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APPENDIX B: AUXILIARY LEMMAS

LEMMA B1: SUPPOSE ASSUMPTIONS 1–5 HOLD. Then we have that for q̂n described in
the statement of Theorem 1:

(i) Under n1/2ι(n) → ∞, it holds that R̂n (̂qn�b) = oP(1) and R(n) (̂qn�b) = oP(1).
(ii) Under n1/2ι(n) ≤ K, it holds that R̂n (̂qn� s) = oP(1) and R(n) (̂qn� s) = oP(1).

PROOF: Step 1. (Technical preparation) We establish in this step some technical results.
We start by introducing some notation:
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(
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(
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(
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Note that q�
n is defined in Assumption 5 and here we suppress the dependence of q�

n on k.
We recall the relevant definitions

q̂n�AIC = arg min
q

(
2q− 2Ln

(
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n (q)� γ̂n(q)
))

and
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and notice that the requirement q̂n ≥ q̂n�AIC and the definition of �
(σ2�γ)
n indicate

Ln(σ̂2
n (̂qn)� γ̂n (̂qn)) ≥ Ln(σ̂2

n (̂qn�AIC)� γ̂n (̂qn�AIC)). We then obtain

−2n−1
(
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(
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(
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(n)
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)
� (B.1)

We now study the properties of Ra, Rb, and Rc . First, we define 	′
n as the set of all ω

such that K−1 ≤ n�n ≤ K (it shall not be confused with the matrix 	n) and observe that

n−1nt = 1
T

∫ t

0
ξ−1
s ds + oP(1) and lim

n→∞
P
(
	′

n

)= 1� (B.2)
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which are direct results of Lemma 14.1.5 of Jacod and Protter (2011) and Assumption 2.
Moreover, step 2 of the proof of Lemma A2 of Da and Xiu (2021) shows that, uniformly
over −π ≤ λ ≤ π and (σ2�γ) ∈ �

(σ2�γ)
n ,

1
K

≤ σ2 ≤ K� K−1χ2 ≤ σ2�n + f (λ;γ) ≤ Kχ2� and
∞∑
j=1

j2|γj| ≤ Kχ2� (B.3)

where χ2 = χ2(σ2�γ��n). Straightforwardly, Lemma A9 of Da and Xiu (2021) indicates
that for some αn → 0,

lim
n→∞

P
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(B.4)

Note that L̄�
n(CT�γ

(n)) − L̄�
n(σ2�γ) is always positive over �

(σ2�γ)
n . Here, for the second

result we additionally use that |Rc| ≤ K in probability, because of (B.2) and that (B.3)
indicates 1

nT
L̄�

n(CT�γ
(n)) − 1

nT
L̄�

n(σ (n) (qn)2�γ(n) (qn)) ≤ K for all {qn}. Further, according
to Lemma A10 of Da and Xiu (2021), it holds that for any two sequences {qn} and {q′

n}
and with probability approaching one,
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On the other hand, Assumption 5 indicates ψ4
n‖κ̃(n)‖2

(qn) → 0, which, combined with (B.5)
and (B.2), shows Rc = oP(1). Therefore, in view of (B.1), (B.4), and that q�

n − q̂n ≤ q�
n =

o(n), we can write for some αn → 0,
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which immediately indicates
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Step 2. (Main proof) We start by proving the convergence of R̂n (̂qn�b) under n1/2ι(n) →
∞ and R̂n (̂qn� s) under n1/2ι(n) ≤ K. Since both (σ2

n�γn) and (CT�γ
(n)) belong to �

(σ2�γ)
n ,

according to Theorem 4.1.1, Proposition 4.5.3, Proposition 3.2.1, and Theorem 3.1.2 in
Brockwell and Davis (1991), there exist unique (χ2

n�φn) and ((χ(n))2�φ(n)) such that for
all −π ≤ λ ≤ π,
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where we recall that f (λ;σ2�γ��n) is defined in Section 3.1, and

1 + inf
z∈C�|z|≤1

∞∑
j=1

φn�jz
j > 0 and 1 + inf

z∈C�|z|≤1

∞∑
j=1

φ
(n)
j zj > 0� (B.8)
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In view of (B.7) and the definition of L̄�
n, the bound (B.6) can be rewritten in terms of

(χ2
n�φn) and ((χ(n))2�φ(n)), which leads to

log
χ2

n(
χ(n)
)2 = oP(1) and

1
2π

∫ π

−π

f
(
λ;CT�γ

(n)��n

)
f
(
λ;σ2

n� γn��n

) dλ− 1 = oP(1)� (B.9)

Here, we use (B.2) and the fact that (2π)−1
∫ π

−π
g(λ;φ(n))/g(λ;φn) dλ ≥ 1, indicated

by (B.8). With χ(n) calculated using Assumption 4, the first part of (B.9) indicates that
logχ2

n = log(ι(n))2 + oP(1) under n1/2ι(n) → ∞ and that P(χ2
n ∼ n−1) → 1 under n1/2ι(n) ≤

K. Substituting the estimate of χ2
n back into (B.3), plus using the second part of (B.9),

plus (B.2), immediately allows us to prove the convergence of R̂n (̂qn�b) and R̂n (̂qn� s).
Now we prove the convergence of R(n) (̂qn�b) and R(n) (̂qn� s). We let

Rd(q) := L̄�
n

(
CT�γ

(n)
)
) − L̄�

n

(
σ (n) (q)2�γ(n) (q)

)
� (B.10)

If we compare (B.10) with (B.6) and compare R̂n (̂qn�b) and R̂n (̂qn� s) with R(n) (̂qn�b)
and R(n) (̂qn� s), a scrutiny of the reasoning above reveals that it is sufficient to prove
that Rd (̂qn) = oP(1) holds under either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K. Since according to
(B.2) and (B.5), the violation of Rd (̂qn) = oP(n) indicates the violation of ψ̄4

n‖κ̄(n)‖2
(̂qn) =

oP(1), which, in view of Assumption 4, contradicts the established fact that R̂n (̂qn�b) =
oP(1) under n1/2ι(n) → ∞ and R̂n (̂qn� s) = oP(1) under n1/2ι(n) ≤ K. We then indeed have
that Rd (̂qn) = oP(1) holds under either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K and conclude the
proof. Q.E.D.

LEMMA B2: Suppose Assumptions 1–4 hold. Let Un(j), U n(j), Vn(j), and Vn(j) be de-
fined by (A.4) and (A.6), where qn is deterministic and we set βn(σ2�γ) = (σ2�γ). Then

Jd∑
j=1

(
Un(j) −Un(j) − Vn(j) + Vn(j)

)= oP

(
n1/2(qn + 1)1/2 + n3/4

(
ι(n)
)1/2)

holds if either of the two following conditions is true:
(i) We have n1/2ι(n) → ∞, and qn ≤ Kn1/3.

(ii) We have n1/2ι(n) ≤ K, qn ≤ Kn1/3, and qn → ∞.

PROOF: Step 1. (Characterization of Un(j) −U n(j) −Vn(j) +Vn(j)) We start with some
notation:
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nd∑
i=1

nd∑
k=1

�i�k

(
�n

i X
B�r(j)�n

kX
B�r(j) −�n

i X
C (j)�n

kX
C (j) −	B

n (j)ik +	C
n (j)ik

)
�

Ra2(j) =
nd∑
i=1

nd∑
k=1

�i�k

(
�n

i X(j)�n
kU (j) −�n

i X
C (j)�n

kU
C (j)

)
�
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Here, � is defined in (A.29). By definition we have for 1 ≤ j ≤ Jd ,

Un(j) −Un(j) − Vn(j) + Vn(j) =Ra1(j) + 2Ra2(j) +Ra3(j)� (B.11)

The lemma then follows if it holds for all s ∈{1�2�3} that

Jd∑
j=1

Ras(j) = oP

(
n1/2(qn + 1)1/2 + n3/4

(
ι(n)
)1/2)

� (B.12)

Step 2. (Decompositions of Ras(j)) This step is devoted to decompositions of Ras(j).
Let

Rb1(j)k�l = �n
kX

B�r(j)�n
l X

B�r(j) −�n
kX

C (j)�n
l X

C (j) −	B
n (j)kl +	C

n (j)kl�

Rb1(j�m�p) =
nd∑
k=1

nd∑
l=1

Õ(m�p)k�lRb1(j)k�l�

where Õ(m�p) introduced in (A.7). We can then write that for 1 ≤ j ≤ Jd ,

Ra1(j) =
J̃d−1∑
m=0

n̄d (m)∑
p=1−n̄d (m)

�̃(m�p)Rb1(j�m�p)� (B.13)

Here, J̃d and n̄d(m) are defined above (A.7), and �̃(m�p) is defined in (A.30). Now we
further decompose Rb1(j�m�p). To do so, we define

Rb2(j)k�l =
∫ t(j)k

t(j)k−1

μr
s ds

∫ t(j)l

t(j)l−1

μr
s ds� Rb2(j�m�p) =

nd∑
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nd∑
l=1

Õ(m�p)k�lRb2(j)k�l�

Rb3(j)k�l = 2
∫ t(j)k

t(j)k−1
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s ds�

n
l X̄

B(j)� Rb3(j�m�p) =
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nd∑
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Õ(m�p)k�lRb3(j)k�l�

Rb4(j)k = �n
kX̄
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l X̄
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Õ(m�p)k�lRb6(j)k�l�

Rb7(j)k�l = 2�n
kX

C (j)Rb8(j)l� Rb7(j�m�p) =
nd∑
k=1

nd∑
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Õ(m�p)k�lRb7(j)k�l�
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where we use the notation �n
i X̄

