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INTRODUCTION

MY ARGUMENT seamlessly extends to this case in which the Monte Carlo sample is drawn
from a general density function. Regardless of the sampling distribution, Rust’s algorithm
breaks the curse of dimensionality only if the number of state variables that are mean-
ingfully history dependent—that is, contingent on the prior period’s state s or action
a—is O(log(d)). However, the nature of this near memorylessness varies with the sam-
pling distribution. Under the uniform sampling distribution, almost all state variables, ¢,
have a distribution that is arbitrarily close to a uniform distribution from almost all states
s € [0, 1]9. But under sampling density ., almost all state variables, f;, have a distribution
that is arbitrarily close to the conditional marginal sampling distribution, u/,(¢|t.;), from
almost all states s € [0, 1]%.

ANALYSIS

I will now derive the analog of each of Bray’s (2021) results under general sampling

density w,. Suppose the elements of m, = {mfi}f;’ , are drawn from a distribution with
general density function ., which has full support over [0, 1]°.
In this case, Rust’s random Bellman operator would be

SV ()t ()

(f‘Z“ V)(s) = max iy, (s) + B= i, ,

> Pl (mils)
i=1

where
Plia(t18) = Paa(tls)/pa(t)-

We will call this operator’s fixed point, I%,b" , the Rust value function under sampling density
w. Note that we can also express the standard Bellman operator in terms of p!, and u,:

(V) (s) = maxug(s) + B [ V() ph,(tl)ma(dr),

tef0,1]4
where
pa(dt) = pa(t)Aa(d1).

We will now re-express our definitions, assumptions, and propositions in terms of .
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DEFINITION 7: A sequence of dynamic programs is strongly Rust solvable under sampling
density w if, for all € > 0, there exists b € b such that sup,_  E(|V;* = V4|) <e.

DEFINITION 8: A sequence of dynamic programs is weakly Rust solvable under sampling
density u if, for all € > 0, there exists b € b such that sup,_ E(||de“ —Vill)) <e.

DEFINITION 9: The ith state variable is e-dependent under sampling density p if
IV~ =Vall, < €, where V;*™" is the value function under density function pj,™'(¢|s) =
Paa(t]8) g (til1<i) ) Py (Li]t<:).

DEFINITION 10: A sequence of dynamic programs is nearly memoryless under sampling
density p if, for all € > 0, the number of state variables that are not e-dependent under
sampling density u is O(log(d)) as d — oo.

DEFINITION 11: A sequence of dynamic programs whose Rust value functions un-

b
der sampling density u are {Kdu}deN Rust e-approximates under sampling density u a se-
quence of dynamic programs with value functions {V;},y if there exists b € b for which

A b
sup,.  E(IV, = Vill,) <e.

ASSUMPTION 7: The scaled transition density function is Lipschitz continuous in its second
argument: For each d € Nand t € [0, 1]¢, there exists Lipschitz constant ¢';(t) € R, such that

1ph, (tls)—ph, )]
MaX,eq SUP,.¢[o,11¢ SUPse[0, 174\ ‘25(,)”5,,“Hz <L

ASSUMPTION 8: The square integral of the scaled transition density Lipschitz function with
respect to measure p, is bounded by a polynomial function of d: there exists L* € b such that

SUPen ftE[O,l]d Ly () pa(dr)/Ly < 1.

ASSUMPTION 9: At the origin, the scaled transition density function is bounded by a
polynomial function of d: there exists M* € b such that max,ea SUP jey SUP o 13¢ Paa(£0)/
My <1.

ASSUMPTION 10: The scaled transition density function is bounded by a polynomial func-
tion of d: there exists M* € b such that maX,ca SUP .y SUP, ;0. 11¢ Pia (£I8)/ M} < 1.

PROPOSITION 1: Any sequence of dynamic programs that satisfies Assumptions 4, 3, 7, 8,
and 9 is strongly Rust solvable under sampling density .

