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APPENDIX A: THEORY
A.1. Proof of Proposition 1

FIRST, I FOCUS ON THE PROBLEM of unemployed workers. Their reservation wage w is
obtained as the solution to W (w) = U. Equating (3) and (4), I obtain

b+ ,u/e(z)|W(w(z)) - U|+ dlo(z) + A(1— u)/|W(w(z)) - U|+dP(z)
—wex [ (1= 3@) (W (w(:) - U)dTi(2)

+A(1—u) /\W(w(z)) — U|+ dP(z).

Using the fact that an employed worker can quit to unemployment, we have W(w) > U.
I remove the max operators and obtain

b+ f e(2) (W ((2)) - U) dTo(z) = w+ x / (1 - x(2)) (W (w(2)) — U) Ty (2).

Rearranging, we obtain

w=>b+ f(;w(z) —x(1=x(2)))(W(w(z)) — U) dlo(2).
Second, I focus on the problem of employed workers. I now prove that employed work-

ers accept a job offer w’ whenever w’ > w. To show that w' > w = W(w') > W (w), I
proceed by contradiction. Set w’ > w and assume that W (w’) < W (w). Using (4), I obtain

r(W(w’) — W(w))

=w —w-— (X/(l —x(z))dlo(2) + X/x(z) dly(z) + 8) (W (w') — W (w))

A=) [ (@) = W), - W) - Ww) ]4Pe).
Using W (w') < W(w), we have that

W (w(z)) — W(w’)|+ > |W(w(z)) — W(w)

+ b
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2 EMILIEN GOUIN-BONENFANT
which implies that
r(W(w') = W(w))
>w —w— <X/(1 —x(2))dl(z) + X/x(z) dlo(z) + 5) (W (w') — W(w)).
Rearranging, we obtain

(r+x+8)(W(w) —W(w)) = w —w,

which is a contradiction. Therefore, it must be that w' > w = W (w') > W (w).

A.2. Proof of Lemma 1

I now provide a derivation of the employment growth function over the range [w, +00):

g(w) = Au+ A(1 — u)P(w) — A(1 — u)(1 — P(w)) —

hiring rate separation rate

The hiring rate is determined by the fraction of job offers that are accepted. A fraction
u of meetings are with unemployed workers (who accept all job offers above w), so the
hiring rate out of unemployment is Au. The remainder of meetings are with employed
workers who require a wage increase to quit. The measure of employed workers working
at firms paying less than w is equal to P(w), so the hiring rate from employment is given
by A(1 — u)P(w).

Separations occur due to quits as well as exogenous job destruction. At rate A(1 — u),
a worker receives a competing job offer. Since firms meet workers proportionally to their
size, the distribution of offered wages is precisely the wage distribution P(w). The rate at
which a firm paying w loses a worker to a competitor is thus given by A(1 — u) (1 — P(w)).
In addition, firms lose workers exogenously at rate 8.

Since the wage distribution P is a CDE we have that P(w) is weakly increasing in w
and lim,,_, P(w) = 1. Since A(1 — u) > 0, it follows that g(w) is weakly increasing and
bounded from above by A — 6.

A.3. Proof of Proposition 2

The derivation of k(z) and y(z) follow directly from the first-order condition for capi-
tal, so I focus on the derivation of e(z), x(z), and w(z).

Entry and Exit Functions

Firms enter whenever v(z) > 0 and exit whenever v(z) = 0. I now show that there exists
a unique z > 0 such that

z<z = v(2)=0, z>z = v(z)>0.

Define Z, ={z:v(z) > 0} and Z_ = {z: v(z) = 0}. Notice that Z_ U Z, = [0, +00).
First, I show that z € Z, = v'(z) > 0. From (12), we have that

v(z) >0

= rv(z)= n,},é}{X{Zka —w— Rk +v(2)g(w)} + X(/ v(x)o(dx) — v(z)).
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Using the envelope theorem, we have that when v(z) > 0,

r/(2) =k*(2) +V(2)8(2) —xv(z) = V(2)= %'

Assumption 2 combined with Lemma 1 implies that » + y — g(z) > 0 for all » > 0, so
we obtain the desired result that v'(z) > 0. Firms operate whenever z € Z, and v(z) is
continuous over Z, (differentiability implies continuity), so we have that for all z € inf Z,,
v(z) =0. Therefore, the entry/exit threshold is z = inf Z,.

Wage Function

As is standard in such proofs, there are two cases to consider: a continuous wage distri-
bution and a wage distribution with a point mass. When the wage distribution is contin-
uous, the function g(w) is differentiable. From the first-order condition (equation (14)),
we have that

1=v(2)g (w(2)).
Using the definition g(z) = g(w(z)), it follows from the chain rule that g'(z) =
g (w(z))w'(z). Plugging back in the first-order condition, we obtain

w'(z) = v(2)g'(2)-

To solve for w(z), I use the fact that the marginal firm (i.e., z = z) is constrained by the
worker’s reservation wage w. Without the constraint w > w, firms would never exit as they
would be able to achieve zero flow profit by setting w = 0 and k = 0. I use this insight to
obtain the boundary condition w(z) = w. Solving the ODE forward, I obtain the desired
result,

M@=w+[3umumm

I now verify that the second-order condition v(z)g”(w(z)) < 0 holds for all z > z. Since
v(z) > 0, we only need to verify that g”(w(z)) < 0. From the definition of g(z), we have
that

g =@ (@) = g@=Fe)wE) +7wE@)w' ).

From the first-order condition, we have that w'(z) = g'(z)v(z) = w’'(z) =g"(2)v(z) +
g'(2)v'(z). Putting together,

g'(2) =% (w(2)(w(2)" + & (w(2) (" (2)v(z) + £ (2)v(2))
= £@(1-F@)) =F )W) +F () (2)V().
But from the first-order condition, we have that 1 — g'(w(z))v(z) =0, so

gw)g v _ (£(2) V() .

T = ey w/(2)

Since v'(z) > 0 for active firms, we have that g"(w(z)) > 0 <= w/(z) > 0. The case
w'(z) < 0 can be ruled out as it would imply that w(z) < w for all z > z so it must be
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that w'(z) > 0. Since I am now considering the case with a continuous wage distribution,
w'(z) = 0 is not possible as it would imply a point-mass wage distribution. Therefore, we
have that the second-order condition is satisfied.

Finally, I use a standard argument (see, e.g., Burdett and Mortensen (1998); Coles and
Mortensen (2016)) to rule out the possibility of a point mass. Imagine that all firms offer
w(z) = w so that the wage distribution P(w) is given by a point mass. A firm could thus
deviate by offering w + € (where € > 0), and increase its growth rate discontinuously from
g(w) = Au—58to g(w) = A — & (see equation (8)). An infinitesimal change in the wage of-
fered would then lead to an increase in the continuation value of a firm (see equation (9))
and the equilibrium would unravel. Therefore, the point mass wage distribution cannot
be sustained in equilibrium

One-Shot Deviations

In order for the equilbrium to be Markov perfect, there needs to be no profitable one-
shot deviation. What prevents a firm from deviating from w = w(z) to w = w over a
short time interval [¢, ¢ + df) and then reverting to w = w(z)? Workers do not observe
productivity directly, so when a firm lowers its wage, workers interpret it as arising due to
a negative productivity shock, and expect the wage change to be persistent (productivity
shocks are persistent). As soon as the firm would lower the wage, the growth rate of
employment would decrease. The wage of the deviating firm over [¢, ¢ + d¢) would no
longer solve the first-order condition (14) and, therefore, would lead to a lower expected
discounted profits.

A.4. Derivation of Equation (22)

I now provide a derivation of each term of the Kolmogorov forward equation (22) for
the employment-weighted productivity distribution P(z):

P(2) = (1— w)AP(2)(P(z) — 1) + ﬁuer(z) 4 UuAP(2)
— (X +8)P(2) + x:(T(2) = P(2)) -

Employment Productivity shocks
outflows

Job-to-job flows

At Poisson rate A(1 — u), an employed worker receives a competing job offer. The dis-
tribution of productivity (CDF) of such workers, after they have made their decision
whether or not to accept the competing job offer, is P(z)?. The reason is that the dis-
tribution of z in the population of workers is precisely the employment-weighted produc-
tivity distribution P(z) while the distribution of job offers z’ is also P(z), since firms meet
worker proportionally to their size. The CDF of max{z, z'} is therefore P(z)>.** Using the
KFE formula for jump processes, the term that accounts for job-to-job flows is therefore

A1 —u)(P*(2) — P(2)) =A(1 —u)P(2)(P(z) — 1).

At Poisson u,., an unemployed worker meets a potential firm and enters the workforce
with productivity distributed according to I'(z). At rate A(1 — u), an unemployed worker

21f X and Y are two independent random variables with CDFs F, G, then P(max{X, Y} < z) = F(2)G(2).
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meets a firm and enters the workforce with productivity distributed according to P(z).
Since the ratio of unemployment to employment is +*-, the term that accounts for unem-
ployment inflows is

%(MJ(Z) +A(1 - u)P(2)) = ﬁmr(z) +uMP(z).

At Poisson y, + 8, a worker with productivity distributed according to P(z) is sent to un-
employment due to firm exit or exogenous job destruction so that the term which accounts
for employment outflows is —(x. + 8)P(z). At Poisson rate y,, an employed worker’s
productivity resets to a draw from I'(z), so that the term which accounts for productivity
shocks is x,(I'(z) — P(2)).

