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S1. SIMULATION STUDY

WE HERE DESCRIBE the Monte Carlo study of the conditional estimator of the
model proposed in the aforementioned paper. The study closely follows that of
Honoré and Kyriazidou (2000) and, therefore, we first consider a benchmark
design and then other designs. Then we make a comparison of the conditional
estimator with some other estimators.

S1.1. Benchmark Design

Under the benchmark design, samples of different size (n= 250�500�1000)
are generated from the quadratic exponential model (see equation (4) of
the paper) with T = 3 time occasions, only one covariate, and parameters
β1 = β2 = 1, γ = 0�5, andφ= 0�5γ. The covariate is generated by drawing each
xit (i = 1� � � � � n, t = 0� � � � �T ) from a Normal distribution with mean 0 and
variance π2/3, whereas αi is generated as (xi0 +∑

t xit)/(T+1) for i= 1� � � � � n.
Finally, the initial observation yi0 is drawn, for i = 1� � � � � n, from a Bernoulli
distribution with parameter exp(αi +xi0β1)/[1 + exp(αi +xi0β1)]. To study the
sensitivity of the results on T and γ, we also consider the case T = 7 and dif-
ferent values of γ (0.25, 1, 2).

Under each scenario, defined by a different combination of n, T , and γ,
we generated 1000 samples and, for every sample, we computed the condi-
tional estimator θ̂ = (β̂1� β̂2� φ̂� γ̂)

′. The results in terms of mean bias, root
mean squared error (RMSE), median bias, and median absolute error (MAE) of
the estimators β̂1 and γ̂, which are of most interest, are shown in Table I.

As for the conditional estimator β̂1, from Table I we see that its mean and
median bias are always negligible and tend to increase with γ, to decrease
with n, and to decrease very quickly with T . A similar trend is observed for
both RMSE and MAE. In particular, they decrease with n at a rate close to√
n and much faster with T . This depends on the fact that the number of ob-

servations that contribute to the conditional likelihood increases more than
proportionally with T , as an increase of T also determines an increase of the
actual sample size. Moreover, both RMSE and MAE of this estimator increase
with γ. This is mainly due to the fact that when γ is positive, its increase implies
a decrease of the actual sample size.

The conditional estimator γ̂ has a behavior similar to β̂1, but its bias is not
always negligible for small sample sizes. In particular, both RMSE and MAE
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TABLE I

PERFORMANCE OF THE CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATORS OF β1 AND γ
UNDER THE BENCHMARK SIMULATION DESIGN

β̂1 γ̂

Mean Median Mean Median
T γ n Bias RMSE Bias MAE Bias RMSE Bias MAE

3 0.25 250 0�032 0.164 0�020 0.109 0�012 0.387 −0�001 0.262
500 0�017 0.114 0�007 0.075 −0�004 0.278 −0�005 0.183

1000 0�007 0.080 0�003 0.053 −0�010 0.182 −0�018 0.121

0.50 250 0�027 0.169 0�016 0.107 0�012 0.402 0�020 0.253
500 0�013 0.117 0�008 0.075 0�004 0.301 −0�004 0.214

1000 0�009 0.083 0�007 0.055 −0�000 0.190 −0�004 0.124

1.00 250 0�053 0.203 0�039 0.123 0�052 0.471 0�021 0.304
500 0�022 0.137 0�007 0.089 0�025 0.323 0�031 0.207

1000 0�010 0.089 0�007 0.057 −0�010 0.220 −0�014 0.144

2.00 250 0�100 0.314 0�055 0.165 0�168 0.811 0�073 0.448
500 0�047 0.182 0�033 0.110 0�074 0.481 0�048 0.295

1000 0�021 0.124 0�010 0.077 0�032 0.317 0�010 0.200

7 0.25 250 0�002 0.065 −0�002 0.043 −0�008 0.142 −0�008 0.093
500 0�002 0.045 0�000 0.031 0�003 0.101 0�001 0.068

