EXAMINE THE PROBLEM of the normal type of long-run player. Recall the Bellman
equation

V (α2) = max
a1

(1 − δ)[α2 − ca1] + δ
∑
z′

P
(
z′|z�a1

)
V

(
α2

(
z′))�

We may write this out as

V (α2)

= max
a1

(1 − δ)[α2 − ca1] + δ
[(
α2 + (1 − α2)π

)
V

(
α2(a1)

) + (1 − α2)(1 −π)V
(
α2(N)

)]
�

LEMMA S.1: The optimum for the normal type of long-run player depends on the state only
through α2 and one of three cases applies:

(i) V (α2(1)) − V (α2(0)) < c(1 − δ)/δ: It is strictly optimal and provides no effort in every
state. In particular, if α2(1) = α2(0), this is the case.

(ii) V (α2(1)) − V (α2(0)) > c(1 − δ)/(δπ): It is strictly optimal to provide effort in every
state.

Defining

α̃2 = 1 − δ

δ(1 −π)
(
V

(
α2(1)

) − V
(
α2(0)

))c − π

1 −π
�

(iii) It is strictly optimal to provide effort if α2(z) > α̃2 and conversely. In particular, the
strategy α1(0) >α1(1) is never optimal.

In addition,
(iv) if α2(0) = 1, then it is strictly optimal provide no effort in every state.
Finally, if the short-run player uses a pure strategy, then the optimum of the long-run player

is strict and pure.

PROOF: The argmax is derived from

max
a1

−(1 − δ)ca1 + δ
(
α2 + (1 − α2)π

)
V

(
α2(a1)

)
�

The gain to no effort is

G(α2) = (1 − δ)c − δ(α2 + (1 − α2π)
[
V

(
α2(1)

) − V
(
α2(0)

)]
�
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We then solve this equation form α2 to see when effort is and is not optimal.
Turning to the details, it follows that no effort is strictly optimal if

V
(
α2(1)

) − V
(
α2(0)

)
<

1 − δ

δ
(
α2 + (1 − α2)π

)c

and conversely.
The RHS is strictly decreasing function of α2. The value ã2 is the unique value for which

the two sides are equal, so the results (i) to (iii) follow directly.
For part (iv), suppose that α2(0) = 1. Then in state 0, choosing α1 = 0, gives 1 in very

period so V (0) = 1. Since that is the greatest possible one period payoff V (α2(1)) ≤ 1 =
V (α2(0)) so the result follows from (i).

Finally, we analyze best response of the long-run player when the short-run player uses
a pure strategy. From (i) and (iv) if α2(0) ≥ α2(1), it is strictly best not to provide effort.
That leaves only the case α2(a1) = a1, or rather two cases, depending on α2(N). This is a
matter of solving the Bellman equations for each case to determine the value of c (if any)
there can be a tie. These are the “nongeneric” values listed in the text.

Turning to the details, If the response is not strict, the condition for the gain to no effort
must be zero,

V
(
α2(1)

) − V
(
α2(0)

) = 1 − δ

δ
(
a2 + (1 − a2)π

)c�
Observe that this cannot be the case at both states a2.

(a) The tie is for a2 = 1
In this case, we have

V
(
α2(1)

) = V
(
α2(0)

) + 1 − δ

δ
c�

Moreover, since a1 = 0, must solve the Bellman equation for a2 = 1, we have V (α2(1)) =
(1 − δ) + δV (α2(0)). Solving we find V (α2(0)) = 1 − c/δ.

Since a1 = 0 is optimal at a2 = 1, it must be that a1 = 0 is strictly optimal at a1 = 0.
Hence

V
(
α2(0)

) = δ
[
πV

(
α2(0)

) + (1 −π)V
(
α2(N)

)]
�

There are two subcases depending on whether α2(N) = 0�1.
If α2(N) = 0, then V (α2(0)) = δV (α2(0)) implies V (α2(0)) = 0. Since we previously

found V (α2(0)) = 1 − c/δ, this implies that c = 1/δ, which is ruled out by generic cost.
If α2(N) = 1, then we have

V
(
α2(0)

) = δ

[
πV

(
α2(0)

) + (1 −π)V
(
α2(0)

) + (1 −π)
1 − δ

δ
c

]
�

which we solve to find

V
(
α2(0)

) = (1 −π)c/δ�

Again this must also be equal to 1−c/δ, so we have (1−π)c/δ = 1−c/δ or c = δ/(2−π)
also ruled out by generic cost.
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(b) The tie is for a2 = 0
In this case, we have

V
(
α2(1)

) = V
(
α2(0)

) + 1 − δ

δπ
c�

Moreover, since a1 = 1 is optimal for a2 = 0, it must also solve the Bellman equation for
a2 = 1, that is,

V
(
α2(1)

) = (1 − δ)(1 − c) + δV
(
α2(1)

)
so that V (1) = 1 − c. Hence

V
(
α2(0)

) + 1 − δ

δπ
c = 1 − c�

or

V
(
α2(0)

) = 1 − c − 1 − δ

δπ
c�

Again, there are two subcases depending on whether α2(N) = 0�1.
If α2(N) = 0, then again V (α2(0)) = δV (α2(0)) implies V (α2(0)) = 0, giving

c

[
1 − δ+ δπ

δπ

]
= 1�

which is ruled out by generic cost.
If α2(N) = 1, since a1 = 0 is optimal at a2 = 0 wand V (α2(1)) = 1 − c,

V
(
α2(0)

) = δ
[
πV (0) + (1 −π)(1 − c)

]
or

V
(
α2(0)

) = 1 −π

1 − δπ
(1 − c)�

This must be equal to

1 − c − 1 − δ

δπ
c

and equating the two we find

1 − c − 1 − δ

δπ
c = 1 −π

1 − δπ
(1 − c)�

c + 1 − δ

δπ
c − 1 −π

1 − δπ
c = 1 − 1 −π

1 − δπ
�

1 − δ

δπ
c + π − δπ

1 − δπ
c = π − δπ

1 − δπ
�

(1 − δπ)(1 − δ)c + δπ(π − δπ)c = δπ(π − δπ)�

c = δπ(π − δπ)
(1 − δπ)(1 − δ) + δπ(π − δπ)

�

ruled out by the generic cost assumption. Q.E.D.
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Ergodic Beliefs of the Short-Run Player

Next, we examine the beliefs of the short-run player. For given pure strategies of both
players, the signal type pairs (z� τ) are a Markov chain with transition probabilities inde-
pendent of δ and depending only on ε, π and the strategies of the two players. Excluding
the state N in case the short-run player always enters the chain is irreducible and aperi-
odic so it has a unique ergodic distribution μzτ. We first analyze the marginals μτ and μz .

LEMMA S.2: The marginals μτ are independent of ε. Let μ = minτ �=n μτ . Then μ > 0,
μ0�μ1 ≥ πμ, if α2(0) = α2(1) = 1, then μN = 0; otherwise, if the short-run player plays a
pure strategy, then μN ≥ (1 −π)μ.

PROOF: The type transitions are independent of the signals, so we analyze those first.
For ε > 0, we have μτ > 0 since every type transition has positive probability. This ergodic
distribution is the unique fixed point of the 3 × 3 transition matrix A, which is to say given
by the intersection of the null space of I −A with the unit simplex. Since A = I +Qε, it
follows that it is given by the intersection of the null space of Qε with the unit simplex. As
the null space of Qε is independent of ε the marginals μτ are independent of ε as well.

For the signals, we have μ1 ≥ πμg and μ0 ≥ πμb. If if a2(0) = a2(1) = 1, then the state
N is transient. If α2(1) = 0, then μN ≥ (1 − π)μg while if α2(0) = 0 then μN ≥ (1 −
π)μb. Q.E.D.

It will be convenient to normalize so that max(μσ/μτ)Qτσ = 1. Next, we show how
the conditional probabilities μz|τ can be computed approximately by using the ergodic
conditions for ε= 0.

LEMMA S.3: When z =N ,

μN|τ = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)

when z �= N ,

μz|τ =
∑
y

1
(
(z = 1)α1(τ� y) + 1(z = 0)

(
1 − α1(τ� y)

))[
α2(y) +π

(
1 − α2(y)

)]
μy|τ + εHzτ�

where |Hzτ|≤ 2 for all z.

