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This appendix provides a more detailed analysis of a parameterized version of the
consumer model presented in Section 4.1. We first describe our parameterization of
the model. Second, we illustrate some of the theoretical properties of the model and
show that the model can incorporate several important features observed in our data.
In particular, the model allows for adverse selection (borrowers who put less down are
more likely to default) and behavioral responses to contract terms (borrowers are more
likely to default on larger loans), and generates a possibly large mass of borrowers who
make exactly the minimum down payment. Third, we calibrate the parameters of the
model to match several key moments in the data. We then use the calibrated model to
further explore the features of the model, and, in particular, how purchase, financing,
and repayment outcomes change with the two primary contract terms we focus on:
car price and minimum down payment. Finally, we report how well this model can be
approximated by the linearized version in Section 4.3.

APPENDIX A: THE CONSUMER OPTIMIZATION MODEL
AND ITS CALIBRATION

A.1. A Model of Borrower Behavior

WE BEGIN WITH THE CONSUMER’S value function shown in equation (6) in
Section 4.1:

Ut(v0� yt;L) = max
{
u(vt� yt −m)+βE[Ut+1(v0� yt+1;L)|yt]�(A.1)

ud(yt)+βE[U(yt+1)|yt]
}
�

To calibrate the model, we make functional form assumptions on the utility
function and the laws of motion for vt and yt . We assume that flow utility in
the event of payment is given by u(v0� y0 −D) = v0 + ln(y0 −D) in the period
of purchase and by u(vt� yt − m) = vt + ln(yt − m) in all subsequent periods.
This functional form assumes that the borrower’s flow utility from payment is
increasing in the value of the car, and increasing and concave in net income.
Moreover, the log functional form dictates that consumption utility approaches
−∞ as income approaches the payment amount. After the car is paid off in
period T , u(vt� yt)= vt + ln(yt).

The borrower’s flow utility in the period of default is given by ud(yt) = −ϕ+
ln(yt). This utility function assumes that when the borrower defaults, she no
longer derives utility from the car, but can consume her entire income yt . The
utility function also includes a one-time, nonmonetary cost ϕ, which is assumed
to be constant over time. This parameter captures the utility lost due to default
costs such as a decline in credit score or the hassle of dealing with repossession.
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After the period of default, the borrower receives utility from consuming her
income, or ū(yt)= ln(yt).

We assume that both liquidity y and car value v follow a first-order Markov
process, and that liquidity evolves stochastically according to yt ∼ F(yt |yt−1).
Specifically, we assume that liquidity follows a random walk yt = yt−1 + εt ,
where εt is an independent and identically distributed (i.i.d.) normally dis-
tributed liquidity shock with variance σ2

ε . In contrast, car value depreciates
deterministically according to vt = (1 − δ)vt−1.

A.2. Properties of the Model

In this section, we make several observations about the solution to the bor-
rower’s problem. The repayment problem is a standard one, in which the in-
dividual trades off having more money today (if she defaults) versus obtain-
ing the utility flow from the car today and the option value to keep the car
later (if she pays). These trade-offs and the resulting outcomes depend on the
borrower’s characteristics y0 and v0, contract terms p, d, and m, and model
primitives ϕ, β, δ, and F(yt |yt−1). To simplify the discussion, we use the fol-
lowing shorthand notation. Define the borrower’s expected future value from
default (or nonpurchase) in period t to be EVDt+1 = E[U(yt+1)|yt], and the
expected future value from payment (or purchase) in period t to be EVPt+1 =
E[Ut+1(v0� yt+1;L)|yt] if t < T and EVPT+1 = E[UT+1(v0� yT+1;L)|yT ] if t = T .

Some Properties of the Value Function

The borrower’s value function is increasing in liquidity y , weakly increasing
in car value v, and weakly decreasing in the payment size m (which is increasing
in the size of the loan L) and cost of default ϕ. This can be seen through back-
ward induction. Consider the borrower’s value function in the last period of
the loan. Since EVPT+1 and EVDT+1 do not depend on m or ϕ, EVDT+1 does
not depend on v and EVPT+1 is increasing in v, and the borrower’s value func-
tion in the last period is (weakly) increasing in v and decreasing in m and ϕ.
Furthermore, since both EVDT+1 and EVPT+1 are increasing in y , the value
function is also increasing in y .

