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BY BRENDAN DALEY AND BRETT GREEN

The purpose of this supplement is to establish the strong connection between the
continuous-time model in the main paper and a discrete-time analog. First, when
time periods are short, there exists an equilibrium with nearly identical structure to
Z(a*, B*) (the equilibrium of interest in the main paper). Second, this equilibrium is
unique among stationary equilibria satisfying a similar refinement on off-path beliefs
and nondecreasing value functions (a condition we include merely for convenience).
Third, as we take the period length to zero, the sequence of discrete-time equilibria
converges to 5 (a*, B*).

S.1. INTRODUCTION

THE PURPOSE OF THIS SUPPLEMENT is to establish the strong connection be-
tween the continuous-time model in the main paper and a discrete-time ana-
log. For the sake of brevity, we only consider the case where the static lemons
condition (SLC) holds. We show three main results. First, when time peri-
ods are short, there exists an equilibrium with nearly identical structure to
E(a*, B*). Second, this equilibrium is unique among stationary equilibria sat-
isfying a similar refinement on off-path beliefs and nondecreasing value func-
tions (a condition we include merely for convenience). Third, as we take the
period length to zero, the sequence of discrete-time equilibria converges to
E(ar, B).

There are three reasons to carry out this exercise. First, some concepts and
intuitions may be easier to capture in a discrete-time setting. The reader can
appeal to whichever framework s/he finds most useful for understanding any
aspect of the model. Second, we can regard this as a robustness check. It is
reassuring that the limit of the equilibrium of the discrete-time model is the
equilibrium of the model posed directly in continuous time. Finally, after see-
ing the “integer problems” encountered in discrete time, the reader should be
convinced that working in continuous time has considerable advantages.

REMARK S.1: To maintain consistency with the continuous-time model, we
continue to represent the buyer side of the market as an offer process and re-
tain the solution concepts given by Definition 2.1, to establish existence, and
Definition 5.2, for uniqueness. However, identical results obtain under the al-
ternative modeling specification in which two short-lived strategic buyers make
private offers in each period (as in Remark 2.2) and the solution concept is
given by perfect Bayesian equilibrium (supplemented with stationarity and be-
lief monotonicity for Theorem S.2).
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For expediency, some arguments given here are less formal than the proofs
in the main Appendix. There is, however, enough content that the interested
reader should understand the mechanics of the discrete-time equilibrium and
be able to fill in desired details.

S.2. SETUP

Everything is as in Section 2 with the following exceptions.
(i) The SLC holds: Ky > V.
(i) W, is defined if and only if t = A, 24, ... for some A > 0.
(iii) For each type, the news process follows a random walk.
Let g =1(1+ %x/Z) for some (u, o) € R?, and, given any X4, the condi-
tional distribution of X ,1)4 is as follows:

If6=H,
X1+ ov/A  with probability ¢4,
Xnsna = . . s
X4 — o~/A with probability 1 — g*.
Ifo=1L,

X1+ o~/A  with probability 1 — ¢,

Xopois =
e { X,s — o/A with probability ¢*.

It is well known that these processes converge to the continuous-time processes
in the body (with uy = u, ur = —p) as A — 0 (Cox and Miller (1965)). The
assumption that the high type will get good news (i.e., X will increase) with
the same probability that the low type gets bad news (i.e., X will decrease)
is convenient: starting from any prior, the belief of a Bayesian who observes
one instance of good news followed by one instance of bad news will arrive
back at his prior. Therefore, given parameters w, o, and A, for any z, there
exists a unique grid G, on which Z (beliefs based only on observation of X)
will reside.! G, is a countable sequence of points that span the real line with
z € G,. Let z,, € G, denote the posterior a Bayesian would arrive at starting
from a prior of z after observing n € I, more instances of good news than bad
news, and define z_, analogously.

S.3. MAIN RESULTS

THEOREM S.1: When A is small, there exists a unique pair «** < B** and an
equilibrium that is almost identical to 5 (a**, B**), adapted to the countable time
grid. The only exception is that W (B**) is offered at z = B** with probability A,
which may or may not be uniquely determined, depending on parameters.