B(j) = ∫ t(j)i
t(j)i−1

σs dWs and Rb8(j)i = �n
i X̄

B(j) − �n
i X

C (j).
Using the definitions of 	B

n (j) and 	C
n (j), we obtain that for 1 ≤ j ≤ Jd ,

Rb1(j�m�p) =
7∑

s=2

Rbs(j�m�p)� (B.14)

Next, we decompose Ra2(j). Moreover, we set η̄(j)k = η(j)k −ηC (j) and define

Ū (j)k = ι(n)
k∑

m=−∞
η̄(j)kθ

(n)
k−mεC (j)m�

Ũ (j)k = ι(n)η(j)k
0∑

m=−∞
θ

(n)
k−m

(̃
ε(j)m − ε(j)m

)
�

(B.15)

We further define

Rc1(j�m�p) =
nd∑
i=1

nd∑
k=1

Õ(m�p)i�k
∫ t(j)i

t(j)i−1

μr
s ds�

n
kU (j)�

Rc2(j�m�p) =
nd∑
i=1

nd∑
k=1

Õ(m�p)i�k�n
i X̄

B(j)�n
kŪ (j)�

Rc3(j�m�p) =
nd∑
i=1

nd∑
k=1

Õ(m�p)i�k
(
�n

i X̄
B(j) −�n

i X
C (j)

)
�n

kU
C (j)�

Rc4(j) =
nd∑
i=1

�n
i X̄

B(j)

(
−

nd∑
k=1

��i�kŨ (j)k +�i�nd Ũ (j)nd −�i�1Ũ (j)0

)
�

This leads to, by observing the relation U (j)k −UC (j)k = Ū (j)k + Ũ (j)k, which in turn is
a direct result of Assumption 3 and the definition of UC (j)k, that for 1 ≤ j ≤ Jd ,

Ra2(j) =
4∑

s=1

Rcs(j)� (B.16)

where Rcs(j) =∑J̃d−1
m=0

∑n̄d (m)
p=1−n̄d (m) �̃(m�p)Rcs(j�m�p) for s ∈ {1�2�3}. We now decom-

pose Ra3(j). For any double-indexed variable Ai�k, we set �Ai�k = Ai�k+1 − Ai�k and
�̃Ai�k = �Ai+1�k−�Ai�k. Next, we introduce shorthand notation κ̄

(n)
j = (ι(n))2κj and define

Rd1(j) =
nd−1∑
i=1

nd−1∑
k=1

�̃�i�kη(j)iη(j)k

(
i∧k∑

l=−∞
θ

(n)
i−lθ

(n)
k−lε(j)lε(j)l − κ

(n)
|i−k|

)
�

Rd2(j) = −
nd−1∑
i=1

nd−1∑
k=1

�̃�i�kη
2
C (j)

(
i∧k∑

l=−∞
θ

(n)
i−lθ

(n)
k−lεC (j)lεC (j)l − κ

(n)
|i−k|

)
�
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Rd3(j) = 2
nd−1∑
i=1

nd−1∑
k=1

i∧k∑
l=1

k∑
m=l+1

�̃�i�k

(
η(j)iη(j)k −η2

C (j)
)
θ

(n)
i−lθ

(n)
k−mε(j)lε(j)m�

Rd4(j) = 2
nd−1∑
i=1

nd−1∑
k=1

0∑
l=−∞

k∑
m=l+1

η(j)iη(j)k�̃�i�kθ
(n)
i−lθ

(n)
k−mε(j)lε(j)m�

Rd5(j) = −2
nd−1∑
i=1

nd−1∑
k=1

0∑
l=−∞

k∑
m=l+1

ηC (j)ηC (j)�̃�i�kθ
(n)
i−lθ

(n)
k−mεC (j)lεC (j)m�

Rd6(j) = 2
nd−1∑
k=1

(
��1�kU (j)0 −��nd�kU (j)nd

)
U (j)k�

Rd7(j) = −2
nd−1∑
k=1

(
��1�kη(j)0η(j)kκ̄

(n)
k −��nd�kη(j)ndη(j)kκ̄

(n)
nd−k

)
�

Rd8(j) = −2
nd−1∑
k=1

(
��1�kU

C (j)0 −��nd�kU
C (j)nd

)
UC (j)k�

Rd9(j) = 2
nd−1∑
k=1

(
��1�kη

2
C (j)κ̄(n)

k −��nd�kη
2
C (j)κ̄(n)

nd−k

)
�

Rd10(j) = �1�1

(
U0U0 +UndUnd −UC

0 U
C
0 −UC

nd
UC

nd

)− 2�nd�1

(
U0Und −UC

0 U
C
nd

)
−�1�1

(
η(j)0η(j)0 +η(j)ndη(j)nd − 2η2

C (j)
)
κ̄

(n)
0

+ 2�nd�1

(
η(j)ndη(j)0 −η2

C (j)
)
κ̄(n)
nd
�

Rd11(j) = −2
nd∑
i=1

nd−1∑
k=1

��i�k+1

(
κ̄

(n)
i+k+1 − κ̄

(n)
i+k

)+ 2
nd−1∑
k=1

��1�k+1

(
κ̄

(n)
k+1 + κ̄

(n)
k+nd+1

)
− (4�nd�1κ̄

(n)
nd+1 − 2�1�1κ̄

(n)
1 − 2�nd�nd κ̄

(n)
2nd+1

)
�

Using the definitions of 	U
n (j) and 	U�C

n (j), one can verify that for 1 ≤ j ≤ Jd ,

Ra3(j) = (ι(n)
)2

5∑
l=1

Rdl(j) +
11∑
l=6

Rdl(j)� (B.17)

Step 3. (Bounds of Õ(m�p) and �̃(m�p)) We start with Õ(m�p). In the rest of the
proof, we omit mentioning the argument m of ñd (defined above (A.7)) and n̄d unless
necessary. It holds by definition that for all 1 ≤ k� l ≤ nd , all 0 ≤ m ≤ J̃d − 1, and all
1 − n̄d ≤ p ≤ n̄d ,

∣∣Õ(m�p)k�l
∣∣≤ Kn−1

d n̄d

(
1 ∧ (∣∣n−1

d n̄d

∣∣k− l
∣∣−|p|∣∣−1 + ∣∣n−1

d n̄d(k+ l) − |p|∣∣−1))
� (B.18)
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Now we provide the bound of �̃(m�p). From the definition of �i�k, we can write

�i�k = −∂	nd

(
β(n)
)−1

ik

∂β
∂�̄�

n

(
β̄(n)
)−1(

∂σ2
n

)ᵀ
�

We further notice ∂�̄�
n(β̄(n)) = nT

4πn

∫ π

−π
(∂ log f (λ; β̄(n)��n)/∂β)ᵀ(∂ log f (λ; β̄(n)��n)/

∂β) dλ. We set the bijection βn to be identity. Following the rule of matrix differentia-
tion, and using the definition of 	, we can further write

� = 2	nd

((
σ (n)

)2
�γ(n)��n

)−2

×
(
�n∂�̄

�
n

(
β̄(n)
)−1

1�1
Ind +

qn∑
j=0

∂�̄�
n

(
β̄(n)
)−1

1�j+2

(
2Ind − F

1
nd

)
F

j
nd

)
� (B.19)

Then the definition of �̃ given by (A.29) indicates

�̃ = 2Vnd

((
σ (n)

)2
�γ(n)��n

)−2

×
(
�n∂�̄

�
n

(
β̄(n)
)−1

1�1
Ind +

qn∑
j=0

∂�̄�
n

(
β̄(n)
)−1

1�j+2

(
2Ind −D

1
nd

)
D

j
nd

)
� (B.20)

This is the direct result of Dj
m = OmF

j
mOm from Lemma A1 of Da and Xiu (2021). Now we

define a function �̌(λ) as

�̌(λ) = 2f
(
λ; (σ (n)

)2
�γ(n)��n

)−2
�
(
λ; (σ (n)

)2
�γ(n)��n

)
�

where �(λ;σ2�γ��n) := (∂f (λ;σ2�γ��n)/∂(σ2�γ))∂�̄�
n(β̄(n))−1(1�0qn+1). We note �̃i�j =

δi�j�̌( jπ

nd+1 ). Now we further define for −π ≤ λ ≤ π,

�̄(λ;m) = �̌

(
ñdπ + n̄d|λ| + 1/2

nd + 1

)
and ρ�(m)h = 1

2π

∫ π

−π

�̄(λ;m)eihλ dλ�

Then we can write, in view of the definition of �̃(m�p), that for all 1 − n̄d ≤ p ≤ n̄d ,

�̃(m�p) = (4n̄d)−1
n̄d∑

i=1−n̄d

�̄

(
π(i − 1/2)

n̄d

;m
)
e
iπ

(i−1/2)p
n̄d = 1

2

∞∑
h=−∞

ρ�(m)2hn̄d+p� (B.21)

Here, we use Theorem II.8.1 of Zygmund (2002) and the fact that 1
2n̄d

∑n̄d
i=1−n̄d

exp(πi ik
n̄d

) =
δk�0 for −n̄d ≤ k ≤ n̄d . Now we provide bounds on ρ�(m)h. We first consider the case
n1/2ι(n) → ∞ and define a (qn + 2) × (qn + 2) matrix

C−1
�

(
λ;σ2�γ

)= ∂
(
σ2� f

(
λ;σ2�γ��n

)
� γ̄
)

∂(z�φ)
C−1(z�φ)

(
∂
(
σ2� f

(
λ;σ2�γ��n

)
� γ̄
)

∂(z�φ)