Now consider the borrower’s value function in period T − 1. Since EVPT

is increasing in v and decreasing in m, and since EVPT+1 is decreasing in ϕ
and EVDT+1 does not depend on ϕ, it follows that EVPT is decreasing in
ϕ, and since EVPT+1 and EVDT+1 are increasing in y , EVPT is increasing
in y . A similar argument holds for all previous repayment periods, meaning
the value function in each of these periods is increasing in y , weakly increasing
in v, and weakly decreasing in m and ϕ. Finally, consider the borrower’s value
function at the time of purchase. This equation shows that the borrower’s value
function at the time of purchase is increasing in her initial liquidity y0 and car
value v0. Second, it is clear that the borrower’s value function is decreasing in
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the price of the car p, since the future value from purchase EVP1 is decreasing
in m, and is weakly decreasing in the minimum down payment d, since a larger
d reduces the borrower’s choice set with no offsetting benefit to utility.

Optimal Repayment Behavior

Our choice of logarithmic utility of money implies a decreasing marginal
value of money, which (coupled with the monotonicity we assume about the
income process) leads to an optimal default strategy that can be described us-
ing a cutoff rule. That is, the optimal default strategy can be characterized by
a vector (y∗

1 (v1�m)� y∗
2 (v2�m)� � � � � y∗

T (vT �m)), such that the individual defaults
in period t if and only if yt < y∗

t (vt�m). Moreover, these cutoffs are decreas-
ing in vt and increasing in m. In each payment period, the borrower defaults if
the marginal utility she derives from consuming her loan payment exceeds the
benefit she receives from continuing in the loan or if

ln(yt)− ln(yt −m)> vt +ϕ+β[EVPt+1 − EVDt+1]�(A.2)

The cutoff value y∗
t (vt�m) is the value of yt that makes the borrower indif-

ferent between payment and default, or that makes the two sides of the above
inequality equal. To derive comparative statics results for the cutoff levels, we
can first observe that the last period cutoff y∗

T will be increasing in m and de-
creasing in both vT and ϕ. Proceeding iteratively, the continuation value to
paying rather than defaulting in a given period t will be higher if vt or yt is
higher, or if m or φ is lower, and the cutoffs y∗

t (vt�m) will be decreasing in vt
and increasing in m, and will also be higher if φ is higher. A lower car deprecia-
tion rate δ also will translate into lower cutoffs, as it increases the continuation
value of repayment EVPt+1. Finally, the numerical results in the next section
will show that the cutoff values decrease with t, provided the depreciation rate
of car utility is not too large. This is due to the increased continuation value
from payment that occurs as borrowers get closer to paying off their loans in
full and permanently owning the car.

The above results imply that assessed at time of purchase, the probability of
repayment and the expected fraction of payments made for an individual loan
will be decreasing in payment size m and increasing in the initial value of the
car v0 and the cost of default ϕ. The probability of default also depends on the
initial income y0 and the persistence in the income process F(yt |yt−1). Here
the analysis is analogous to traditional first passage time models of corporate
default (e.g., Merton (1974)). The probability of default and the speed of time
into default are both decreasing in y0 and increasing in the volatility of the
income process. The model also makes predictions about how the probability
of repayment changes with the term of the loan T , but we defer these to the
numerical section below.
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Optimal Down Payment

A borrower’s optimal down payment in the absence of minimum down pay-
ment requirements is given by

D∗(y0� v0)= arg max
D

{
ln(y0 −D)+ v0 + u0 +βEVP1(m(p−D))

}
�(A.3)

The first-order condition equates the marginal utility of consuming an ad-
ditional dollar today with the marginal effect on expected continuation value
arising from reducing the loan size by $1.

In the calibrated version of our model, the borrower’s optimal down pay-
ment is increasing in v0 and decreasing in ϕ, p, and the volatility of the income
process. In other words, the borrower puts more down when her likelihood
of repayment is higher. The optimal down payment is also increasing in the
borrower’s initial liquidity y0. This occurs for two reasons. First, higher initial
liquidity lowers the marginal cost of putting an additional dollar down. Second,
since higher initial income leads to lower likelihood of default, it increases the
marginal benefit of lowering loan size. With a minimum down payment re-
quirement, these relationships hold weakly instead of strictly, since borrowers
who are constrained by the minimum down payment may be unaffected by
changes in other parameters. The optimal constrained down payment is also
weakly increasing in d.