1Recall that “beliefs are z” translates to Pr(6 = H) = #
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For analysis of the discrete-time model, modify the definition of Belief
Monotonicity (condition (vi) of Definition 5.2) as follows: If an unexpected
rejection occurs when beliefs are Z,, then Z,,, — Z, = Z,+A - Z. That is, be-
liefs are unchanged by the act of rejecting unexpectedly, and so the condition is
slightly stronger than the original definition of Belief Monotonicity. This sim-
plifies matters by not having to consider that an unexpected rejection leads to
a higher belief level that resides on a different grid. Notice that in continuous
time, the belief process in = (a*, B*)—the unique SBM equilibrium (Theo-
rem 5.1)—satisfies the continuous-time analog of this condition.

THEOREM S.2: When A is small, the equilibrium of Theorem S.1 is the unique
SBM equilibrium satisfying nondecreasing value functions (NDVF).

Restricting attention to equilibria satisfying NDVF (Section 5.2) is only for
convenience (and in the interest of keeping this supplement a reasonable
length). It is possible to demonstrate uniqueness, following many of the same
arguments employed in the proof of Theorem 5.1, without this restriction.

Finally,

THEOREM S.3: As A — 0, the equilibrium of Theorem S.1 converges to
E (a*, B*) from the continuous-time model in the following ways:
(i) Equilibrium payoffs converge pointwise.
(ii) The stationary offer function converges pointwise.
(iii) Equilibrium seller strategies converge in distribution.

S.4. B2 FUNCTIONS

The arguments for the equilibrium construction—uniqueness and conver-
gence—will rely on the discrete-time analogs of the By functions analyzed in
Appendix B.3.

DEFINITION S.1: Fix a pair (a, 8), 8 > a, 8 € G,. Define ff(z|a, B) as the
continuation value to the low type of being at z € G,,, a_; < z < 8 under the
following conditions:

() Z evolves based on Bayesian updating on the observation of X.
(11) FLA(a,1|a, B) = VL.

(iii) F2(Bla, B) = P(B).

DEFINITION S.2: Fix a pair (a, 8), B > a, B € G,. Define ﬁfl(zm, B) as the
continuation value to the high type of being at z € G,, «_; < z < B,; under the
following conditions:

(i) Z evolves based on Bayesian updating on the observation of X, except
as stated in (iii).

(i) FA(Boila, B) = W(Bs).
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(iii) If Z, = a_, then Z,,, = a,; with probability ¢*, and Z,, 5, = a_; with
probability (1 — g*).

DEFINITION S.3: B#(a) is the maximum B8 > «, B8 € G,, such that ff(a|a,
B)=Vi..

DEFINITION S.4: B2 () is the minimum B > «, B € G,, such that ff,( Bla,

B) =¥(B).

Recall from the analysis of the continuous-time model in Appendix B.3 that
By and B, are well defined and continuous. They intersect at a single point a*,
below which B, < By and above which B; > By. The following convergence
result is very useful.

LEMMA S.1: For 6 € {L, H}, B converges to By uniformly as A — 0.

The proof of Lemma S.1 is found in Section S.7.

S.5. EQUILIBRIUM CONSTRUCTION AND VERIFICATION

To establish equilibrium existence and uniqueness, we need to delve a little
deeper into the structures of B2 and B2.

FACT S.1: B{ is right-continuous and strictly increasing (and therefore contin-
uous almost everywhere).

That B{ is increasing when it is continuous is obvious. To understand why it
increases at points of discontinuity, consider an « and its corresponding B3 (a),
such that ﬁf(a|a, Bi(a)) =V,. Let B (a) = a;,. Now, for an o = a — ¢, its
corresponding B} (') must be &, ,_,,. Why? Suppose it maintained the same
distance in grid points as the original « and B4 («). Then every path of X results
in the same behavior up and down a subgrid of equal size (), endowing the
same flow payoff and payoff at the lower terminal node. However, every path
that ends at the upper terminal node receives a slightly lower terminal payoff.
BecausNe the original terminal payoff of ¥(B2(a)) was the exact amount to
make F{(ala, Bf(a)) = V., the new lower terminal payoff of ¥(B4(«')) will
cause F7(a'|a/, B (o)) to fall below V.. The solution is to decrease B2(a') by
one grid point to o/, ,_,,. This problem only occurs when F}(a|a, Bf (a)) = V.
If ﬁf(a|a, B4(a)) >V, (and & is small enough), then o’ and B2 (') will also be
separated by the same number of grid points as the original « and B4 («) were.
This yields the continuous intervals in B2. We can see the same logic from
the opposite perspective, one of increasing a. Start with some («, B#(«)) pair
separated by n grid points. As we continuously increase a, if we keep B(a) the
same number of grid points away, F; (a|a, a,) increases as well. Eventually,

FA(ala, a,,1) =V, and B2(a) therefore jumps up by one grid point.
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FACT S.2: B,A_I is right-continuous and continuous almost everywhere. By, is
strictly increasing on any interval on which it is continuous, but decreases at every
point of discontinuity.