PROOF: The idea is that the process for types is exogenous, so the stationary proba-
bilities can be computed directly. This enables us to find a linear recursive relationship
for the conditionals where the coefficients depend upon the strategies and the (already
known) marginals over types. We then show that when ε is small to a good approximation
we can do the computation for ε = 0, that is, ignoring the type transitions, with the result
above showing how good the approximation is for given ε.

For given strategies of the players, define P(z�σ|y� τ) to be the conditional probability
that zt+1 = z, σt+1 = σ conditional on zt = y , τt = τ. We have

μzτ = μz|τμτ =
∑
σ

∑
y

P(z|y�σ)P(τ|σ)μyσ

=
∑
σ

∑
y

P(z|y�σ) Pr(τ|σ)μy|σμσ =
∑
σ

P(τ|σ)μσ

∑
y

P(z|y�σ)μy|σ �
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Since we know that μτ > 0, we may divide to find

μz|τ =
∑
σ

P(τ|σ)
μσ

μτ

∑
y

P(z|y�σ)μy|σ

=
∑
σ

P(τ|σ)
μσ

μτ

∑
y

P
(
z|α2(y)�α1(σ�y)

)
μy|σ �

Define h(τ|τ) =−∑
σ �=τ Qτσ = (P(τ|τ) − 1)/ε and for τ �= σ define h(τ|σ)ε =

(μσ/μτ)Qστ = P(τ|σ)/ε. Observe that h depends only on Q and that

∣∣h(τ|σ)
∣∣ ≤ max

{
2(μσ/μτ)Qτσ|τ �= σ

} = 2�

Then

μz|τ =
∑
y

P
(
z|α2(y)�α1(σ�τ)

)
μy|τ + ε

∑
σ

h(τ|σ)
∑
y

P
(
z|α2(y)�α1(σ�y)

)
μy|σ �

For z = N , this is

μN|τ =
∑
y

(1 −π)
(
1 − α2(y)

)
μy|τ + ε

∑
σ

h(τ|σ)
∑
y

(1 −π)
(
1 − α2(y)

)
μy|σ

= (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)
�

For z �=N , this is

μz|τ =
∑
y

P
(
z|α2(y)�α1(σ�τ)

)
μy|τ + ε

∑
σ

h(τ|σ)
∑
y

P
(
z|α2(y)�α1(σ�y)

)
μy|σ

=
∑
y

(
1(z = 1)α1(τ� y) + 1(z = 0)

(
1 − α1(τ� y)

))[
α2(y) +π

(
1 − α2(y)

)]
μy|τ

+ εHzτ�

In both cases, |Hzτ|≤ 2. Q.E.D.

To apply Bayes law, we will need to bound marginal probabilities of signals from below.
The hard case is that of no signal where we must solve the equations for the conditionals
simultaneously. Here, we analyze the short-run pure strategy case. If the short-run player
enters for both z = 0�1 then no signals are unlikely as they are generated only from type
transitions, so we rule that out.

LEMMA S.4: Suppose α2(a1) = 0 for some a1 ∈{0�1}. Then

μN ≥ 1 −π

2

(
1 − 4ε

π

)
μ�
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PROOF: Let τ be the type that plays a1. We have

μa1|τ =
∑
y

[
α2(y) +π

(
1 − α2(y)

)]
μy|τ + εHa1τ�

μN|τ = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)
�

These imply the inequalities

μa1|τ ≥ π(1 −μN|τ) + [
α2(N) +π

(
1 − α2(N)

)]
μN|τ + εHa1τ�

μN|τ ≥ (1 −π)
((

1 − α2(N)
)
μN|τ +μa1|τ + εHNτ

)
�

Hence

μN|τ ≥ (1 −π)
((

1 − α2(N)
)
μN|τ +π(1 −μN|τ)

+ [
α2(N) +π

(
1 − α2(N)

)]
μN|τ + εHNτ + εHa1τ

)
= (1 −π)

(
π + [

α2(N) + (1 +π)
(
1 − α2(N)

) −π
]
μN|τ + εHNτ + εHa1τ

)
≥ (1 −π)

(
π + (1 −π)μN|τ + εHNτ + εHa1τ

)
�

It follows that

μN|τ ≥ 1 −π

1 − (1 −π)2 (π + 4ε) = 1 −π

(2 −π)π
(π + 4ε)

≥ 1 −π

2 −π

(
1 − 4ε

π

)
≥ 1 −π

2

(
1 − 4ε

π

)
�

The result now follows from μN ≥ μN|τμτ ≥ μN|τμ. Q.E.D.

Finally, we compute bounds on beliefs about types that play the same action indepen-
dent of the signal. Here, we combine bounds from the equations for the conditionals with
Bayes law.

LEMMA S.5: A long-run type τ that plays the pure action a1 regardless of the signal has

μτ|−a1 ≤ 2
μ

(
ε

π

)

and if α2(1) = 1 and α2(0) = 0 then a type τ that plays the action 1 regardless of signal has

μτ|N ≤ 8(
1 − 4

(
ε

π

))
μ

(
ε

π

)
�

PROOF: If long-run type τ plays the pure action a1 from Lemma S.3,

μ−a1|τ = (
1(a1 = 0)1(a1 = 1) + 1(a1 = 1)1(a1 = 0)

)∑
y

[
α2(y) +π

(
1 − α2(y)

)]
μy|τ + εHzτ

= εH−a1τ ≤ 2ε�
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From Lemma S.2, μ−a1 ≥ πμ and Bayes law then implies

μτ|−a1 ≤ ε2
πμ

�

For the second part, we have from Lemma S.3,

μN|τ = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|τ + εHNτ

)
�

μ0|τ = εH0τ�

Hence

μN|τ = (1 −π)
(
μ0|τ + [

1 − α2(N)
]
μN|τ

) + (1 −π)εHNτ�

Plugging in

μN|τ = (1 −π)
[
1 − α2(N)

]
μN|τ + (1 −π)εH0τ + (1 −π)εHNτ�

μN|τ ≤ (1 −π)μN|τ + (1 −π)εH0τ + (1 −π)εHNτ

so

μN|τ ≤ (1 −π)4ε
π

�

From Lemma S.4,

μN ≥ 1 −π

2

(
1 − 4ε

π

)
μ�

Hence Bayes law implies

μτ|N ≤ 8ε

π

(
1 − 4ε

π

)
μ

� Q.E.D.

Short-Run Player Optimality

Recall that μ1(z) is the probability of a1 = 1 in state z and that B = 1/(V + 1) is the
critical value of μ1(z) such that we have the following.

LEMMA S.6: If μ1(z) > B, the short-run player strictly prefers to enter; if μ1(z) < B, the
short-run player strictly prefers to stay out, and if μ1(z) = B, the short-run player is indifferent.

We next show that it cannot be optimal for the short-run player always to enter. Set
B ≡ μmin{π�1 −π}min{B�1 −B}.
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LEMMA S.7: For ε < (1/2)B, always enter a2(z) = 1 for all z is not an equilibrium.

PROOF: By Lemma S.1, always enter implies no effort by the normal long-run player.
As there are few good types at z = 0, we show that this forces the short-run player to stay
out there so the short-run player should not in fact enter.

Turning to the details, Lemma S.5 gives

μg|0 ≤ 2
μ

(
ε

π

)
�

Hence

μ1(0) ≤ 2
μ

(
ε

π

)

also. From Lemma S.6, it follows that ε/π < μB/2 implies a2(0) = 0 a contradiction.
Q.E.D.

LEMMA S.8: For ε < (1/16)B, the strict equilibrium response to never provide effort is to
enter only on z = 1 and do so with probability 1.

PROOF: As the normal and bad types never provide effort, the signal z = 1 implies a
good type with high probability so the short-run player should enter there. This means
that the long-run player can have the signal z = 1�N only through a type transition. In
particular, the bad signal is dominated by normal and bad types so the short run player
should stay out. This in turn means that most of the N signals are generated by normal
and bad types, so the short-run player should stay out there, too.