A.5. Proof of Proposition 3

I break down the proof into three lemmas. All derivations take z as given.

LEMMA 2: There exists a unique real solution u € [0, 1) that solves equation (21) with
u=0.

PROOF: Substituting & = 0 in (21), we have
0=(1—u)(xx +8) — u(ue + A1 — 1)),
which is a quadratic equation of the form au® + bu + ¢ = 0 with
a=A\, b=—(A4+6+ xx + te), c=x,+0.
First, I verify that the discriminant A = b — 4ac is positive:
A=A +8+x: +p) —4M(x. +6)
> (A+ 8+ pe + x0)7 = 4A(x +9)
> (A+ 8 +min{x, u})’ — 4A(x + 5).

When x < pu,

A>A+8+x)" —4Mx +8)=(x+6 - 1)
When y > pu,

A>A+84+up) —4A(n+8)=(u+86— 1)~
Putting together, we have that

A> (minfu, x}+8—A)’ >0,

where the last inequality follows from Assumption 2. There are therefore two real solu-
tions to (21), which I denote by u™®.

LAt Xt e B X ) — A (X + D)

“ 22
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I now use the fact that /A > min{u, x} + 8 — A to show that u* > 1:

+

_ A+ 8+ min{y, ut +vA 2A
> > —

=1.
2A 21

u
Therefore, u™ is not the solution (the unemployment rate cannot be greater than one).
I now show that u~ is the solution (i.e., it satisfies 0 < u~ < 1). First, we have that

_ _ A+ 6+ max{u, x}
u < <

1
2 ’

where the last equality follows from
A+ 6+ max{u, x} <2A << S+ max{u, x}—A<0,
which is true under Assumption 2. Finally, we have that u(~) > 0, since
b<vb:—4ac << 4dac=>0
and 4ac = A(6+ x,)8 > 0. Q.E.D.
LEMMA 3: The stationary unemployment rate satisfies u < XT%
PROOF: Using the fact the discriminant is positive, we have that

A+ min{p, x} + 8

A>0
> = u< o

Under Assumption 2, we have that A < min{u, x} + 6, so that

min{w, x}+ & - X+0
U< A - A QED

LEMMA 4: There exists a unique function P that is a valid CDF and solves (22) with
P(z) =0.

PROOF: Setting P(z) = 0 in (22), I obtain a quadratic equation in P(z) of the form
aP?(z) + bP(z) + c¢(z) = 0, with coefficients given by

a=1-u)A,
b=—((1—u)A+ xx+ xs+86—uA),

(@) = (Tt )12,

Notice that, when i = 0, we have from (22) that

u
1—u

e = Xx+ 6 — UA.

Moreover, x, + xs = X, so the coefficients can be simplified to

a=(1-u)A, b=—((1—-u)A+ x+8—uh), c(z)=(x+ 86— ul)l'(2).
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I now show that the determinant
A(Z)= (M1 —u)+x + 8 — M)’ —4(1 — w)A(x + 8 — uM)[(2),

is positive for all z. First, I show that A’'(z) < 0. Since ["(z) > 0, the statement is implied
by x + 6 — uA > 0, which is true (see Lemma 3). Since A(z) is decreasing, it sufficient to
show that it is positive in the limit:

}LTOA(z)z(/\(1—u)+)(+8—Au)2—4(1—u))\()(+8—u/\)=(X+8—/\)2>0,

where the last inequality follows from Assumption 2. We therefore have two real solutions
given by

Pr(z)= (A1 —u)+x+6—uA

£ M =)+ x + 86— M)’ — 2401 — ) (x + 8 — uM)T(2))
/(2A(1 - w)).

First, I show that P*(z) > 1 for all z > z, which implies that P* is not a valid CDF. Using
the fact that \/A(z) > A(1 — u) + x + 6 — uA, we have that

AMl—u)+x+86—uA

Pz G

>1 < x+6—ur>0,
and the last inequality follows from Lemma 3. I now show that P~ is a valid CDF, meaning
that (i) (P7)'(z) = 0, (ii) P~(2) =0, and (iii) lim,_,,, P~(z) = 1. First,

A'(2)
A(z)4a

(P)(2)=- >0

The last equality follows from A’(z) < 0 (already shown). Second,

—b—1|b|
2¢
where the last equality follows from b < 0. Finally, I have already shown that lim A(z) =

(x +8—A)?, which implies, under Assumption 2, that lim \/A(z) = x + 8 — A. We therefore
have that

P (2)=

0,

AMl—u)+x+0—ur—(x+6—-21) 2A(1—-u)
20(1 —u) 201 —u)

which concludes the proof. Q.E.D.

lim P~ (z) =

A.6. Proof of Proposition 4
The fact that LS(z) > 1 — « follows directly from (28):

X /OOO v(x)dlo(x)
¥(2) '

w=(1—a)y(2) +x / T dh) = LS@)=1-a+t
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Since v(z) = 0 and v'(z) > 0, we have that [~ v(x) dT,(x) > 0. By continuity of LS(z), we
have that there exist a z’ such that for all z < z’ we have that LS(z) > 1 — «. To show that
there exists a z” such that for all z > z”, LS'(z) < 0, first notice that

00 s YO _YE

<

w(z)  y(2)

To show that there exists a z” such that this inequality holds for all z > z”, I first prove
three lemmas.

w(z)z < ﬁw(z).

LEMMA 5: The value function is bounded from above by

! ()
+ zZ).
r+)(+8—)\y

PROOF: Since w(z) > w and g(z) < A—§6 (Lemma 1), then we can construct that upper
bound v(z) by plugging w(z) = w (see equation (28) for equilibrium expression for w)
and g(z) = A — 6 in the HIB (9).

r(z) = (1-a)(y(2) — (@) + (A = 8 — X)V(2).

Solving for v(z), we obtain the desired result. Under Assumption 2, we have that r + x +
6—2A>0. Q.E.D.

LEMMA 6: The employment weighted productivity distribution is asymptotically equivalent
to I'(2),

' xX+0—uA
P(z)~—F—"FTI"
()~ T )
PROOF: From Lemma 8 below, we have that P'(z) = ):r_ég‘(:‘)" I"(z). From Lemma 1, we
have that g(z) - A — 6. Q.E.D.

LEMMA 7: The wage function w(z) is bounded from above by w < oc.

PROOF: Letw=1lim,.,, w(z) =w+ f;o v(z)g’'(z) dz. Using the upper bound for v(z),
we have that w <w + (1 — «) r?)((;g f;o y(z)dP(z) < oco. Notice that the last term is
aggregate output, which is finite under Assumption 1. Moreover, Assumption 2 implies

thatr+ x+6—A>0. QE.D.

Equipped with these results, I now show that there exists a z” such that for all z > z”,
, 1
w(z)z < ——w(z).
-«

By continuity, I only need to show that the right-hand size converges to a positive number
and that the left-hand side converges to zero. The right-hand side converges to ﬁw > 0.
The left-hand side is bounded from below by 0 (since w'(z) > 0) and is bounded from
above by

201 —uw)

1+ v
————z "=I"(2),
r+x+06—A (2)

201 = w)v(2)P'(z2) ~
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where the asymptotic equivalence relationship uses the two lemmas combined with

w'(z) = 2A(1 — u)P'(z). Under Assumption 1, we have that z”ﬁl“’(z) — 0, which con-
cludes the proof.

A.7. Proof of Proposition 5

The aggregate labor share is the ratio of aggregate wages to aggregate output. Rear-
ranging, [ obtain

(1—-uw) ) w(z)dP(z) N w(z)dP(z) N
LS = /ioo - /— - :/ 1522 ap(2).
(t-u) [y dpe) :

Y
To obtain equation (29), I first prove the following lemma

LEMMA 8: The relationship between the employment-weighted productivity distribution
P(z) and the productivity distribution I'(z) is given by

dP(z) = X)(Jr_a—g_(z)‘)” dr(z). (44)

PROOF: Using (24), I now obtain an expression for P'(z),

P()= xto- w1 r'e),
\/(/\(1—u)—|—X+8—)\u)2—4/\(1—u)(X+8—u/\)F(z)
_ X+ 0—uA (),
AL — )+ x+6—ur—21(1 — u)P(2)
_X+o—uA

12,

x—8(2)
where the third equation uses the definition of g(z) (equation (18)). Rearranging, I obtain
the desired result:

dP(z) x+8—uk
dl(z) ~ x—g(

Q.E.D.
Notice that the term Au — & is equal to the average growth rate of existing firms g =
J; 8(2)dP(2):

/mg(z) dP(z) =Au—38+ /m(A(l —u)P(z) — A(1 —u)(1 - P(2)))dP(2),

1 1

M-8+ A1 —u)= —A(1—u)=

u +( u)z ( u)z’
= Au—90.
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Substituting dP(z) = Xng )
sired result:

x—8 ¥
LS= / LS(z) x —= x dI'(2).
x—g@) Y
A.8. Firm Size Distribution
The law of motion for the measure of firms F is

F=up, — x.F.