)ᵀ
�

Here, γ̄ := (γ1� � � � � γqn)ᵀ, (z�φ) and C(z�φ) are both introduced in the proof of
Lemma A5 of Da and Xiu (2021). And it apparently holds that �(λ;σ2�γ��n) =
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C−1
� (λ;σ2�γ)1�2. Hence, following the same reasoning as in that proof and using the

definition of �̄(λ;m), plus noting the relation that
∑qn

i=0(2 − δi�0) cos iλ = sin((qn +
1/2)λ)/ sin(λ/2), we obtain that in restriction to 	′

n (introduced before (B.2)) and for
all 0 ≤ m ≤ J̃d − 1,

(nJ̄d)−1
∞∑
h=0

∣∣ρ�(m)h
∣∣≤ K(m+ 1)

2m ∧ K(m+ 1)J̄2
d/
(
n1/2ι(n)

)2

23m � (B.22)

and that in restriction to 	′
n and for all h and all fixed m,

(nJ̄d)−1
∣∣ρ�(m)h

∣∣≤ K
(
h−2 ∨ 1

)
� (B.23)

Here, we also use the proof of Theorem II.4.7 of Zygmund (2002) and exploit properties
of σ (n) (qn) and γ(n) (qn) provided by (B.3). For the case n1/2ι(n) ≤ K, in view of the proof of
Lemma A6 of Da and Xiu (2021), we obtain that (B.22) and (B.23) still hold. Combining
(B.22) and (B.23) with (B.21), we conclude that, again in restriction to 	′

n and for all
0 ≤ m ≤ J̃d − 1,

(nJ̄d)−1
n̄d∑

p=1−n̄d

∣∣�̃(m�p)
∣∣≤ K(m+ 1)

2m ∧ K(m+ 1)J̄2
d/
(
n1/2ι(n)

)2

23m � (B.24)

and that in restriction to 	′
n, for all 1 − n̄d ≤ p ≤ n̄d , and for all fixed m,

(nJ̄d)−1
∣∣�̃(m�p)

∣∣≤ K
(
p−2 ∧ 1

)
� (B.25)

Step 4. (Bounds of �i�k, ��i�k, and �̃�i�k) Now we provide bounds on �i�k, ��i�k, and
�̃�i�k. We start by noting the expression of � has been given by (B.19). According to
Lemma A2 of Da and Xiu (2021), we can write the expression of 	−1

nd
as(

	−1
nd

)
i�k

= ρ|i−k| − ρi+k − ρ2nd+2−i−k�

Both ρ and z∗
n appearing below are functions of (σ2

n�γn��n) and are introduced in the
statement of that lemma. Because the lemma has provided precise characterization of
ρh, ρh − ρh+1, and 2ρh+1 − ρh − ρh+2, plus the observation that i + k ≥ |i − k| and 2nd +
2 − i − k ≥ |i − k| for all 1 ≤ i�k ≤ nd , tedious algebra leads to that uniformly over all
sequences {(σ2

n� γn) ∈ �
(σ2�γ)
n (qn) : n ≥ 1}, which satisfy either �−1

n χ2(σ2
n� γn��n) → ∞ or

�−1
n χ2(σ2

n� γn��n) ≤ K, and for all 1 ≤ i�k ≤ nd ,

∣∣	nd

(
σ2

n�γn��n

)−1

i�k

∣∣� �−1/2
n χ−1

n

(
1 − (z+

n

)2k − (z+
n

)2nd+2−2k)+ 1
χ2

n

∧ 1
(i− k)2�n

�

∣∣�	nd

(
σ2

n�γn��n

)−1

i�k

∣∣� χ−2
n

(
z+
n

)|i−k| +�1/2
n χ−1

n

(
1
χ2

n

∧ 1
(i− k)2�n

)
�

∣∣�	nd

(
σ2

n�γn��n

)−2

i�k

∣∣� �−1
n χ−2

n

(
z+
n

)|i−k| +�−1/2
n χ−1

n

(
1
χ2

n

∧ 1
(i− k)2�n

)
�
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∣∣�̃	nd

(
σ2

n� γn��n

)−1

i�k

∣∣� �1/2
n χ−3

n

(
z+
n

)|i−k| + 1
χ2

n(i− k)2 �

∣∣�̃	nd

(
σ2

n� γn��n

)−2

i�l

∣∣� �−1/2
n χ−3

n

(
z+
n

)|i−k| +�1/2
n χ−3

n

(
1
χ2

n

∧ 1
(i− k)2�n

)
�

Here, z+
n := max{z∗

n�1/2} and χ2
n = χ2(σ2

n�γn��n). We additionally observe that we can
write, for all (σ2�γ) and m,

2Im − F
1
m = (	m

(
σ2�γ

)− σ2�nIm

)
OmDm(γ)−1Om� (B.26)

We also notice that Fj
nd

has a very simple structure. Therefore, we can calculate that, in
restriction to 	′

n, under either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K, and for all 1 ≤ i�k ≤ nd ,

|�i�k| � n
(
z+
n

)(|i−k|−q)+(1 − (z+
n

)2k − (z+
n

)2nd+2−2k)+ n(|i− k| − q
)
+ + 1

− n

|i− k| + 2
� (B.27)

|��i�k| � n�1/2
n χ−1

n

(
z+
n

)(|i−k|−q)+ + n�1/2
n χ−1

n

(
1(|i− k| − q
)
+ + 1

− 1
|i− k| + 2

)
� (B.28)

|�̃�i�k| � n�nχ
−2
n

(
z+
n

)(|i−k|−q)+ + n�nχ
−2
n

(
1(|i− k| − q
)
+ + 1

− 1
|i− k| + 2

)
� (B.29)

Here, z+
n and χn are evaluated at ((σ (n))2�γ(n)��n) and we clearly have χn ∼ ι(n) + n−1/2.

We also use the properties of ∂�̄�
n(β̄(n))−1 indicated by the proof of Lemmas A5 and A6

of Da and Xiu (2021).
Step 5. (Bound of Ra1(j)) According to (B.13), we can write

E

∣∣∣∣∣1	′
n

1
n

Jd∑
j=1

Ra1(j)

∣∣∣∣∣
≤ 1

n

J̃d−1∑
m=0

n̄d∑
p=1−n̄d

E

∣∣∣∣∣1	′
n
�̃(m�p)

Jd∑
j=1

Rb1(j�m�p)

∣∣∣∣∣
≤ KJ̄d

J̃d−1∑
m=0

(m+ 1)
(

1
2m ∧ J̄2

d/
(
n1/2ι(n)

)2

23m

)
sup
p

E

∣∣∣∣∣1	′
n

Jd∑
j=1

Rb1(j�m�p)

∣∣∣∣∣� (B.30)

Here, the range of p over which the supremum in the last line is taken is clear from the
context and is omitted, and the second inequality uses the bound on �̃(m�p) provided
by (B.24). Now we bound supm�pE|∑Jd

j=1 Rb1(j�m�p)|. Guided by the relation (B.14), we
aim to prove that for all s ∈{2�3�4�5�6�7},

sup
m�p

(
2−m/2J̄dE

∣∣∣∣∣1	′
n

Jd∑
j=1

Rbs(j�m�p)

∣∣∣∣∣
)

= o
(
n−1/2(qn + 1)1/2 + n−1/4

(
ι(n)
)1/2)

� (B.31)
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where the supremum is taken over 0 ≤ m ≤ J̃d − 1 and 1 − n̄d ≤ p ≤ n̄d . We start with
Rb2(j�m�p). We have that (B.31) holds for s = 2 because

sup
j

E
∣∣Rb2(j�m�p)

∣∣≤ Kn−2 sup
j

nd∑
k=1

nd∑
l=1

∣∣Õ(m�p)k�l
∣∣≤ Kn−2nd logn�

The first inequality comes from bounds on μr
s and E|t(j)k − t(j)k−1| as direct results of

Assumption A1. The second inequality comes from the bound on Õ(m�p)k�l provided by
(B.18). Now we consider Rb3(j�m�p). In view of its definition, we write

sup
j

E
∣∣Rb3(j�m�p)

∣∣2
≤ K sup

j

n−2
nd∑
k=1

nd∑
k′=1

E

∣∣∣∣∣
nd∑
l=1

nd∑
l′=1

Õ(m�p)k�lÕ(m�p)k′�l′�
n
l X̄

B(j)�n
l′X̄

B(j)

∣∣∣∣∣
≤ Kn−2n2

d sup
j�k

E

[(
nd∑
l=1

Õ(m�p)k�l�n
l X̄

B(j)

)2]
≤ Kn−3ndn̄d� (B.32)

We omit the range of j, which is 1 ≤ j ≤ Jd . Using Assumption A1, the first inequality
comes from Hölder’s inequality, the second inequality from Cauchy–Schwarz, and the
last inequality from (B.18) and Burkholder–Davis–Gundy inequality. On the other hand,
we have the well-known result (see Section 2.1.5 of Jacod and Protter (2011)) that under
Assumption A1 and for two finite stopping times S ≤ S′ and some p ≥ 0, and for a process
A, which is one of μ, σ , ξ, ξ−1, and η,

E

(
sup

S≤s≤S′

(‖As −AS‖p
)|FS

)
≤ E

((
S′ − S

)1∧(p/2)|FS

)
� (B.33)

Applying (B.33) for the process μ to the equation

E
(
Rb3(j�m�p)|Ft(j)0

)= 2
nd∑
k=1

E

(∫ t(j)k

t(j)k−1

(
μr

s −μt(j)0

)
ds

nd∑
k=l

Õ(m�p)k�l�n
l X̄

B(j)|Ft(j)0

)
�

we obtain

sup
j

∣∣E(Rb3(j�m�p)|Ft(j)0

)∣∣= o
(
n−3/2n1/2

d n̄1/2
d

)
� (B.34)

