SUPPLEMENT TO "COMMENTS ON 'CONVERGENCE PROPERTIES OF THE LIKELIHOOD OF COMPUTED DYNAMIC MODELS"

(Econometrica, Vol. 77, No. 6, November 2009, 2009–2017)

By Daniel Ackerberg, John Geweke, and Jinyong Hahn

APPENDIX A: PROOFS OF (3), (4), AND (5)

DEFINITION 2: Let $c \neq 0$, and define

$$\chi(c) = \frac{1}{\sigma^2 \sqrt{2\pi}} \max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right)}{\frac{c}{\sigma}} \right|.$$

REMARK 1: In the definition above, it was implicitly assumed that $\max_z |\exp(-z^2/2) - \exp(-(z-\frac{c}{\sigma})^2/2)/\frac{c}{\sigma}|$ is well defined. To confirm that it indeed is, define

$$\varphi(z) = \left| \exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right) \middle/ \frac{c}{\sigma} \right|.$$

Note that (i) $\varphi(z) \to 0$ as $|z| \to \infty$ and (ii) $\varphi(0) > 0$. Therefore, we can find B > 0 sufficiently large that $\varphi(z) < \varphi(0)/2$ for all |z| > B. Now, over the compact set $\mathbb{B} = \{z : |z| \le B\}$, the function is continuous and, therefore, there is some z^* at which the function $\varphi(\cdot)$ is maximized over \mathbb{B} . In other words,

(8)
$$\varphi(z^*) \ge \varphi(z) \quad \forall z \in \mathbb{B}.$$

Because $0 \in \mathbb{B}$, we should have $\varphi(z^*) \ge \varphi(0)$. But, for all $z \notin \mathbb{B}$, we have $\varphi(z) < \varphi(0)/2 < \varphi(0) \le \varphi(z^*)$. In other words,

(9)
$$\varphi(z^*) \ge \varphi(z) \quad \forall z \notin \mathbb{B}.$$

Combining (8) and (9), we conclude that $\varphi(z^*) \ge \varphi(z)$ for all z. In other words, the maximum is attained.

Given the definition, we can write

$$|p(y_t; \gamma) - p_j(y_t; \gamma)|$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \left| \exp\left(-\frac{(y_t - \gamma)^2}{2\sigma^2}\right) - \exp\left(-\frac{(y_t - \delta - \gamma)^2}{2\sigma^2}\right) \right|$$

DOI: 10.3982/ECTA7669

© 2009 The Econometric Society

$$= \frac{1}{\sigma\sqrt{2\pi}} \left| \exp\left(-\frac{\left(\frac{y_t}{\sigma} - \frac{\gamma}{\sigma}\right)^2}{2}\right) - \exp\left(-\frac{\left(\left(\frac{y_t}{\sigma} - \frac{\gamma}{\sigma}\right) - \frac{\delta}{\sigma}\right)^2}{2}\right) \right|$$

$$= |\delta| \frac{1}{\sigma^2\sqrt{2\pi}} \left| \frac{\exp\left(-\frac{\left(\frac{y_t}{\sigma} - \frac{\gamma}{\sigma}\right)^2}{2}\right) - \exp\left(-\frac{\left(\left(\frac{y_t}{\sigma} - \frac{\gamma}{\sigma}\right) - \frac{\delta}{\sigma}\right)^2}{2}\right)}{\frac{\delta}{\sigma}} \right|$$

$$< |\delta|\chi(\delta),$$

where $\frac{y_t}{\sigma} - \frac{\gamma}{\sigma}$ is interpreted as the z in the definition of $\chi(c)$. Note that this bound is sharp by the definition of $\chi(\cdot)$. In other words, there is a value of y_t (or analogously $y_t/\sigma - \gamma/\sigma$) such that the bound holds with equality.

LEMMA 1: We have

$$\frac{1}{\sigma\sqrt{2\pi}} \leq \liminf_{|c| \to \infty} |c| \chi(c) \leq \limsup_{|c| \to \infty} |c| \chi(c) \leq \frac{2}{\sigma\sqrt{2\pi}}.$$

