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PROOF OF LEMMA 2: Suppose f satisfies Assumption DQM.

The result £; € L follows from standard arguments. Specifically, E[£,(&)] =
0 and E[¢;(&)*] < oo by van der Vaart (2002, Lemma 1.8). Furthermore, using
van der Vaart (2002, Example 1.15), the property E[ef;(&)] =1 can be de-
duced from the fact that the functional [~ f(e — 6)de = 6 is differentiable
in the ordinary sense and the sense of van der Vaart (2002, Definition 1.14).
Finally, by the Cauchy-Schwarz inequality, E[¢;(s)*] > E[£*]/E[et;(e)]* = 1.

To establish the locally asymptotically quadratic (LAQ) property, let cr be a
bounded sequence. The log likelihood ratio L’.(c;) admits the expansion

T(CT) = °r Zy: 1Zf(AYt) + ZRTz

=2

1 d c 2
7 [%yt_lzfmyf) +Rn] (1+ Br),
=2

where Ry, := Rp(Ayi, cryia/T), Bri:= Blery1ls(Ay)/T + Rr.], and the
defining properties of R¢(-) and B(-) are

f(e—6)

1 1

log(1+r)=r— %rz[l + B(2r)].

The proof of Lemma 2 will be completed by showing that

(S1) ZRn - Z;ZZy, 1+ 05, (1),

T 2
c , T
(S2) Z[%yt_lefmy,) - RT,} (I+Br)=ciy Zyt 1+ 0y, (D).

t=2

In the rest of the proof, suppose H, holds and let ¥ be any positive sequence
for which 97 — 0 and VT — oo (as T — o0).
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Equation (S1). Let Ry = 1(lery,—1/T| < 97)Rr, denote a truncated ver-
sion of Ry,. Because max,-,r [cry,_1/~/T| = 0,(1) and T+ — oo, the se-
quences Ry, and Ry, are asymptotically equivalent in the sense that Zt SRy =

Zt:ZRTl + Op(l)'
Now

2

=< ﬂT)Etl[R (sla V- 1) i|

szt 1°

- c
Et—l(RZTt) = 1( TTYI—l

<Vi(9r)
where V(1) := SUP /<. 00 02 E[R;(e, 0)?] and E,_,[-] denotes conditional ex-

pectation given {g&y, ..., &_1}. By Assumption DQM, limy V() =0. As a
consequence, using 9r = o(1) and E(y? ) =1t—1,

T ~ b T
Y E(R}) < VJ«(ME(% Zy51> =V;(97)0(1) = 0(1),
— t=2

implying that Zt 2RT, Zl SE,_ 1(RT,)+op(1) Moreover,

T

ET:E Ry = 17 c%§:1 r
L —17y) = 4 ff T2 L Tyt—l
+§ ytl <7 )re Ly,
T b

where r(0) := 1Z,6” + E[R/ (&, )] and

1 T
_ 1( r
T2

t=2

= l9T>yt21

17
TV = 19T>yt2_1 =T Zytz—l +0,(1)

t=2

because maxy,<r [cryi_1/v/T| = O,(1) and /T — oo. The proof of (S1) can
therefore be completed by showing that

< 19T>rf<c%yt—l> =o0,(1).

The relationship in the preceding display follows from ¢y = o(1) and the fact

that
< ﬁT)rf< Ty, 1)

(e

=2

Yi—1

= Vi1 Uf(ﬂT) Zyt 1

2i(f5
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=vr(97)0,(1),

where v (9) = Supy_p 4. 07°17(0)] = o(1) as & | 0 (Pollard (1997,
Lemma 1)).
Equation (S2). To prove (S2), it suffices to show that

T

2
c
Z[%ymﬂf(sz) +RT1:| % ]{g Zyt 1 +o,(1)

t=2

and
max |Bler T yi1ly(e,) + Ryid| = 0, (1).
By Taylor’s theorem, B(r) — 0 as |r| — 0. Moreover,

_ L
Yi—1 max f(st)

ﬁ 2<t<T ﬁ

and maxy<;<r |Rr,| </ ZLZ RZ,. Therefore, the desired result will follow from

< max
2<t<T

max
2<t<T

= Op(l)op(l) = Op(l)

%@(e»

(S3) Zy, 1Lp(8) = Zy,1+op<1>
and
(S4) ZRTt_o 1).