Using (B.34) and (B.32) and applying the Cauchy–Schwarz inequality, we obtain

sup
j<j′

∣∣E(Rb3(j�m�p)Rb3

(
j′�m�p

))∣∣= o
(
n−3ndn̄d

)
� (B.35)

Combination of (B.32) and (B.35) immediately proves (B.31) for s = 3, given the defi-
nition of n̄d . Next, we study Rb4(j�m�p) and Rb5(j�m�p). We notice that for s ∈ {4�5},
|E(Rbs(j)k�Rbs(j′)k′)| ≤ Kδj�j′δk�k′n−2. Therefore, we are able to write for s ∈{4�5},

E
∣∣Rbs(j�m�p)Rbs

(
j′�m�p

)∣∣2 ≤ Kn−2
nd∑
k=1

nd∑
l=1

∣∣Õ(m�p)k�kÕ(m�p)l�l
∣∣δj�j′δk�l ≤ Kn−3n̄2

d�
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Here, the last step comes from the bound on Õ(m�p)k�l provided by (B.18). Combined
with the Cauchy–Schwarz inequality, this result immediately leads to that (B.31) holds for
s ∈{4�5}. We move to Rb6(j�m�p). We have

sup
j

E
(
Rb6(j�m�p)2

)= 4 sup
j

E

[
nd∑
l=1

(
l−1∑
k=1

Õ(m�p)k�lRb8(j)k

)2 ∫ t(j)l

t(j)l−1

σ2
s ds

]

≤ Kn−1nd sup
j

sup
1≤l≤nd

E

[(
l−1∑
k=1

Õ(m�p)k�lRb8(j)k

)2]

≤ Kn−2n̄d sup
1≤j≤Jd

sup
1≤k≤nd

E

[
sup

t(j)k−1≤s≤t(j)k

∣∣(σs − σt(j)0)4 + (ξs − ξt(j)0)4
∣∣]1/2

≤ Kn1/2
d n̄dn

−5/2� (B.36)

Here, we follow the same reasoning of (B.32) and the last step utilizes (B.33) for the
processes σ and ξ−1. We hence obtain supj E(Rb6(j�m�p)2) = o(n−2n̄d). Combined with
the observation that E(Rb6(j�m�p)Rb6(j′�m�p)) = 0 for j 
= j′, we obtain, using the
Cauchy–Schwarz inequality, that (B.31) holds for s = 6. A symmetric argument applied
to Rb7(j�m�p) proves (B.31) holds for s = 7, and we have hence proved (B.31) for
s ∈ {2�3�4�5�6�7}. At this stage, combining (B.30), (B.14), and (B.31), plus using (B.2),
we are able to claim that (B.12) holds for s = 1.

Step 6. (Bound of Ra2(j)) Our target is to show that for s ∈{1�2�3�4},

1
n

Jd∑
j=1

Rcs(j) = oP

(
n−1/2(qn + 1)1/2 + n−1/4

(
ι(n)
)1/2)

� (B.37)

In view of (A.30) and (A.7) and following the same reasoning of (B.30), plus using (B.2),
we conclude that (B.37) holds for s ∈{1�2�3} as long as we can show that for s ∈{1�2�3},

sup
m�p

E

∣∣∣∣∣2−3m/2J̄2
d/
(
n1/2ι(n)

)
1	′

n

Jd∑
j=1

Rcs(j�m�p)

∣∣∣∣∣= o
(
n−1/2(qn +1)1/2 +n−1/4

(
ι(n)
)1/2)

� (B.38)

We denote by σ (χi : i ≤ j) the σ-field generated by the sequence of all χi with i ≤ j and
write F̃∞ =F∞ ⊗∨j≥0 σ (χi : i ≤ j). According to Assumption 3, we can write

E
(
�n

kU (j)�n
k′U (j)|F̃∞

)=
(
ι(n)
)2

2π

∫ π

−π

g
(
λ;θ(n)

)(
η(j)keikλ −η(j)k−1e

i(k−1)λ
)

× (η(j)k′e−ik′λ −η(j)k′−1e
−i(k′−1)λ

)
dλ�
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Using the fact that K−1 ≤ g(λ;θ(n)) ≤ K uniformly over λ as required by Assumption 4,
we obtain for all {xk}

nd
k=1, all 1 ≤ j ≤ Jd , and all i ≥ 2,

nd∑
k=1

nd∑
k′=1

E
(
�n

kU (j)�n
k′U (j)|F̃∞

)
xkxk′

≤ K
(
ι(n)
)2

nd∑
k=0

η(j)2
k(xk − xk+1)2

≤ K
(
ι(n)
)2

sup
1≤l≤nd

η(j)2
l

nd∑
k=1

nd∑
k′=1

xk

(
2Ind − F

1
nd

)
xk′� (B.39)

nd∑
k=1

nd∑
k′=1

E
(
�n

kU (j)�n
k′U (j + i)|F̃∞

)
xkxk′ ≤ K

(
ι(n)
)2
i−2

nd∑
k=1

nd∑
k′=1

xk

(
2Ind − F

1
nd

)
xk′ � (B.40)

Here, we set x0 = xnd+1 = 0 by convention. For (B.40), we additionally use the observation
that nd|

∫ π

−π
g(λ;θ(n))eiindλ dλ| ≤ i−2 and Assumption A1. The definition of Ū (j)k provided

by (B.15) and the definition of �n
kU

C (j) indicate that a completely symmetric argument
would yield

nd∑
k=1

nd∑
k′=1

E
(
�n

kŪ (j)�n
k′Ū (j)|F̃∞

)
xkxk′

≤ K
(
ι(n)
)2

sup
1≤l≤nd

η̄(j)2
l

nd∑
k=1

nd∑
k′=1

xk

(
2Ind − F

1
nd

)
xk′� (B.41)

nd∑
k=1

nd∑
k′=1

E
(
�n

kU
C (j)�n

k′U
C (j)|F̃∞

)
xkxk′

≤ K
(
ι(n)
)2
ηC (j)2

nd∑
k=1

nd∑
k′=1

xk

(
2Ind − F

1
nd

)
xk′ � (B.42)

In view of the definitions of Rcs(j�m�p) with s ∈ {1�2�3}, plus using (A.7) and D
j
m =

OmF
j
mOm, the combination of (B.39), (B.41), and (B.42) directly leads to that for all 1 ≤

j ≤ Jd , all 1 ≤ m ≤ J̃d − 1 and all 1 − n̄d ≤ p ≤ n̄d ,

E
(
Rc1(j�m�p)2|F̃∞

) ≤ K
(
ι(n)
)2

n̄d∑
l=1

(
2Ind −D

1
nd

)
ñd+l�̃nd+l

(
nd∑
i=1

(Ond)ñd+l�i

∫ t(j)i

t(j)i−1

μr
s ds

)2

�

E
(
Rc2(j�m�p)2|F̃∞

) ≤ K
(
ι(n)
)2

sup
1≤k≤nd

η̄(j)2
k

n̄d∑
l=1

(
2Ind −D

1
nd

)
ñd+l�̃nd+l

×
(

nd∑
i=1

(Ond)ñd+l�i�
n
i X̄

B(j)

)2

�
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E
(
Rc3(j�m�p)2|F̃∞

) ≤ K
(
ι(n)
)2

n̄d∑
l=1

(
2Ind −D

1
nd

)
ñd+l�̃nd+l

×
(

nd∑
i=1

(Ond)ñd+l�i

(
�n

i X̄
B(j) −�n

i X
C (j)

))2

�

Here, for the first and last lines we additionally use the boundedness of ηs. Further
utilizing that (2Ind − D

1
nd

)ñd+l�̃nd+l ≤ K22mJ̄−2
d , we obtain that for all 1 ≤ j � n1/8, all

1 ≤ m ≤ J̃d − 1 and all 1 − n̄d ≤ p ≤ n̄d ,

E
(
Rc1(j�m�p)2

)≤ K
(
ι(n)
)2
n̄d22mJ̄−2

d ndn
−2�

E
(
Rc2(j�m�p)2

)≤ K
(
ι(n)
)2
n̄d22mJ̄−2

d n−1 sup
1≤k≤nd

η̄(j)2
k�

E
(
Rc3(j�m�p)2

)≤ K
(
ι(n)
)2
n̄d22mJ̄−2

d sup
1≤i≤nd

E
((
�n

i X̄
B(j) −�n

i X
C (j)

)2)
�

In addition, using (B.40) instead of (B.39), we can prove supj�p |E(Rc1(j�m�p)Rc1(j +
i�m�p))| ≤ Ki−2(ι(n))2n̄d22mJ̄−2

d ndn
−2 for i ≥ 2. Applying the Cauchy–Schwarz inequality

immediately proves (B.38) for s = 1. On the other hand, we observe that E(Rcs(j�m�p) ×
Rcs(j′�m�p)|F̃∞) = 0 for j 
= j′ and s ∈ {2�3} because of the definition of εC (j)m. Since
(B.33) indicates E| sup1≤k≤nd

η̄(j)2
k| = o(1) and sup1≤i≤nd

E((�n
i X̄

B(j) − �n
i X

C (j))2) =
o(n−1), we obtain (B.38) for s ∈ {2�3}. We have proved (B.37) for s ∈ {1�2�3}. Now we
consider Rc4(j). Firstly one can verify using Assumption 4 that∥∥θ(n)

∥∥
(i)

≤ Ki−2� (B.43)