In a stationary equilibrium, we have that F = 0, which implies that the firm entry rate
“2¢ must equal the firm exit rate x,. The Kolmogorov forward equation for the joint
distribution of productivity and size ¢(z, N) : [z, +00] x R, — R, across firms is given by

¢(z,N) = XS(V(Z) /m @(x, N)dx — o(z, N)) —g(Z)%(qo(z, N)N)  (45)

productivity shocks firm growth

—f—/.Leu’}/(Z)lﬂ(N - 1) - Xx@(Z’N)’ (46)

firm turnover

where ¢(N) is the Dirac delta and y(z) = I"(z). I now characterize the upper tail of the
firm-size distribution.

PROPOSITION 1: The upper tail of the firm size distribution obeys a power law
P(N >n)~Cn*, (47)
for some constant C > 0 and Pareto exponent { > 1.

PROOF: Suppose that the solution (i.e., ¢(z, N) = 0) satisfies ¢(z, N) ~ ¢(z) N-0+9,
for some positive function . Substituting the asymptotic conjecture in KFE, I obtain

0= Xs( (Z)/ ) dz —¢(Z)>N 9+ Lg(2)@(2)N 0 — x, B (2) N~ (+0

— x(2) f )+ £8(2)8(2) — x#(2)
= (XSDVIC + éng - XI) 5(2)

=A({)

For any functions (f, g), I define the operators D., K, Z by the following actions D;g(z) =
f(2)g(2), Kf(z) = [ f(z')dz, and Zf(z) = f(z). The Pareto exponent ¢ and function
®(z) are thus the solution to the following equation:

A(Q)e(2) =0

See Beare and Toda (2022) and Beare, Seo, and Toda (2021) for a formal treatment.
Q.E.D.
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To compute ¢, I discretize the operator A({) (for a guess of ¢) and compute the largest
eigenvalue. The solution ¢ is such that the largest eigenvalue is zero.

A.9. Proof of Proposition 6

I now prove three lemmas that I will use for the proof of Proposition 6.

LEMMA 9: For all z > z, the derivative of the firm value function is given by

v(z) = _z

PROOF: Using the HJB for continuing firms (9) combined with the envelope theorem,
I obtain

rv'(2) = (1= @)y'(2) + g(2)v'(2) — xv'(2).
Solving for v'(z), I obtain the desired result

-y 1 y@)
r+x—gkz) zr+x-g(2)’

V(z) =
where the last equality uses the definition of labor productivity y(z). Q.E.D.

LEMMA 10: Suppose that the assumptions of Proposition 6 are satisfied. For all z > z, the
CDF of the productivity distribution of active firms satisfies

odl(z) = %(1 —T(2)) dz.

PROOF:
dM(z) =0z "9 dz = o¢zdl(z)=z7dz=(1-T(z))dz. QE.D.

LEMMA 11: Suppose that the assumptions of Proposition 6 are satisfied. The expected
value of a new firm is given by

/v(x)dF(x)=y+ L_Y,
X—8

where Y is aggregate output.

PROOF:

/v(x) dr'(x) =y+/zoo /Zx V'(s)dsdl'(2)
=y+/zoo</:§)()_}(7;)(s)ds)d1‘(x)

+/ZOO%X{(7;)(S)</SOO dF(x))ds

I3



12 EMILIEN GOUIN-BONENFANT

_ oy 1
_y+/2 m;(l—l“(s))ds

A X—8
—y+X_§L Yo 2 are)

v+ / ¥(5)dP(s).

The second equality uses Lemma 9 and the fifth one uses Lemma 10. Q.E.D.

I now derive an expression for aggregate profits [ m(z)dP(z), where 7(z) = (1 —
a)y(z) — w(z). Using the HIB (9) combined with r = 0, we have

7(2) = (x - 8(2))v(2) - x; / v(x) dT(x).

Integrating against the density dP(z), we obtain
[ =@are) = [ (- s apwar -y, [vware)
~0-9 [ o0 drE) - x [ dre)
== [ vware)

- (v / 0P ).

The second equation uses Lemma 8, the third one uses the fact that y = x, + x., and the
fourth uses Lemma 11. Denoting aggregate output and profits as Y = [ y(s) dP(s) and

= f; 7 (s) dP(s), we have that

t1= -9 (v+ 7). (48)
X—8
Using the fact that II/Y =1 — o — LS combined with v = 0, we obtain
[S=1-a-X"8&,
X—8

which is the main result. The last thing to prove is that 0 < ’;*_’gg < 1. Using the law of
motion for employment in steady state (i.e., equation (21)), we have that y, —g = 7~ u. >
0, which implies that ’;X—;g > (. Moreover, y, < y implies that );*—jgg <1

APPENDIX B: BENCHMARK MODELS AND EXTENSIONS
B.1. Burdett and Mortensen (1998) With Capital

I now present a derivation of the model which I refer to as “Burdett—-Mortensen” in
the main text. It corresponds to an extension of the model in Burdett and Mortensen



PRODUCTIVITY DISPERSION AND THE LABOR SHARE 13

(1998) with capital as a factor of production. Unless stated otherwise, functional forms
and notations are exactly as in the baseline model.

Main Equations

The laws of motion for the wage distribution P(w) and firm-level employment N (w)
are respectively given by

N (w) = AP(w) — 8N (w) — AF (w)N (w),
Hires Lz:y::g Quits

P(w) = §(1{w > 0} — P(w)) + A(F(w)P(w) — P(w)),

Job destruction Job creation + Churn

where F(w) denotes the (endogenously-determined) distribution of wage offers and

F(w) =1— F(w). The value P(0) is by convention the unemployment rate (i.e., the mea-

sure of workers working at firms that pay w = 0). Setting N (w) = 0 and P(w) = 0, I obtain
AS 0

N = o rFmy T T s

Let b > 0 be the flow value of unemployment. As in Burdett and Mortensen (1998),
I focus on a long-run steady-state where firms choose a constant wage policy w > b and
capital stock per worker k > 0 as to maximize long-run flow profits defined as

zk“ — Rk —w
r+ 8+ AF(w)

=maxd (- o)y(z) —w
w O (r+ 6+ AF(w)) (8 + AF(w))

v(z) = max AP (w)

Flow profits are given by the measure of hires AP(w) times the present-value of a hire. In
the second expression, I use the steady-state expression for P(w) and the optimal capital

stock is k(z)~= (%)ﬁ (i.e., same formula as in the baseline model; see Proposition 2).
Denoting ¢ (w) = e )\f(r;)s)); G the first-order condition for wages is given by
¢'(w(2))((1 - )y (2) — w(2)) — $(w(2)) =0.
Defining ¢(z) = g(w(z)), I obtain
¢'(2)((1 = a)y(2) —w(2)) - $(2)w'(z) =0
—  (1-a)y(@)¢'(2) = (w(2)$(2))

This is an ODE. Combined with the initial condition w(z) = b, I obtain the following
solution:

w(2)9(2) - bd(2) = (1 - o) - [ Y (0(x) dx

_ $(2)
$(2)

$(x)
5) dx.

= w(@)=1-a)y@)+(b-1-a)y2) —(1-a) /Zy/(X)
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The entry threshold z satisfies (1 — «)y(z) = b, which ensures that the marginal firm
makes zero profit. The formula simplifies to

() 4,
w@) = 1=y - [ ) (49)

é(z )
Let I'y be the distribution of productivity of potential entrants and I'(z) = %ﬁg)@ be
the truncated distribution where the threshold z is given by z = aba)w Using the fact

that the wage schedule is increasing in z, we have that the equilibrium is characterized by

N(z):)\ifz, P(z):L_,
(8 +AT(2)) o+ Al'(2) s
$(2)= oA ()
C (r4+ 8+ AT(2)) (8 + AT(2))

where P(z) = P(w(z2)).

Pareto Special Case

I now provide a closed-form solution for the aggregate labor share in the Pareto special
case with no discounting (i.e., same assumptions as in Proposition 6). First, note that » =0
implies ¢(z) = N(z). Integrating equation (49) against N (z) dI'(z), I obtain

/boo wE)Nx)dl'(x) =1 — a) /booxN(x) dI'(x) —(1 — ) /};oo /bzy/(s)N(s) dsdl'(x),

wN Y 11

where wN is aggregate worker compensation, Y is aggregate output, and I1 is aggregate
profits. Using the fact that (1 — a)y'(s) = 1y(s), I obtain

1'[:/11oo @N(s)(/boo 1{s§x}dF(x)> dy

/ y(s )N(s)F(s) ds.

Finally, using the fact that 1 — I'(s) = o's dl;(s)

, I obtain

M=o [ yONOGITG)dy=o.
The labor share LS = wN/Y is therefore given by
[S=1-a-o0 (51)

Calibration

The free parameters of the model are («, R, A, 8, b, ). First, I calibrate («, R, n)—
which govern the capital share, discount rate, and productivity dispersion—exactly as in
the baseline model (see Section 3).



PRODUCTIVITY DISPERSION AND THE LABOR SHARE 15

The remaining parameters are (A, 8). In the baseline model, those parameters are
identified using job reallocation rates across firms as well as the unemployment rate. In
Burdett—-Mortensen’s long-run steady state, there is no job reallocation. Instead, I use the
unemployment rate and the layoff rate as empirical targets.

Iset 6§ =1— 12004 =0.,0469 to match a monthly employment-to-unemployment
probability of 0.004 as estimated in Nakamura, Nakamura, Phong, and Steinsson (2019)
using Canadian microdata. Then I choose A to match the unemployment target of 7.13%
as in the baseline model.