Turning to the details, from Lemma S.5 no effort implies

μn|1 ≤ 2
μ

(
ε

π

)

and the same inequality holds for μb|1. Hence

μg|1 ≥ 1 − 4
μ

(
ε

π

)

and by Lemma S.6 ε/π < μ(1 −B)/4, this forces α2(1) = 1. By the Lemma S.5,

μg|0 ≤ 2
μ

(
ε

π

)

so by Lemma S.6 ε/π < μB/2 we must have α2(0) = 0.
We may again apply the two lemmas to conclude that

μg|N ≤ 8(
1 − 2

(
ε

π

))
μ

(
ε

π

)
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so that for

ε/π < max{μB/16�1/4}

the short-run player must stay out on N as well.
All of these responses are strict. Q.E.D.

LEMMA S.9: For ε < (1/16)B, there is no equilibrium in which α2(0) = 1.

PROOF: By Lemma S.1, α2(0) = 1 implies never provide effort, so by Lemma S.8
α2(0) = 0 a contradiction. Q.E.D.

LEMMA S.10: For ε < (1/32)B, the unique equilibrium response to always provide effort
is to enter only on z = 1 and do so with probability 1.

PROOF: This is basically the opposite of Lemma S.8. Now at z = 1, there are mainly
good and normal types so it is optimal for the short-run player to enter. While at z = 0,
there are mainly bad types so it is optimal for the short-run player to stay out. Hence
no-signal is generated by bad types from z = 0, so it is optimal for the short-run player to
stay out there, too.

Turning to the details, from Lemma S.5,

μg|0�μn|0 ≤ 2
μ

(
ε

π

)

so

μb|0 ≥ 1 − 4
μ

(
ε

π

)

so by Lemma S.6 ε/π < μ(1 −B)/4 implies a2(0) = 0.
Apply the two lemmas again to see that

μb|1 ≤ 2
μ

(
ε

π

)

so for ε/π < μB/2 we have a2(1) = 1.
Apply the two lemmas a third time to see that

μg|N�μn|N ≤ 8(
1 − 4

(
ε

π

))
μ

(
ε

π

)

so that ε/π < max{μB/32�1/8} implying a2(N) = 0.
All of these responses are strict. Q.E.D.

LEMMA S.11: If ε < (1/2)B and for some a1, we have α1(a1) = a1, then α2(a1) = a1.

PROOF: If α1(0) = 0, then from Lemmas S.3 and S.2, μ1(0) = μ0|gμg/μ0 = εH0gμg/
μ0 ≤ 2ε/(πμ). If α1(1) = 1, then 1 − μ1(1) = μ1|bμb/μ1 = εH1bμb/μ1 ≤ 2ε/(πμ). Hence
for ε/π < Bμ/2, it follows that α2(a1) = a1. Q.E.D.
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Uniqueness of Short-Run Pure Equilibria

We define an equilibrium response of the short-run player to a strategy of the long-run
player to be a best response to μzτ induced by the long-run player strategy and itself.

PROPOSITION S.1: There exists an ε > 0 depending only on V such that for any ε satisfying

ε >
ε

μmin{π�1 −π}
> 0

in any short-run pure equilibrium the short-run player must enter on the good signal and only
on the good signal. Moreover, this is a strict equilibrium response.

PROOF: We rule out all other possibilities:
(a) Always enter a2(z) = 1 for all z is not an equilibrium. By Lemma S.7,
(b) the unique equilibrium response to never provide effort is to enter only on z = 1, from

Lemma S.7.
(c) A equilibrium response requires a2(1) = 1, a2(0) = 0. Any other strategy satisfies

a2(0) ≥ a2(1). From Lemma S.1, this implies no effort by the long-run player. Part (b)
then forces 0 = a2(0) < a2(1) = 1 a contradiction.

(d) The unique equilibrium response to always provide effort is to enter only on z = 1, from
Lemma S.10.

This leaves only the strategy ã in which the long-run player plays a1 = 1 on entry and
a1 = 0 if the short-run player stays out. As we know that α2(1) = 1, α2(0) = 0, there are
two possibilities α2(N) = 1 and α2(N) = 0. The former is ruled out because it leads to
primarily bad types at z = N , and the latter is a strict best response by the short-run
player because there are few good types at z =N .

Turning to the details, there is entry at N , 1 and not on 0; consequently, there is effort
on N , 1 and not on 0. From Lemma S.3, we find

μ0|n =
∑
y

(
1 − α1(n� y)

)[
α2(y) +π

(
1 − α2(y)

)]
μy|n + εH0n = πμ0|n + εH0n�

μN|n = (1 −π)
(∑

y

(
1 − α2(y)

)
μy|n + εHNn

)
= (1 −π)μ0|n + (1 −π)εHNn�

The former implies

μ0|n ≤ 2ε
1 −π

so that the second implies

μN|n ≤ 2ε+ (1 −π)εHNn ≤ 4ε�

From Lemma S.4,

μN ≥ 1 −π

2

(
1 − 4ε

π

)
μ
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so Bayes law gives

μn|N ≤ π

1 −π

8(
1 − 4

(
ε

π

))
μ

(
ε

π

)
�

Also by Lemma S.5,

μg|N ≤ 8(
1 − 4

(
ε

π

))
μ

(
ε

π

)
�

Hence

μb|N ≥ 1 − 16(
1 − 4

(
ε

π

))
μ

(
ε

1 −π

)

from which the result follows. Note that it is only for this result that we require ε/(1 −π)
to be small as well as ε/π.

Finally, we must show that α2(N) = 0 is in fact a strict equilibrium response for the
short-run player. We have

μb|1�μg|0 ≤ 2
μ

(
ε

π

)

μb|1 = 0 and μg|0 = 0 so is a strict best response to stay out in the former and enter in the
latter. Finally, Lemma S.3 gives

μg|N ≤ 8(
1 − 4

(
ε

π

))
μ

(
ε

π

)

implying for small ε/π it is strictly optimal for the short-run player to stay out on N .
Q.E.D.

Mixing

Recall that all of the lemmas concerning short-run optimality hold for ε ≤ B/32
(and the remaining lemmas do not place restrictions on ε) where B = μmin{π�1 −
π}min{B�1 − B}. Recall also the notion of a fundamental bound: It may depend on the
fundamentals of the game π, V , δ, c but not on the type dynamics Q, ε. Define the fun-
damental bound A ≡ π2(1 − π) min{B�1 − B} and observe that if ε ≤ μA/32 then also
ε≤ B/32. We shall assume ε≤ μA/32 hereafter.

LEMMA S.12: There is no nonpure equilibrium with α1(1) = 1.

PROOF: By Lemma S.2, μ1|b = εH1b ≤ 2ε. Hence for ε < B/2 by Lemma S.6, α2(1) = 1.
Then by Lemma S.2 μ1|n = μ1|n + ∑

y∈{0�N}α1(y)[α2(y) +π(1 − α2(y))]μy|n + εHzτ. It fol-
lows that ∑

y∈{0�N}

α1(y)μy|n ≤ 2(ε/π) so max
y∈{0�N}

α1(y)μy|n ≤ 2(ε/π).
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Moreover, for z ∈{0�N}, we have μz|g = εHzg ≤ 2ε. Hence

μ1(0) = μ0|gμg + α1(0)μ0|nμn

μ0
≤ 2(ε/π)(μg +μn)/(πμ) ≤ 2(ε/π)/(πμ)�

So for ε/π2 <Bμ/2 (this is why π2 appears in A) by Lemma S.6 we have α2(0) = 0. This
implies by Lemma S.4 that

μ1(N) = μN|gμg + α1(N)μN|nμn

μN

≤ 2(ε/π)(μg +μn)/μN

≤ 8(ε/π)

(1 −π)
(

1 − 4ε
π

)
μ

�

So when this is less than or equal B by Lemma S.6 we have α2(N) = 0. For ε ≤ A/8, this
is

16ε
π(1 −π)μ

≤ B

so holds for ε < μA/16 which was assumed. Q.E.D.

LEMMA S.13: In any equilibrium, α1(0) = α2(0) = 0.