Using this result, we can write E(|Ũ (j)k||F̃∞) ≤ Kι(n) (
∑0

m=−∞ |θ(n)
k−m|2)1/2 ≤ ι(n) (k + 1)−2,

where the first inequality comes from the definition of Ũ (j)k provided by (B.15), that
ηC (j)2 is bounded because of Assumption A1, and Cauchy–Schwarz. Therefore, using
Hölder’s inequality and the fact that �n

i X̄
B(j)�k�l is F̃∞-measurable, plus (B.2), we can

prove (B.37) for s = 4 as long as we show that for all 1 ≤ k ≤ nd ,

sup
1≤k≤nd

1
n
1	′

n

Jd∑
j=1

nd∑
i=1

(
E
∣∣�n

i X̄
B(j)��i�k1	′

n

∣∣+E
∣∣�n

i X̄
B(j)�i�nd1	′

n

∣∣+E
∣∣�n

i X̄
B(j)�i�11	′

n

∣∣)
= o
(
n−1/2(qn + 1)1/2

(
ι(n)
)−1 + n−1/4

(
ι(n)
)−1/2)

�

This is indeed true since we have

sup
1≤k≤nd

sup
j

nd∑
i=1

E
(∣∣�n

i X̄
B(j)

∣∣(|��i�k| + |�i�nd | + |�i�1|
)
1	′

n

)
≤ K sup

1≤k≤nd

sup
j

nd∑
i=1

n−1/2
(
E
(|��i�k1	′

n
|2 + |�i�nd1	′

n
|2 + |�i�11	′

n
|2
))1/2

≤ KJ̄1/2
d

(
ι(n) + n−1/2

)−1
�
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The second inequality comes from (B.28) and (B.27). Having proved (B.37) for all s ∈
{1�2�3�4}, using the relation (B.16) we immediately obtain that (B.12) holds for s = 2.

Step 7. (Bound of Ra3(j) and conclusion) We start with proving that, for s ∈
{1�2� � � � �5},

1
n

Jd∑
j=1

Rds(j) = oP

(
n−1/2(qn + 1)1/2

(
ι(n)
)−2 + n−1/4

(
ι(n)
)−3/2)

� (B.44)

We define Re1(j)i�k =∑i∧k

l=−∞ θ
(n)
i−lθ

(n)
k−lε(j)lε(j)l −κ

(n)
|i−k|, Re2(j)i�k =∑i∧k

l=−∞ θ
(n)
i−lθ

(n)
k−lεC (j)l ×

εC (j)l − κ
(n)
|i−k|, and obtain that for s ∈{1�2} and all 1 ≤ j ≤ Jd ,

E
(
Res(j)i�kRes(j)i′�k′ |F̃∞

)= Cum4(ε)
i∧k∧i′∧k′∑
l=−∞

θ
(n)
i−lθ

(n)
k−lθ

(n)
i′−lθ

(n)
k′−l�

On the other hand, we can write

i∧i′∑
l=−∞

∣∣θ(n)
i−lθ

(n)
i′−l

∣∣≤ K
∥∥θ(n)

∥∥
(|i−i′|−1)

≤ K∣∣i− i′
∣∣2 + 1

� (B.45)

The first inequality comes from Cauchy–Schwarz and the bound on ‖θ(n)‖ required by
Assumption 4. The second inequality comes from (B.43). This immediately leads to that,
for s ∈{1�2},

sup
j

∣∣E(Res(j)i�kRes(j)i′�k′ |F̃∞
)∣∣

≤ K

(
i∧i′∑

l=−∞

∣∣θ(n)
i−lθ

(n)
i′−l

∣∣ k∧k′∑
l=−∞

∣∣θ(n)
k−lθ

(n)
k′−l

∣∣)∧
(

i∧k∑
l=−∞

∣∣θ(n)
i−lθ

(n)
k−l

∣∣ i′∧k′∑
l=−∞

∣∣θ(n)
i′−lθ

(n)
k′−l

∣∣)

≤ K(∣∣i− i′
∣∣2 + 1

)(∣∣k− k′∣∣2 + 1
) ∧ K(|i− k|2 + 1

)(∣∣i′ − k′∣∣2 + 1
) � (B.46)

A symmetric argument leads to that, for l ≥ 2 and s ∈{1�2},

sup
j

∣∣E(Res(j)i�kRes(j + l)i′�k′ |F̃∞
)∣∣≤ K

l4n4
d

∧ K(|i− k|2 + 1
)(∣∣i′ − k′∣∣2 + 1

) � (B.47)

From the definition of Rd1(j) and Rd2(j), we have that for s ∈{1�2},

sup
j

E
(
Rds(j)2|F̃∞

) ≤ K sup
j

nd∑
i=1

nd∑
k=1

nd∑
i′=1

nd∑
k′=1

|�̃�i�k||�̃�i′�k′ |∣∣E(Res(j)i�kRes(j)i′�k′ |F̃∞
)∣∣

≤ Kndn
2�2

n

(
ι(n) +�1/2

n

)−4
log
(
�−1/2

n ι(n) + qn

)
� (B.48)

The first inequality uses that ηs is bounded from Assumption A1. The second inequal-
ity uses the bound on E(Res(j)i�kRes(j)i′�k′ |F∞) for s ∈ {1�2} provided by (B.46) and the
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bound on |�̃�i�k| provided by (B.29). Following the same reasoning and using (B.47) in-
stead of (B.46), we obtain for s ∈{1�2} and for l ≥ 2 and all j,

sup
j

∣∣E(Rds(j)Rds(j + l)|F̃∞
)∣∣

≤ K

nd∑
i=1

nd∑
k=1

nd∑
i′=1

nd∑
k′=1

|�̃�i�k||�̃�i′�k′ |
∣∣∣sup

j

E
(
Res(j)i�kRes(j + l)i′�k′ |F̃∞

)∣∣∣
≤ Kn2�2

n(
ι(n) +�1/2

n

)4

nd∑
i=1

nd∑
k=1

nd∑
i′=1

nd∑
k′=1

1
l4n4

d

≤ Kn2�2
n

l4
(
ι(n) +�1/2

n

)4 � (B.49)

Combining (B.48) and (B.49) and applying Cauchy–Schwarz, plus using (B.2), we prove
(B.44) for s ∈ {1�2}. Now we move to Rd3(j). We define Re3(j)i�k :=∑i∧k

l=1

∑k

m=l+1 θ
(n)
i−l ×

θ
(n)
k−mε(j)lε(j)m, and obtain that for all 1 ≤ j ≤ Jd ,

∣∣E(Re3(j)i�kRe3(j)i′�k′ |F̃∞
)∣∣= ∣∣∣∣∣

i∧k∧i′∧k′∑
l=1

θ
(n)
i−lθ

(n)
i′−l

k∧k′∑
m=l+1

θ
(n)
k−mθ

(n)
k′−m

∣∣∣∣∣
≤ K(∣∣i− i′

∣∣2 + 1
)(∣∣k− k′∣∣2 + 1

) � (B.50)

The last inequality comes from (B.45). The definition of Rd3(j) then leads to

sup
j

E
(
Rd3(j)2|F̃∞

)
≤ K sup

0≤l≤nd

(
η(j)l −ηC (j)

)2

×
nd−1∑
i=1

nd−1∑
k=1

nd−1∑
i′=1

nd−1∑
k′=1

|�̃�i�k||�̃�i′�k′ | sup
j

∣∣E(Re3(j)i�kRe3(j)i′�k′ |F̃∞
)∣∣

≤ Kn2�2
n

(
ι(n) +�1/2

n

)−4(
�−1/2

n ι(n) + qn

)
nd sup

0≤l≤nd

(
η(j)l −ηC (j)

)2
� (B.51)

The second inequality uses (B.50) and (B.29). Because we have E(Rd3(j)Rd3(j′)) = 0
for j 
= j′, we immediately conclude, using (B.51) and Cauchy–Schwarz inequality, apply-
ing (B.33) to the process η, plus (B.2), that (B.44) holds for s = 3. We consider Rds(j)
for s ∈ {4�5} now. We define Re4(j)i�k = ∑0

l=−∞
∑k

m=l+1 θ
(n)
i−lθ

(n)
k−mε(j)lε(j)m, Re5(j)i�k =∑0

l=−∞
∑k

m=l+1 θ
(n)
i−lθ

(n)
k−mεC (j)lεC (j)m, and calculate that for s ∈{4�5},

∣∣E(Res(j)i�kRes(j)i′�k′ |F̃∞
)∣∣= ∣∣∣∣∣

0∑
l=−∞

θ
(n)
i−lθ

(n)
i′−l

k∧k′∑
m=l+1

θ
(n)
k−mθ

(n)
k′−m

∣∣∣∣∣
≤ K(

i2 + 1
)((

i′
)2 + 1

)(∣∣k− k′∣∣2 + 1
) � (B.52)
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The last inequality comes from (B.43) and Cauchy–Schwarz inequality. Following the
same reasoning, we have for all l ≥ 2 and all 1 ≤ j ≤ Jd ,

∣∣E(Re4(j)i�kRe4(j + l)i′�k′ |F̃∞
)∣∣≤ K

l4n4
d

and E
(
Re5(j)i�kRe5(j + l)i′�k′ |F̃∞

)= 0� (B.53)

In view of (B.52) and the bound on |�̃�i′�k′ | provided by (B.29), the definitions of Rd4(j)
and Rd5(j) then lead to that for s ∈{4�5},

sup
j

E
(
Rds(j)2|F̃∞

) ≤ K

nd∑
i=1

nd∑
k=1

nd∑
i′=1

nd∑
k′=1

|�̃�i�k||�̃�i′�k′ | sup
j

∣∣E(Res(j)i�kRes(j)i′�k′ |F̃∞
)∣∣

≤ Kn2�2
n

(
ι(n) +�1/2

n

)−4(
�−1/2

n ι(n) + qn

)
� (B.54)

Using (B.53) instead of (B.52), we obtain for s ∈{4�5} and l ≥ 2 that

sup
j

∣∣E(Rds(j)Rds(j + l)|F̃∞
)∣∣≤ Kn2�2

n

(
ι(n) +�1/2

n

)−4
� (B.55)

Using (B.54) and (B.55) and applying the Cauchy–Schwarz inequality, plus using (B.2),
we obtain (B.44) for s ∈{4�5}. Following the same reasoning, and using (B.27) and (B.28)
instead of (B.29), we have s ∈{6�7� � � � �11},

1
n

Jd∑
j=1

Rds(j) = oP

(
n−1/2(qn + 1)1/2 + n−1/4

(
ι(n)
)1/2)

� (B.56)

Given (B.44) and (B.56), the equation (B.17) immediately leads to that (B.12) holds for
s = 3. Since we show (B.12) for s ∈{1�2} in Steps 5 and 6, plus the decomposition (B.11),
the lemma is proved. Q.E.D.