PROPOSITION 2: Any sequence of dynamic programs that satisfies Assumptions 4, 3, and
10 is weakly Rust solvable under sampling density .

PROPOSITION 3: Every sequence of dynamic programs that satisfies Assumptions 4, 3, 7,
8, and 9 can be e-approximated by a sequence that satisfies Assumptions 4, 3, and 10, for all
e€>0.

PROPOSITION 4: Any sequence of dynamic programs that satisfies Assumptions 4, 3, and
10 is nearly memoryless under sampling density (1.
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PROPOSITION 5: Any sequence of dynamic programs that (i) is weakly Rust solvable under
sampling density p and (ii) satisfies Assumptions 4 and 3 can be Rust e-approximated un-
der sampling density w by a sequence of dynamic programs that is nearly memoryless under
sampling density w, for all € > 0.

PROOFS

PROPOSITION 1: Any sequence of dynamic programs that satisfies Assumptions 4, 3, 7, 8,
and 9 is strongly Rust solvable under sampling density .

PROOF: Forde N,V €V,;,aca,and b € b, define

Z V pda mdls)

(V) () = wau(s) + B ,

> pha(mils)
i=1

(r ZZV)(S)—uda(S)+BZV L) Pl (mi|s) /ba,

i=1

and

bq
Zp(s)=BY_ gV (mh) plh,(mils)/V/ba,

i=1

where {gfl}f’i1 is a set of independent standard normal random variables. Since

E((T”V)(s)) = (T'4aV)(s), where Ty, is defined in the proof of Proposition 1, Pollard’s
(1989) seventh equation implies that

< 2, 2w by N2
E(|T5V —=TuV ) 5\/_—(1 E(E{ti%d Z4,($) > 1)

We will now bound the expectation on the right. First, note that

E(!ZSZ(f) _ZZZ(S)‘Z:md =p’ Z‘V pda mdlt) Pl mdl ‘ /ba

2 by
< (BKd”t—S“Z) ZEM /bd (2)

This expression implies that

K .
5y = f_ ‘;J Zdﬁ’;(m;)z/bd

> sup VE(Z2(0) - Z245) - ma). 3)

s,te[0,1]4
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Now, for a given x > 0, divide [0, 1]¢ into f(x) = [87/(2x)]¢ equally sized cubes, and
define {cjc}{:(){) as the center points of these cubes. By design, these center points satisfy

sup  min s —cif, < ol Cds) ,
sef0,1]d 1L SO} ba ,
Kq | > h(mi) /ba
i=1
which with (2) implies that
sup  min E(|Z)(s) - (c;)‘z imy) < x°. 4)

se[0,1}4 ie{l,....f(x)}

Now combining (3) and (4) with Pollard’s (1989) eighth equation yields

\/ (sup Zl(s)?: md) E(Z}E(0)2: m,)
sel0, 114

< C/()ﬁf? V9og(f(x))dx
= C8Z1~/3/1‘/10g(1/u)du

= C8"Vdn)2,

where C > 1 is a universal constant that is independent of all model parameters. And
since x — y < z implies x> < 2y* + 222 for all x, y, z € R, this implies that

E( sup Zss(s)z) = E(E( sup Z*(s)?: md>)

s€[0,1]4 s5€[0,1]4
<E(2E(Z}*(0)* : my) + (C87) dm)
BK.M;N\?  (dBCK,\’ 02
2( L) (T )
K 2
< (f_ dﬁ) (M"Y’ + md®C*LY).
Now combining this with (1) and applying Jensen’s inequality yields, for all V' € V,,

IA

(| — T ]) < B |f'wv—rdav||2)

/ (sup Zi(92)

s5€[0,1]4

2’7TBKd

m\/ (M%) + d2C2L. )
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Next, define constant function ¢, € V4, where ¢4(¢) = K,/(1 — B) for all 7 € [0, 1]¢. With
this, (5) yields

E(|TeVa —Tgval)=E | sup

s€[0,1]4

1= pl,(mils)/ba

i=1

ba

< by ) ZV 1) Pa(myls)
2_ Pialmils)