PROOF: We already know this to be true in any pure equilibrium, so we may assume
the equilibrium is not pure. From Lemma S.11, if α1(0) = 0, then α2(0) = 0 so we may
assume this is not the case, that is, α1(0) > 0. From Lemma S.12, we know that α1(1) < 1.
It cannot be that the normal type is indifferent at both z = 0�1 for then by Lemma S.1 it
must be that α2(1) = α2(0) = α̃2 so that V1 = V (α̃) = V0 and that the normal type never
provides effort in which case by Lemma S.8 we would have a pure strategy equilibrium.
Hence either the normal type strictly prefers to provide no effort at z = 1 and is willing
to provide effort at z = 0 or the normal type is indifferent at z = 1 and strictly prefers to
provide effort at z = 0. In either case from Lemma S.1, we must have α2(1) <α2(0).

The key point is that having the short-run player enter when there is no effort is kind
of like winning the lottery—you get something for nothing. If that happens in the state
0, it is particularly good because you are guaranteed that you get to play again. Since
α2(1) < α2(0), we can write α2(0) = β + (1 − β)α2(1) where β > 0 meaning that in the
state z = 0 there is a better chance of winning the lottery. We will use this to show that
V (α2(0)) ≥ V (α2(1)) so that never provide effort is optimal and the equilibrium must be
pure by Lemma S.8.

Specifically, we compare V (α2(0)) to V (α2(1)). We may compute V (α2(1)) under the
assumption that the normal type does not provide effort since this is optimal at z = 1.
This gives

V
(
α1(1)

) = (1 − δ)α2(1)

+ δ
[
πV

(
α2(0)

) + (1 −π)
(
α2(1)V

(
α2(0)

) + (
1 − α2(1)

)
V

(
α2(N)

))]
�
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We may compute a lower bound V (α2(0)) under the assumption that the normal type
does not provide effort in the first period and optimizes afterwards. In this case,

V
(
α2(0)

) ≥ (1 − δ)α2(0)

+ δ
[
πV

(
α2(0)

) + (1 −π)
(
α2(0)V

(
α2(0)

) + (
1 − α2(0)

)
V

(
α2(N)

))]
= (1 − δ)

(
β+ (1 −β)α2(1)

)
+ δ

[
πV

(
α2(0)

) + (1 −π)
((
β+ (1 −β)α2(1)

)
V

(
α2(0)

)
+ (

1 − (
β+ (1 −β)α2(1)

))
V

(
α2(N)

))]
= (1 − δ)

(
β+ (1 −β)α2(1)

)
+ δ

[
πV

(
α2(0)

) + (1 −π)
((
β+ (1 −β)α2(1)

)
V

(
α2(0)

)
+ (1 −β)

(
1 − α2(1)

)
V

(
α2(N)

))]
= (1 − δ)β+ δβV

(
α2(0)

) + (1 −β)α2(1)

+ δ
[
(1 −β)πV

(
α2(0)

) + (1 −π)
(
(1 −β)α2(1)

)
V

(
α2(0)

)
+ (1 −β)

(
1 − α2(1)

)
V

(
α2(N)

)]
�

Using the expression for V (α1(1)) from above, this gives

V
(
α2(0)

) ≥ (1 − δ)β+ δβV
(
α2(0)

) + (1 −β)V
(
α1(1)

)
�

Hence

V
(
α2(0)

) ≥ (1 − δ)β
1 − δβ

+ 1 −β

1 − δβ
V

(
α1(1)

)
�

Since V (α1(1)) ≤ 1, this then implies V (α1(0)) ≥ V (α1(1)) as advertised. Q.E.D.

LEMMA S.14: In any nonpure equilibrium 0 <α2(1) < 1, α1(N) > 0, and α2(N) ≥ α2(1).

PROOF: First, suppose that α2(1) = 1. Since the short-run player must be mixing and
by Lemma S.13 is not doing so at z = 0 the short-run player must be mixing at z =N , that
is, that 0 <α2(N) < 1. Lemma S.12 implies that at z = 1 the normal type does not strictly
prefer to provide effort. Since α2(N) < α2(1), Lemma S.1 implies that at z = N normal
type strictly prefers to provide no effort, so α1(N) = 0. Hence μ1(N) = μN|gμg/μN =
εH0gμg/μN . As α2(0) = 0 by Lemma S.13, it follows from Lemma S.4 that

μ1(N) ≤ 4ε

(1 −π)
(

1 − 4ε
π

)
μ

as the RHS this is less than B by assumption we have α2(N) = 0 a contradiction.
Next, suppose that α2(1) = 0. By Lemma S.13, we also have α2(0) = 0 so by Lemma S.1

the long run player never provides effort. Hence α2(1) > 0 follows from Lemma S.8, a
contradiction. We have now shown strict mixing the short-run player at z = 1.

Now we show that since the short-run player is strictly mixing at z = 1 then α1(N) > 0.
Strict mixing by the short-run player at z = 1 implies from Lemma S.6 1−B = 1−μ1(1) =
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([1−α1(1)]μ1|nμn +μ1|bμb)/μ1. From Lemma S.3 and Lemma S.13 if α1(N) = 0, we have
μ1|n ≤ α1(1)μ1|n + 2ε and μ1|b ≤ 2ε. Hence by Lemma S.2 1 − μ1(1) ≤ 2ε/(πμ), so for
2ε/(πμ) < 1 −B this is a contradiction.

Since α2(N) > 0, the normal type weakly prefers to provide effort at z = N . If α2(1) >
α2(N) by Lemma S.1, this implies the normal type would strictly prefer to provide effort
at z = 1 contradicting Lemma S.12. Q.E.D.

Signal Jamming

Define the auxiliary system with respect to 0 ≤ λ, γ ≤ 1 as

V1 = (1 − δ)α̃2 + δ
[(
α̃2 + (1 − α̃2)π

)
V0 + (1 − α̃2)(1 −π)VN

]
�

VN = (1 − γ)(λ− c) + γV1�

V0 = δ(1 −π)
1 − δπ

VN�

Since in a mixed equilibrium, we know from Lemma S.12 that α1(1) < 1 so that at z = 1
the long-run player must be willing not to provide effort. This system corresponds to
providing no effort at z = 0�1. From the contraction mapping fixed-point theorem, this
has a unique solution V1, VN , V0. Define the function 
(α̃2) ≡ V1 − V0.

LEMMA S.15: We have

V1 = δ(1 −π)(1 − γ)(λ− c) + (1 − δ)
[
1 − δπ − δ(1 −π)(1 − γ)(λ− c)

]
α̃2(

1 − δπ − γδ(1 −π)
) + γδ(1 −π)(1 − δ)α̃2

strictly increasing in α̃2.

PROOF: Here, we simply solve the linear system and determine the sign of the deriva-
tive of V1.

Plugging V0 into V1,

V1 = (1 − δ)α̃2 + δ

[(
α̃2 + (1 − α̃2)π

)δ(1 −π)
1 − δπ

+ (1 − α̃2)(1 −π)
]
VN�

Plugging in VN ,

V1 = (1 − δ)α̃2 + δ

[(
α̃2 + (1 − α̃2)π

)δ(1 −π)
1 − δπ

+ (1 − α̃2)(1 −π)
](

(1 − γ)(λ− c) + γV1

)

from which

V1 =
(1 − δ)α̃2 + δ

[(
α̃2 + (1 − α̃2)π

)δ(1 −π)
1 − δπ

+ (1 − α̃2)(1 −π)
]

(1 − γ)(λ− c)

1 − γδ

[(
α̃2 + (1 − α̃2)π

)δ(1 −π)
1 − δπ

+ (1 − α̃2)(1 −π)
]

= (1 − δ)α̃2 + δ[�](1 − γ)(λ− c)
1 − γδ[�]

�
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We have

�= (
α̃2 + (1 − α̃2)π

)δ(1 −π)
1 − δπ

+ (1 − α̃2)(1 −π)

= α̃2
δ(1 −π)
1 − δπ

+ (1 − α̃2)
1 −π

1 − δπ

= 1 −π

1 − δπ
(δα̃2 + 1 − α̃2)

= 1 −π

1 − δπ

(
1 − (1 − δ)α̃2

)
�

Plug back into V1 to find

V1 =
(1 − δ)α̃2 + δ

[
1 −π

1 − δπ

(
1 − (1 − δ)α̃2

)]
(1 − γ)(λ− c)