The argument for this property is similar to the one above with the following
difference. Con51der an o’ such that B (a’) = a . Now, as we continuously
increase a from o', we can check whether B (a) can remain n grid points
above. The answer is it cannot: as « increases, the payoff to waiting at a,,_1,
falls until F4 e, ay,) = V(ay ;1) Therefore, B4 (a) must jump down
by one grid point to «,, 1, when this occurs. The reason for this is that, just as
in the continuous-time model, for any «, B2 () is on the decreasmg portion of
(the discrete-time analog of) MBy (Appendlx A.2), meaning that the marginal
gain from waiting at higher beliefs is getting lower.

Not surprisingly, the equilibrium results will rely on intersection of B2
and Bj,. Generically, the two functions intersect. The convergence of these
functions to their continuous-time analogs gives that, for small enough A4,
B2 < B4 for small « and B2 > B4, for large «. The fact that the discontinu-
ities in both functions are always on the order of one grid point implies that
the only way the two functions will fail to intersect is if they are both discon-
tinuous at some « such that Bf < By, for all « < a and B} > By, for all o’ > a.
Designate this occurrence as a “near intersection.” In addition to being non-
generic, a near intersection does not pose a problem for equilibrium existence
or uniqueness (see Case 2 below).

Identifying (a*, B**) and A

Analogous to the notation in the continuous-time model, F2 refers to the
equilibrium value function of type 6 in a model with period | 1ength A. Notice
that for the candidate equlhbrlum of Theorem S.1, Fj'(z) ~ F A(z|a“* B**) for
all z € G,a., a® <z < B%. There are two cases to consider: Case 1, Bf and
Bj, intersect or Case 2, they do not. Start with Case 1 and let « be a point of
intersection. « is an element of two half-open intervals [¢; , @, ) and [a, ay),
where B3 is continuous on [a,, @,). Given that the B3 curves intersect at a,
max{q, , a,,} is also a point of intersection. Let a** = max{e, , a;}.

Case 1. (A) If a; < ay, then B** = BJ(a*) for 6 = L, H. Define A to
be the probability that w(B4*) = ¥(B4*). Recall that F, A(a*|a®, B (a?)) >
V, and F, A(a*|a, (B (a*)),1) < V. There is then a unique probability
A € (0,1] such that if w(B#(a*)) = ¥(B#(a*)) with probability A and
w((B2(a**))1) = Y((B2(a**)),1) with probability 1 that the low type’s value
at a* will be exactly V; . Let this be the equilibrium value of A.

(B) If @, > a;;, then (B3(a*))_; < B* < Bi(a**) for 6 = L, H and any
A € [0, 1] is consistent with equilibrium. We will describe how to precisely pin
down B4* in the verification stage of this argument.
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Case 2. Finally, if B} and Bj do not intersect, as discussed above, there
is then a z where they nearly intersect. This z is a?*. % = B (a*) =
(B#(a*))_;and A =0.

Equilibrium Verification

Let us take the cases in turn:

Case 1. (A) The Belief Consistency and Zero Profit conditions are imme-
diate. For No Deals, as in the verification of the continuous-time model, it
is sufficient to check that the condition holds for all z € [a?*, B**]. First,
consider only states z in G,s.. For § = H, suppose there exists a state z €
[a®*, B**]1 N G- such that F5(z) < ¥(z), and let z’ be the maximum such z.
Then F 7(Z e, 2, ) < Fj(2') < W(2'), contradicting the premise that g4 =
B2 (a”*) (Definition S.4). For § = L, we prove by induction. Suppose that for
some z, (i) Fi(z) > FA(z_1) >V, and (ii) the low type rejects with positive
probability at z. Then

