Econometrica Supplementary Material

SUPPLEMENT TO “COMMENTS ON ‘CONVERGENCE PROPERTIES
OF THE LIKELIHOOD OF COMPUTED DYNAMIC MODELS””
(Econometrica, Vol. 77, No. 6, November 2009, 2009-2017)

BY DANIEL ACKERBERG, JOHN GEWEKE, AND JINYONG HAHN

APPENDIX A: PROOFS OF (3), (4), AND (5)
DEFINITION 2: Let ¢ # 0, and define
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REMARK 1: In the definition above, it was implicitly assumed that
max, | exp(—z°/2) — exp(—(z — £)?/2)/<| is well defined. To confirm that it

indeed is, define
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Note that (i) ¢(z) — 0 as |z| — oo and (ii) ¢(0) > 0. Therefore, we can find
B > 0 sufficiently large that ¢(z) < ¢(0)/2 for all |z] > B. Now, over the com-
pact set B = {z:|z| < B}, the function is continuous and, therefore, there is
some z* at which the function ¢(-) is maximized over B. In other words,

¢(z)=

3) o(z") > @(z) VzeB.

Because 0 € B, we should have ¢(z*) > ¢(0). But, for all z ¢ B, we have ¢(z) <
©(0)/2 < ¢(0) < ¢(z*). In other words,

) e(z") > @(2) Vz¢B.

Combining (8) and (9), we conclude that ¢(z*) > ¢(z) for all z. In other words,
the maximum is attained.

Given the definition, we can write
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where % — L is interpreted as the z in the definition of y(c). Note that this
bound is sharp by the definition of x(-). In other words, there is a value of y,
(or analogously y,/o — /o) such that the bound holds with equality.

LEMMA 1: We have
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PROOF: By definition,
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from which we obtain
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lelx(e) = max

Next, note that
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from which we obtain
1 .
s = dim, inflelx (). O.E.D.

LEMMA 2: We have

(1)
o2

PROOF: By the mean value theorem, we have

eXp<—Z_2> — exp(— (z— 0)2)‘ =|c|
2 2 -

where c¢* is on the line segment adjoining 0 and c. Note that the function s —
| exp(—s?/2)s| is bounded by exp(—%) (it is maximized at s = 1). It follows that
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from which we obtain
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It follows that

x(c) =

1
= max

o2T

( 1)
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APPENDIX B: PROOF OF (6)

For the joint likelihood, we have
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and, likewise,
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Therefore,
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where now (@ — @) is interpreted as the z in the definition of x(c). By the
definition of x(c), the first inequality will hold with equality at some value of y.
The second inequality holds with equality by setting y, =y for all ¢. Hence this

bound is sharp. Q.E.D.
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APPENDIX C: PROOF OF THEOREM 2

Because Qy(y) is continuous,! I' is compact, and v, is the unique maxi-
mizer of Qy(y), we can find & > 0 such that sup,_ . Ou(y) < Qo(y,) and

0 (y) <0 for |y — yo| < &. We can then find n > 0 sufficiently small such that
sup;, _oi-e Qo(¥) < Qo(yo) —3m and Qf(y) < =37 for |y — yo| < e.

We now show that |y; — yo| < & for j sufficiently large, say for all j > J. By
NM (Lemma 2.4), for example, we have Qy(7y) continuous and

sup
yel’

=0,(1).

1 T
T > log p(yi: ¥) — Qo(¥)
t=1

Likewise, we also have Q;(y) continuous and

sup
yel’

=o0,(1).

1 T
= 2_log pi(yis v) = Qs(7)
t=1

Because of the definition of the bound A; and Condition 1, we then have
10;(v) = QoI <1, 1Q;(y) — Qh(v)| < m, and | Q] (y) — Q5(y)| < m for j suf-

ficiently large. Because —n < Q;(y) — Qo(y) < n, we have Q;(y) < Qo(y) +m,
in particular for |y — yy| > . We therefore obtain

(10) sup Qi(y) < sup Qo(y)+ 7.

[y=vl>¢ ly=vl>¢

We also have

(11) sup Qo(y) < Qo(vo) — 3.

ly=v0l>¢

Combining (10) and (11), we obtain sup,,_, .. Q;(y) < Qo(y) — 27 or

(12) Qo(y0) = sup Q;(y) +2n.

ly=vl>e

Because Q;(y) > Qo(y) — 7 for |y — | < &, we have sup,,_, . Qi(y) >
sup;, <. Qo(y) — n. But because sup,, .. Qo(y) = Qo(vo), we have

(13) sup Q;(y) = Qv(y0) — 7.

ly=nl=e

Combining (12) and (13), we obtain

sup Q;(y) = sup Q;(y)+m,

ly=nl=e [y=vl>¢

ISee, for example, NM (Lemma 2.4).
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and the maximizer y; of Q;(y) satisfies |y; — yo| < &.