PROOF: By definition,

$$|c|\chi(c) = \frac{|c|}{\sigma^2 \sqrt{2\pi}} \max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right)}{\frac{c}{\sigma}} \right|$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \max_{z} \left| \exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right) \right|$$

$$\leq \frac{1}{\sigma \sqrt{2\pi}} \left[\max_{z} \left| \exp\left(-\frac{z^2}{2}\right) \right| + \max_{z} \left| \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right) \right| \right]$$

$$\leq \frac{2}{\sigma \sqrt{2\pi}},$$

from which we obtain

$$\lim_{|c|\to\infty}\sup|c|\chi(c)\leq\frac{2}{\sigma\sqrt{2\pi}}.$$

Next, note that

$$|c|\chi(c) = \frac{|c|}{\sigma^2 \sqrt{2\pi}} \max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right)}{\frac{c}{\sigma}} \right|$$

$$\geq \frac{1}{\sigma\sqrt{2\pi}} \left| \exp\left(-\frac{0^2}{2}\right) - \exp\left(-\frac{\left(0 - \frac{c}{\sigma}\right)^2}{2}\right) \right|$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \left| 1 - \exp\left(-\frac{\left(\frac{c}{\sigma}\right)^2}{2}\right) \right|,$$

from which we obtain

$$\frac{1}{\sigma\sqrt{2\pi}} \le \lim_{|c| \to \infty} \inf|c|\chi(c).$$
 Q.E.D.

LEMMA 2: We have

$$\chi(\delta) \le \frac{\exp\left(-\frac{1}{2}\right)}{\sigma\sqrt{2\pi}}.$$

PROOF: By the mean value theorem, we have

$$\left|\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{(z-c)^2}{2}\right)\right| = |c| \left|\exp\left(-\frac{(z-c^*)^2}{2}\right)(z-c^*)\right|,$$

where c^* is on the line segment adjoining 0 and c. Note that the function $s \mapsto |\exp(-s^2/2)s|$ is bounded by $\exp(-\frac{1}{2})$ (it is maximized at s = 1). It follows that

$$\left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{(z-c)^2}{2}\right)}{c} \right| \le \exp\left(-\frac{1}{2}\right),$$

from which we obtain

$$\max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{(z-c)^2}{2}\right)}{c} \right| \le \exp\left(-\frac{1}{2}\right).$$

It follows that

$$\chi(c) = \frac{1}{\sigma^2 \sqrt{2\pi}} \max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right)}{\frac{c}{\sigma}} \right|$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \max_{z} \left| \frac{\exp\left(-\frac{z^2}{2}\right) - \exp\left(-\frac{\left(z - \frac{c}{\sigma}\right)^2}{2}\right)}{c} \right|$$

$$\leq \frac{\exp\left(-\frac{1}{2}\right)}{\sigma \sqrt{2\pi}}.$$
Q.E.D.

APPENDIX B: PROOF OF (6)

For the joint likelihood, we have

$$\begin{split} \prod_{t=1}^{T} p(y_t; \gamma) &= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^T \exp\left(-\frac{\sum_{t=1}^{T} (y_t - \gamma)^2}{2\sigma^2}\right) \\ &= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^T \exp\left(-\frac{\sum_{t=1}^{T} (y_t - \overline{y})^2 + T(\overline{y} - \gamma)^2}{2\sigma^2}\right) \\ &= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^T \exp\left(-\frac{\sum_{t=1}^{T} (y_t - \overline{y})^2}{2\sigma^2}\right) \exp\left(-\frac{T(\overline{y} - \gamma)^2}{2\sigma^2}\right) \end{split}$$

and, likewise,

$$\prod_{t=1}^{T} p_j(y_t; \gamma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^T$$

$$\times \exp\left(-\frac{\sum_{t=1}^{T} (y_t - \overline{y})^2}{2\sigma^2}\right) \exp\left(-\frac{T(\overline{y} - \delta - \gamma)^2}{2\sigma^2}\right).$$