Optimal Purchase Behavior

An applicant purchases a car if and only if y0 and v0 are sufficiently high
that the utility from entering into the loan exceeds the utility from the outside
option, or

ln(y0 −D∗(y0� v0))+ v0 +βEVP1(D
∗(y0� v0))≥ ln(y0)+βEVD1�(A.4)

The comparative statics of the purchase decision are similar to those of the
optimal default policy. Let y∗

0 be the initial liquidity that makes the above in-
equality bind, and define the probability of purchase as the fraction of appli-
cants in the population for which y0 > y∗

0 . Since EVP1 is increasing in v0 and
decreasing in ϕ, p, and the volatility of the income process, while βEVD1 is
independent of these parameters, the probability of purchase is increasing in
v0 and decreasing in ϕ, p, and the volatility of the income process. We can
also condition on y0 and interpret the probability of purchase as the fraction
of applicants in the population for which v0 > v∗

0 . In this case, the probability
of purchase is increasing in y0 and decreasing in ϕ, p, and the volatility of the
income process. Taken together, the purchase probability depends on the joint
distribution of individuals over the two-dimensional space of y0 and v0, as illus-
trated below. The probability of purchase is also decreasing in the minimum
down payment d.
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Additional Model Features

In addition to the properties detailed above, the model has several proper-
ties that match important features of our data.

First, the model gives rise to selection effects. As shown above, the bor-
rower’s optimal down payment and expected repayment duration are both in-
creasing in her initial liquidity y0. This induces a positive correlation between
observed down payments and the number of subsequent loan payments made,
thus giving rise to adverse selection on loan size. This correlation between
down payment and loan size—namely that borrowers who put more down at
the time of purchase repay more and default less—is a notable feature of our
data. We note that while the model above implies this must hold, the linearized
version of the model that we take to the data (described in Section 4.3) does
not impose it directly.

The model also allows for selection in the purchase/no purchase decision.
An increase in the required down payment screens out low-liquidity buyers
who are relatively likely to default in the future. So a higher required down
payment improves the composition of buyers. There is also a selection effect
with respect to car price. An increase in the car price tends to screen out buyers
with lower liquidity and/or lower car utility than the average buyer, meaning
that they are more likely to default. In the data, however, we find that bor-
rowers in general are insensitive to price, which suggests that these selection
effects may be small.

The second important feature of the model is moral hazard, by which we
mean that for a given borrower, a larger debt obligation makes her/him less
likely to repay. That loan size has a positive causal effect on default is another
central feature of the data. In the model above, this effect may arise due to
a “mechanical” effect (i.e., borrowers faced with larger payment obligations
may simply not have the cash to make payment) or a “strategic” effect (i.e.,
borrowers with larger payment obligations are less inclined to make a payment
even if it is feasible). The former can be thought of as occurring whenever
yt <m, while the latter occurs if yt >m but also yt < y∗

t .
A third feature of the model is that many borrowers optimally choose to put

exactly the required minimum down. In the data, over 40 percent of the bor-
rowers chose to put down exactly the required minimum, and this can be gen-
erated by the model given that the constraint in the borrower’s optimal down
payment problem (D≥ d) may be binding for many levels of initial liquidity y0.
Moreover, since the optimal down payment is increasing in y0, borrowers who
put down the minimum are those who have the least initial liquidity and are
therefore those who are most likely to default (see Figure 2).

Finally, the model can match key properties of the default timing distribu-
tion. In particular, the frequency of early defaults and relatively infrequent
late defaults. Early defaults are prevalent in the model for two reasons. First,
as long as car utility does not depreciate too quickly, the minimum level of
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income required for payment increases with time. This occurs because the fu-
ture value from payment increases as the borrower gets closer to the end of
the loan due to the possibility of owning the car after paying off the loan in
the last period. Second, borrowers who make payments are positively selected
over the loan term in the sense that surviving borrowers will have, on average,
higher liquidities and car values than borrowers who have defaulted, and are
therefore less likely to be close to the default margin.

A.3. Numerical Calibration and Illustration of the Model

The above results suggest that our model of borrower behavior makes sev-
eral intuitively appealing predictions about the relationship between structural
parameters and model outcomes. These predictions did not depend on the ex-
act values of the contract terms or other parameters that affect the borrower’s
value function or on the distribution of applicant characteristics in the pop-
ulation (i.e., the joint distribution of y0 and v0). However, these qualitative
features do not assure us that our model can match the important features of
our data quantitatively. In this section, we calibrate our model by searching for
parameters that allow the model to match several key moments in the data. We
then examine the predictions of the calibrated model. This allows us to clarify
some of the theoretically ambiguous predictions described above, such as the
effect of loan term on purchase and repayment, and to consider the impact of
pricing changes on borrower behavior.