A
(S.1) Fl(z)= / e"'rKy dt + e [q F (z_1) + (1 — ¢ F} (z41)]
0

Given premise (i) and K; < V7, (S.1) implies that FA(z,,) > F2(z). Now notice
that premise (ii) is true of all z € [a**, B**] N G 4. and that premise (i) is true
of z=a*: V, = FA(a*) > FA(a*) = V... Hence, No Deals holds for all z €
[@®*, B**]1 N G 4. To extend the result to states in the no-trade region but off
the grid, consider now a z € [z}, z,), where zi, z; € [a®*, B**] N Ga.. Because
the low type is never supposed to accept V;, with probability 1, her equilibrium
payoff must be identical to the one she achieves by rejecting V; always and
waiting until Z > B** and ¥ is offered (i.e., playing the same strategy as the
high type). Therefore, regardless of type, for any realization of {X,},— ... the
seller’s payoff is weakly increasing (and differentiable) for z € [z;, z,) because
it takes the same number of periods for Z, to rise above 4%, but the payoff
upon doing so is increasing in the first value of Z, > g%, which is in turn weakly
increasing in the starting value z. This completes the argument for § = L. For
6 = H, because the high type is indifferent at 84", her payoff is continuous at z,
as well (to see this, note first that it is true for z;, z, = 84|, B*" because of the
high type’s indifference at 84"; then iterate the argument down the grid). The
result then follows from Taylor’s approximation theorem. Finally, for Seller
Optimality, the only consideration that is not immediate is ensuring that the
high type does not want to reject for any z > 84*. However, this follows from
an argument that the discrete-time analog of MBy(z) < 0 for all z > 4%, just
as in Lemma B.3, since the high-type seller’s problem is approximately the
same when A is small.

(B) The only difference from the first case is that at Bf(a**), the high
type strictly prefers to accept, which will imply B%* < B% (a®*). In this case,
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w(Bs (a*)) = V(B (a*)) with probability 1. Because a** = a,, it must
be that Fj(a®*) =V, creating the necessary indifference between accep-
tance and continuation for z < a**. The high type strictly prefers to ac-
cept at z= B#(a*), but she strictly prefers to reject W((B4(a*)) ;) at
z = (B4 (a*))_;. It follows from the structure of the high-type seller’s problem
that there exists a unique B** € ((B3(a*))_1, B5(a**)), where the high type
will reject W(z) for z < B4* and accept ¥(z) for z > B**. At B**, the high type
is indifferent between accepting and rejecting ¥ (8*). Because B4* ¢ G .-, the
behavior at B%* does not affect the low type’s value at ** and, therefore, A can
be any element of [0, 1].

Case 2. The case of near intersection is very much like Case 1(B). The high
type strictly prefers to accept ¥'(z) at z > B2 (a®) = 8%, but she is indiffer-
ent at z = B# (a**). B&(a**) = (B4 (a**)),, implies that B5 (a**) is an element
of G,a.. Therefore, unlike Case 1(B), the probability with which ¥ (8*) is of-
fered at B** does affect F#(a**). To maintain F(a**) =V, A must be zero.

S.6. EQUILIBRIUM UNIQUENESS

Here we provide an argument for the uniqueness claim of Theorem S.2. It is
immediate that by extending & (a**, B**) off the equilibrium path in the same
manner as done in Section 5.2, we have an SBM equilibrium. The verification
argument above demonstrated that Fj; and F; are nondecreasing.

Individual rationality implies that the high type will never trade when beliefs
are z < z. Therefore, just as in the continuous-time model, there exists a z
such that the low type trades at a price of I, with positive probability (that is
less than 1) when beliefs are z,. Let Z be the set of all such z,, and denote its
supremum as z;. Therefore, for all z > z{, the evolution of the market belief is
governed completely by the realization of news.

Starting from any z, € Z, rejection leads to a discontinuous increase (or
jump) in beliefs to some j(zy) > zo. For the low type to be indifferent, it must
be that continuation from j(z,) when beliefs evolve only based on news endows
expected utility V7 ; that is,

A
(S:2) / e 'Ky dt + e g FL(j(20) 1) + (1= ¢ FL(j(20) )] = Vi
0

From (S.2), we can deduce the following. Given that F{(j(z)_1) > V. (from
No Deals), when A is small, F{(j(z);;) ~ V, to maintain equation (S.2)
and F? nondecreasing. So F7(j(z)) ~ V, as well. But then, it must be that
F2(j(z0)) = V.. This follows because F; is the maximum of the current of-
fer and the continuation value. The continuation value is V;, (equation (S.2)),
and it cannot be that the current offer is arbitrarily close to, but larger than,
V;, because such an offer attracts only the low type and, therefore, violates
No Deals. Hence F}(j(zp)) = V7, and F{(j(z,)_1) = V.. by F} nondecreasing
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and bounded by V.. Finally, substituting V;, for F{(j(z)_,) into equation (S.2)
uniquely pins down F7(j(z0) 1) > Vi

Let 7 ={j:j = j(20), zo € Z}. F? nondecreasing and No Deals imply that
Fi(z) =V, for all z <supJ. FA(j,1) >V, for all j implies that inf7 >
(sup J)_1. Our next step is to demonstrate that 7 is a singleton.