1000 −0�001 0.032 −0�003 0.022 −0�005 0.074 −0�004 0.050

0.50 250 0�008 0.068 0�006 0.046 0�013 0.147 0�010 0.095
500 0�003 0.046 0�002 0.031 −0�000 0.105 −0�001 0.072

1000 0�002 0.034 0�001 0.022 0�001 0.075 −0�000 0.052

1.00 250 0�004 0.073 0�002 0.048 0�006 0.174 0�006 0.111
500 0�002 0.051 −0�001 0.034 0�008 0.120 0�006 0.081

1000 0�001 0.036 0�000 0.024 0�000 0.081 −0�000 0.056

2.00 250 0�014 0.103 0�010 0.066 0�010 0.251 −0�001 0.174
500 0�008 0.070 0�002 0.047 0�006 0.173 −0�000 0.112

1000 0�002 0.049 0�003 0.033 0�004 0.122 0�004 0.079

increase with γ, decrease with n at a rate close to
√
n, and decrease much faster

with T .
For each sample generated as above, we also constructed 90% and 95% con-

fidence intervals for β1 and γ. The results, in terms of actual coverage level of
these intervals, are reported in Table II.

The good performance of the conditional estimator is confirmed for both β1

and γ by the fact that the actual coverage levels of these confidence intervals
are very close to the nominal levels under each scenario.

S1.2. Other Designs

Following Honoré and Kyriazidou (2000), we considered other simulation
designs, characterized by the following changes to the benchmark design (un-
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TABLE II

ACTUAL COVERAGE LEVELS OF THE CONFIDENCE INTERVALS FOR β1 AND γ BASED ON THE
CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATOR UNDER THE

BENCHMARK SIMULATION DESIGN

T = 3 T = 7

Interval for β1 Interval for γ Interval for β1 Interval for γ

γ n 90% 95% 90% 95% 90% 95% 90% 95%

0.25 250 90.5 96.4 89.9 95.3 89.5 95.4 90.1 94.9
500 90.5 95.3 89.1 93.9 91.4 95.4 90.3 95.4

1000 89.2 93.9 92.0 95.3 90.3 95.0 89.8 93.9

0.50 250 91.6 96.1 89.1 95.1 90.2 94.9 90.2 94.8
500 89.7 95.1 88.8 93.8 89.6 95.2 89.5 95.1

1000 89.4 94.5 90.5 94.6 89.0 94.0 89.4 94.3

1.00 250 90.3 95.0 89.5 95.5 89.9 94.3 87.9 94.1
500 89.8 94.6 89.4 94.3 90.1 95.0 89.3 95.0

1000 90.2 95.2 89.5 94.5 90.3 95.4 91.1 95.8

2.00 250 89.8 95.8 90.0 94.6 89.0 94.1 90.3 95.4
500 90.6 96.3 88.5 93.2 90.7 94.9 89.5 95.6

1000 88.9 94.5 90.7 95.1 90.1 94.8 90.6 95.3

der which T = 3, β1 = β2 = 1, γ = 0�5):
• χ2(1) regressor: The only difference with respect to the benchmark de-

sign is that each xit (i = 1� � � � � n, t = 0� � � � �T ) is generated from a χ2(1) dis-
tribution with mean 0 and variance π2/3.

• Additional regressors: Samples are generated as in the benchmark de-
sign, but three more covariates are used in the estimation of the parameters.
These covariates are generated from the same Normal distribution used to
generate xit .

• Trending regressors, T = 3: The only difference with respect to the
benchmark design is that the covariate is generated as xit = τ(ψ+ 0�1t + ζit),
with τ and ψ suitably chosen and where ζi0� � � � � ζiT follow a Gaussian AR(1)
process with autoregressive coefficient equal to 0.5, normalized so as to have
variance π2/3.

• Trending regressors, T = 7: As in the previous design, but with T = 7.
The results in terms of mean bias, RMSE, median bias, and MAE of the con-

ditional estimators β̂1 and γ̂ are shown in Table III, whereas the results in terms
of actual coverage levels of the confidence intervals are shown in Table IV.