1—u

0
u=P0)=— = A=8x

=0.6109.
o0+ A

Finally, b is chosen such that the rank of the entry threshold I'y(z) in the Burdett-—
Mortensen model coincides with the rank of the entry threshold in the full model. This
last step ensures that the distribution of productivity amongst active firms (i.e., ['(z)) is
exactly the same in the baseline model and the Burdett—-Mortensen model.

B.2. Coles and Mortensen (2016) With Balanced-Matching and Capital

I now present a derivation of the model which I refer to as “Coles—Mortensen” in the
main text. It corresponds to a version of the model in Coles and Mortensen (2016) with
balanced matching and capital as a factor of production. Unless stated otherwise, func-
tional forms and notation are exactly as in the baseline model.

In the Coles—Mortensen model, the minimum productivity level z is exogenous, which
implies that the firm exit rate y, and productivity shock rate y; are exogenous as well (see
equation (20)). Coles and Mortensen (2016) assume that flow profits are nonnegative at
every date and state, which implies that

w=(1-a)y(z).

I consider the most conservative case (i.e., where flow profits of the lowest productivity
firms are zero, as in the Burdett—-Mortensen). Assumption 3 in the baseline model is thus
replaced by

w=(1-a)y(2).

Main Equations

Given an exogenous z (which pins down y, and y;,), the equilibrium unemployment
rate u, employment-weighted productivity distribution P(z) are exactly as in the baseline
model (see equations (23) and (24)). This implies that g(z) = Au+ A(1 —u)P(z) — A(1 —
u)P(z)—6,v'(z) = 1- +){ (_2 > and v(z) —v = 7 v'(x) dx are also exactly as in the standard
model. B

I first derive an expression for v(z), which I then use to derive an expression for v(z)
and w(z). Using the HJB for active firms (9), we have

rv(z) = m(2) + 8(2)v(2) + X / v(x) dl'(x) = xv(2).
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Evaluating at z = z and using the fact that w = (1 — @)y(z), I obtain
¢+ x=gu=x: [ o)

— XX / (v(x) — 1) dT'(x),

where g = g(z). Using the fact that y = x; + x., I obtain

v= L_g f (v(x) — v) dT'(x). (52)
From the first-order condition for wages,_we have that
W@ =g = wE@=ut [ fEu.
Using the fact that w = (1 — &) y(z), we have that

w(@)=(-ap@+ [ ¢ (u(x) dx

= (1-ap@ + (s) - g+ [ "¢ (0)(0(x) — v) d.

Combining with (52), I obtain

0D = (1= @@ + () - 92— [ - v)arw)

+ [ w -vx (53)

This equation is useful because it expresses the wage schedule in the Coles—Mortensen
model in terms of objects that depend only on the exogenous threshold z: (1 — a)y(z),

8(2) — &, 73"=> &'(2), and v(x) —v. Therefore, the Coles-Mortensen model can be solved

entirely in closed form.

Note that, if the baseline model and Coles—Mortensen models are calibrated to imply
the same productivity threshold z, then they will imply the same allocation of workers
across firms P(z), and only differ in the equilibrium breakdown between wages and profits

w(z).

Calibration

The model parameters are (z, A, i, 8, x, 17). First, I choose z so that the rank of the
entry threshold I'y(z) in the Coles—Mortensen model coincides with the rank of the en-
try threshold in the baseline model. This step ensures that the distribution of produc-
tivity among active firms I'(z) is exactly the same in the baseline model and the Coles—
Mortensen model. Then I set (A, u, 8, x, ) to the same values as in the baseline model
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(see Section 3.1). This calibration strategy implies that the Coles—Mortensen model im-
plies the same targeted moments as the baseline model (see Section 3.1). The only differ-
ence between the baseline model and Coles—Mortensen is the wage function, which pins
down the split between profits and wages.

Pareto Special Case

I now provide a closed-form solution for the aggregate labor share in the Pareto special
case with no discounting (i.e., same assumptions as in Proposition 6). Combining Propo-
sition 11 and equation (52), I obtain the following expression:

Xs

Y= o

Plugging in equation (48) (which was derived in the baseline model, but the exact same
derivation applies in the Coles—Mortensen model), I obtain

H:(xx—§+xx—g X“'_>0Y.
X—8 X+—8X—8

Hence, the aggregate labor share is

LS:1_Q_<XX__g+XX_g Xs_)O’.
X—8 X+—8X—8

B.3. Endogenous Vacancy Posting Extension

I now describe an extension of the baseline model with endogenous vacancy posting
(endogenous-A model). The derivations are brief but detailed. Unless stated otherwise,
the environment and notation is exactly as in the baseline model.

Matching

In the baseline model, A > 0 is an exogenous parameter that determines the rate at
which firms meet workers. I will now interpret A as a firm-level vacancy rate (i.e., the
measure of vacancies per employee). Suppose that firms must pay a cost c(A, z) to post a
measure A of vacancies per employee, which potentially depends on their productivity z.
Note that the cost function is allowed to depend directly on the firm type z.

Strategies and Beliefs

As in the baseline model, I restrict attention to Markov strategies that depend only
on productivity. The wage schedule, vacancy rate, entry decision, and exist decision are
respectively given by w(z), A(z), e(z), and x(z2).

Distributions

Define }g(w) to be the wage distribution and A(w) to be the vacancy rate of firms who
pays a wage w. The vacancy-weighted wage distribution Q and aggregate vacancy rate A
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are defined as
~ 1 (%~ ~
0wy = [ Xw)aPw), (54

A= / OoX(w) dP(w). (55)

I denote the employment-weighted and vacancy-weighted productivity distribution as
P(z) and Q(z), respectively.
Worker Problem

Denote by U and W (w) the value of being unemployed and the value of being em-
ployed at a firm currently paying w, respectively. Equations (3) and (4) in the baseline
model become

rU=b+ ,u/e(z)|W(w(z)) — U|+dF0(z)

job offers by entering firm

+A(1— u)/|W(w(z)) - U|,dO(2), (56)

job offers by continuing firm

rW(w)=w+x /(1 —x(2)) (W (w(2)) — W (w))dLy(2)

wage changes due to productivity shocks

FAU=w) [ () - W w)], 40()

job offers by continuing firm

+ ()(/x(z) dlo(z) + 8> (U —-W(w)). (57)

job destruction

The only difference with the baseline model is that dP(z) is replaced by dQ(z). Hence,
the optimal behavior of workers remains as in the baseline model.

Firm Growth

The instantaneous change in employment at a firm of size N, paying w, > w with a
vacancy rate A, is now given by

dNt = g(u),, /\I)Nt dt,
where the employment growth function can be expressed as

F(w, A) = Au+ A(1 — u)P(w) — (A(1 — u)(1 — O(w)) +§).

=h(w,\) =5(w)
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I define Z(w, A) and s(w) to be the hiring and separation rates, respectively. The hiring
rate can be decomposed as the product of the vacancy rate and the vacancy yield (i.e.,
measure of hires per vacancy):

h(w, \) = A x (u+ (1 —u)P(w)).

Unlike in the baseline model, firms now have two ways to increase their hiring: posting
more vacancies or increasing their wage. The following lemma characterizes the employ-
ment growth function.

LEMMA 12: The function g(w, A) has the following properties:
Zu(w, 1) = A(1 — u)P'(w) + A(w) (1 — u)P'(w),

2w, A) =u+ (1 —u)P(w),
lim §(w, A) = A — 8.

w— 00

Firm Problem

I now characterize the firm problem. In the baseline model, the Cobb-Douglas assump-
tion ensures that the capital share is « for all firms. In the endogenous-A extension, value-
added per worker is y = zk® — c¢(A, z). To ensure that both models are completely compa-
rable, I now assume that gross output per worker is exogenously given by y(z) = zk(z)?,
where k(z) is given by (15), and that payments to capital represent a fixed share « of
value-added. The firm problem is thus given by

o) = max (1= @(5(2) = (0, 2) = w+ (T, )

+ X(/ v(x)dly(x) — v(z)) } (58)
for all firms who do not exit (i.e., z > z).” The first-order condition for vacancy posting is

(1 —a)er(A(2), 2) =8 (w(2), A(2))v(2). (62)

The first-order condition for wages is
1= U(Z)gw(w(z)7 /\(Z))

BThe full firm problem can be expressed as a linear complementarity problem. Equations (10), (11), and
(12) in the baseline model become:

rv(z) = max {(1 —a)(y(2) —c(A, 2)) —w+v(2)Z(w, ) + X(/ v(x)dlo(x) — v(z)) }, (59)

w>b,A>0

rv(z) >0, (60)

0=v(z) (rv(z) — max {(1 —a)(y(2) — (A, 2)) —w+ v(2)Z(w, A)

w>b,A>0

+ X(/ v(x)dlo(x) — v(z)) }) (61)
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= v(2)2A(2) (1 — u) P (w(2)),

where the second equality uses Lemma 12. Using the fact that P'(z) = ﬁ/(w(z))w/(z), we
have that

w'(z) =v(2)2(1 — u)A(2)P'(2).