K 2
< PR sup 10 ol (i) /b
1- B se[0,1]4 i=1
(%4~ Taa])
< fﬁ\/ (M%) + d>C2LE.
(1-8)
Combining this with (5) yields
E(| T3 Va —Val) = E(| T3 Va —TaVa])

< SCE(|FV. - Tubal)

aca

<D E(IFve—Taval) + BTG Ve = TuVa])

aca
4la|mBKy
T b= )
And with this, Rust’s (1997b) Lemma 2.2 establishes that

Jt) + e,

E([v" - val) <E(IT3Va=Val) /(1= )
4la|mBK, 2
= m\/(MZL) +d2C2LZa
which is smaller than € when b, is larger than (%\/ (M) +d>C?LE)". Q.E.D.

PROPOSITION 2: Any sequence of dynamic programs that satisfies Assumptions 4, 3, and
10 is weakly Rust solvable under sampling density .

PROOF: Assumptions 3 and 10 ensure that |V (¢)p’, (t]s)| < K,M) /(1 — B) for all
V' e V. Hence, for V' € V, Popoviciu’s inequality implies that Var(V (m}) p!,(m}]|s)) <
(KsM¥)?/(1 — B)?, and thus that

Var(ZV pda mdls)/bd> = b(IzM;))z
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Accordingly, Chebyshev’s inequality establishes, for a given 6 > 0 and V' € V, that

(KaM)’

Pr(y}(s) = )—m’

where

) pt (i )s) /by — f Va(t) paa(t]s) Aa(dr)

yo(s) = { > 8 } .
te[0,1]4
And this implies for ' € V that

E(V)(s) — Cu)()])

= BE< ZV(mZ)PZa(mHS)/bd - /t - Va(t) paa(t|s)Aa(dt) )

< Pr(y;(s) =0) ( >V (m) pli,(mils) /ba —/[0 l]dVd(f)Pda(ﬂS))\d(df) 1 4(s) =0>
+Pr(y;(s)=1)
x E( ZV(mﬁz)Pga(mHS)/bd - / o Va(0) paa(tls)Aa(dt)| = yi(s) = 1)

<1.5+(K"7MM)2 2K ,M" /(1= B)
T ah-py T

2(KdM5)

64— 7d)
T (- By

where fZZ is defined in the proof of Proposition 1 and I'y, is defined in the proof of
Proposition 1. Hence, for IV € V, we have

2(K MM’

E(|T%*V —T 4
(|| daV d“V||1)§6+ 62bd(1—ﬁ)3 (6)

And this, in turn, implies that

E(|f%va—Tova],)
bq
. > Va(miy) pl (mils)
=E / o (1 -2 Pl (mQIS)/bd)B — Aa(ds)
’ - P ACHE
i=1
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bq
1= ph.(mils)/ba

i=1

_ K g /
1- B s€0,1]4

=E(|T3 v = Tatall)

)\d(dS))

2(K M~)
SO0t g T g
8°bs(1-B)

where f;’; and , are defined in the proof of Proposition 1. Now combining (6) and (7)
yields

()

B(| T3 Va = Val ) =B(|T3Va = TaVal,)

<> E([Ve—Tabal)

aca

<Y E(|Teva —Tva|,) + B(| TV — TaVal) )

4la| (K M"Y’

8by(1-B)"

And with this, Rust’s (1997b) Lemma 2.2 establishes that
Lva=val,)/ (- B)
4la|(K,M~)’
8by(1 - B)*’

<2|ald+

E(

Vit =val,) <E(

<2lals/(1-B)+

8lal(KgM})?
32e(1-p)* -

which is less than € when 6 < E(jlgf) and b, >

Q.E.D.

PROPOSITION 3: Every sequence of dynamic programs that satisfies Assumptions 4, 3, 7,
8, and 9 can be e-approximated by a sequence that satisfies Assumptions 4, 3, and 10, for all
e€>0.