Just as knowing F£(j_;) and F(j) allowed us to pin down FA(j,1) > FA()),
knowing F7(j) and F7(j,,) allows us to pin down F(j,2) > F2(j1), and so
on as long as F{ is governed by its continuation value. This will hold un-
til F2(j.,) < ¥(J.,) and (if driven solely by continuation value) F2(j,n41) >
Y (jin1) (i€., jo, = B(j)). Since the latter is not possible in equilibrium, it
must be that F(B2(j)) is not derived solely from continuation value. By simi-
lar argument used in Section S.5, there is a uniquely determined v € (0, 1] such
that ¥ (B£(j)) must be offered with probability » at B2(j) and accepted with
probability 1.> Therefore, for any j € 7, equilibrium behavior is uniquely de-
termined for all z < W(B{(j)1) residing on the same grid as j. We will now
show that this behavior is consistent with optimization by the high type for
exactly one value of j.

To establish that 7 contains a single element, suppose it does not. For clarity,
assume that Bf and By, intersect.* Recall that B; and By, therefore, coincide
on a half-open interval [e, @).

Consider J= min(j € J).> We claim that 2 Suppose that it were not
so. The low type’s value at j is V;, where j is the lowest point of a no-trade
region on grid G;. Hence, there is a unique profile of offers for beliefs on G,
consistent with F(j) =V

e Notradeatanyz, j <z < Bf(l)~

o At B}(j), W(B}())) is offered with a uniquely determined »; € (0, 1].

o At B2 (ZH ), V(B2 (ZH )) is offered with probability 1.
However, from our analysis of the B4 curves, we know this cannot hold in
equilibrium, because l < a, B( D < Bi( l). Therefore, if reflection occurred
as in the definition of Bjj, the high type prefers to reject ¥ (B;(j)) in favor
of continuation when z = B2( Z). The reflection, however, may not take place
as in the definition of Bﬁ. But because l is the minimum j € 7, the reflection
process must be at least as favorable to the high type as the one in the definition
of B (if Z, falls below J, it will jump to some j > j). She is then at least as
willing to reject when z = Bj(j). If the high type will not accept ¥ (B ())) if

1t is straightforward to show (by induction) that F*(z,,) — F{(z1,_1) (constructed in this way)
is increasing in 7, which ensures that such an 7 exists.

3Notice that v can be distinct from A if and only if B2 (j) # B4*.

“The argument for the case when the curves only “nearly intersect” is analogous, though
slightly more nuanced.

5This assumes the minimum exists. However, there is a straightforward extension of the argu-
ment considering an element of 7 arbitrarily close to inf 7.
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it is offered, it will not be offered. This contradiction implies that j > a. The
analogous argument demonstrates that every element of 7 is less than a.

We now know that every element of .7 is an element of [«, @). The final step
is to establish that 7 = {a}. Consider j = max(j € J).° If j > a, it implies two
things: (i) that v; < 1 to ensure low-type indifference and (ii) that if reflection
took place as in the definition of By, the high type would strictly prefer to
accept at B2(j). Again, j being the maximum element of 7 implies that the
reflection process is no more favorable to the high type than the reflection
process in the definition of B%. Hence, the high type strictly prefers to accept
at B2(j). It is immediate that these scenarios are inconsistent—if the high type
prefers to accept ¥ rather than continue, ¥ must be offered with probability 1
(No Deals). Hence, J = {a} and o** = .

This uniquely determines equilibrium behavior for all z < 84* (as identified
by Section S.5). Given that beliefs evolve solely based on the realization of
news when z > %, trade at a price of ¥ (z) occurs with probability 1 for all
z > B**. Again, this follows from an argument that the discrete-time analog of
MBy(z) < 0 for all z > B#*, just as in Lemma B.3, since the high-type seller’s
problem is approximately the same when A is small.