Therefore,

$$\begin{split} &\left| \prod_{i=1}^{T} p_{j}(y_{i}; \gamma) - \prod_{i=1}^{T} p(y_{i}; \gamma) \right| \\ &= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{T} \exp\left(-\frac{\sum_{i=1}^{T} (y_{i} - \overline{y})^{2}}{2\sigma^{2}} \right) \\ &\times \left| \exp\left(-\frac{T(\overline{y} - \gamma)^{2}}{2\sigma^{2}} \right) - \exp\left(-\frac{T(\overline{y} - \delta - \gamma)^{2}}{2\sigma^{2}} \right) \right| \\ &= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{T} \exp\left(-\frac{\sum_{i=1}^{T} (y_{i} - \overline{y})^{2}}{2\sigma^{2}} \right) \left| \exp\left(-\frac{\left(\frac{\sqrt{T}\overline{y}}{\sigma} - \frac{\sqrt{T}\gamma}{\sigma} \right)^{2}}{2} \right) \right| \\ &- \exp\left(-\frac{\left(\left(\frac{\sqrt{T}\overline{y}}{\sigma} - \frac{\sqrt{T}\gamma}{\sigma} \right) - \frac{\sqrt{T}\delta}{\sigma} \right)^{2}}{2} \right) \right| \\ &= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{T-1} \exp\left(-\frac{\sum_{i=1}^{T} (y_{i} - \overline{y})^{2}}{2\sigma^{2}} \right) |\sqrt{T}\delta| \frac{1}{\sigma^{2}\sqrt{2\pi}} \\ &\times \left| \frac{\exp\left(-\frac{\left(\frac{\sqrt{T}\overline{y}}{\sigma} - \frac{\sqrt{T}\gamma}{\sigma} \right)^{2}}{2} \right) - \exp\left(-\frac{\left(\left(\frac{\sqrt{T}\overline{y}}{\sigma} - \frac{\sqrt{T}\gamma}{\sigma} \right) - \frac{\sqrt{T}\delta}{\sigma} \right)^{2}}{2} \right)}{\frac{\sqrt{T}\delta}{\sigma}} \right| \\ &\leq \left(\frac{1}{\sqrt{2\pi}} \right)^{T-1} \exp\left(-\frac{\sum_{i=1}^{T} (y_{i} - \overline{y})^{2}}{2\sigma^{2}} \right) |\sqrt{T}\delta| \chi(\sqrt{T}\delta) \\ &\leq \left(\frac{1}{\sqrt{2}} \right)^{T-1} |\sqrt{T}\delta| \chi(\sqrt{T}\delta), \end{split}$$

where now $(\frac{\sqrt{Ty}}{\sigma} - \frac{\sqrt{T}\gamma}{\sigma})$ is interpreted as the z in the definition of $\chi(c)$. By the definition of $\chi(c)$, the first inequality will hold with equality at some value of \overline{y} . The second inequality holds with equality by setting $y_t = \overline{y}$ for all t. Hence this bound is sharp.

Q.E.D.

APPENDIX C: PROOF OF THEOREM 2

Because $Q_0(\gamma)$ is continuous,¹ Γ is compact, and γ_0 is the unique maximizer of $Q_0(\gamma)$, we can find $\varepsilon > 0$ such that $\sup_{|\gamma - \gamma_0| > \varepsilon} Q_0(\gamma) < Q_0(\gamma_0)$ and $Q_0''(\gamma) < 0$ for $|\gamma - \gamma_0| \le \varepsilon$. We can then find $\eta > 0$ sufficiently small such that $\sup_{|\gamma - \gamma_0| > \varepsilon} Q_0(\gamma) < Q_0(\gamma_0) - 3\eta$ and $Q_0''(\gamma) < -3\eta$ for $|\gamma - \gamma_0| \le \varepsilon$.

We now show that $|\gamma_j - \gamma_0| \le \varepsilon$ for j sufficiently large, say for all $j \ge J$. By NM (Lemma 2.4), for example, we have $Q_0(\gamma)$ continuous and

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{T} \sum_{t=1}^{T} \log p(y_t; \gamma) - Q_0(\gamma) \right| = o_p(1).$$

Likewise, we also have $Q_i(\gamma)$ continuous and

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{T} \sum_{t=1}^{T} \log p_j(y_t; \gamma) - Q_j(\gamma) \right| = o_p(1).$$

Because of the definition of the bound Δ_j and Condition 1, we then have $|Q_j(\gamma)-Q_0(\gamma)| \leq \eta$, $|Q_j'(\gamma)-Q_0'(\gamma)| \leq \eta$, and $|Q_j''(\gamma)-Q_0''(\gamma)| \leq \eta$ for j sufficiently large. Because $-\eta \leq Q_j(\gamma)-Q_0(\gamma) \leq \eta$, we have $Q_j(\gamma) \leq Q_0(\gamma)+\eta$, in particular for $|\gamma-\gamma_0|>\varepsilon$. We therefore obtain

(10)
$$\sup_{|\gamma-\gamma_0|>\varepsilon} Q_j(\gamma) \leq \sup_{|\gamma-\gamma_0|>\varepsilon} Q_0(\gamma) + \eta.$$

We also have

(11)
$$\sup_{|\gamma-\gamma_0|>\varepsilon} Q_0(\gamma) < Q_0(\gamma_0) - 3\eta.$$

Combining (10) and (11), we obtain $\sup_{|\gamma-\gamma_0|>\varepsilon}Q_j(\gamma)\leq Q_0(\gamma_0)-2\eta$ or

(12)
$$Q_0(\gamma_0) \ge \sup_{|\gamma - \gamma_0| > \varepsilon} Q_j(\gamma) + 2\eta.$$