We now get back to the proof of Theorem 2. By the first order condition,
we have 0 = Q)(y;). By the mean value theorem, we obtain 0 = Q(yo) +
Q}/(y}‘)(y}- — ), Where Y; is on the line segment adjoining y; and y,. We there-

fore have y; — yo = —Q}(%0)/Q}(v}). Because |y; — yol < |y; — 0| < &, we can
see that Qf(y;) < —3n. This means that Q7(y;) < —2n and that the division is
well defined. Hence,

A
(14) 1y =yl =1Q5(%)1/2n < ﬁ

for all j > J. (Roughly speaking, this inequality indicates that when the approx-

imation is sufficiently precise, the difference between vy; and vy, depends on the

degree of approximation and the concavity of the objective function at v,.)
For j < J, let

15) o= max{w%W1(Aj > 0)},

1<j<J ;

where 1(-) denotes the indicator function. Let { = max(ﬁ, o) (note that ¢

does not depend on 7).
Combining (14) and (15), we conclude that

ly; — vl < ¢ -4
for all j. Q.E.D.

APPENDIX D: PROOF OF THEOREM 3
Note that

SA,‘

1 o 1 o
sup| — » _log p; (i ¥) = = D _log p(yi: ¥)

vel’ =1 =1

by definition and

=0,(1).

1 T
Sup|— > “log p(yi: v) — Q(y)
t=1

yel’

This implies that

<4;+0,(1)=0,(1)

1 T
(16)  sup|— > “log pi(yiy) — O(y)

yel” =1

by the assumption that A; = o(1). Combining (16) with Conditions 2 and 4,
and using NM (Theorem 2.5), we obtain the desired conclusion. Q.E.D.
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APPENDIX E: PROOF OF THEOREM 4

Recalling that Theorem 1 implies that plim,_ ¥, = v;, consider
17) Yi— Y= —v)+ (v; — Y0

We first characterize the asymptotic distribution of +/7'(3; — ;). Note that 1,
and 7; solve

0=E[V,logp;(y; )],
1 T
=D Vylogpi(ys 7)),
t=1

Expanding the second equality around vy, and using the mean value theorem,
we obtain

e e -\~
=T Zvy log p(yi: vj) + <T ZVW log p;(y:; Yj)) i =i
t=1 t=1

where ¥, is on the line segment adjoining y; and ;. It follows that
-1
(18) ﬁ(fy\/ — )= _< va log p;(y:: ')’/))

T
Z ylog p;(yis v))-

ﬁ\

Note that

< 4;

(19) ‘ Zleogp,(yz,% valogp(yz,%)

by definition. We also have

= Op(l)

1 a -~ Vanyt
(20) ‘Tszlogp(%; 'Yj) - o(')’j)
=1

by NM (Lemma 2.4), for example. Finally, because y; =y, + 0,(1) (since v; is
on the line segment between v, and v;), and because Q;(vy) is continuous by
dominated convergence, we have

(21) 0 (Y1) = Qf(v0) +0,(1).
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Combining (19), (20), and (21), and the assumption that A; — 0, we obtain
that

1 - ~ /!
(22) ?valogpj()% ')’j)= 0(70)+0p(1)~
t=1

We also note that

1 T 1 T
(23) E|—) Vdogp(y;v)——=) V,logpy;vy)|=0,
\/T; b J\Jt> 7j ﬁ; Y t Y0

since by definition y; and y, maximize Q;(y) and Q,(vy), respectively. In addi-
tion, since A; — 0,

(24)  Var <fZV log p;(yi: vj) — va 10gp(yt,70))

= E[(V,log p;(y:: v;) — Vylog p(yi: ¥0))*] = o(D).

Combining (23) and (24) and applying Chebyshev’s inequality, we conclude
that

(25) ZV log p;(yi: %)) ZV log p(yi; o) + 0,,(1).

ﬁ t=1 ﬁ t=1
Now, (18), (22), and (25) imply that

T
20)  VTH; - > "V, log p(yi Yo) + 0,(1)

1
v) = —00(v0) " —=
J o\ 70 \/T —
= N0, -Qi(v)™")
as T — oo and A; — 0. The second line in (26) uses the central limit theorem

and information equality.
Last, note that Theorem 2 implies that y; — yy = O(4;) or

Combining this with (17) and (26), we conclude that
VTF; = ) = N©O, = Q5 (v) ™)
as T — oo and +/TA; — 0. Q.E.D.
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