1 − γδ

[
1 −π

1 − δπ

(
1 − (1 − δ)α̃2

)]

= (1 − δ)(1 − δπ)α̃2 + δ
[
(1 −π)

(
1 − (1 − δ)α̃2

)]
(1 − γ)(λ− c)

1 − δπ − γδ
[
(1 −π)

(
1 − (1 − δ)α̃2

)]

= δ(1 −π)(1 − γ)(λ− c) + (1 − δ)
[
1 − δπ − δ(1 −π)(1 − γ)(λ− c)

]
α̃2(

1 − δπ − γδ(1 −π)
) + γδ(1 −π)(1 − δ)α̃2

�

The derivative dV1/Dα̃2 has the same sign as

σ = [
1 − δπ − δ(1 −π)(1 − γ)(λ− c)

](
1 − δπ − γδ(1 −π)

)
− δ2(1 −π)2γ(1 − γ)(λ− c)

= (1 − δπ)
(
1 − δπ − γδ(1 −π)

) − δ(1 −π)(1 − γ)(λ− c)
(
1 − δπ − γδ(1 −π)

)
− δ2(1 −π)2γ(1 − γ)(λ− c)

= (1 − δπ)
(
1 − δπ − γδ(1 −π)

) − δ(1 −π)(1 − γ)(λ− c)(1 − δπ)

+ δ(1 −π)(1 − γ)(λ− c)γδ(1 −π) − δ2(1 −π)2γ(1 − γ)(λ− c)

= (1 − δπ)
[
1 − δπ − (1 −π)δ

(
γ + (1 − γ)(λ− c)

)]
> 0� Q.E.D.

LEMMA S.16: 
(α̃2) is strictly increasing. There is a solution 0 < α̂2 < 1 to


(α̃2) = 
(α̃2) ≡ 1 − δ

δ
(
α̃2 + (1 − α̃2)π

)c�
it and only if

c < δ

(
1 − δπ − δ(1 −π)

[
γ + λ(1 − γ)

])
1 − δπ − δ2(1 −π)

�

in which case it is unique.
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PROOF: Here, solve V0 as a function of V1 from the system. We subtract this from V1

and find that 
(α̃2) is strictly increasing in V1. Hence we may apply Lemma S.15. Since

(α̃2) is decreasing, there will be a unique intersection if and only if 
(0) > 
(0) and

(1) <
(1). By computation, we show that the first condition is always satisfied, and the
second is the condition on c given as the result.

Turning to the details, we first find V0,

V0 = δ(1 −π)
1 − δπ

VN = δ(1 −π)
1 − δπ

(
(1 − γ)(λ− c) + γV1

)
�

Hence


(α̃2) ≡ V1 − V0 =
(

1 − γ
δ(1 −π)
1 − δπ

)
V1 − δ(1 −π)

1 − δπ

(
(1 − γ)(λ− c)

)
�


(α̃2) ≡ V1 − V0 = 1
1 − δπ

[(
1 − δπ − γδ(1 −π)

)
V1 − δ(1 −π)(1 − γ)(λ− c)

]

is strictly increasing in V1 hence by Lemma S.15 in α̃2.
The function


(α̃1) = 1 − δ

δ
(
α̃2 + (1 − α̃2)π

)c
strictly decreasing in α̃2. Hence there is a solution 0 < α̂2 < 1 to 
(α̃2) = 
(α̃2) if and only
if 
(0) >
(0) and 
(1) <
(1) in which case it is unique. This gives the first result.

From Lemma S.15 at α̃2 = 0, we have

V1 = δ(1 −π)(1 − γ)(λ− c)
1 − δπ − γδ(1 −π)

so


(0) = 1
1 − δπ

(
δ(1 −π)(1 −γ)(λ− c) −δ(1 −π)(1 −γ)(λ− c)

) = 0 <
(1 − δ)c

δπ
= 
(0)�

Finally, we study 
(1) <
(1). From Lemma S.15,

V1 = δ(1 −π)(1 − γ)(λ− c) + (1 − δ)
[
1 − δπ − δ(1 −π)(1 − γ)(λ− c)

]
1 − δπ − γδ(1 −π) + γδ(1 −π)(1 − δ)

= (1 − δ)(1 − δπ) + δ2(1 −π)(1 − γ)(λ− c)
1 − δπ − γδ2(1 −π)

�

so that


(1) = 1
1 − δπ

[
1 − δπ − γδ(1 −π)
1 − δπ − γδ2(1 −π)

[
(1 − δ)(1 − δπ) + δ2(1 −π)(λ− γ)(1 − c)

]

− δ(1 −π)(λ− γ)(1 − c)
]
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= 1
1 − δπ

[(
(1 − δ)(1 − δπ)

(
1 − δπ − γδ(1 −π)

)
1 − δπ − γδ2(1 −π)

)

+
(
δ− δ2π − γδ2(1 −π)
1 − δπ − γδ2(1 −π)

− 1
)
δ(1 −π)

(
(1 − γ)(λ− c)

)]

= 1
1 − δπ

[(
(1 − δ)(1 − δπ)

(
1 − δπ − γδ(1 −π)

)
1 − δπ − γδ2(1 −π)

)

+
(

δ− δ2π − 1 + δπ

1 − δπ − γδ2(1 −π)

)
δ(1 −π)

(
(1 − γ)(λ− c)

)]

= 1
1 − δπ

[(
(1 − δ)(1 − δπ)

(
1 − δπ − γδ(1 −π)

)
1 − δπ − γδ2(1 −π)

)

+
(−(1 − δ) + δπ(1 − δ)

1 − δπ − γδ2(1 −π)

)
δ(1 −π)

(
(1 − γ)(λ− c)

)]

= (1 − δ)
1 − δπ − γδ2(1 −π)

[(
1 − δπ − γδ(1 −π)

) − δ(1 −π)(1 − γ)(λ− c)
]

= (1 − δ)
[
1 − δπ − γδ+ γδπ − δ(1 −π)(1 − γ)(λ− c)

]
1 − δπ − γδ2(1 −π)

�

Hence 
(1) <
(1) if and only if

(1 − δ)
[
1 − δπ − γδ+ γδπ − δ(1 −π)(1 − γ)(λ− c)

]
1 − δπ − γδ2(1 −π)

>
(1) = (1 − δ)c/δ�

We rewrite this inequality

δ
(
1 − δπ − γδ+ γδπ − δ(1 −π)(1 − γ)(λ− c)

)
>

(
1 − δπ − γδ2(1 −π)

)
c�

δ
(
1 − δπ − γδ(1 −π) − λδ(1 −π)(1 − γ)

)
>

(
1 − δπ − γδ2(1 −π) − δ2(1 −π)(1 − γ)

)
c�

δ
(
1 − δπ − γδ(1 −π) − λδ(1 −π)(1 − γ)

)
>

(
1 − δπ − δ2(1 −π)

)
c�

c < δ

(
1 − δπ − γδ(1 −π) − λδ(1 −π)(1 − γ)

)
1 − δπ − δ2(1 −π)

�

c < δ

(
1 − δπ − δ(1 −π)

[
γ + λ(1 − γ)

])
1 − δπ − δ2(1 −π)

�

This gives the final result. Q.E.D.
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PROPOSITION S.2: If ε < μπ2(1 −π) min{B�1 −B}/32 and

c ≥ δ
1

1 + δ(1 −π)
�

all equilibria are in pure strategies.

PROOF: Suppose that α1(z), α2(z) is a nonpure equilibrium. If the normal type is will-
ing to provide effort at z = 1 we take α̂2 = α2(1). If the long-run player strictly prefers
to provide no effort at z = 1, we show how to construct a 1 > α̂2 > α2(1) for which the
long-run player is indifferent at z = 1 and strictly prefers to provide effort at z = N .
We show that 1 − c ≥ V (α2(N)) ≥ V (α̂2) and use this to show that at α̂2 we must have

(α̂2) = 
(α̂2) for λ= 1. Applying Lemma S.16 then yields the desired condition.