Using the boundary condition w(z) = w, we have that
w(z)=w+2(1— u)/ v(x)A(x)dP(x). (63)

Laws of Motion

The laws of motion (21) and (22) in the baseline model become:

= (8+ x.) (1 —u) —u(p. + A(1 —u)), (64)
[
unemployment inflows unemployment outflows

P(2) = (1= AP(2)(Q(2) = 1) + T u.l(2) + uAQ(2)

job-to-job flows

employment inflows

— 3+ x)P(2) +x:(I'(2) = P(2)) - (65)
emplt%ymem productivity shocks

Notice that the stationary employment-weighted productivity distribution P(z) is no
longer the solution to a quadratic equation, which means that it can no longer be solved
analytically.

Functional Form
I assume the following function form for the recruitment cost function:

/\76

R (T )

AH(z2).
Under this assumption, I obtain closed-form expression for some equilibrium objects.

LEMMA 13: Denote the equilibrium vacancy yield (hires per vacancy) as f(z) =u + (1 —
u)P(z). The equilibrium objects A(z), A, Q(z) are given by

AMz) = Af(2)7, (66)
0 1—u'ty
S s g (67)

f(Z)lJr% _ u1+%

0() = (68)

1—u
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PROOF: The policy function A(z) is obtained directly from the first-order condition
(62). To obtain an expression for A, Q(z), I first define a function ¢(z) = f; % dP(x).
We have

b(z) = / f(2)h dP(2)

1 f(2)
= / x% dx
L—u Jyo

0 f(Z)H—(l—, —Lt1+‘l9
C1+6 1-u

Finally, evaluating the definitions (54) and (55) at w = w(z), we have that A =
lim, ., A¢(z) and Q(z) = A'Ad(2). Q.E.D.

ASSUMPTION 1: The rate condition in the baseline model (i.e., Assumption 2) becomes

supA(z) <x+06 <<= A<x+8é.

Defining the equilibrium hiring and separation rates h(z) = Z(/\(z), w(z)), s(z) =
S(w(z)) as well as the vacancy-posting cost ¢(z) = ¢(A(z), z), | obtain

h(z) = Af(2)'*1, (69)

s(z) = A(1— u)(1— Q(2)) + 5, (70)
1

C(Z) = mh(Z)U(Z) (71)

Finally, firm-level labor shares are thus given by

LS(z) = w(z)

¥(z) - h(2v(z)

1+6)(1—-a)

B.4. Partially-Segmented Labor Market Extension

I now solve a stripped-down version of the baseline model with multiple industries. The
model is static and only contains two workers and two firms in each industry. Instead of
facing search frictions (which in the baseline model limit the firm-level growth rate of
employment), firms face an exogenous capacity constraint (i.e., they can hire at most one
worker).

The goal of the model is to show that the labor share in an industry is decreasing in its
own level of productivity dispersion even when labor markets are not perfectly segmented
along industry lines. I first solve the equilibrium under “perfectly-segmented labor mar-
ket” and then solve the equilibrium under “partially-segmented labor markets.”
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Perfectly-Segmented Labor Market

There is a continuum of industries j € [0, 1]. In each industry, there are two firms i €
{l, h} that differ in productivity and two identical workers. Firm productivity is

z;=1-o0y, zy =1+ 0.

The average productivity is normalized to one and the parameter 0 < o; < 1 represents
productivity dispersion. The average level of productivity dispersion across industries is
denoted o = Eo;.

Firms compete a la Bertrand by posting wages subject to a capacity constraint (i.e., they
can employ at most one worker). Workers observe the wages at both firms and choose to
work at the firm with the highest wage. If both firms post the same wage, they each hire
one worker. The problem of firm i € {/, 4} is

max z; min{N;, 1} — w;N;,
wi
0 if w; <w_;,
S.t. Ni =11 if w; =w_,;,
2 if w; > w_;,

where the subscript —i denotes the competitor of firm i. The outcome of Bertrand com-
petition is well known: both firms offer a wage equal to the productivity of firm /. The
following proposition expresses the equilibrium labor share as a function of productivity
dispersion.

PROPOSITION 2—Perfectly-segmented labor markets: The labor share in industry j is
LSj =1- gj.

PROOF: First, I compute the Nash equilibrium. The best response functions, which
express the optimal wage of firm i as a function of the wage offered by firm —i are

wy  ifwy <z,

wy (wy) = {0

wy; if Wy < Zy;j,
Wi (wyy) =

if Wpj > Zjj, 0 if Wyj > Zp,.

Therefore, the only Nash equilibrium is w; = wy; = z; and the resulting labor allocation
is Nj = N,; = 1. The resulting labor share in industry j is LS; = % =1-0,. QE.D.

Importantly, the labor share is strictly decreasing in the level of productivity dispersion
o;. Note that the emergence of profits in equilibrium is due to the combination of a capac-
ity constraint and productivity dispersion. The capacity constraint has a similar effect to
search frictions in the baseline model (i.e., high-productivity firms are not able to absorb
all workers).

Partially-Segmented Labor Markets

I now consider the case where there is mobility of workers across industries (i.e., where
firms sometimes hire workers located outside of their own industry).
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Suppose that, with probability 1 — 7, the high-productivity firm in industry j competes
for workers with the low-productivity firm in another randomly-selected industry j'. Sym-
metrically, the high-productivity firm in industry j° competes with the low-productivity
firm in industry j. With complementary probability 7, firms in industry j compete with
each other for workers in industry j, as in the perfectly-segmented case.

I interpret the parameter 7 as the amount of labor market segmentation. If 7 = 1, the
labor market is perfectly segmented along industry lines: firms within an industry only
compete with each other for workers. In contrast, if 7 < 1, the labor market is partially-
segmented along industry lines: in some cases, firms compete for workers with firms in
other industries.

Suppose that firms observe who they are competing with before posting wages. The
following proposition expresses the expected equilibrium labor share as a function of own-
industry productivity dispersion.

PROPOSITION 3—Partially-segmented labor markets: The expected labor share in indus-
try j conditional on own-industry productivity dispersion o; is

ELSj|lo))=7(1—0j) + (1 —m) (1 - %(a'j —E)>‘

PROOF: Inindustries j that have a segmented labor market, the labor share is exactly as
in Proposition 2. In industries j in which the high-productivity firm competes for workers
with the low-productivity firm in another industry j’, the same logic applies (i.e., the low-
productivity firm always posts a wage equal to its productivity and the high-productivity

firm always posts a wage equal to the productivity of its competitor). In such industries, the

labor share is % =1— 1(0; + 07). The expected labor share in industry j conditional
J g

on own-industry productivity dispersion o is therefore given by E(LS; |o}) = 7(1 — ;) +

(1=m(1=3(0; = 7))

Two remarks are in order. First, industry labor shares are strictly decreasing in their
level of productivity dispersion ¢;. Second, the relationship between labor share and own-
industry productivity dispersion is weaker (in absolute value) when labor markets are not
perfectly segmented along industry lines (i.e., 7 < 1).

APPENDIX C: SOLUTION ALGORITHM AND CALIBRATION
C.1. Solution Algorithm
I now present a brief but detailed description of the solution algorithm used to solve
the baseline model.
Firm Problem

First, I combine the linear complementarity problem representation (LCP) of the firm
problem (10), (11), (12) with the expressions for the wage schedule (16), capital per
worker (15), and employment growth function g(z) (18). I obtain the following equations:

rv(z) = (1 - a)y(2) —w — / v(x)g'(x) dx +v(2)g(2) + x/ v(X)To(dx) = xv(2),

z

v(z) >0,
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o(2) (rv(z) - ((1 — (@) - [ oy dx+ o)

+ )(/ v(x)ly(dx) — Xv(z))) =0.

To simplify notation, I define the the linear operators A, B, C, respectively, defined by the
actions

A= | fWgWdn,  Bf(2) = f(2)g(),

Cf(2) = / v()lo(dx),  If(2)=f(2).
The LCP can expressed in terms of the operators
rv(z) > (1 —a)y(z) —w — Av(z) + Bv(z) + xCv(z) — xZv(z),
v(z) >0,
v(2)(rv(z) — (1 — ) y(z) — w — Av(z) + Bv(z) + xCv(z) — xZv(2))) =0,
or more compactly as
WD)(M() +4() =0, M) +4(2) 20, v(2)=0,

where M = (r+ x)Z+ A—B— xC and g(z) = w— (1 — a)y(z). The threshold z does not
appear anywhere but can recovered from the solution v(z) as z = inf{z : v(z) > 0}. I now
consider a discrete approximation of the system of equations over a grid {zi, ..., zy}. Let
v=(v(z1),...,v(zy)) and y = (y(z1), ..., y(zn))'. I approximate the operators A, 5, C,
7 by the finite difference method and obtain N x N matrices A, B, C, I, and M. The
resulting system of equations is given by

v'(Mv+q) =0, Mv+g>0, v>0,
which is a plain-vanilla LCP that can be solved with standard routines.