Additional Parameterization of the Model

Before calibrating the model, we first make additional distributional assump-
tions. We assume that initial car utility v0 and initial liquidity y0 are possibly
correlated and are drawn from a (truncated) bivariate normal distribution

(
v0

y0

)
∼ N

((
μv

μy

)
�

(
σ2

v ρvyσvσy

ρvyσvσy σ2
y

))
�(A.5)

where—due to the log utility specification—we truncate this distribution at
y0 = $50.1 We normalize the one-time utility from purchase u0 to zero.

Imposing Parameter Values on Some of the Parameters

While we choose some of the parameters to match moments in the data
as described below, we impose assumptions on others. We set the offer terms
to match the modal loan we observe in the data. Specifically, we set the pur-
chase price p = $11,000 (including taxes and fees), the required down pay-
ment d = $1000, the annual interest rate on the loan z 29�9 percent, and the

1We also experimented with a log normal distribution, which would not require truncation, but
our ability to fit the moments was much worse.
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loan term T = 42 months. To solve the model more quickly, we assume that
the loan is repaid in 42 equal monthly payments (periods) rather than the 90
payments that a typical (in our data) biweekly payment schedule implies. We
also calibrate the car value to be discounted at an annual rate of 0�88, imply-
ing a per-period (monthly) depreciation rate δ = 0�989, and that individuals
discount utility at an annual rate of 0�75, implying a per-period (monthly) dis-
count rate β= 0�976.

Calibration of the Remaining Parameters

We choose values for the remaining parameters of the model—μv, μy , σv, σy ,
ρvy , σε, and ϕ—to match some key moments in the data. Specifically, we ob-
tain values for these seven parameters so that the model predictions match the
following seven (unconditional) moments we observe in the data: (i) the proba-
bility of sale, (ii) the probability of making exactly the minimum down payment
conditional on sale, (iii) the average payment above the required minimum for
those who pay more than the required minimum, (iv) the probability of default
conditional on sale, (v) the average fraction of payments made conditional on
default, (vi) the semielasticity of demand with respect to a $100 increase in the
minimum down payment, and (vii) the semielasticity of demand with respect
to a $1000 increase in car price.

Table A.I reports the values of these moments in the data and the corre-
sponding values from the calibrated parameters. The observed moments in the
table are qualitatively similar to analogous moments we obtain in the paper,
although they are computed based on a more homogeneous subset of loans

TABLE A.I

MODEL FITa

Actual Model

(i) Probability of purchase 0.345 0.341
(ii) Probability of minimum down 0.427 0.416
(iii) Average extra down payment if above minimum $577 $543
(iv) Probability of payment 0.392 0.412
(v) Average fraction of payments made if default 0.344 0.292
(vi) Change in close rate from $100 increase in minimum down −0.022 −0.022

payment requirement
(vii) Change in close rate from $100 increase in car price −0.002 −0.0003

aThe “Actual” column lists the value of the moments that were used to calibrate the consumer behavior model
described in this appendix. The corresponding “Model” column represents the model predictions for these moments at
the best calibrated parameter values. Actual close rate is based on all applicants. Actual probability of minimum down
and average extra down are conditional on sale. Probability of payment and fraction of payments conditional on default
are based on uncensored sales only. Actual estimate for the change in close rate from $100 increase in minimum down
is based on OLS regression, using all applicants, of sale indicator on price, minimum down requirement, and other
observables (the results of these regressions are qualitatively similar to those reported in Adams, Einav, and Levin
(2009) and to those we obtain later in this paper).
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in the data (42-month uncensored loans with biweekly repayment intervals)
rather than all loans in our sample. This subset of loans was chosen to match
the modal offer terms.

The observed moment corresponding to the semielasticity of demand with
respect to a $100 increase in minimum down payment was computed as the
estimated coefficient on minimum down payment in a regression of a sale in-
dicator on the minimum down payment and credit category fixed effects. The
observed moment corresponding to the semielasticity of demand with respect
to a $100 increase in car price was computed analogously with car price as a
regressor instead of the minimum down payment. Both estimates are similar in
magnitude to those estimated in Adams, Einav, and Levin (2009), which were
estimated using the full sample of applicants and a full set of controls.

Computational Details

The goal of the calibration exercise is to choose the parameters that mini-
mize the distance between the seven empirical moments listed above and their
simulated counterparts generated by the model. To compute these parameter
values, we proceed in the following steps:

Step 1. Choose a set of parameter values μv, μy , σv, σy , ρvy , σε, and ϕ.
Step 2. Compute optimal policy functions for all states in a discrete grid.