Because $Q_j(\gamma) \geq Q_0(\gamma) - \eta$ for $|\gamma - \gamma_0| \leq \varepsilon$, we have $\sup_{|\gamma - \gamma_0| \leq \varepsilon} Q_j(\gamma) \geq \sup_{|\gamma - \gamma_0| \leq \varepsilon} Q_0(\gamma) - \eta$. But because $\sup_{|\gamma - \gamma_0| \leq \varepsilon} Q_0(\gamma) = Q_0(\gamma_0)$, we have

(13)
$$\sup_{|\gamma-\gamma_0|\leq \varepsilon} Q_j(\gamma) \geq Q_0(\gamma_0) - \eta.$$

Combining (12) and (13), we obtain

$$\sup_{|\gamma-\gamma_0|\leq \varepsilon} Q_j(\gamma) \geq \sup_{|\gamma-\gamma_0|>\varepsilon} Q_j(\gamma) + \eta,$$

¹See, for example, NM (Lemma 2.4).

and the maximizer γ_j of $Q_j(\gamma)$ satisfies $|\gamma_j - \gamma_0| \le \varepsilon$.

We now get back to the proof of Theorem 2. By the first order condition, we have $0 = Q_j'(\gamma_j)$. By the mean value theorem, we obtain $0 = Q_j'(\gamma_0) + Q_j''(\gamma_j^*)(\gamma_j - \gamma_0)$, where γ_j^* is on the line segment adjoining γ_j and γ_0 . We therefore have $\gamma_j - \gamma_0 = -Q_j'(\gamma_0)/Q_j''(\gamma_j^*)$. Because $|\gamma_j^* - \gamma_0| \le |\gamma_j - \gamma_0| \le \varepsilon$, we can see that $Q_0''(\gamma_j^*) < -3\eta$. This means that $Q_j''(\gamma_j^*) < -2\eta$ and that the division is well defined. Hence,

(14)
$$|\gamma_j - \gamma_0| \le |Q_j'(\gamma_0)|/2\eta \le \frac{\Delta_j}{2\eta}$$

for all $j \ge J$. (Roughly speaking, this inequality indicates that when the approximation is sufficiently precise, the difference between γ_j and γ_0 depends on the degree of approximation and the concavity of the objective function at γ_0 .) For j < J, let

(15)
$$\varrho = \max_{1 \le j < J} \left\{ \frac{|\gamma_j - \gamma_0|}{\Delta_j} \mathbb{1}(\Delta_j > 0) \right\},\,$$

where $1(\cdot)$ denotes the indicator function. Let $\zeta = \max(\frac{1}{2\eta}, \varrho)$ (note that ζ does not depend on T).

Combining (14) and (15), we conclude that

$$|\gamma_j - \gamma_0| \leq \zeta \cdot \Delta_j$$

for all j. Q.E.D.

APPENDIX D: PROOF OF THEOREM 3

Note that

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{T} \sum_{t=1}^{T} \log p_j(y_t; \gamma) - \frac{1}{T} \sum_{t=1}^{T} \log p(y_t; \gamma) \right| \leq \Delta_j$$

by definition and

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{T} \sum_{t=1}^{T} \log p(y_t; \gamma) - Q(\gamma) \right| = o_p(1).$$

This implies that

(16)
$$\sup_{\gamma \in \Gamma} \left| \frac{1}{T} \sum_{t=1}^{T} \log p_j(y_t; \gamma) - Q(\gamma) \right| \le \Delta_j + o_p(1) = o_p(1)$$

by the assumption that $\Delta_j = o(1)$. Combining (16) with Conditions 2 and 4, and using NM (Theorem 2.5), we obtain the desired conclusion. *Q.E.D.*

APPENDIX E: PROOF OF THEOREM 4

Recalling that Theorem 1 implies that $\operatorname{plim}_{T \to \infty} \widehat{\gamma}_j = \gamma_j$, consider

(17)
$$\widehat{\gamma}_i - \gamma_0 = (\widehat{\gamma}_i - \gamma_i) + (\gamma_i - \gamma_0).$$

We first characterize the asymptotic distribution of $\sqrt{T}(\widehat{\gamma}_j - \gamma_j)$. Note that γ_j and $\widehat{\gamma}_i$ solve

$$0 = E[\nabla_{\gamma} \log p_j(y_t; \gamma_j)],$$

$$0 = \frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma} \log p_j(y_t; \widehat{\gamma}_j).$$

Expanding the second equality around γ_j and using the mean value theorem, we obtain

$$0 = \frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma} \log p_{j}(y_{t}; \gamma_{j}) + \left(\frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p_{j}(y_{t}; \widetilde{\gamma}_{j})\right) (\widehat{\gamma}_{j} - \gamma_{j}),$$

where $\widetilde{\gamma}_j$ is on the line segment adjoining $\widehat{\gamma}_j$ and γ_j . It follows that