Worker Problem

Define the excess value of working at a firm of productivity z as opposed to being un-
employed by V' (z) = W(z) — U. Evaluating (3), (4), (5) and plugging in the optimal firm
decisions (Proposition 2), unemployment rate (23), and employment-weighted distribu-
tion (24), I obtain

V() =w(z) —b+ (x — ) / V(Z)dly(2') — A(1 — u) /OZ V(z')dP(2)

— A1 =w)P(2)V(2) = 3+ )V (2),
V(z)=0.
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In operator form, the system is

V(z)=wiz)—b+ (x—wr)CV(z) = A1 —u)DV(z) = A(1 —u)EV (2)
—(6+ )1V (2),
V(2) =0,

where C, 7 were defined earlier and

Df(z) = /Ozf(Z) dP(z),  Ef(2)=(1-P(2)f(2).
More compactly, we have
V@MV (D) +q(2) =0,  MV(2)+q(x)=0, V(2)=0,
where
M=@r+x+8)I—(x—wC+rX1—w)(D+E),  q(z)=b—w(2)

I now consider a discrete approximation of the system of equations over a grid
{z1, ..., zy}. I approximate the operators C, D, £, 7 by the finite difference method and
obtain N x N matrices C, D, E, I, and M. The resulting system of equations is given by

VI(MV +q) =0, MV +qg>0, V>0,

which again is a LCP that can be solved with standard routines. I recover the reservation
wage as

w=>b+ (u—x)CV.

Algorithm

The equilibrium allocation (unemployment rate, employment-weighted distribution)
can be computed in closed form (3) but depends on the equilibrium thresholds (z, w). The
algorithms consists of iterating over the worker and firm problem until convergence. The
algorithm is initiated (step b = 0) with a guess (z?, w®). Then a typical step b consists
of the following operations:

1. Using z®=D, w®=Ysolve the firm problem. Collect the wage w® and the threshold

z®,

2. Using z® and w®, solve the worker problem. Collect the reservation wage w®.

3. If max{|z® — z®7V|, [w® — w®V|} < 1075, stop. Otherwise, continue to step b + 1.

Solving the Firm Size Distribution

In Table V, I estimate a regression of firm labor share LS on size N in the data. To com-
pute the model-implied regression coefficient, I need to solve for the joint-distribution of
firm size N and productivity z. To do so, I use the Pareto extrapolation method devel-
oped in Gouin-Bonenfant and Toda (2022). Since the method applies to the discrete-time
model, I discretize the model over short time intervals of one week.
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C.2. Solution Algorithm (Endogenous- A Extension)

I now present the solution algorithm used to solve the endogenous-A model. I pay
particular attention to where it differs from the baseline solution algorithm (see Ap-
pendix C.1).

Firm Problem

Define c¢(z) = ¢(A(z), z). The firm problem can be solved exactly as in the baseline
model, the only differences being the operator .4, which is now defined as

Af) = [ 2@ - wf@a,

and the function g(z), which is now defined as
q(z) =w+c(2) = (1 —a)y(2).

Worker Problem

As explained in Section B.3, the worker problem is nearly identical as in the baseline
model, which can be discretized and solved numerically.

Unemployment and Employment-Weighted Productivity Distribution

I solve for the stationary employment-weighted productivity distribution P(z) and un-
employment rate u by iterating over their laws of motion (i.e., equations (64) and (65))

until convergence. Let P\, A" be the discrete approximation of P(z,)®, A(z,)® at iter-
ation b, where z, is a point on the productivity grid. Given A", u®, P{"’ 1 use equations

&5(21)) and (55) combined with numerical integration to approximate {0\, Q\”, ...} and
The updating equations, where (b) denotes the iteration, are

D = u® £ A[(5 + x) (1= u®) — u® (u, + AP (1 = u®))],

(b+1)

u
el U AC QY

P+ — p®) Al (1 — yE+HOVA® PO (O®) _ 1
=B A (1= AP (00 1)+ 5

= @+ x) PP+ x:(T = P,i”)},

1 1
ACHD = 2 (8D 4 (1 = O+ peD)) iy,
0 L (@0 4 (1 - o) pe)
where 1 set the time step A to 1/12 (i.e., monthly). I iterate until max{Ju®*) —
u®|, P — PPy < 107°.

Algorithm

Similar to the algorithm for the baseline model, the algorithm consists of iterating
over (i) the firm problem, (ii) the worker problem, and (iii) the unemployment and
employment-weighted productivity distribution. The algorithm is initiated (step b = 0)
with a guess (2@, w®) and A® = (A(2))©, ..., A(zy)©)".
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TABLE C.I
CHOICE OF PRODUCTIVITY DISTRIBUTION.

Distribution Dispersion Skewness
Data 1.547 —0.046
Gamma 1.547 —0.027
Pareto 1.547 +0.465

Note: Dispersion is defined as the interdecile range of log labor productivity log P90 — log P10; skewness is defined as the Kelley
skewness index, which is defined as (log P90 — 2log P50 + log P10)/(log P90 — log P10). The notation P10, P50, and P90 represent the
10th, 50th, and 90th percentiles of the distribution of log labor productivity (net of 3-digit NAICS industry and year fixed effects).

C.3. Calibration
Choice of Productivity Distribution

I now discuss why I use the Gamma distribution to model the distribution of labor
productivity across firms, rather than a Pareto distribution considered in Proposition 6. In
short, the reason is that the Pareto distribution implies too much skewness.

The first row of Table C.I contains the dispersion and skewness of log labor productivity
in the data (as well as the precise definition of “dispersion” and “skewness”). The disper-
sion is 1.547 (which is the empirical target in the calibration exercise) and the skewness is
small and slightly negative (—0.046). The second row contains the dispersion and skew-
ness of log labor productivity in the baseline model calibrated using a Gamma distribution
(see Section 3.1 for the calibration strategy). Notice the the (non-targeted) skewness coef-
ficient is small and negative (—0.027), as in the data. The last row contains the dispersion
and skewness in the baseline model calibrated with a Pareto distribution (see Section 5.4
for a discussion of the calibration strategy). The key observation is that the skewness is
large and positive (40.465). Hence, the Gamma distribution appears to be a more appro-
priate functional form for the empirical distribution of labor productivity.

Model-Implied Moments (for Calibration)

The unemployment rate is obtained directly from (23) while the the interdecile range
of labor productivity is computed numerically. I now derive the formulas used to compute
the five other moments in the model.

To compute the job creation and destruction rates by continuing firms analytically, it
will be useful to obtain an implicit equation for the productivity threshold z, such that
g(zy) = 0. Straightforward algebra implies that

AMl—u)+6—Au
20(1 —u)

8(z2)=0 << P(z)=

The job creation rate by continuing firms is defined as |, Zo g(z)dP(z), and can be ex-
pressed as

/oog(z) dP(z) = (1 — P(z0))(Au— A(1 — u) — &) + A(1 — u)(1 — P(20)?).

20

Similarly, the job destruction rate by continuing firms is

- / " ¢(2)dP(2) = —P(z0)(Att = A(1 — ) = 8) = A(1 — ) P(z0)".
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The measure of jobs created by entering firms over a period [¢, ¢ 4+ 1) is up, and the
measure of jobs created by exiting firms is (1 — u) x., where w., x, are defined in (20).
Therefore, the job creation (destruction) by entrants (exiters) are ~u, and ., respec-
tively. As discussed in Section 3.1, the continuous-time growth rates g, are transformed
into discrete-time growth rates g, using the formula g, = e — 1.

Finally, to derive the autocorrelation of log labor productivity, I first approximate the
law of motion for labor productivity y, as

logy, with prob. e ™,

1 =
OB Yot X with prob. 1 — e,

where x is drawn from the stationary distribution of logy, and y; is defined in (20). De-
noting the stationary mean of log y, as w, notice that the autocorrelation of log y, is

E(logyi+1 — ) (logy: — w)
E(logy — )’
_ ¢ "E(logy, —p)’ + (1 —e)B(ogy, —p)(x —p) _
E(logy, — M)2

exs,

The last step uses the fact that E(logy, — u)(x — u) =0 since x is independent of log .

I now derive expressions for the pass-through and separation elasticities (see Sec-
tion 3.2 for definitions and context). To be consistent with the empirical evidence, the
pass-through elasticity is computed using the OLS formula (i.e., cov(logw(z), logy(z))/
var(log y(z))). Similarly, the separation elasticity is given by cov(logS(z),logw(z))/
var(logw(z)), where S(z) = 1 — e *1=0F@=324 I both cases, z is drawn from the
employment-weighted productivity distribution P(z).

Jacobian Matrix

Let A(0) = (A1(6), ..., A,(0),...A:(6)) be the vector of model-implied moments,
where 6 = (6y,...,0,,..., 0) is the vector of model parameters. To quantify the sensitiv-
ity of the model-implied moments to the choice of parameters, I compute the numerical
derivative

A (6)
ﬁg[’ 6=6*

b

for all (m, p) €{1,...,7y x {1, ..., 6}, where 6* is the vector of calibrated parameters.
Table C.II reports the results.

C.4. Alternative Calibrations

Table C.III reports the model fit in the benchmark models and extensions.

2Recall that the flow of separations is given by exogenous lay-offs, which occur at Poisson rate §, and
endogenous separations, which occur at Poisson rate A(1 — u)P(z)
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TABLE C.II
SENSITIVITY OF MODEL-IMPLIED MOMENTS TO PARAMETERS.