The state variables of the model are stochastic liquidity yt , deterministic car
utility vt , and constant payment size m. The borrower’s policy functions can
be summarized by an optimal down payment rule D∗(y0� v0�p�d�ϕ�σε) and
a vector of default thresholds (y∗

1 (v1�m�ϕ�σε)� � � � � y
∗
T (vT �m�ϕ�σε)). To com-

pute these thresholds, we divide the state space into a discrete grid, with points
on the grid separated by increments of $100 for initial liquidity, $10 for pay-
ment size, and 0.1 for initial car utility. For each discrete state, we compute
the optimal policy by backward induction, starting from period T . In each pe-
riod, the borrower’s expectations about future liquidity depend on the Markov
transition probabilities from her current discrete liquidity to each state in the
next period. These probabilities are approximated by a cumulative normal dis-
tribution with mean equal to the current discrete liquidity state and standard
deviation equal to the volatility of liquidity shocks σε.

Step 3. Simulate initial applicant characteristics y0 and v0 based on μv, μy ,
σv, σy , and ρvy , and liquidity shocks εt based on σε. The number of simulations
we use for this exercise is 100,000.

Step 4. Compute optimal purchase and down payment decisions for each
simulated applicant based on her initial liquidity and car value, and the optimal
down payment function determined in Step 2. In addition, compute optimal
repayment decisions for each simulated applicant based on her liquidity shocks
and the default thresholds determined in Step 2. Each simulated applicant is
then characterized by a purchase decision, a down payment decision, and a
time to default.
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Step 5. Compute the values for the seven moments we are trying to match
using the simulated data calculated in Step 4.

Step 6. Compute the minimum distance function equal to the (weighted)
sum of squared differences between the simulated moments and their empir-
ical analogs. In particular, let g be a vector of empirical moments and let ĝ
be the corresponding vector of simulated moments. The minimum distance
objective function is given by Ω = [g − ĝ]′W [g − ĝ], where W is a weighting
matrix.

Step 7. Repeat Steps 1–6 until the objective function Ω is minimized. In
practice, this minimization is completed using a grid search over the param-
eter space followed by Nelder–Mead simplex minimization routines run in the
regions of best fit.

Parameters and Model Fit

The calibrated model is able to fit these moments quite well, with param-
eter values that seem overall sensible. Table A.I reports the seven empirical
moments used to calibrate the model. The model quite closely matches the
probability of sale, probability of observing exactly the minimum down, the av-
erage down payment above the minimum, the probability of default, and the
semielasticity of demand with respect to the minimum down payment. The
model slightly underpredicts the fraction of payments made conditional on de-
fault and the semielasticity of demand with respect to a $100 change in car
price. However, we take the overall fit of the calibrated model to be an indica-
tion that our model of borrower purchase and repayment behavior is reason-
able.

The calibrated model also fits other moments in the data (which were not
used for the calibration) reasonably well, such as the distributional patterns of
observed down payments and repayment duration. Using the calibrated mod-
els, Figure A.1(a) shows the distribution of down payment conditional on pay-
ing more than the minimum and Figure A.1(b) shows the distribution of de-
fault timing. Both these figures are plotted against the analogous distributions
of the data and—despite the fact that this dimension of the data was not used
to calibrate the model—they seem to be qualitatively quite similar.

The resulting calibrated parameters of the model are shown in Table A.II.
The five parameters of the applicant characteristic distribution—μv, μy , σv,
σy , and ρvy—are identified primarily from the five moments observed at the
time of purchase. The calibrated mean flow utility (in dollars) from the car is
$17,744, with a standard deviation of $2452.2 While this parameter value is ex-
tremely high, this magnitude of car utility is needed to account for the fact that

2We do not calibrate this number directly. To arrive at this number we use our calibrated value
of μv = 2�931 and transform it to the dollar value x by solving for μv + ln y = ln(y + x) (recall
that flow utility is v + ln y), and assuming y = $1000, which is the minimal liquidity required to
purchase a car. The implied car value would be even higher if we used higher levels of y .
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FIGURE A.1(a).—Distribution of down payments above minimum. Each bin shows the frac-
tion of borrowers who made a down payment that exceeded the required minimum by between
$(X − 199) and $X . The bin labeled $2000 includes all buyers whose down payments exceeded
the required minimum by at least $2000. Black bars represent observed down payments from all
borrowers in our sample. Gray bars represent down payments generated by the model of con-
sumer behavior described in this appendix.