(18)
$$\sqrt{T}(\widehat{\gamma}_{j} - \gamma_{j}) = -\left(\frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p_{j}(y_{t}; \widetilde{\gamma}_{j})\right)^{-1} \times \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\gamma} \log p_{j}(y_{t}; \gamma_{j}).$$

Note that

(19)
$$\left| \frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p_{j}(y_{t}; \widetilde{\gamma}_{j}) - \frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p(y_{t}; \widetilde{\gamma}_{j}) \right| \leq \Delta_{j}$$

by definition. We also have

(20)
$$\left| \frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p(y_t; \widetilde{\gamma}_j) - Q_0''(\widetilde{\gamma}_j) \right| = o_p(1)$$

by NM (Lemma 2.4), for example. Finally, because $\widetilde{\gamma}_j = \gamma_0 + o_p(1)$ (since $\widetilde{\gamma}_j$ is on the line segment between γ_0 and γ_j), and because $Q_0''(\gamma)$ is continuous by dominated convergence, we have

(21)
$$Q_0''(\widetilde{\gamma}_j) = Q_0''(\gamma_0) + o_p(1).$$

Combining (19), (20), and (21), and the assumption that $\Delta_j \to 0$, we obtain that

(22)
$$\frac{1}{T} \sum_{t=1}^{T} \nabla_{\gamma \gamma} \log p_j(y_t; \widetilde{\gamma}_j) = Q_0''(\gamma_0) + o_p(1).$$

We also note that

(23)
$$E\left[\frac{1}{\sqrt{T}}\sum_{t=1}^{T}\nabla_{\gamma}\log p_{j}(y_{t};\gamma_{j})-\frac{1}{\sqrt{T}}\sum_{t=1}^{T}\nabla_{\gamma}\log p(y_{t};\gamma_{0})\right]=0,$$

since by definition γ_j and γ_0 maximize $Q_j(\gamma)$ and $Q_0(\gamma)$, respectively. In addition, since $\Delta_j \to 0$,

(24)
$$\operatorname{Var}\left(\frac{1}{\sqrt{T}}\sum_{t=1}^{T}\nabla_{\gamma}\log p_{j}(y_{t};\gamma_{j}) - \frac{1}{\sqrt{T}}\sum_{t=1}^{T}\nabla_{\gamma}\log p(y_{t};\gamma_{0})\right)$$
$$= E\left[\left(\nabla_{\gamma}\log p_{j}(y_{t};\gamma_{j}) - \nabla_{\gamma}\log p(y_{t};\gamma_{0})\right)^{2}\right] = o(1).$$

Combining (23) and (24) and applying Chebyshev's inequality, we conclude that

(25)
$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\gamma} \log p_{j}(y_{t}; \gamma_{j}) = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\gamma} \log p(y_{t}; \gamma_{0}) + o_{p}(1).$$

Now, (18), (22), and (25) imply that

(26)
$$\sqrt{T}(\widehat{\gamma}_{j} - \gamma_{j}) = -Q_{0}''(\gamma_{0})^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \nabla_{\gamma} \log p(y_{t}; \gamma_{0}) + o_{p}(1)$$

$$\Rightarrow N(0, -Q_{0}''(\gamma_{0})^{-1})$$

as $T \to \infty$ and $\Delta_j \to 0$. The second line in (26) uses the central limit theorem and information equality.

Last, note that Theorem 2 implies that $\gamma_j - \gamma_0 = O(\Delta_j)$ or

$$\sqrt{T}(\gamma_i - \gamma_0) = O(\sqrt{T}\Delta_i).$$

Combining this with (17) and (26), we conclude that

$$\sqrt{T}(\widehat{\gamma}_j-\gamma_0)\Rightarrow N(0,-Q_0''(\gamma_0)^{-1})$$
 as $T\to\infty$ and $\sqrt{T}\Delta_j\to 0$. Q.E.D.

Dept. of Economics, University of California Los Angeles, 8283 Bunche Hall, Los Angeles, CA 90095, U.S.A.; ackerberg@econ.ucla.edu,

University of Technology Sydney, City Campus, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia and University of Colorado, Boulder, CO 80309, U.S.A.; john.geweke@uts.edu.au,

and

Dept. of Economics, University of California Los Angeles, 8283 Bunche Hall, Los Angeles, CA 90095, U.S.A.; hahn@econ.ucla.edu.

Manuscript received January, 2008; final revision received July, 2008.