Parameter

Moment A X m n b 8

Unemployment rate 0.117 —0.878 0.332 —0.001 0.496 1.810
Autocorrelation of log labor prod. 0.102 —1.170 0.192 —0.001 0.208 0.030
Interdecile range of log labor prod. —1.445 5.953 —2.723 —0.204 —2.951 —0.421
Job creation (continuers) 0.289 —0.054 0.020 0.000 0.030 —0.403
Job creation (entrants) 0.026 —0.241 0.161 0.000 0.140 0.608
Job destruction (continuers) 0.184 0.174 —0.066 0.000 —0.098 0.187
Job destruction (exiters) 0.128 —0.458 0.242 —0.001 0.263 0.037

APPENDIX D: DATA
D.1. Variables Construction

I now describe the methodology used to construct the main firm-level variables (i.e.,
value-added, employment, average wage, and capital stock). I start with four variables
constructed by Statistics Canada that are based on corporate tax return line items:
gross profits, worker compensation, tangible capital assets, and intangible capital assets.
The last two variables (tangible capital assets and intangible capital assets) represent
book values of assets net of accumulated depreciation. First, I construct value added
as

value added = gross profits + worker compensation.

This approach is consistent with the income approach to measuring GDP which, in the
corporate sector, sums the income which accrues to firm owners (gross operating income)
and the income which accrues to workers (worker compensation). Labor share and labor
productivity are defined as

labor share = worker compensation/value added,

labor productivity = value added/employment,

TABLE C.III
TARGETED MOMENTS.

Model

Moment Data Baseline CM BM E-A Pareto
Unemployment rate 0.071 0.071 0.071 0.071 0.075 0.069
Autocorrelation of log labor prod. 0.810 0.806 0.806 - 0.803 0.806
Interdecile range of log labor prod. 1.547 1.547 1.547 1.547 1.544 1.547
Job creation (continuers) 0.061 0.055 0.055 - 0.050 0.055
Job creation (entrants) 0.019 0.022 0.022 - 0.024 0.022
Job destruction (continuers) 0.067 0.062 0.062 - 0.059 0.062
Job destruction (exiters) 0.016 0.016 0.016 - 0.015 0.015
EU transition rate 0.047 - - 0.047 - -

Note: “CM” refers to Coles—Mortensen; “BM” refers to Burdett—-Mortensen; “Pareto” refers to the baseline model with a Pareto
distribution; “E-A” refers to the endogenous-A extension of the baseline model.
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TABLE D.I
SUMMARY STATISTICS (2000-2015).

Variable Observations Mean Std. deviation
Employment 3,084,182 38.6 571.1
Value-added 3,084,182 2480.0 45,579.6
Capital stock 3,084,182 2733.4 90,548.0
Compensation per worker 3,084,182 37.8 27.6
Labor productivity 3,084,182 52.8 185.2

Note: All variables except employment are in thousands of 2002 Canadian dollars using the CPI deflator.

where employment is obtained by averaging the monthly number of employees through-
out the year. The capital stock is the sum of tangible and intangible capital assets mea-
sured at book value net of accumulated depreciation.

Finally, I winsorize the labor share at the 0.1% level in the upper tail (i.e., labor share
values above the 99.9 percentile are replaced by the value of the 99.9 percentile, which
is approximately 20). I also remove from the main sample firm-year observations that
either have negative value-added or missing values in employment, value-added, tangi-
ble capital assets, intangible capital assets or industry code. Table D.I contains summary
statistics.

D.2. Sample Validation

I now compare the aggregate labor share in the NALMF versus in the National
Accounts. I use data from Statistics Canada (Table 380-0063) to compute the cor-
porate sector labor share. As is standard, I assume that the components of income
that are ambiguous (i.e., taxes net of subsidies and net mixed income) have a la-
bor share equal to the aggregate labor share, which implies the following approxima-
tion:

aggregate labor share

worker compensation

~

~ .
worker compensation + gross operating surplus

Figure D.1 plots the labor share in the National Accounts and in the main sample. A few
remarks are in order. First, the Canadian labor share in the National Accounts has sus-
tained a large decline over the course of the 1990s and early-2000s but has then somewhat
recovered over the course of the 2005-2015 period. Second, the aggregate labor share in
the main sample has a similar level and trend as the one in the National Account over
the period where both data sets are available. Overall, the level and dynamics of the labor
share in the NALMF is consistent with the aggregate data, except for the fact that it is too
low in the first 4 years of the sample.

D.3. Statistics by Labor Productivity Deciles

Within each 2-digit NAICS industry-year bin, I sort firms by labor productivity (i.e.,
value-added per worker) and bin firms into deciles. Within each decile, I compute labor
productivity, capital-output ratio, value-added share, and labor share. Finally, I average
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FIGURE D.1.—Labor share in the National Accounts and in the main sample.

over all industries within a year by applying value-added weights and compute a simple
average of each variable over 2000-2015. Table D.II contains the resulting data. Note that
labor productivity and capital-output ratio are expressed in relative term (i.e., as a ratio
of the aggregate).

D.4. Comparison Between Compustat and Census Data

Table 3 in Barth, Bryson, Davis, and Freeman (2016) contains a measure of productivity
dispersion in the U.S. The authors use data from the Census Bureau’s Economic Census
files and compute the variance of log revenue per worker in the cross-section of estab-
lishments. The data is based on quinquennial censuses of establishments, so they report
values every 5 years. In Compustat, I compute the variance of log revenue per worker
every 5 years from 1982 to 2007. I present the results in Table D.III. Overall, the levels
are very comparable and both series show an increase in productivity dispersion despite
differences in concept. The unit of observation in Compustat (as in the NALMF data) is
a firm, while in Barth et al. (2016) it is an establishment. The main difference in trend ap-
pears to be from 2002 to 2007, where the increase in productivity dispersion is noticeably
higher in Compustat.

TABLE D.II
MOMENTS BY LABOR PRODUCTIVITY DECILES.

Labor productivity deciles
Variable (M 2 3 “4) ©®) (6) (M ®) © 10

Labor productivity 0.164 0354 0434 0518 059 0.692 0.783 0973 1278  2.889
Capital-output ratio  1.800 0.811  0.694 0.621 0.691 0.694 0.749 0.799 0917 1.259
Value-added share 0.015 0.028 0.036 0.044 0.055 0.069 0.082 0.097 0.149 0.425
Labor share 1578 1126 0954 0911 0858 0.802 0.761 0.742 0.667 0.439
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TABLE D.III
PRODUCTIVITY DISPERSION IN COMPUSTAT VERSUS CENSUS DATA.

Years 1982 1987 1992 1997 2002 2007
Barth et al. (2016) 0.965 0.949 1.020 1.113 1.126 1.265
Compustat 0.950 1.024 1.048 1.185 1.162 1.474

D.5. Industry-Level Data Set

To construct the industry-level data set, I use the main sample (described in Ap-
pendix D.1) and sort firms by labor productivity within industry-year bins and assign to
each firm a productivity quintile. An industry is defined according to 3-digit NAICS defi-
nitions. Within each industry-year bin, I compute the labor share and value-added shares.
I restrict the sample to industry-year observations that have at least 100 firms in every
year. The result is a balanced panel data set covering 69 industries over the 2000-2015
period. Table D.IV reports summary statistics.

APPENDIX E: QUANTIFYING THE THEORY: ROBUSTNESS CHECKS
E.1. Assessing Cross-Sectional Moments

Table E.I reproduces and extends the results presented in Table V. In specification (3),
I instrument labor productivity with its 1-year lag. The coefficient on labor productivity
goes up from —0.31 to —0.25. In specification (6), I regress labor share on labor produc-
tivity with the addition of the capital-output ratio as a control. The coefficient on labor
productivity remains mostly unchanged and the coefficient on capital-output ratio is neg-
ative —0.025, as expected. Also, adding the capital-output output ratio increases the R>
slightly, from 0.27 to 0.28. In specification (7), I use total worker compensation as an
alternative measure of firm size (i.e., instead of employment). As with employment, the
coefficient on size is close to zero and the R? is low.

The main takeaway is that differences in labor productivity across firms explain a large
fraction of the variance in labor shares (the year and industry fixed effects explain less
than 3% of the variance) and that, conditional on labor productivity, size, and capital-
output ratio do not provide much additional predictive power. In the U.S. manufacturing
sector, Kehrig and Vincent (2021) also find that differences in labor shares across firms
are mostly explained by differences in labor productivity, rather than differences in capital
intensity.

TABLE D.IV
SUMMARY STATISTICS (CROSS-INDUSTRY DATA SET).

Variable Observations Mean Std. deviation
Labor share 1104 0.672 0.135
Productivity dispersion 1104 1.917 0.473

Note: Productivity dispersion is defined as the interdecile range of log labor productivity.
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TABLE E.I
ASSESSING CROSS-SECTIONAL MOMENT (ADDITIONAL SPECIFICATIONS).

Labor share (logLS) e8] 2) 3) 4) ) 6) (@)
Value-added (log Y) —0.112
(0.001)

Labor productivity (log y) —0.313 —0.248 —0.313 —0.320

(0.002) (0.002) (0.002) (0.002)
Employment (log N) 0.009 —0.001

(0.001) (0.001)
Capital-output (logK/Y) —0.025
(0.000)
Payroll (logwN) 0.033
(0.000)

Industry fixed effects v v v v v v v
Year fixed effects v v v v v v v
2SLS v
Sample size 3,084,182 3,084,182 2,480,615 3,084,182 3,084,182 3,084,182 3,084,182
R? 0.120 0.272 0.256 0.273 0.036 0.282 0.042

Note: Standard errors in parentheses are clustered at the firm level.

E.2. Do High-Wage Firms Have a Lower Labor Share?