LEMMA B3: Suppose Assumptions 1–4 hold and qn is deterministic. Then it holds that

σ̂2(qn) − σ (n) (qn)2

= η̄ᵀ�D�n

(
β(n)
)+ oP

(
n−1/4

(
ι(n)
)1/2 + ann

−1/2 + √
qnn

−1/2
)

for all an → ∞� (B.57)

if either of the two conditions holds, with αn = n1/6 ∧ (n1/3(ι(n) ∨ n−1/2)4/9):
(i) We have n1/2ι(n) → ∞, R̂n(qn�b) = oP(1), R(n) (qn�b) = oP(1), and qnα

−1
n → 0.

(ii) We have n1/2ι(n) ≤ K, R̂n(qn� s) = oP(1), R(n) (qn� s) = oP(1), and q−1
n ∨ (qnα

−1
n ) → 0.

PROOF: Step 1. (Technical preparation) Throughout the proof, we omit the depen-
dence of β(n) on qn. We impose the restriction that ∂f (λ;β��n)/∂β does not depend on β.
We start by introducing (qn + 2) × (qn + 2) matrices ∂�n(βn�β

′
n�k) with k ∈ {1�2} and

βn�β
′
n ∈ �β

n (qn), defined by that for 0 ≤ i� j ≤ qn + 1,

∂�n

(
βn�β

′
n;1
)
i�j

= 1
2n

tr
(
∂ log	n(βn)

∂βi

∂ log	n

(
β′

n

)
∂βj

)
� (B.58)
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∂�n

(
βn�β

′
n;2
)
i�j

= 1
4n

tr
(
∂ log	n(βn)

∂βi

∂ log	n

(
β′

n

)
∂βj

(
	n(βn)−1 +	n

(
β′

n

)−1)
YnY

ᵀ
n

)
� (B.59)

We further denote ∂�n(βn; j) := ∂�n(βn�βn; j). In addition, since generally β̄(n) is an
∞-dimensional vector, we use ∂�n(β̄(n)� qn; j) and ∂�̄�

n(β̄(n)� qn), respectively, to denote
the (qn + 2) × (qn + 2) matrices with entries defined by (B.58) and (B.59), and with en-
tries defined by (A.1). On the other hand, we let {β̌n ∈ �β

n (qn) : n ≥ 1} be a sequence of
(qn +2)-dimensional random vectors, which satisfies the equation �n(β̌n) = 0qn+2, and the
condition that supλ |f (λ; β̌n��n)f (λ; β̄(n)��n)−1 − 1| = oP(1) holds if either n1/2ι(n) → ∞
or n1/2ι(n) ≤ K. In view of the definition of ∂�n(βn�β

′
n; j) introduced in (B.58) and (B.59),

plus applying rules of matrix differentiation, in particular that 	n(β) and 	n(β′) commute
for all (β�β′), we observe

β̌n −β(n) = (2∂�n

(
β̌n�β

(n);2
)− ∂�n

(
β̌n�β

(n);1
))−1(

�A�n(β̌n) −�A�n

(
β(n)
))
� (B.60)

On the other hand, using D
j
m = OmF

j
mOm and the connection between matrix Vm and

spectral density f (λ;β��n) and the positivity of both following the reasoning of step 1
of the proof of Lemma A2 of Da and Xiu (2021), plus the imposed restriction that
∂f (λ;β��n)/∂β does not depend on β, we have, for all qn ≤ Kn1/3, αn → 0, and j ∈{1�2},
and under that supλ |f (λ;bn��n)f (λ; β̄(n)��n)−1 − 1| → 0 for bn ∈{β̌n�β

(n)},{
(1 − αn)∂�n

(
β̄(n)� qn; j

)≤ ∂�n

(
β̌n�β

(n); j)≤ (1 + αn)∂�n

(
β̄(n)� qn; j

)
�

(1 − αn)∂�̄�
n

(
β̄(n)� qn

)≤ ∂�n

(
β̄(n)� qn;1

)≤ (1 + αn)∂�̄�
n

(
β̄(n)� qn

)
�

(B.61)

Furthermore, using Lemma A2 of Da and Xiu (2021), we can derive E|1	′
n
(tr(	n(β̄(n))−1 ×

YnY
ᵀ
n −In))2| ≤ Kn (	′

n is introduced above (B.2)), which, combined with (B.3) and (B.2),
leads to that for all qn ≤ Kn1/3 and some αn → 0,

lim
n→∞

P
(
(1 −αn)∂�n

(
β̄(n)� qn;1

)≤ ∂�n

(
β̄(n)� qn;2

)≤ (1 +αn)∂�n

(
β̄(n)� qn;1

))= 1� (B.62)

Step 2. (Main proof) Now we prove that (B.57) holds if we have either of conditions
(i) and (ii). We introduce some more notation. We define η(γ�i) = −(2∂�n(β̌n�β

(n);2) −
∂�n(β̌n�β

(n);1))−1( ∂γi
∂β

)ᵀ, define �(γ�i) as the nd × nd matrix with entries �
(γ�i)
j�k =

∂	nd
(β(n))−1

j�k

∂β
η(γ�i) , and introduce

�̃(γ�i) (m�p) = 1
4n̄d(m)

n̄d (m)∑
i=1

(
Ond�

(γ�i)Ond

)
ñd (m)+i�̃nd (m)+i

(
e
iπ

(i−1/2)p
n̄d (m) + e

−iπ (i−1/2)p
n̄d (m)

)
�

R(γ�i)

g =
J̃d−1∑
m=0

n̄d (m)∑
p=1−n̄d (m)

�̃(γ�i) (m�p)
Jd∑
j=1

R(γ)

f (j�m�p)�

Here, we define R(γ)

f (j�m�p) as
∑

1≤k�l≤nd
Õ(m�p)k�l(Yn(j)kYn(j)l − 	Y

n (j)k�l), with
Õ(m�p) introduced in (A.7). The notation n̄d(m), ñd(m), J̃d , and J̄d below is introduced
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above (A.7). Following the same reasoning of step 3 of the proof of Lemma B2 and in view
of (B.61), (B.62), and the definition of β̌n, we obtain that in restriction to ω ∈ 	′

n for which
supλ |f (λ;β(n)��n)f (λ; β̄(n)��n)−1 − 1| → 0 holds, under n1/2ι(n) ≤ K, and uniformly over
1 ≤ m ≤ J̃d − 1,

sup
0≤i≤qn

n̄d∑
p=1−n̄d

∣∣�̃(γ�i) (m�p)
∣∣≤ (K(m+ 1)2−mJ̄2

d

)∧ (K(m+ 1)2−5mJ̄6
d/
(
n1/2ι(n)

)4)
� (B.63)

On the other hand, using |(Ond)ñd (m)+i�k+1 − (Ond)ñd (m)+i�k| ≤ Kn−3/2
d n̄d(m) and following

the analysis of step 2 of the proof of Lemma A1, we obtain that for all 1 ≤ m�m′ ≤ J̃d − 1,

sup
p�p′

E

∣∣∣∣1	′
n

∑
1≤j�j′≤Jd+1

R(γ)

f (j�m�p)R(γ)

f

(
j′�m′�p′)∣∣∣∣

≤ K2(m+m′)/2nJ̄−1
d

(
n−2 + 22(m+m′)J̄−4

d

(
ι(n)
)4)

� (B.64)

The range of (p�p′) over which the supremum is taken is 1 − n̄d(m) ≤ p�p′ ≤ n̄d(m).
From the definitions, we have −(2n)−1R(γ�i)

g is the same as (η(γ�i))ᵀ�D�n(β(n)) except that
it does not include the last block 	n′

d
of the matrix 	D�n, accommodating which is only

a matter of notation. Therefore, in view of the proofs of Lemmas A7 and A8 of Da and
Xiu (2021), the equation (B.60), and the definition of β̌n, plus using the convergence in
probability of R(n) under respective drifting sequences of n1/2ι(n) , we obtain that, for all
ε > 0, there exists a M∗ that for all M >M∗,

lim sup
n→∞

P

(
qn∑
i=0

∣∣∣∣∂γi

∂β

(
β̌n −β(n)

)∣∣∣∣2 ≥ M(qn + 1)4n−3 +M(qn + 1)n−1
(
ι(n)
)4

)
< ε� (B.65)

which comes from (B.63) and (B.64) and Hölder’s inequality for the case n1/2ι(n) ≤ K
and additionally using the properties of of 	−1

nd
characterized above (B.26) for the case

n1/2ι(n) → ∞. We can then obtain that, under either condition (i) or condition (ii) and for
all fixed M > 0,

lim sup
n→∞

P

(
qn∑
i=0

(i+ 1)2

∣∣∣∣∂γi

∂β

(
β̌n −β(n)