Turning to the details, from Lemmas S.12, S.13, and S.14, we know that α1(0) = α2(0) =
0, α1(N) > 0, α2(N) ≥ α2(1), α1(1) < 1, and 0 <α2(1) < 1.

If the long-run player strictly prefers not to provide effort at z = 1, then α1(1) = 0.
Moreover, we must have α2(N) > α2(1) since if the two are equal and effort is weakly
preferred at α2(N) it would be at α1(1) as well. For V (α2(0)), we solve the Bellman
system to find

V0 = δ(1 −π)
1 − δπ

VN

and for V (α2(N)) we solve

V
(
α2(N)

) = 1 − δ

1 − δ
(
1 − α2(N)

)
(1 −π)

[
α2(N)−c

]+ δ
(
α2(N) + (

1 − α2(N)
)
π

)
1 − δ

(
1 − α2(N)

)
(1 −π)

V
(
α2(1)

)
�

Hence if hold fixed α2(N) and take λ= α2(N) and

γ = δ
(
α2(N) + (

1 − α2(N)
)
π

)
1 − δ

(
1 − α2(N)

)
(1 −π)

the Bellman system corresponds to the auxiliary system, so V (α2(1)) − V (α2(0)) =

(α2(1)). From Lemma S.16, this is strictly increasing.

As earlier, we may define the gain to providing no effort at z as

G
(
α2(z)�α2(1)

) = (1 − δ)c − δ
(
π + α2(z)(1 −π)

)[
V

(
α2(1)

) − V
(
α2(0)

)]
and it follows that G is strictly decreasing in both arguments. Hence as we increase α2(1)
to α2 the gain G(α2�α2) to providing no effort at z = 1 and the gain G(α2(N)�α2) to
no effort at z = N both strictly decline. Initially, at z = N the long-run player weakly
preferred to provide effort, hence as we increase α2 the long-run player strictly prefers
to provide effort. At z = 1, the long-run player strictly preferred no effort but when α2

reaches α2(N) effort is strictly preferred, and as G is continuous, this implies for some
α̂2 < 1 the long-run player is indifferent at z = 1.

To summarize: In all cases with the original value of α2(0), α2(N) and the short-run
player using α̂2 ≤ α2(N) in state z = 1, the strategy for the long-run player of providing
no effort in states z = 0�1, providing effort in state N is optimal and the long-run player
is indifferent in state z = 1. We next show that with respect to this (possibly modified)
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strategy by player 2 the long-run player has 1 − c ≥ V (α2(N)) ≥ V (α̂2) and use this to
show that at α̂2 we must have 
(α̂2) = 
(α̂2) for λ = 1. Applying Lemma S.16 then yields
the desired condition.

Since it is also optimal for the long-run payer to provide effort, the Bellman system may
be written as

V (α̂2) = (1 − δ)[α̂2 − c] + δ
[(
α̂2 + (1 − α̂2)π

)
V1(α̂2) + (1 − α̂2)(1 −π)V

(
α2(N)

)]
�

V
(
α2(N)

) = (1 − δ)
[
α2(N) − c

]
+ δ

[(
α2(N) + (

1 − α2(N)
)
π

)
V (α̂2) + (

1 − α2(N)
)
(1 −π)V

(
α2(N)

)]
�

This implies that for some 0 ≤ λ ≤ 1, we have V (α̂2) = (1 − λ)[α̂2 − c] + λ[α2(N) − c],
that is, a weighted average of the period payoffs in the two states. Yet V (α̂2) > V (α2(N))
gives V (α2(N)) > (1 − δ)[α2(N) − c] + δV (α2(N)) so V (α2(N)) > α2(N) − c ≥ α̂2 − c,
which implies V (α2(N)) > V (α̂2) a contradiction. Hence V (α2(N)) ≥ V (α̂2).

For some 0 ≤ λ′ ≤ 1, we also have V (α2(N)) = (1 −λ′)[α̂2 − c] +λ′[α2(N) − c] ≤ 1 − c.
This establishes the target 1 − c ≥ V (α2(N)) ≥ V (α̂2).

From 1 − c ≥ V (α2(N)) ≥ V (α̂2), we see that for some 0 ≤ γ ≤ 1 we have V (α2(N)) =
γ(1 − c) + (1 − γ)V (α̂2). It follows from this and indifference of the long-run player
at α̂2 that for this value of γ and λ = 1 that at α̂2 we must have 
(α̂2) = 
(α̂2). From
Lemma S.16, this means that

c < δ

(
1 − δπ − δ(1 −π)

[
γ + λ(1 − γ)

])
1 − δπ − δ2(1 −π)

= δ
1 − δπ − δ(1 −π)
1 − δπ − δ2(1 −π)

= δ
1 − δ

(1 − δ)
(
1 + δ(1 −π)

)

the desired result. Q.E.D.

Role of Types

We turn now to a converse of Proposition S.2, that is, when

c < δ
1

1 + δ(1 −π)
�

are there equilibria that are not pure? Intuitively, this cannot be the case for all Q. If there
are very few normal types, then basically the short-run player ignores them and plays a
best response to the behavioral types, which is to say the pure strategy of staying out on
a bad or no signal and entering on a good signal. This we know leads the normal type to
best respond with a pure strategy as given in Proposition S.2.

Our first result is precise result: it shows if there are enough good types there is neces-
sarily a pure strategy equilibrium.
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PROPOSITION S.3: For any Q with

μg >
B

B + (1 −B)(π/2)

if ε ≤ μA/32, then all equilibria are pure.

PROOF: From Bayes law,

μ1(1) ≥ μg|1 = μ1|gμg

μ1|gμg +
∑
τ �=g

μ1|τμτ

≥ 1
1 + (1 −μg)/(μ1|gμg)

�

From Lemma S.3,

μ1|g ≥ [
α2(1) +π

(
1 − α2(1)

)]
μ1|g + [

α2(N) +π
(
1 − α2(N)

)]
μN|g − 2ε�

The same lemma implies μ0|g ≤ 2ε, so

μ1|g ≥ [
α2(1) +π

(
1 − α2(1)

) −π
]
μ1|g +π − 4ε≥ π − 4ε�

Combining the two

μ1(1) ≥ 1
1 + (1 −μg)/

(
(π − 4ε)μg

) �
By Lemma S.5, if

1
1 + (1 −μg)/

(
(π − 4ε)μg

) >B

or equivalently

μg >
B

B + (1 −B)(π − 4ε)

then α2(1) = 1 so the result follows from Lemma S.14 and the assumption that ε <

μA/32 ≤ π/2. Q.E.D.

This is not terribly interesting in itself: the case of interest is when they are many normal
types, but it does show that there is no converse to Proposition S.2 without an assumption
on Q. Hence we investigate the interesting case of many normal types.

In addition to showing that there are mixed equilibria, we can say what they look like.
There are two types, single mixing and double mixing. In both types of equilibrium in the
bad state z = 0, there is no effort and the short-run player stays out: α1(0) = 0, α2(0) = 0.
In the good state z = 1, both players strictly mix: 0 <α1(1) < 1, 0 <α2(1) < 1. In the single
mixing equilibrium, this is the only mixing: In the state z = N , the normal type provides
effort and the short-run player enters α1(N) = 1, α2(N) = 1. In the double mixing case,
equilibrium mixing takes place also at z = N ; the short-run player mixes exactly as in
the state z = 1, that is, α2(N) = α2(1), while normal type provides effort with a positive
probability α1(N) > 0.
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To state a precise result and also be clear about the order of limits, it is useful to define
the notion of a fundamental bound. This is a number that may depend on the funda-
mentals of the game π, V , δ, c but not on the type dynamics Q, ε. Recall that B is the
probability of effort that makes the short-run player indifferent to entry.

LEMMA S.17: There exists a fundamental bound μ< 1 such that for any Q with μn ≥ μ if
for ε≤ μA/32 a nonpure equilibrium is either a single- or double-mixing profile.

PROOF: The only things not covered in Lemmas S.12, S.13, and S.14 are α1(1) �= 0 and
the result that α2(N) >α2(1) implies α1(N) = 1, α2(N) = 1.