In Section 3.2, I test (and find support for) a number of model predictions including
(i) high-productivity firms have a lower labor share and (ii) high-productivity firms pay
higher wages. Combining these two model predictions, one would also expect that that
high-wage firms have a low labor share. However, when I estimate the cross-sectional
relationship between labor share and wage in the data (where wage is defined as worker
compensation per employee), I instead find that high-wage firms tend to have a slightly
higher labor share.” In particular, the regression coefficient of log labor share on log wage
(with year and industry fixed effects exactly as in Table V) is 0.11 in the data compared to
—1.06 in the model (see the first row of Table E.II).

To understand why the model fails to match this particular moment, consider the fol-
lowing accounting decomposition. For any two random variables u and v, let 3, , denote
the regression coefficient of the log of u on the log of v and let o> denote the variance of
the log of u.* Using the fact that the log of labor share is equal to the log of wage minus

TABLE E.II
‘WAGES AND LABOR SHARE IN THE CROSS-SECTION OF FIRMS.

Moment Data Model
BLS,w 0.11 —1.06
Bu,y 0.69 0.39
0')2, /a2 1.29 5.22

»Kehrig and Vincent (2021) also estimate a small (but negative) relationship between wage and labor share
across establishments in the U.S. manufacturing sector (see their Figure VI).
%The regression coefficient is defined as B, , = cov(log u, logv)/ var(logv).
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the log of labor productivity (i.e., log LS = logw — log y), we have that
BLS,w =1- Bw,y X (0-3/0-3))

Table E.II contains each component of the decomposition, both in the data (where all
variables are net of year and industry fixed effects) and in the model. The regression
coefficient of log wage on log productivity 3, , is 0.69 in the data, which is fairly close
to the model’s prediction of 0.39. In contrast, the ratio of variances ayz /o is 1.29 in the
data, while it is 5.22 in the model. Hence, the main reason why the model fails to match
the empirical evidence on the relationship between productivity and wage ;s ,, is because
it underpredicts the variance of wages relative to the variance of labor productivity.

In the model, a single firm-level state variable (i.e., productivity z) determines the equi-
librium wage that firms offer. In reality, there are other factors besides productivity that
generate dispersion in average wages across firms, even within narrowly defined industry
(i.e., the presence of a union, compensating wage differentials, etc.). To understand how
such factors would bias the regression coefficient Bis ., consider the following stylized
model extension. Suppose that wages are given by

w(z, g) = gw(z),

where w(z) is the policy function in the baseline model and ¢ is an exogenous wedge that
is orthogonal to productivity z, has a cross-sectional mean of one, and has a log variance
of (rg. Under these assumptions, the regression coefficient of log labor share on log wages
BLs(z.6).u(=.¢) 18 given by

— 2 2
Bisi.own =1 = Buorye) X (050 Tuis)
2
Uw(z)

=1— x (02,,)02,.)) x —=2 .

1= Buorr > (70 ) X 33—

A couple of remarks are in order. First, the presence of wedges ¢ does not affect the
regression coefficient of log wages on log labor productivity (i.e., Bu(,¢).y(z) = Bu(z).v))-
This is a standard result: classical measurement errors in the independent variable does
not bias the regression coefficient. Second, the ratio of variances has a multiplicative bias
equal to o, /(o + o}). For instance, as the the variance of the wedge o7 goes to infinity,
the regression coefficient B¢ w(-,¢) gO€S to one.

The key takeaway is that the presence of wedges ¢ in the wage equation (i.e., unmod-
eled determinants of firm-level wages) biases the regression coefficient B;s, (even its
sign), but does not affect the estimated relationship between labor share and productivity
Bus,y- To match the relationship between labor share and wage in the data, one would
need a richer model that generates more wage dispersion between firms.

E.3. Moments by Labor Productivity Decile: Robustness Checks and Extensions

I now describe various robustness checks and extensions of Figure 2 in Section 3.2,
which plots the labor share by labor productivity decile.

Industry and Size Effects

In Figure E.1a, [ group firms in the data into broad industry categories (i.e., goods pro-
ducing, trade services, professional services, and other services). Similarly, Figure E.1b
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groups firms in the data into size groups (50-20, 20-100, 100-500, and 500+ employees).
The main empirical findings hold within each of these groups: (i) there is a negative rela-
tionship between firm-level labor share and labor productivity and (ii) a large fraction of
firms have a labor share above 1 — a.

Measurement Error in Value-Added

To alleviate the concern that measurement error in value-added could generate a spu-
rious negative relationship between labor share and labor productivity (see footnote 13),
Figure E.1c reproduces Figure 2 by sorting firms according to their 1-year lagged labor
productivity decile. The results are similar, the main difference being that the labor share
of firms in the bottom decile of labor productivity is lower.

Benchmark Models and Endogenous-A Extension

Figure E.1d plots the relationship between labor share and labor productivity in the cal-
ibrated benchmark models (i.e., Burdett-Mortensen and Coles—-Mortensen). There are
two takeaways. First, the Burdett—-Mortensen and Coles—Mortensen models fail to match
the high labor share (i.e., above 1 — «) of low-productivity firms. Second, the labor share
in the endogenous-A model extension is very similar to the labor share in the baseline
model. The main difference is that the labor share of high-productivity firms is higher
(i.e., high-productivity firms exert less monopsony power).

Pareto Distribution

Figure E.le plots the relationship between labor share and labor productivity in the
baseline model calibrated with a Pareto distribution. The empirical fit is poor. In particu-
lar, the labor share in the bottom 9 deciles of labor productivity are much higher than in
data. Moreover, the labor share in the top decile that is much too low.

Imputed Profit Share

The empirical relationship between labor productivity and labor share could in prin-
ciple be explained by the fact that firms differ in their capital share «, even within a
narrowly-defined industry. Kehrig and Vincent (2021) find that, in the US manufactur-
ing sector, differences in capital per worker explain a negligible fraction of the variation
in labor shares across firms. I now conduct a similar exercise in my data. First, notice that
if firms face the same user cost of capital R, the statistic that is informative about the
relative capital share R x K/Y is the capital-output ratio K/ Y. I impute the profit share
I1/Y as

/Y = 1-1S —RxK/Y, (72)
——— N—_—— —_——
profit share nonlabor share capital share

where both the nonlabor share 1 — LS and the capital output ratio K/Y are directly
observable. This approach has a long tradition in economics dating back to Jorgenson
(1963) and has been recently used by Barkai (2020) using U.S. aggregate data. Figure E.1f
provides a comparison of the (imputed) profit shares in the data and in the model. I find
that the profit share increases with labor productivity. Both in the model and in the data,
the bottom 5 deciles have a negative profit share while the top 5 have a positive one.
Moreover, the qualitative results are not sensitive to the particular value of the user cost
that I use. As a robustness check, I plot the profit shares in the data implied by a user cost
of 0.11 and 0.31 instead of 0.21 as in the baseline model. The shape of the relationship
between labor productivity and profit share remains mostly unchanged.



EMILIEN GOUIN-BONENFANT

36
2 : 2 ;
=o=Model == Model
Data (goods) Data (5-20)
Data (trade) Data (20-100)
1.5 Data (professional sv.) 1.5 Data (100-500)|
8 =o=Data (other sv.) g =o=Data (500+)
2 —1-a 2
wn wn
8 5
s 1 8 1
S S
— —
0.5 0.5
4 6 8 10 2 4 6 8 10
Labor productivity decile Labor productivity decile
(a) Industry groups. (b) Size groups.
2 : : : 2 : ; ;
=o=Model =o=DBaseline model
q === Data == = Coles-Mortensen
== «Data (lagged) =4=Burdett-Mortensen
1.5N0 -1 1 1.5 Endogenous-A extension|]
& & === Data
& &
< < = l-a
wn wn
e —
19 1S
<Q 12
] <
— [
2 4 6 8 10 2 4 6 8 10
Labor productivity decile Labor productivity decile
(c) Lagged decile. (d) Benchmark models.
3 : : ‘ w 0.5 ‘ ‘
~ =o=Baseline model (Gamma)
N ==« Baseline model (Pareto)
254 S
~ === Data
N l1-«a
5 e
= 3
= 1+
2 %
A 1&
1 =o=Model |
===Data (R=0.21)

6 8 10
Labor productivity decile
(e) Pareto distribution.

FIGURE E.1.—Moments by labor productivity

Data (R=0.31)
Data (R=0.11)

2 4 6 8 10
Labor productivity decile

(f) Imputed profit share.

decile: robustness checks and extensions.
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TABLE E.III
CROSS-COUNTRY REGRESSIONS.

LS ) @ (©)
o —0.077 —0.201 —0.119
(0.026) (0.035) (0.085)

Year FE v v

Industry FE v v v
Country FE v

N 154 154 28
R? 0.245 0.858 0.143

«

Note: Robust standard errors. “LS” denotes labor share; “o” denotes productivity dispersion (i.e., the interdecile range of log
labor productivity). For specifications (3), the windows are 2001-2006, 2006-2011, and 2010-2015. For specifications (4), the window
is 2001-2011.

E.4. Cross-Country Regressions

In Table E.III, I estimate specifications (38), (39), and (40). In all specifications, I ob-
tain negative coefficients ranging from —0.077 (specification 38) to —0.220 (specification
40 with 10-year differences). Despite the small sample size, I detect a clear negative rela-
tionship between labor share and productivity dispersion in all specifications.
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