)∣∣∣∣≥ M

)
= 0� (B.66)

In view of the proofs of Lemmas A2 and B2, we obtain that (B.61) and (B.62) jointly
indicate that, under either of conditions (i) and (ii),(

∂σ2
n

)(
β̌n −β(n)

)
= η̄ᵀ�D�n

(
β(n)
)+ oP

(
n−1/4

(
ι(n)
)1/2 + ann

−1/2 + √
qnn

−1/2
)

for all an → ∞� (B.67)

Here, we also use Lemmas A7 and A8 of Da and Xiu (2021) and the relation (B.60). At
this stage, in view of the fact that by definition (σ̂2

n (qn)� γ̂n(qn)) maximizes Ln(σ2�γ) over
�

(σ�γ2)
n (qn) and the definition of β̌n plus conditions (i) and (ii), we conclude that σ̂2

n (qn)
satisfies (B.57) and complete the proof. Q.E.D.
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LEMMA B4: Suppose Assumptions 1–5 hold. Then, if either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K,
it holds that

σ (n) (̂qn)2 = CT + oP

(
n−1/4

(
ι(n)
)1/2 + ann

−1/2 +√q̂nn
−1/2
)

for all an → ∞�

that q̂n�AIC = oP(n1/6), and that there exists some 0 < k < K such that |̂qn�AIC − q�
n(k)| =

oP(q�
n(k) + n1/2ι(n) + an) for all an → ∞.

PROOF: With mean value theorem and for any sequence qn, we write that

−n−1LA�n(β̂n) + n−1LA�n

(
β(n)
)

= (β̂n −β(n)
)ᵀ
�A�n

(
β(n)
)+ 1

2
(
β̂n −β(n)

)ᵀ
∂�A�n(β̃n)

(
β̂n −β(n)

)
� (B.68)

where β̃n = λnβ̂n + (1 − λn)β(n) for some λn ∈ (0�1) and we omit the argument qn

of (β̂n�β
(n)� β̃n). With notation introduced in and after (B.58) and (B.59), we observe

∂�A�n(β̃n) = 2∂�n(β̃n;2) − ∂�n(β̃n;1). On the other hand, in view of (B.61), (B.62), and
Lemma B1, the definitions of q̂n�AIC and q�

n(k) and (B.2), we conclude that, with either
n1/2ι(n) → ∞ or n1/2ι(n) ≤ K, for qn ∈ {̂qn�AIC� q

�
n(k)} with any fixed 0 < k < K and for

some an → 0,

lim
n→∞

P
(
(1 − an)∂�̄�

n

(
β̄(n)� qn

)≤ ∂�A�n

(
β̃n(qn)

)≤ (1 + an)∂�̄�
n

(
β̄(n)� qn

))= 1�

Here, the notation ∂�̄�
n(β̄(n)� qn) is also introduced after (B.59) and we need the con-

dition R̂n(qn� j) = oP(1) and R(n) (qn� j) = oP(1) for j ∈ {b� s} and qn ∈ {̂qn�AIC� q
�
n(k)}.

Close scrutiny of (B.1) reveals that the result of Lemma B1 for q̂n also holds for
q̂n�AIC and leads to the convergence of R̂n and R(n) , and we can easily verify this for
q�
n(k) as well. On the other hand, we note that the randomness of q̂n�AIC does not af-

fect (B.61) and (B.62) by observing that ∂�n(β̄(n)� qn; j) is the top-left submatrix of
∂�n(β̄(n)� q′

n; j) for all qn < q′
n. Hence, in view of (B.68) and with the shorthand notation

A(qn) = 1
2n�A�n(β(n) (qn))ᵀ∂�̄�

n(β̄(n)� qn)−1�A�n(β(n) (qn)), we can write that, with either
n1/2ι(n) → ∞ or n1/2ι(n) ≤ K, and for all fixed 0 <k<K and some an → 0,⎧⎨⎩ lim

n→∞
P
(
LA�n

(
β̂n (̂qn�AIC)

)−LA�n

(
β(n) (̂qn�AIC)

)≤ (1 + an)A(̂qn�AIC)
)= 1�

lim
n→∞

P
(
(1 − an)A

(
q�
n

)≤ LA�n

(
β̂n

(
q�
n

))−LA�n

(
β(n)
(
q�
n

))≤ (1 + an)A
(
q�
n

))= 1�
(B.69)

Here, for the second line we omit the argument k of q�
n. We additionally use As-

sumptions 4 and 5, (B.66), (B.67), and that β̂n(qn) maximizes the quasi-log likelihood
Ln(β) over �β

n (qn), and the proof of Lemma A7 of Da and Xiu (2021). Now we define
�̄(qn� i) = (OnYnY

ᵀ
n On)i�i − Vn(β(n) (qn))i�i and

�
(
qn�λ�λ

′)= 1
4nT

∂f
(
λ;β(n) (qn)��n

)−1

∂β
C
(
β̄(n)� qn

)−1
(
∂f
(
λ′;β(n) (qn)��n

)−1

∂β

)ᵀ
�

with C(β�qn) = 1
2π

∫ π

−π
( ∂ log f (λ�β��n)

∂βi
)ᵀ ∂ log f (λ�β��n)

∂βj
dλ; we then obtain

A(qn) =
∑

1≤i�j≤nT

�
(
qn� i(nT + 1)−1π� j(nT + 1)−1π

)
�̄(qn� i)�̄(qn� j)� (B.70)
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where we use D
j
m = OmF

j
mOm and the connection between matrix Vm and spectral den-

sity f (λ;β��n). We note that the right-hand side of (B.70) is invariant over choices of
bijection βn(σ2�γ). Then following the proof of Lemma A1 we derive that, with either
n1/2ι(n) → ∞ or n1/2ι(n) ≤ K, for all fixed 0 <k<K and some an → 0,⎧⎨⎩ lim

n→∞
P
(
2Ln

(
β̂n (̂qn�AIC)

)− 2Ln

(
β(n) (̂qn�AIC)

)− q̂n�AIC ≤ an

(
Ra(n) + q̂n�AIC

))= 1�

lim
n→∞

P
(∣∣2Ln

(
β̂n

(
q�
n(k)

))− 2Ln

(
β(n)
(
q�
n(k)

))− q�
n(k)

∣∣≤ an

(
Rb(n�k) + q�

n(k)
))= 1�

(B.71)

where we utilize (B.69), (B.70), and the shorthand notation Ra(n) = L̄�
n(β̄(n)) −

L̄�
n(β(n) (̂qn�AIC)) and Rb(n�k) = L̄�

n(β̄(n)) − L̄�
n(β(n) (q�

n(k))). Now we define Rc(n�q) =
Ln(β̂n(q)) − Ln(β(n) (q)) and Rd(n�q) = Ln(β(n) (q)) − L̄�

n(β(n) (q)). From the definition
of AIC that q̂n�AIC = arg minq{q −Ln(β̂n(q))}, we can write

Ra(n) −Rb(n�k) ≤ (q�
n(k) − q̂n�AIC

)−Rc

(
n�q�

n(k)
)+Rc(n� q̂n�AIC) −Rd

(
n�q�

n(k)
)

+Rd(n� q̂n�AIC)�

On the other hand, we have that for some an → 0 and all a′
n → ∞ and fixed 0 <k<K,

lim
n→∞

P
(∣∣Rd(n� q̂n�AIC) −Rd

(
n�q�

n(k)
)∣∣

≤ an

(∣∣Ra(n) −Rb(n�k)
∣∣+ ∣∣̂qn�AIC − q�

n(k)
∣∣+ q�

n(k)
)+ a′

n

)= 1�

which can be shown by the same reasoning for (B.71). Therefore, using the properties
of Rc(n�q�

n(k)) and Rc(n� q̂n�AIC) characterized by (B.71), we have that under either
n1/2ι(n) → ∞ or n1/2ι(n) ≤ K, and for all an → ∞ and all fixed 0 <k<K,

Ra(n) −Rb(n�k) ≤ 1
2
(
q�
n(k) − q̂n�AIC

)+ oP

(∣∣̂qn�AIC − q�
n(k)

∣∣+ q�
n(k) + an

)
� (B.72)

Using the bound on ψ2
n

∑∞
j=q�(k)+1 |κn

j | from Assumption 5, we obtain the bound on
|̂qn�AIC −q�

n(k)| stated in the lemma. Now we prove the bounds on σ (n) (̂qn)2 −CT . The def-
inition of q�

n(k), combined with (B.5) and (B.72), indicates that there exists a fixed k such
that q�

n(k) − q̂n�AIC ≤ αn + 1 for all αn → ∞ with probability approaching one. Combining
this inequality with (B.72) again immediately leads to Ra(n) −Rb(n�k) ≤ oP(q�

n(k) +an)
for a fixed k and all αn → ∞. Therefore, applying (B.5) and Cauchy–Schwarz, plus using
the bound on ψ2

n

∑∞
j=q�(k)+1 |κn

j |, we prove the bound on σ (n) (̂qn)2 − CT and on q̂n in view
of the definition of q̂n and Lemmas A5 and A6 of Da and Xiu (2021). Following the same
reasoning, q̂n�AIC = oP(n1/6) comes from Assumption 4. Q.E.D.