FIGURE A.1(b).—Distribution of default timing conditional on default. Each bin shows the
fraction of defaulters who defaulted after making a fraction of their payments between X and
X − 0�05. Fraction of payments made is defined as total number of payments made divided by
the total number of payments due. Black bars represent observed fractions of payments made for
all defaulters with uncensored loans. Gray bars represent fractions of payments made generated
by the model of borrower behavior described in this appendix.
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TABLE A.II

MODEL PARAMETERSa

Calibrated Parameters Estimate

Initial car value (mean) $17,744
Initial car value (std. dev.) $2452
Initial liquidity (mean) $501
Initial liquidity (std. dev.) $1436
Corr. b/w initial car value and liquidity −0.025
Volatility of liquidity shocks $544
Cost of default $2800

Other (Imposed) Parameter Values Value

Exponential discount factor (annual) 75%
Car value depreciation rate (annual) 88%
Coefficient of relative risk aversion 1.00
Liquidity autocorrelation coefficient 1.00

Offer Terms Value

Vehicle price including taxes and fees $11,000
Minimum down payment requirement $1000
Loan APR (annual) 29.9%
Loan term (months) 42

aThe calibrated parameters in this table are those that minimize the dis-
tance between the observed and model-generated moments presented in Ta-
ble A.I. The first five parameters are the parameters of the bivariate normal
distribution of applicant characteristics (y0� v0). The last two parameters—
the volatility of liquidity shocks and the fixed cost of default—primarily affect
the borrower’s repayment problem. Imposed parameters were chosen to aid
identification of the calibrated parameters, and offer terms were chosen to
match the modal loan observed in the data.

numerous borrowers purchase even though they are likely to default on the
loan (and thus will lose the car) and those who repay the loan will have to make
large payments at a high interest rate. Moreover, while a lower mean car value
together with a higher mean initial liquidity could also match the observed
probability of sale, it would not allow us to match the extremely low semielas-
ticity of demand with respect to price, since more applicants would be along
the horizontal purchase threshold affected by price (see Figure A.2(c) below).
In fact, such high (and possibly unrealistic) estimates are one reason that in the
paper, we focus on estimating behavioral responses to pricing changes rather
than on estimating utility parameters.

The calibrated mean initial liquidity for applicants in the model is $501, with
a standard deviation of $1436. This parameter is driven by the facts that many
borrowers choose not to purchase and that many borrowers change their pur-
chase decision in response to changes in the minimum down payment. The lat-
ter suggests many borrowers are near the $1000 threshold. The large standard
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deviation on initial liquidity is due to the fact that many borrowers do make
more than the minimum down payment, and high levels of initial liquidity are
needed to explain these borrowers.

The parameters that affect borrower repayment behavior—σε, and ϕ—are
identified primarily from the two moments of the default timing distribution,
namely the probability of default and the fraction of payments made condi-
tional on default. The estimated standard deviation of liquidity shocks is $544
per month. While this may seem high, it is important to note that this volatility
captures not only changes in liquidity (which in turn may be driven by changes
in income or prioritized expenses), but all changes in the marginal utility of
owning the car not captured by the constant depreciation rate δ. The esti-
mated one-time cost of default is $2800, which may not be unreasonable for
our sample population.

A.4. Graphical Illustration of the Model

Panel (a) of Figure 4—replicated in this appendix as Figure A.2(a)—
provides intuition for the model implications by characterizing the purchase
and down payment decisions in the space of initial liquidity y0 and car utility v0.
Since we only allow heterogeneity across individuals in these two parameters,
a point in this space fully represents an individual at the time of purchase. The
cloud of scatterpoints shows the distribution of the model’s simulated appli-
cants, which are drawn from a bivariate normal distribution with the calibrated
parameters μv, μy , σv, σy , and ρvy .

Figure A.2(a) allows us to classify individuals into three groups. The first
group, in the bottom-left region of the figure, consists of individuals who decide
not to purchase a car. These are individuals who either do not need the car
as much (low v0) or do not have enough liquidity to pay for it (low y0). The
latter may occur for several reasons. Individuals with very low liquidity (y0 <
d) simply cannot make the required down payment. Individuals with higher
liquidity could make the down payment, but their liquidity is sufficiently low
that the marginal utility of money after making the down payment is extremely
high, making static considerations sufficient for a nonpurchase. Finally, a third
effect is that low liquidity today is associated with low liquidity in the future,
and, therefore, may lead to more frequent and faster default. This reduces the
option value associated with purchase and would also make such individuals
less likely to purchase.