Based on the results in Table III, we conclude that the good performance
of the conditional estimators of β1 and γ are robust to the different models
adopted for the covariates. The differences with respect to the benchmark de-
sign are small in terms of both bias and efficiency of the estimators. A similar
consideration is drawn about the quality of the proposed procedure for con-
structing confidence intervals for β1 and γ (see Table IV).
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TABLE III

PERFORMANCE OF THE CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATORS OF β1 AND γ
UNDER OTHER SIMULATION DESIGNS

β̂1 γ̂

Mean Median Mean Median
Type of Design n Bias RMSE Bias MAE Bias RMSE Bias MAE

Regressors χ2(1) 250 0.033 0.208 0�013 0.133 0�020 0.328 0�028 0.214
500 0.022 0.137 0�012 0.095 0�007 0.236 0�000 0.157

1000 0.012 0.096 0�006 0.067 −0�009 0.163 −0�007 0.112

Additional regressors 250 0.073 0.200 0�054 0.120 0�035 0.423 0�032 0.282
500 0.037 0.125 0�029 0.077 0�019 0.290 0�014 0.188

1000 0.019 0.083 0�017 0.052 0�006 0.201 0�006 0.132

Trending regressors 250 0.059 0.216 0�047 0.134 0�008 0.418 −0�004 0.274
(T = 3) 500 0.022 0.149 0�016 0.097 0�012 0.295 0�022 0.201

1000 0.010 0.096 0�008 0.066 −0�004 0.204 0�001 0.137

Trending regressors 250 0.008 0.080 0�008 0.057 0�000 0.172 −0�004 0.115
(T = 7) 500 0.003 0.058 −0�000 0.039 0�001 0.122 −0�000 0.077

1000 0.001 0.039 −0�000 0.027 −0�000 0.080 0�001 0.053

S1.3. Comparison With Alternative Estimators

Following Honoré and Kyriazidou (2000), we report some simulation results
also for the fixed effects and the infeasible maximum likelihood estimators.
The former, denoted by θ̂F = (β̂F1� β̂F2� φ̂F� γ̂F)

′, estimates all the n incidental

TABLE IV

ACTUAL COVERAGE LEVELS OF THE CONFIDENCE INTERVALS FOR β1 AND γ BASED ON THE
CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATOR UNDER OTHER SIMULATION DESIGNS

Interval for β1 Interval for γ

Type of Design n 90% 95% 90% 95%

Regressors χ2(1) 250 90.1 95.3 91.6 95.9
500 92.3 95.8 88.7 94.7

1000 91.1 95.5 90.6 95.1

Additional regressors 250 90.5 95.4 89.7 95.0
500 91.0 95.6 89.5 94.2

1000 90.7 94.8 89.4 94.0

Trending regressors (T = 3) 250 91.5 95.6 91.2 95.6
500 89.0 94.7 90.3 95.5

1000 91.7 95.6 89.5 95.1

Trending regressors (T = 7) 250 89.6 96.3 89.1 95.0
500 89.1 94.6 88.0 94.2

1000 90.9 95.9 91.3 95.4
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TABLE V

COMPARISON BETWEEN THE CONDITIONAL AND ALTERNATIVE ESTIMATORS OF β1 AND γ
UNDER THE BENCHMARK DESIGN WITH n= 250

Fixed Effects Estimator Conditional Estimator Infeasible Estimator

β̂F1 γ̂F β̂1 γ̂ β̂I1 γ̂I

γ T Bias MAE Bias MAE Bias MAE Bias MAE Bias MAE Bias MAE

0.25 3 0.515 0.515 −1�911 1.911 0�020 0.109 −0�001 0.262 0�003 0.069 −0�002 0.072
7 0.227 0.227 −0�592 0.592 −0�002 0.043 −0�008 0.093 −0�002 0.039 0�001 0.039

15 0.095 0.095 −0�232 0.232 0�001 0.026 −0�005 0.055 0�001 0.025 −0�003 0.024

0.50 3 0.503 0.503 −1�913 1.913 0�016 0.107 0�020 0.253 0�005 0.076 −0�003 0.072
7 0.244 0.244 −0�565 0.565 0�006 0.046 0�010 0.095 0�004 0.039 0�003 0.038