APPENDIX C: PROOFS OF COROLLARY 1 AND PROPOSITION 1

PROOF OF COROLLARY 1: Given Theorem 1 and Lemma B1, we only need show that
under either q̂n → ∞ or n1/2ι(n) → ∞,

4q̂nÊn(4)T +�−1/2
n ζ (n)

(
5Ên(4)T σ̂2

n (̂qn)−1/2 + σ̂2
n (̂qn)3/2B̂n (̂qn)T

)
4q̂nE(4� ξ)T +�−1/2

n ζ (n)
(
5E(4� ξ)TC

−1/2
T +C3/2

T B(ξ)T
) = nT

n
+ oP(1)� (C.1)
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In view of the subsequence argument, as in the proof of Theorem 1, we only need focus on
all the DGP sequences that satisfy either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K. Under n1/2ι(n) →
∞, (C.1) follows from

Ên(4)T = nT

n
E(4� ξ)T + oP(1)� σ̂2

n (̂qn) = CT + oP(1)� and

B̂n (̂qn)T = nT

n
B(ξ)T + oP(1)�

Under n1/2ι(n) ≤ K, because of the requirement that q̂n → ∞, (C.1) is a direct result of

Ên(4)T = nT

n
E(4� ξ)T + oP(1)�

The convergence of Ên(4)T under either n1/2ι(n) → ∞ or n1/2ι(n) ≤ K holds by extending
Theorem 16.4.2 and Theorem 16.5.4 in Jacod and Protter (2011) to the case of serially cor-
related noise and random sampling interval, which can be shown by repeating arguments
of Theorem 3.1 of Jacod, Li, and Zheng (2019). Note that Jacod and Protter (2011) allow
for arbitrary noise magnitude, and Jacod, Li, and Zheng (2019) consider general noise de-
pendence structure. Given that our focus is not on the pre-averaging estimation, we omit
the details of this proof, which is available upon request. The consistency of σ̂2

n (̂qn) comes
from Theorem 1. We hence only need B̂n (̂qn)T = nT

n
B(ξ)T + oP(1) under n1/2ι(n) → ∞.

This comes from

(
ι(n)
)−2

B̂′
n(1) = 2An

T

∫ T

0
η2

sσ
2
s ds + oP(1)�

(
ι(n)
)−2

B̂′
n(2) = An

T

∑
s≤T

(
η2

s +η2
s−
)
(�Xs)2 + oP(1)�

(
ι(n)
)−4

B̂′
n(3) = nA2

n

nTT

∫ T

0
η4

sξ
−1
s ds + oP(1)�

(
ι(n)
)−2(

γ̂n (̂q)0 − γ̂n (̂q)1

)= nAn

nTT

∫ T

0
η2

sξ
−1
s ds + oP(1)�

where An =∑∞
j=0(θ(n)

j )2 −∑∞
j=0 θ

(n)
j θ

(n)
j+1. These four results follow from Lemma B1, As-

sumption 4, and extensions of Theorem 16.5.1 and Theorem 16.5.4 in Jacod and Protter
(2011). Q.E.D.

PROOF OF PROPOSITION 1: Step 1. (Limit of Gn(x)) We can always find a probability
measure P, which satisfies Assumptions 1–3 with ti − ti−1 = T/n for all i, ηt = 1, and the
distribution of ε being Gaussian; and parameter sequence ((ι(n))2� θ(n)) = (bCT�nn

−1/2� 1
2 )

clearly satisfies Assumptions 4 and 5 for each fixed b ≥ 0. We denote such DGP
sequence by {P(n)

b }n≥1. For (σ2�γ) ∈ �
(σ2�γ)
n (q), we choose βn(σ2�γ) as βn(σ2�γ)j =

1
2π�n

∫ π

−π
f (λ;σ2�γ��n)ei(j−1)λ dλ with 1 ≤ j ≤ q + 2. Then following the standard asymp-
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totic analysis of MLE for classic time series, we obtain

n1/2

(
β̂n(0) −β(n) (0)
β̂n(1) −β(n) (1)

)
L−→N

⎛⎜⎜⎜⎝0�2C2
T

⎛⎜⎜⎜⎝
(

1 1
1 1

)
⊗
(

1
1
2

)
1
2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ � (C.2)

On the other hand, it holds by definition that∥∥β(n) (0) −CT

(
1 + 5bn−1/2/4�−bn−1/2/4

)∥∥= OP

(
n−1
)
� (C.3)∥∥β(n) (1) −CT

(
1 + 3bn−1/2/2�−bn−1/2/4�−bn−1/2/2

)∥∥= OP

(
n−1
)
� (C.4)

Because we have σ̂2
n (q) =∑∞

j=1(2 − δj�1)β̂n(q), it follows from (C.3) and (C.4) that

σ̂2
n (0) −CT = β̂n(0)1 −β(n) (0)1 + 2

(
β̂n(0)2 −β(n) (0)2

)+ 3b
4
CTn

−1/2 +OP

(
n−1
)
� (C.5)

σ̂2
n (1) −CT = β̂n(1)1 −β(n) (1)1 + 2

(
β̂n(1)2 − 2β(n) (1)2

)+ 2
(
β̂n(1)3 −β(n) (1)3

)
+OP

(
n−1
)
� (C.6)

On the other hand, in view of the definition of AICn(q), we use the mean value theorem
to conclude that

AICn(1) − AICn(0) = 2 +
∑
i�j

∂2Ln

(
β̂n(1)

)
∂βi∂βj

(
β̂n(0)i − β̂n(1)i

)(
β̂n(0)j − β̂n(1)j

)
+ oP

(
n
∥∥β̂n(0) − β̂n(1)

∥∥2)
�

Using β̂n(1)j = CTδj�1 + oP(1) from (C.4) and (C.2), we deduce

−2
n

∂2Ln

(
β̂n(1)

)
∂βi∂βj

= 1
C2

T

δi�j(2 − δj�1) + oP(1)� (C.7)

Further, combination of (C.2), (C.3), and (C.4) lead to (β̂n(1)1 − β̂n(0)1)2 = 1
16C

2
Tb

2n−1 +
oP(n−1) and (β̂n(1)2 − β̂n(0)2)2 = oP(n−1). Using the last row of (C.2), plus the definition
of q̂n�AIC, we readily obtain that q̂n�AIC ∧ 1 = 0 if and only if

2 − b2/32 − (−b/2 + n1/2C−1
T

(
β̂n(1)3 −β(n) (1)3

))2 + oP(1) ≥ 0� (C.8)

In other words, (C.8) indicates that asymptotically the selected order is determined
by the realization of n1/2(β̂n(1)3 − β(n) (1)3). Meanwhile, from (C.2) we observe that
n1/2(β̂n(1)3 − β(n) (1)3) is asymptotically independent of n1/2(β̂n(q)j − β(n) (q)j) for ev-
ery (q� j) ∈ {0�1} × {1�2}. Moreover, (C.2) implies that n1/2(β̂n(0)j − β(n) (0)j) and
n1/2(β̂n(1)j −β(n) (1)j) are asymptotically perfectly correlated for both j ∈{1�2}. This im-
plication, plus (C.5) and (C.6), means that the first two terms in σ̂2

n (0)−CT and σ̂2
n (1)−CT

are asymptotically the same. We therefore conclude that for all ε > 0,

lim
n→∞

P
(n)
b

(∣∣Gn(x) −G∞(x�b)
∣∣> ε

)= 0� (C.9)
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where G∞(x�b) is defined by

G∞(x�b) = P
(√

6U + 3b/4 ≤ xC−1
T

)
P
(|Ū − b/2| <√2 − b2/32

)
+ P
(√

6U + 2Ū ≤ xC−1
T

)
P
(|U − b/2| ≥√2 − b2/32

)
�

with U and Ū being two mutually independent standard Gaussian random variables.
Step 2. (Contiguity) In this step, we prove that the sequence P

(n)
b is contiguous with

respect to the sequence P
(n)
0 for every b ≥ 0. In view of Le Cam’s first lemma (see,

e.g., Lemma 6.4 in van der Vaart (2000)), and using log(dP(n)
0 /dP

(n)
b ) = Ln(CT�0�1/2) −

Ln(CT�bCT�nn
−1/2�1/2) =: Un, it suffices to show that exp(Un) converges in distribution

under P
(n)
b to a random variable that is almost surely positive. We introduce shorthand

notation β(n�b) = CT (1 + 3b
2
√
n
�− b

4
√
n
�− b

2
√
n
). It follows that

Ln

(
CT�bCT�nn

−1/2�1/2
)

= Ln

(
β̂n(1)

)+ 1
2
(
β(n�b) − β̂n(1)

)ᵀ ∂2Ln

(
β̂n(1)

)
∂β∂β

(
β(n�b) − β̂n(1)

)+ oP(1)�

which holds by Ln(CT�bCT�nn
−1/2�1/2) = Ln(β(n�b)) + oP(1) from the construction of

Ln(β) and (C.4), the mean value theorem, and (C.2). Making use of (C.7) and (C.2), it
follows that under P(n)

b , Un
L−→N (−23b2/32�23b2/16), which proves the contiguity.

Step 3. (Conclusion) Now we have proved two facts. First, for each x ∈ R and under
P

(n)
b , Gn(x) converges to G∞(x�b) as n → ∞ as in (C.9). Second, the sequence P

(n)
b is con-

tiguous with respect to the sequence P
(n)
0 for every b ≥ 0. Because G∞(x�b) as a function

of b is nonconstant for all x ∈ R, according to Lemma 3.1 in Leeb and Pötscher (2006),
we have that lim infn→∞ infĜn(x) supb≥0 P

(n)
b (|Ĝn(x) − Gn(x)| > 1/K) > 0, which concludes

the proof. Q.E.D.
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