For the first result, the idea is since μn is large there must be many more normal types at
N than good types. Since since α2(N) > 0 this means that α1(N) cannot be too small, and
this in turn implies that even though α1(1) = 0 there must be many more normal types
at 1 then good types. If they provide no effort, then the short-run player should stay out
contradicting the fact that we already know α2(1) > 0.

For the second result, we leverage the first to see that we must have α1(N) = 1. More-
over, since α1(1) < 1 there must be many normal types at z = 0, and so at z =N . As these
are all providing effort, it is optimal for the short-run player to enter.

Turning to the details, suppose in fact α1(1) = 0. Since α2(N) > 0, we must have (1 −
μn)V + α1(N)μN|nμnV ≥ (1 − α1(N))μN|nμn. We may rewrite this as

α1(N)μN|n ≥ 1
1 + V

(
μN|n − (1 −μn)

μn

V

)
�

From Lemma S.3, we have μ1|n ≥ πα1(N)μN|n − 2ε so

μ1|n ≥ π

1 + V

(
μN|n − 1 −μn

μn

V

)
− 2ε�

Also from Lemma S.3, we have μN|n ≥ (1 − π)(1 − μN|n − μ1|n) − 2ε so that μN|n ≥ (1 −
μ1|n)(1 −π)/π − 2ε/π implying

μ1|n ≥ 1
1 + V

([
(1 −μ1|n)(1 −π) − 2ε

] −π
1 −μn

μn

V

)
− 2ε

or

μ1|n ≥

([
(1 −π) − 2ε

] −π
1 −μn

μn

V

)
− 2(1 + V )ε

2 + V −π
�

Since α2(1) > 0, we must have (1 −μn)V ≥ μ1|nμn, so

1 −μn

μn

V ≥

([
(1 −π) − 2ε

] −π
1 −μn

μn

V

)
− 2(1 + V )ε

2 + V −π

or
1 −μn

μn

V ≥ 1 −π

2 + V
− 2ε�
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Our assumption implies ε < (1 −π)B/4, which means that ε≤ (1 −π)/(4 + 2V ). Hence

1 −μn

μn

≥ 1 −π

V (4 + 2V )

or

μn ≤ V (4 + 2V )
V (4 + 2V ) + 1 −π

< 1�

Hence α1(1) = 0 is ruled out by large μn.
Next, suppose that α2(N) > α2(1). Since α1(1) > 0, Lemma S.1 implies α1(N) = 1. It

remains to show that this in turn forces α2(N) = 1.
From Lemma S.2,

μN|n ≥ (1 −π)
((

1 − α2(1)
)
μ1|n +μ0|n − 2ε

)
�

Suppose that μN|n ≤ 1/3. Then either μ0|n ≥ 1/3 or μ1|n ≥ 1/3.
In the former case, we have μN|n ≥ (1 −π)/3 − 2ε.
In the latter case, strict mixing by the short-run player at z = 1 implies from Lemma S.6

that

1 −B = 1 −μ1(1) =
[
1 − α1(1)

]
μ1|nμn +μ1|bμb

μ1
≤

[
1 − α1(1)

]
μ1|nμn +μ1|bμb

μ1|nμn +μ1|bμb

= γ
(
1 − α1(1)

) + (1 − γ)�

If 1 − α1(1) < (1 −B)/2, then

1 −B ≤ γ(1 −B)/2 + (1 − γ)

or

γ ≤ 2B

1 +B
�

Lemma S.3 gives μ1|b ≤ 2ε, so since μ1|n ≥ 1/3,

γ = μ1|nμn

μ1|nμn +μ1|bμb

≥ μn

μn + 6ε(1 −μn)
�

Since ε≤ 1/6, it follows that γ ≥ μn, so if

μn >
2B

1 +B

we have a contradiction, so 1 − α1(1) ≥ (1 − B)/2. Hence by Lemma S.3 μ0|n ≥ π(1 −
B)/2 − 2ε from which μN|n ≥ π(1 −π)(1 −B)/2 − 4ε.

In all cases, then μN|n ≥ π(1 −π)(1 −B)/2 − 4ε. As

ε≤ π(1 −π)(1 −B)/16

this is μN|n ≥ π(1 −π)(1 −B)/4.



THE REPUTATION TRAP 23

The short-run player must enter if

μN|nμnV > μN −μN|nμn

while μN ≤ μN|nμn + (1 −μn) so entry must occur if

μN|nμnV > 1 −μn

or

μn >
1

1 + V μN|n
≥ 4

4 +π(1 −π)(1 −B)
� Q.E.D.

LEMMA S.18: In any single- or double-mixing profile if μn ≥ 1/2 and ε < (1 − a2(1))(1 −
π)/12, then

μn|N ≥ 1 − 1 −μn(
1 − α2(1)

)
(1 −π)/12

�

If in addition ε < α1(N)π(1 − a2(1))(1 −π)/24, then

μn|1 ≥ 1 − 1 −μn

α1(N)π
(
1 − α2(1)

)
(1 −π)/24

�

PROOF: The first result says that if α2(1) is less than 1, and if there are many normal
types, there must be many normal types at z = N , as they are flowing there from both
z = 0 and z = 1. The second result leverages this to say that if there are many normal
types at z = N and α1(N) is large, then there must be many normal types at z = 1.

Turning to the details, we start with an inequality that follows from Bayes law:

μn|z = μz|nμn

μz

≥ μz|nμn

μz|nμn + (1 −μn)

= 1 −
(

1 − μz|nμn

μz|nμn + (1 −μn)

)

= 1 −
(

1 −μn

μz|nμn + (1 −μn)

)

≥ 1 − 1 −μn

μz|nμn

�

Since μn ≥ 1/2, this implies

μn|z ≥ 1 − 1 −μn

μz|n/2
�

To get the required bounds, it then suffices to get a lower bound on μz|n. Take first
z = N . Suppose that μN|n ≤ 1/3. Then either μ0|n ≥ 1/3 or μ1|n ≥ 1/3. If μ0|n ≥ 1/3, then
by Lemma S.3 μN|n ≥ (1 − π)/3 − 2ε. If μ1|n ≥ 1/3, then by the same lemma μN|n ≥ (1 −
a2(1))(1 − π)/3 − 2ε. For ε < (1 − a2(1))(1 − π)/12, this is μN|n ≥ (1 − a2(1))(1 − π)/6
giving the first bound.
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From Lemma S.3μ1|n ≥ α1(N)πμN!n − 2ε, so that the first bound implies μ1|n ≥
α1(N)π(1 − a2(1))(1 − π)/6 − 2ε. For ε < α1(N)π(1 − a2(1))(1 − π)/24, this is μ1|n ≥
α1(N)π(1 − a2(1))(1 −π)/12 giving the second bound. Q.E.D.

The next lemma is simply an observation.

LEMMA S.19: A single mixing equilibrium corresponds to the auxiliary system with λ = 1
and γ = δ and a double mixing equilibrium corresponds to the auxiliary system with λ = 1
and γ = 1. In particular, in a single mixing equilibrium,

V
(
α2(1)

) = (1 − δπ)α2(1)
1 + δ(1 −π)α2(1)

�

which is increasing in α2(1).

PROOF: In the single mixing case, this is just the Bellman equation. In the double
mixing case, we use the fact that V (α2(N)) = V (α2(1)). The value V (α̃2) follows from
plugging into the expression for V1 in Lemma S.15; that lemma gives the result that it is
increasing. Q.E.D.

PROPOSITION S.4: There exists a fundamental bound μ < 1 such that for any Q with
μn ≥ μ if ε≤ μA/32 and

c < δ
1

1 + δ(1 −π)

there is at least one single-mixing and one double-mixing equilibrium and no other type of
mixed equilibrium. In both cases, the equilibrium value of α2(1) is the unique solution of

(α2(1)) = 
(α2(1)) where λ = 1 and in the single-mixing case γ = δ and in the double-
mixing case γ = 1. Moreover, the equilibrium value of α1(z) satisfies

∣∣α1(z) −B
∣∣ ≤ 1 −μn

1 −μ

for z = 1 in the single mixing case and z ∈{N�1} in the double-mixing case.