15 0.102 0.102 −0�214 0.214 0�002 0.026 0�009 0.056 0�002 0.025 0�004 0.023

1.00 3 0.539 0.539 −2�001 2.001 0�039 0.123 0�021 0.304 0�012 0.081 0�007 0.081
7 0.250 0.250 −0�560 0.560 0�002 0.048 0�006 0.111 −0�000 0.043 0�001 0.039

15 0.114 0.114 −0�227 0.227 0�001 0.029 0�003 0.065 0�001 0.027 0�002 0.024

2.00 3 0.546 0.546 −2�158 2.158 0�055 0.165 0�073 0.448 0�008 0.089 0�012 0.119
7 0.301 0.301 −0�623 0.623 0�010 0.066 −0�001 0.174 0�003 0.051 0�005 0.071

15 0.149 0.149 −0�318 0.318 0�001 0.037 0�008 0.094 0�002 0.032 0�003 0.040

parameters and, therefore, is inconsistent for fixed T . The latter, denoted by
θ̂I = (β̂I1� β̂I2� φ̂I� γ̂I)

′, treats the unobserved heterogeneity effects as realiza-
tions of a covariate (supposed to be known) with its own regression parameter.
The results in terms of median bias and MAE are shown in Table V for n= 250
and different values of γ and T .

Of course we expect the performance of the conditional estimator to be a
compromise between those of the other two estimators. In fact, the conditional
estimator performs much better than the fixed-effects estimator in terms of
both bias and efficiency even when T = 15. On the other hand, the infeasible
estimator is even more efficient because it does not discard any observation.
Nevertheless, the difference between the conditional and the infeasible esti-
mators tends to decrease as T increases in terms of both bias and efficiency.
In particular, the two estimators perform very similarly when T = 15 and the
parameter of interest is β1.

In the following discussion, we compare the proposed conditional estimator
with available estimators of the parameters of the latter model. In particular, if
we compare the results of our simulation study (benchmark design described
in Section S1.1 above) with those of Honoré and Kyriazidou (2000), it emerges
that our estimator, using a larger number of response configurations, performs
better than their estimator in terms of both bias and efficiency. Making a com-
parison with the bias corrected estimator proposed by Carro (2007), we note
that the former performs much better than the latter when the parameter of
interest is γ, and performs slightly worse when the parameter of interest is β1.
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TABLE VI

RESULTS FOR β1 AND γ WITH DIFFERENT PANEL LENGTHS t
(BENCHMARK DESIGN, n= 1000, γ = 0�5, T = 7)

β1 γ Interval for β1 Interval for γ

Panel Length Median Bias MAE Median Bias MAE 90% 95% 90% 95%

7 0.001 0.022 −0�000 0.052 89.0 94.0 89.4 94.3
6 0.004 0.024 −0�003 0.059 89.8 95.0 89.1 94.7
5 0.004 0.031 −0�012 0.067 89.3 95.0 89.0 94.4
4 0.007 0.039 −0�012 0.083 89.2 94.6 89.2 94.1

However, in taking these conclusions, one must be conscious that the results
compared here derive from simulation studies performed under different, al-
though very similar, models.

S1.4. Model Consistency

As an illustration of model consistency, which is discussed at the end of Sec-
tion 3.2 of the paper, we finally performed a series of simulations in which
samples are drawn under the benchmark design with T = 7, but θ is estimated
on the basis of the covariates and response variables observed at the first t
occasions (t = 4�5�6). The results, in terms of median bias, MAE of the esti-
mators β̂1 and γ̂, and coverage level of the corresponding confidence intervals,
are reported in Table VI.

Although γ is different from 0, the bias of both estimators considered above
is negligible and comparable to that resulting from computing these estima-
tors on the complete data sequence. This is in agreement with our conjecture
about model consistency according to which the distribution resulting from
marginalizing the proposed model over a subset of response variables may be
adequately approximated by a model of the same family.
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