PROOF: First, choose € > 0 small enough so that [, . €5 (£)pa(dr) > 8, = 2:;1‘(552.

Second, set y, € R such that fte[m]d max(0, £ (¢) — ya)ma(dt) = 8,. Third, define proba-
bility density function

o= HEOzr}
[, e = vuan

Fourth, Jensen’s inequality yields
| dteruan
te[0,1]4

S R CIOESA LoD
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/;{0 o Z(l‘)ﬁs(t)zpd(dt) ) ]l{ﬁg(r) > ’)’d},ud(dr)

rel0,1]

(/,E[Ol (f)ﬂ“(f)ud(dt)>2/re[0,”dﬂ{ﬁi(r) > ya ) pa(dr)
(

v

max(0, ¢4 (1) — ya)ma(dt) _,
) [0,1]4 ]l{ﬁj(r) = W}Md(dr)

te[O 14

Ya +

1{€5(r) = va}ma(dr)

re[O 14
84 2 .
- 1€l (r) = va}pa(dr)
/ 1{€4(r) = ya}pa(dr)/ Jrel0
ref0,1]4
> min(y, + 84/)’y
yeR4

= 27404,
which with Assumption 8 implies
Ya < Ly /(284).

Fifth, define probability density function

P9 =T+ 1= [ Flmaan,

ref0,1]4
where

Plia(tls) = max(pf, (110) + Vdya, pl,(1]5))-
This density function satisfies Assumption 10, since

Ph (tls) = Py, (tls) +1
< ph.(t10) + Vdy, +1
<M* 4+ VdL:/(28,) +1

which is polynomially bounded. Also, by design we have

/[o 1 iBZa(tls) - Pga(t|s)|lud(dt)
tefo,

»/IE[U,l]d
./te[o,l]d

P+ 1= [ Flmaldn) - pll)

rel0,1]

P9+ [ (19~ P9 malar) = pl(el)

rel0,1]

ma(dr)

pa(dt)
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< / B (t]s) — Pl (2]5) | a(dr) + / | P (rls) — B (r15) | ea(elr)
tef0,1]4 ref0,1]4
=2 [P = ) )
te[0,1]4
<2 / max(0, ¢4l = Vdya)a(dr)
te[0,1]

<2vd max(0, £5(£) — ya))ra(dt)

te[0,1]4
=2d8,. 8)

Now let I'Y) represent the Bellman operator under density function J With (8), we find
that this operator satisfies

TV, —val = [V~ T

52 sup B

aca s€[0,1]4
BK
=1 2 sup |p% (1]s) = Pl (tls)|ma(dt)
- 'B wea s€[0,1]4 J 1€0,1]4

BK4
1-8

/t (0.1 Vd(t)(BZa(tls) - pZa(tIS)),ud(d;)

sup 2v/d8,

aca se[0,1]

=

_ 2aB8.K,Vd

=—1_3

=€(1-pB).
And with this, Rust’s (1997b) Lemma 2.2 establishes that ||}, — V|| < €, where 1/, is the
fixed point of I';. Q.E.D.

PROPOSITION 4: Any sequence of dynamic programs that satisfies Assumptions 4, 3, and
10 is nearly memoryless under sampling density (1.

PROOF: Pinsker’s inequality establishes that

|| A — p;a('ls’ t<i) ”1 = \/2K(piia('|s’ t<i)’ /\1)'

And this implies that

/ | paa(tei t2il8) = paa(tei, t2il9) | Aamin (d2z:)
tzie[(],l]d’”]
= / / | Paaltcis tis toin1|8) = Paa(tei, titsin|) | Aaci(dtzin) A (dt;)
1;€[0,1] J 541 €[0,1]4~¢

=/ |1 — pl.(ti]s, t<,-)| Pan(teis tiy it |$) Aq_i(dtzinr ) As (d1;)
t;€[0,1]

b €[0.1]4
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/ Paa(teis tiy toin]) Aai(dtzis1)
>i41 €lo 1]d i