The second group of individuals, in the middle region, is those who decide to
purchase and pay exactly the minimum down payment. These are individuals
who are constrained by the minimum down payment requirement, either be-
cause of low liquidity and high marginal utility of money, or because of high de-
fault probability (due to low liquidity or intermediate car value), which makes
paying more up-front suboptimal. Yet, they sufficiently need the car to justify a
purchase. As one can see, the boundary of this region is downward sloping; the
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FIGURE A.2(a).—Model illustration. This figure duplicates panel (a) of Figure 4 and provides a graphical illustration of the consumer behavior
model described in this appendix, assuming a required minimum down payment of $1000 for all applicants. The horizontal axis shows the applicant’s
initial liquidity (y0), and the vertical axis shows the applicant’s initial car utility (v0). Each applicant lies at a point in this (y0� v0) space. The region
labeled “No purchase” contains all applicants who do not purchase. Applicants do not purchase for one of two reasons: either they do not have the
liquidity to make the minimum down payment (y0 < 1000) or they can make the minimum down payment but do not derive enough utility from
the car to make it worthwhile. The region labeled “Min. down” contains all borrowers who make exactly the required minimum down payment.
The region labeled “Extra down” contains all applicants who put down more than the required minimum. The dashed lines in the figure represent
iso-default curves; for example, all applicants on the line labeled 50% have an expected default rate of 50% (based on model simulations).
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liquidity level that makes an individual constrained is lower as the utility from
the car is higher. This is because higher car utility is associated with less default,
thereby increasing the incentive to pay more up front and reduce subsequent
monthly payments.

The final group of individuals, located in the upper-right region of the figure,
is those with high liquidity and high car utility. These individuals are not con-
strained by the minimum down payment and simply solve the unconstrained
dynamic optimization problem. Indeed, these individuals also have the low-
est default rate, which is consistent with the important negative correlation
between down payment and default documented in Adams, Einav, and Levin
(2009).

Panels (b) and (c) of Figure 4—replicated here as Figures A.2(b)
and A.2(c)—illustrate how changes in the minimum down payment and the
price of the car affect individuals. In Figure A.2(b), we consider a $500 increase
in the required down payment: Both the purchase threshold and the threshold
for putting more than the minimum down shift up and to the right. The over-
all close rate is reduced, as individuals who were just to the right of the left
curve no longer purchase. Given the calibrated values, these individuals have
lower initial liquidity (and slightly lower initial car utility), and are, therefore,
relatively high risk. This makes them less profitable than the average buyer.
The second curve in Figure A.2(b) also shifts up given that the minimum down
payment constraint is now binding for more individuals. In Figure A.2(c), we
consider a $2000 dollar increase in the price of the car. While again the curves
shift up in the same direction, they shift much less, essentially leading to a min-
imal effect on the purchase decision and to only a small effect on the down
payment decision.

A.5. Linear Approximation

As discussed in Section 4.3, we approximate the consumer model with a set
of linearized estimating equations. Here we use the behavioral model devel-
oped above to illustrate how well these linear approximations approximate the
policy functions derived from the calibrated version of the behavioral model.

As already described, Figures A.1(a) and A.1(b) present, respectively, the
distribution of down payment conditional on paying more than the minimum
and the distribution of default timing, using model simulations that are based
on the calibrated parameters. Both these figures are plotted against the anal-
ogous distributions of the data and—despite the fact that this dimension of
the data was not used to calibrate the model—they seem to fit qualitatively
quite well. More importantly, it seems that both these figures could be well
approximated by truncated normal and truncated log normal distributions, re-
spectively, which is what we use for the estimation of the model.