PROOF: From Lemma S.17, we know there can be no other kind of equilibrium. From
Lemma S.16, we know that

c < δ

(
1 − δπ − δ(1 −π)

[
γ + λ(1 − γ)

])
1 − δπ − δ2(1 −π)

and from Lemma S.19 with λ = 1 and γ = δ is a necessary condition for the existence of
single-mixing equilibrium and with λ = 1 and γ = 1 for the existence of a double-mixing
equilibrium. When λ= 1, the RHS is independent of γ and given as the expression in the
theorem. This gives us a unique solution 0 < α̃2 < 1 for the equilibrium value of α2(1).
The crucial fact is that ã2 arising from the optimization problem of the normal type is
itself a fundamental bound.

We must now show the existence of an α1(1) so that the short-run player is indifferent
when z = 1 and weakly prefers to enter when z = N , and in the double mixing case the
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existence of α1(1), α1(N) so that the short-run player is indifferent in both z = N�1, and
that any such strategic components satisfy the required bound.

Recall that μ1(z) are the beliefs of the short-run player about the probability the
long-run player will provide effort. This is given as μ1(z) = μg|z + μn|zα1(z). Define
Ã(z�α1(z)) = μ1(z) − B. Hence the equilibrium requirement is that Ã(1�α1(1)) = 0
and that in the single mixing case Ã(N�α1(N)) = 0 and in the double-mixing case
Ã(N�1) ≥ 0. The complication is that μg|z and μn|z for z ∈{N�1} both depend upon α1(1)
and α1(N). As by the ergodic theorem, the ergodic distribution is continuous in α1(1) and
α1(N) so are Ã(z�α1(z)) and we will be able to apply fixed-point argument.

Write Ã(z�α1) = μg|z − (1 −μn|z)α1 +α1 −B and observe that μg|z ≤ (1 −μn|z). Hence
Ã(z�α1) = α1 −B + Ã1(1 −μn|z) with |Ã1|≤ 2.

We now apply the first bound from Lemma S.18. We know that α2(1) = α̃2 a funda-
mental bound so we have Ã(N�α1) = α1 − B + Ã2(1 − μn) where |Ã2|≤ A2 and A2 is
a fundamental bound. Hence for α1 − B ≤ −A2(1 − μn) we have Ã(N�α1) < 0. Taking
A2(1−μn) ≤ B/2 for α1 ≤ B/2 we also have Ã(N�α1) < 0. We may restrict attention then
to the region where α1(N) ≥ B/2 since there can be no equilibrium outside this region.

In the region α1(N) ≥ B/2, we may now apply the second bound from Lemma S.18
and find that Ã(1�α1) = α1 − B + Ã3(1 − μn) where |Ã3|≤ A3 and A3 is a fundamental
bound.

Take first the single-mixing case. Here, if we take A2(1 − μn) ≤ (1 − B)/2 we have
Ã(N�1) > 0, and we have Ã(1�α1) negative for α1 − B < −A3(1 − μn), and positive for
α1 −B >A3(1 −μn) implying at least one solution Ã(1�α1) = 0 in the interval |α1 −B|≤
A3(1 −μn) and none elsewhere. That is the first required result.

In the double mixing case, we take the rectangle |α1(1) − B| ≤ A3(1 − μn) and
|α1(N) − B| ≤ A2(1 − μn) and observe that Ã(1�α1), Ã(N�α1) are not both zero out-
side this region. Moreover, the vector field (Ã(1�α1(1))� Ã(N�α1(N)) points outwards
on the boundary of the rectangle. By the continuous vector field version of the Brouwer
fixed-point theorem, there is at least one point inside the rectangle where they both van-
ish. Q.E.D.

Note that we do not guarantee a unique equilibrium of each type, but show that if there
are enough normal types then all equilibria of a given type are similar and the mixing
by the long-run normal type is approximately the value that makes the short-run player
indifferent. The reason this is only approximate is because the short-run player also faces
an endogenous number of good and bad types who are either providing effort or not.

How do the mixed equilibria differ from the pure equilibrium? Roughly speaking, we
can describe the pure equilibria as having three properties: The signal is informative for
the short-run player, reputation is valuable, and the normal type of long-run player re-
mains stuck in either a good or bad situation. The mixed equilibria are quite different:
The signal is uninformative for the short-run player, reputation is not valuable, and the
normal type of long-run player transitions back and forth between all the states.

Specifically, with the mixed equilibrium we have the following situation. In every state,
the short-run player is facing mostly normal types. The normal type, starting in state z = 0
will eventually have some luck, the short-run player will not observe the long-run player,
and the state will move to N . Here, the normal type provides effort with positive proba-
bility and the short-run player observes this with positive probability so there is a chance
of getting to the state z = 1. Once there both players are mixing, so there is a chance
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of moving to either state z = 0 or state z = N . Indeed, the only transitions that are not
seen are moving directly from z = 0 to z = 1 and in the single mixing case moving di-
rectly from z = N to z = 0. The normal type transitions back and forth between all the
states. Because of this mixing the behavioral types play no role in the inferences of the
short-run player. This is similar to the cheap talk literature:1 The mixing of the long-run
player effectively jams the signal of the behavioral types, and reputation plays no role in
equilibrium. These equilibria also have the property that α2(N) ≥ α2(1): The short-run
player is no more likely to enter when there is a favorable signal than when there is no
signal. This represents a precise sense in which the “signal is jammed.”

Finally, we emphasize that for very low c there are always signal jamming equilibria:
low c does not guarantee a good equilibrium.

Welfare

Is a mixed equilibrium good or bad for the long-run player? This is irrelevant in the bad
equilibrium case where c > δ as there is no mixed equilibrium there. If π < (1 −δ)/δ and

δ
π

1 − δ+ δπ
< c < δ

1
1 + δ(1 −π)

then there is both a trap equilibrium and mixed equilibrium. The mixed equilibrium is
clearly good for a long-run normal type who is trapped with no reputation—that type gets
0 while receives a positive payoff in the mixed equilibria. In this sense, signal jamming is
potentially good because it can alleviate a reputation trap.

On the other hand, a long-run normal type with a good reputation gets 1 − c. The next
result shows that in this case a double-mixing equilibrium is unambiguously bad: Expected
average present value starting in the good state is strictly less.

PROPOSITION S.5: In a double mixing equilibrium,

V
(
α2(1)

)
<

1 − δπ

1 + δ(1 −π)
≤ 1 − c�

PROOF: From Lemma S.15,

V
(
α2(1)

) = (1 − δπ)α2(1)
1 + δ(1 −π)α2(1)

which is strictly increasing in α2(1), so the first bound follows from α2(1) < 1. The final in-
equality is a restatement of the condition for the existence of a double mixing equilibrium
from Proposition S.4. Q.E.D.

This has the following additional consequence. As δ→ 1, regardless of initial condition
utility in the good equilibrium approaches 1 − c. On the other hand, the theorem shows
that lim supV (α2(1)) is bounded above by (1 −π)/(2 −π), which does not depend upon
c. Hence for small enough c starting in the good state the normal long-run player does
strictly worse in the double-mixing equilibrium than in the always provide effort equi-
librium even as δ → 1. This result appears quite different than the long memory case
analyzed in Fudenberg and Levine (1989) and Ekmekci, Gossner, and Wilson (2012).

1See, for example, Crawford and Sobel (1982).
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To understand why this is, observe that with sufficiently long memory by the short-run
player the long-run player can foil a signal jamming equilibrium: If the long-run player
persists in effort provision, Fudenberg and Levine (1992) showed that when there is a
good type the short-run player must come to believe that the long-run player will provide
effort. To understand how the conflict between the conclusions for δ → 1 arises, observe
that for any fixed length of time the Fudenberg and Levine (1992) bound requires the
prior probability of the good type to be sufficiently high. Here, the length of time is indeed
fixed—the long-run player has only one period to convince the short-run player that there
will be effort. Hence, as Proposition S.12 shows, and as the Fudenberg and Levine (1992)
result suggests, signal jamming is ruled out if the prior probability of the good type is
sufficiently high. Hence the result here that equilibrium payoffs remain bounded away
from the Stackelberg payoff of 1 − c when the probability of the good type is too low is
an example confirming that the Fudenberg and Levine (1992) bound must depend on the
strength of prior belief in the good type.
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