- 1— p (s, 1) | == : M (dt)
/tie[o,u | ¢ | Paa(tils, 1) '
[ p;l+1(t<la tl)
= 1— pi (ti]s, t2) | =——"2 ), (dt;
-/tie[o,1]| anl )| Paa(tils, i) 1(d)
=p;'(tz) o ]|1 — Pl (tils, )| A (dt;)
t;€[0,1

=p;'(ts) | A

- piia('ls’ t<i) 1
< P (L) 26Dl Clss 1), M)

And with this, Jensen’s inequality yields

| piCIs) = paaCls)],

:./1[0 | | paa(tls) — paa(tls)|Aa(dr)

/ / | Dt £115) — Daa (s 121]8) | aisr (dEar) Ay (d1r)
t_;€[0,1]i-1 J 15 ;€[0,1]4—i+1

=[P ), M)A )

\/ f [0.1] ;i(t<l')K(pfia('|sa t<i)’ A1)Ai7] (dt<z)
e

— \/ZE(K(PZa('|S> 1), M)

Next, Lemma 1 implies that there exist m, n € N such that 3% E(x(p’,, (:|s, 1), A1) <
m+nlog(d), forall d € N. Since k(p’,,(-|s, t.;), A1) > 0, this implies that for a given y > 0,
the inequality \/2E(k(p’,(:|s, t-:), A1)) < v holds for at least d — 2(m + nlog(d))/y2
values of i. And with the result above, this implies that | p,!(:|s) — pa.(|s)Il, < ¥
holds for at least d — 2(m + nlog(d))/y values of i. Now define O, ={s€[0,1]":
P22 (C18) — paa(-|$)Il, < ¥} as the set points that satisfy this inequality for a given i €
{1, ..., d}. The Lebesgue measures of these sets satisty

d d
Z)\d(ﬂfm) 22/ dﬂ{SGQfla})\d(dS)
i—1 i—1 v s€l0.1]

d
/SE[O IORITELAINCD

i=1

%

(d — 2(m + nlog(d))/v*) Aa(ds)

se[0,1]4

=d —2(m+ nlog(d))/v*
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Since A4(€},) <1, this implies that
M) 21— ©)

holds for at least d — 2(m + nlog(d))/(8y?*) values of i. Thus, for i that satisfies (9), we
have

Irivi-ravil, = [

sef0,1]4

Uaa($) + B , V(1) Pua(tls)Aa(dt)

1€[0,1]

) =B [ VOpalnn) pi(as)

=8 [ L O i1~ pui9)raan |utas)
<BWal | 1PaCls) = paCl9)] Mads)
<eWal( [ 1pastls) = paCiol s

+ / o, P Tl ds))

e[

da

= BIVall(yAa(€,) +2(1 = Aa(€2,)))
< B(Ka/(1 = B))(y +25),

where Iy, is the action-a Bellman operator defined in the proof of Proposition 1, and F;;
is the analogous operator under p;;. Thus, for i that satisfies (9), we have

[TaVe=Val, = |TaVe =Taval,

<> ITaVa—TuVal,

aca

< lalB(Kas/(1 = B))(y +28),

where F;." is the analog of T'; under p}’. And with this, Rust’s (1997b) Lemma 2.2 implies
that ||V, — VI, < |alBK(y + 28)/(1 — B)* holds for i that satisfies (9). Hence, setting

yAq(ds) + /

5€[0,119\04,,

2/\d(ds)>

y=6= z‘(;l’ﬁfzzi ,we find that ||[V/;* — V||, < € holds for at least d —2(m+nlog(d))/(8y*) =
d —128(254)° (m + nlog(d)) values of i. Q.E.D.