In addition, in Table A.III and Figures A.3(a) and A.3(b), we use simulations
from the calibrated model to report probit and tobit regressions of the key out-
come variables (purchase, down payment, and repayment) on the key policy
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FIGURE A.2(b).—Model illustration of a $500 increase in the minimum down payment requirement. This figure duplicates panel (b) of Figure 4
and illustrates the model prediction resulting from a $500 increase in the required minimum down payment. Each scatterpoint on the chart
represents one applicant with unobservable characteristics (y0� v0), drawn from the calibrated distribution. Initial liquidity is drawn from a truncated
normal distribution with truncation at $50. The axes and the solid lines are the same as in Figure A.2(a). The dashed lines show how the curves
shift as a result of the increase in the required down payment (from $1000 to $1500). The curves partition consumers to four groups: (i) those who
did not purchase before the increase in the minimum down payment and obviously still decide not to purchase; (ii) high liquidity individuals who
are unconstrained even by the higher required down payment; (iii) liquidity contrained individuals who were mostly putting the minimum down
payment under $1000 but decide to stop purchasing when faced with a $1500 requirement; (iv) individuals with intermediate level of liquidity who
still purchase, but increase their down payment to satisfy the higher requirement.
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FIGURE A.2(c).—Model illustration of a $2000 increase in car price. This figure duplicates panel (c) of Figure 4 and is similar to Figure A.2(b),
but now illustrates the model prediction resulting from a $2000 increase in the price of the car. The figure illustrates that when the car price
increases by a large amount, the curves do not shift much. Individuals who did not purchase obviously do not purchase when prices go up. Most
individuals who pay the minimum down payment keep doing the same, and simply take a larger loan in response to the price increase. There is
only a small region in which individuals cease to purchase in response to the price change; moreover, the density of individuals in this region is
relatively sparse (given our calibration exercise). These two effects allow us to match the low price elasticity in the data. Finally, all other individuals
(including a small set of individuals who initially pay the minimum down payment requirement) respond to the price increase by a small increase
in their down payments (which is much smaller than the price increase, thereby still leading to much larger loan amounts).
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TABLE A.III

REGRESSION ESTIMATES WITH SIMULATED DATA

(A) Probit of Sale Indicator on Price (N = 2,000,000)
Price −0.0071 0.0017 −0.0026 −0.0025

(0�000) (0�001) (0�002) (0�004)
Price2 — −0.0004 0.0001 0.0001

— (0�000) (0�000) (0�001)
Price3 — — 0.0000 0.0000

— — (0�000) (0�000)
Price4 — — — 0.0000

— — — (0�000)
logL −1,338,220 −1,338,111 −1,338,107 −1,338,107

(B) Probit of Sale Indicator on Min. Down (N = 2,000,000)
Mindp −0.4660 −0.0546 0.2002 0.1320

(0�002) (0�006) (0�013) (0�025)
Mindp2 — −0.2118 −0.5460 −0.3808

— (0�003) (0�016) (0�054)
Mindp3 — — 0.1135 −0.0191

— — (0�005) (0�041)
Mindp4 — — — 0.0336

— — — (0�010)
logL −1,269,860 −1,267,101 −1,266,881 −1,266,875

(C) Tobit of Down Payment on Price (N = 703,931)
Price 0.0070 −0.0002 0.0041 0.0000

(0�000) (0�001) (0�001) (0�004)
Price2 — 0.0003 −0.0001 0.0032

(0�000) (0�000) (0�000)
Price3 — — 0.0000 0.0006

— — (0�000) (0�000)
Price4 — — — 0.0000

— — — (0�000)
logL −620,486 −620,396 −620,391.31 −620,391

(D) Tobit of ln(fraction of payments) on Price (N = 703,931)
Price −0.0282 −0.0262 −0.0086 0.0000

(0�000) (0�002) (0�004) (0�026)
Price2 — −0.0001 −0.0021 0.0091

(0�000) (0�000) −(0�009)
Price3 — — 0.0001 0.0016

— — (0�000) (0�001)
Price4 — — — 0.0001

— — — (0�000)
logL −995,891 −995,890 −995,880 −995,870

instruments, minimum down payment, and price. Figures A.3(a) and A.3(b)
show the relationships, and Table A.III reports regression results that use dif-
ferent degrees of polynomials of these key right-hand-side variables. As one
can see, although the relationship has some curvature, a linear approximation
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FIGURE A.3(a).—Simulated lending outcomes versus vehicle price. This figure illustrates the
relationship between lending outcomes and car price for the model of borrower behavior de-
scribed in this appendix. Lines are computed by fixing the pool of applicants and are simulated
according to the calibrated parameter estimates presented in Table A.II, fixing the minimum
down payment at $1000 for all applicants, and varying car price. The probability of sale, average
down payment, and fraction of payments made are then computed for each price based on the
results of each applicant’s optimization problem and simulated income draws for each borrower.

seems to fit quite well, with higher degree polynomials hardly changing the
explanatory power.
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FIGURE A.3(b).—Simulated lending outcomes versus minimum down requirement. This fig-
ure illustrates the relationship between lending outcomes and minimum down payment for the
model of borrower behavior described in this appendix. Lines are computed by fixing the pool
of applicants and are simulated according to the calibrated parameter estimates presented in
Table A.II, fixing the car price at $11,000 for all applicants and varying the minimum down pay-
ment. The probability of sale, average down payment, and fraction of payments made are then
computed for each price based on the results of each applicant’s optimization problem and sim-
ulated income draws for each borrower.
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