As noted by Jeganathan (1995, Lemma 24), (S3) can be deduced with the
help of the proof of Hall and Heyde (1980, Theorem 2.23) if it can be shown
that

= ZE, l[y, 1Lr(&0) 1(

To do so, let p > 0 be given and define Q;(r) := E[£;(&)*1(|¢;(&)| > r)]. Be-
cause Qy is nonincreasing and lim,_,., Q;(r) =0,

ZE, l[y, (&) 1( > @)}

R (ﬂ)
TZ,;”’IQf /N

> Q):| =0,(1) VYo=>0.
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1 & ) VTo
(250 ) mo (V2
<T2 ; ' 1) 2<1<T 1yt /T
= Op(l)op(l) = Op(l)a
where the penultimate equality uses max,<,<7 |y,—1/ VT|= O,(1).
It can be shown that 3.7  R% =37 R: 40 »(1). Moreover,

T

T
Y EL[R3 (R > 0)] <) Ei(R;)=0,(1) Yo>0,

=2 =2

where the equality was established in the proof of (S1). A second applica-
tion of the proof of Hall and Heyde (1980, Theorem 2.23) therefore estab-
lishes (S4). Q.E.D.

PROOF OF LEMMA 7: For any b, any ¢ < 0, any « € (0, 1), and any symmetric
2 x 2 matrix Zy for which

w1\ 1 €
Var(BFu)) = (el I
is positive semidefinite, let K3(b, ¢; Zr) be the 1 — « quantile of

G(W’ Z’ baC;IF)

1 1
= c|:/ W(r)dW (r) + zf"b + \/Hff,,, —/ W (r)? er]
0 0

m

1
=5 s

where Z ~ N(0, 1) is independent of W and H;,,, H.,,, etc. are as in Section 4.
The function K? satisfies E[{}.(Sr, Hrlc, @)|S,] = a because it follows from
elementary facts about Brownian motions that

Spw— [ W) dW (r)
\/Hffin — [y W(rydr

~N(@0,1)

independent of W and S,,, where S;,, and S, are as in Section 4.

Continuity of K? follows from the fact that G(W, Z,b,, ¢,; Zr,,) con-
verges in distribution to a continuous random variable whenever the se-
quence (b,, ¢,, Zr,) is convergent (and G(W, Z, b,, c,; Ir,,) is well defined
for each n). Q.E.D.
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PROOF OF (27): Let f € Fpom and ¢ < 0 be given, suppose F satisfies As-

sumption DQM*, and let (S¥, HY), (W, B;, B,), etc. be as in Section 4. Be-
cause K3 is continuous (Lemma 7) and

(SJT(W H;'f’ S;"S7 S;]') _)dO,f (Sf) Hff) S;a S‘r]),
the sequence ¢?,T(~|c, «) satisfies

¢?,T(YT|Ca a) _)d(),f (’[}}9(81», Hff7 S}slca a)'

It follows from these convergence results, Le Cam’s third lemma, and the result
1
Ly, h) —ay Ar(e, h) = (¢, Sy — 5 (e, He(e, ) (e, h)

that
TlifoloEm—(c’)m«h)(l";(yﬂc, a; f)
=E[¢}(Ss, Hyy, Sle, a) exp(Ar(c, h))]

for every (¢, h). In particular, lims_ . E, ) nr0 @5 (Yrlc, a; f) = 1I’f(c, a),
implying that the proof of (27) can be completed by showing that ¢7 ,(-|c, @)
is locally asymptotically a-similar in F.

To do so, it suffices to show that E[¢/}(Sy, Hys, S}lc, @)|S,] = . Let

Ifﬁ SS.

1. _
Sy =8 - 7S]

Because B, — Z;,(Zyy — 1)""(B; — W) and (W, By) are independent, S, is
independent of (Sy, Hys, S7) and

E[(,Z/;(Sf, Hff: S}g|c7 a)|SS7 S;_] = E[¢f¢(8f7 Hff: S}glca a)ls}g] =aq,

where the second equality is the defining property of K3. Because S,, is a func-
tion of (S%, S#), it therefore follows from the law of iterated expectations that

:C(,

as was to be shown. Q.E.D.
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