LEMMA 1: Assumption 10 implies that there exist m, n € N such that
d
D E(x (Pl (1))

i=1
maxsup sup <1.
4€8  deN se[0,1]d m + nlog(d)
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PROOF: The following implies the result:

sup_pf(1ls) = exp( sup log(pf,(1]s)) )

te[0,1]¢4 1e[0,1]4

=ep( [ Toa(pi(19) purlutan)

d .
plda(tils? t<i)>
=¢X lo Tdar 7 7 (tls o (dt
p(Z[E[O,I]d g( /«le(tilt<i) Da ( | ) d( )

ZGXP<ZE(K(PZa('|Sa t<i)’l“fi('|t<i))))' OED

PROPOSITION 4: Any sequence of dynamic programs that satisfies Assumptions 4, 3, and
10 is nearly memoryless under sampling density .

PROOF: Pinsker’s inequality establishes that

[ phaClss 1) = Bl ], = 2P, Cls, 1), i),

And this implies that

/ | Pl (tiy tilS) — Paa(teiy toil$) | acin (d2sr)
lzfe[(],]]d_i“'l
= / |y (tl22) ) Pl (tils, t2i) = 1| paa(teis tis tiga|$) Ag_isa (di))
tzig[())l]d—t#l
=/ |M2(ti|f<i)/l?2a(fi|s, i) — 1|P§i+1(t<i’ L) (de)
t;€[0,1]

=p;'(tz) |y (tilt<i) — Pl (tls, 1) | A1 (di;)

t;€[0,1]
= p;i(t<i) ||/"’ii(|t<l) - piia('ls’ t<i) “1
S p;i(td)\/zK(pfia(.lS: t<i)7 Mij(lt«))

And with this, Jensen’s inequality yields

| PG C19) = pacCls) |, = | Pl (115) = paa(tls) | Aa(dr)
(0.1

te

S/ (0,1~ p;i(t<i)\/2K(p2“('|s’ £-i), Mii('lt<i))/\i—l(dt<i)
t;€[0,1]"~

= \/2f o lp;i(t<l')K(pf1a('|s’ 1), wh(lt)) A (disy)
t_;€[0,1]"~

= \/ZE(K(pi,a(~|S, i), :U*iz('lta)))'
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Next, Lemma 1 implies that there exist m,n € N such that Z?:IE(K(p;a(~|s, t.i),
wi(lt2))) < m+ nlog(d), for all d € N. Since «(pi,(:|s, t-;), w,(:|t;)) > 0, this implies
that for a given y > 0, the inequality \/2E(k(pi,(-|s, 1)), ni;(-]t;))) < v holds for at
least d — 2(m + nlog(d))/y* values of i. And with the result above, this implies that
1257 (Is) = Paa(-]s)ll, < ¥ holds for at least d — 2(m + nlog(d))/y* values of i. Now

define Q%' = {s € [0,1]*: ”pda “(-Is) = paa(-|s)ll, < ¥} as the set points that satisfy this
inequality for a given i € {1, ..., d}. The Lebesgue measures of these sets satisfy

d .
> a(0g) =
i=1

d

2oyt

i=1

d
:/ Zjl {s € Q4" A (ds)

d
el0.1)4

/ . (d —2(m+ nlog(d))/v*)Aa(ds)
=d —2(m+nlog(d))/y
Since A,(Q"") <1, this implies that
M) =15 (10)

holds for at least d — 2(m + nlog(d))/(8v?) values of i. Thus, for i that satisfies (10), we
have

vV~ Tuil, = |

se[0,1]4

wa®)+B | VO WA

tel0,1]¢

— Ug(s) — B/t o V (£) paa(t|$)Aa(dt) | Xa(ds)

=p

/t o Va(@) (' (tls) = paa(t]s))Aa(d1)

/\d(dS)

sef0,1]4

< BIVal / 257 Cls) = paa(-l5)]|, Aa(ds)

<owa( [ 1 9= pai9 | A

da

*/ (P C) L, + [ paaCls) ||1>Ad<ds>>
5€[0,1]1\Q4

da

<l [ @+ [ 2as)
seQ!! sef0,119\04"

da

= BIVall (yAa(Q41) +2(1 — A4 ()
< B(Ka/(1 = B))(y+29),
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where I'y, is the action-a Bellman operator defined in the proof of Proposition 1, and
I~ is the analogous operator under p’ ™. Thus, for i that satisfies (10), we have

105V =vall, = T ~Va = Tuval,

= I V- Tl

<la|lB(Ks/(1 - B)) (v +29),

where T is the analog of I'; under p~". And with this, Rust’s (1997b) Lemma 2.2 im-
plies that |V} — V|, < |a|BK.(y +28)/(1 — B)* holds for i that satisfies (10). Hence,

setting y = 6 = jl(ill_ﬁfjgz, we find that ||V“’_i —V4ll, < € holds for at least d — 2(m +

nlog(d))/(6y*) =d —128( 'flllﬁg)z) (m + nlog(d)) values of i. Q.E.D.

PROPOSITION 5: Any sequence of dynamic programs that (i) is weakly Rust solvable under
sampling density u and (ii) satisfies Assumptions 4 and 3 can be Rust e-approximated un-
der sampling density u by a sequence of dynamic programs that is nearly memoryless under
sampling density w, for all € > 0.

PROOF: Deﬁne E" as a general set with measure b,> under sampling density wu:
ftEJ wa(dt) = b;*. And use this to define the following probablhty transition density func-

tion
Phi(tls) = 1{ pl, (tls) < b3} Pl (tls) + bi1{t € By} Pl (s),

where
7= [ 1) > 5P Clematar).
rel0,1

This density function funnels all the mass that exceeds b3 into E/. Since it never exceeds
2b2, this density function satisfies Assumption 10. So Proposition 4 establishes that this
density function corresponds with a sequence of dynamic programs that is nearly memo-
ryless under sampling density u (given Assumptions 4 and 3).

Define the following as the set of points for which the new density function equals the
old density function:

Q4 (s) ={r € [0,1]°: p**(1]s) = pl, (tls) Va e a}.

The measure of this set under sampling density u satisfies

a(d) =1 - a(d ba(rls) > b3 a(d
fleggm“( ‘) /M n-2. /,EM Pia(rls) > b3} pa(dr)

aca

S 1-b2 b2 Y / 1{ pt(rls) > 03} ple (rls)pnadlt)

aca V1

S 1-b2 b2 Y f PhCAS)ma(dr)

aca V1

>1—(1+|al)/bj.



COMMENT 15
The probability that this set contains all 72/, values satisfies

Pr (U ml, C QZ(S))

i=1

bd
- ( [ ud(dr))
1e0k(s)

> (1—(1+1al)/b3)™

=exp(bylog(1 — (1+ |al)/b}))

= exp(ba(—(1+ lal) /b2 — (1+1al)’/(26%) — (1+ Jal)’/(3bS) — ---))

> exp(—(1+lal)/ba)

>1—(1+ al)/by. (11)

A ub . .
Next, define EZ as Rust’s random Bellman operator evaluated under density function
pg” . Since V! € V,, we have
=da

(72 (s) = (571 (s)| < BKa/ (1~ B). (12)
And if |2, mi, c Q5(s), then

Aub A A N
[(E Vi) ) = (BVE) )] =0, (13)
Now combining (11)—(13) yields
Aub A Aub A

E(|E, V" =Vl =B(IL, v - D))

= / o E(| (571 (s) = (F2D1) (5) ) Aa(ds)

uby
=/ BKd=p) <1 - Pr(U m, Qﬁ;”@)))Ad(ds)

K,(1
- / PRA(1+121) ) )
sef0,1]4

ba(1-PB)
_ BKu(1+]al)
o b(1-B)

And with this, we can use Rust’s (1997b) Lemma 2.2 to establish that

BKa(1+ |a])

B2 = Pi,) <E(|E V2 =0/ - B) < ba(1—B)°

(14)
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Now, for a given € > 0, choose b € b such that % < €/2 and E(||I7d"b -Villy) <
A~ ~ ub ~ ~

¢/2. And with this, (14) yields E(IV — Vall,) < QS — V1) + E(PE = Vall,) <

€. QE.D.
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