S.7. EQUILIBRIUM CONVERGENCE

All three statements in Theorem S.3 are corollaries to the equilibrium anal-
ysis we have conducted and Lemma S.1. Recall that in the continuous-time
model, the equilibrium is characterized by the unique pair (a*, 8*) such that
By (a*) = By (a*) = B*. The discrete-time model is similarly characterized by a
pair (a**, B4*), where B and B; intersect (or nearly intersect). It is immediate
that (a?*, B**) — (a*, B*) as A — 0. The theorem follows.

PROOF OF LEMMA S.1: We start by constructing the continuous-time
analogs of F{ and Fj. In the continuous-time model, for any triple @ < z < B,
let Z, = Z, + Q¢ and let the following statements hold:

o Let F 1(z|la, B) be the continuation value for the low type in state z
when boundary conditions (16) and (17) from Section 3 hold.

e Let Fy(z|a, B) be the continuation value for the high type in state z
when boundary conditions (18) and (19) from Section 3 hold.

Definitions S.1 and S.2 only specify ﬁg‘(-|a, B) on G,. Extend them now as
follows: If z, z, are two states such that F 4(z|a, B) and F 4(z11]a, B) are given
by Definition S.1 or S.2, then for any a € (0, 1),

FA(az+ (1 —a)zpla, B) = aF2(zle, B) + (1 — a)FA (2] e, B).

6 Again, if one does not wish to assume the maximum exists, the argument is easily extended
by considering an element arbitrarily close to sup J.
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The subsequent fact follows easily from the convergence of the discrete-time
news process to its continuous-time counterpart.

FACT S.3:_Let {B*} be a sequence that converges to a limit Bas A— 0. Then,
forany a < B,as A — 0,

Fl(zla, B*) > Fi(zla, B)  uniformly,
FA(zla, B*) — Fy(zla, B)  uniformly.

In both discrete and continuous time, the value functions are determined by
the exogenously given values of the end-point states, the likelihood of reaching
each end-point state, and the distribution on first hitting times of the end-point
states. The discrete-time versions of each of these components are converging
to their continuous-time analogs, giving the result.

Now we show that B# (a) — By («) for any fixed . Recall that By («) is the
unique B such that, given «, three conditions hold:

Fy(Bla, B) =W¥(B),
Fy(ala, By =0,
Fy(Bla, B) =V (B).
Fix an a. Let B2 be the limit of B2 (a) as A — 0. It is sufficient to show that
Fu(Biila, Bi) =V (By),
Fyy(ala, Bj =0,
F(Bhla, By) = W (B3

The first point is immediate from the definition of Bg. To see the second
point, from the definition of value function, the nature of the reflection of Z
at a, and only writing terms that are (at least) first order in 4,

FA(ala, By (@) = rKyA+ (1 — rA)[¢*Fa(ayla, Bi (@)
+(1 - g*)Fj(a_i|a, By ().

Suppressing the dependence on (a, | B% (a)), notice that property (iii) of Def-
inition S.2 implies that Fj;(a_;) = Fj (). Subtract Fj;(a) from both sides to
get

0=rKuyA+ ¢*[Fa(a.) — Fa(a)]
— rA[G*FA(a.) + (1 — gY) FA(a)].
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Divide by (a,; — @) and take limits as (a,; — a) — 0. It is routine to show
that (« —a ) converges to zero at the same rate as vA does. We are left with
Fyy(ala, B4) =

To verify the third pomt we start by bounding F“(B (a)|a, Bi(a)),
which we shorten to FA(B ) hereafter. By definition, F“(B ) < lIf(BA),
FA((B3)11) = W((B2)+1), and FA((B4)_1) > W((B4)_1), implying

FABa) > rKyA+ (1 —rd)[¢* W (Bi) )
+1-q" )‘P((B ) 1)]
We will now evaluate

FaBi).) - FABY >>
(B3)1— B

(S.3) glﬁ(](
with F, §(B ) set first to its upper bound and then to its lower bound (for all A),
and show that in both cases it produces ¥'( B: 4), giving the third point by the
squeeze theorem. First, because Fff((B )41) = W((BS)11), setting F;}(B ) to
its upper bound of ¥ (B4) makes (S.3) equivalent to the definition of ¥'( B .
Second, set Fj FA (B%) to its lower bound for all A and evaluate

Fi((Bi)«) — FABY)
(B — By

— (V((BY)11) — (rKud+ (1—r4)

x [¢*W((Bi)+) + (1 - gH) W ((B3)-1]))
/((Bf)41 — Bjy).

Rearranging and eliminating additive terms that tend to zero as A — 0 gives

Fa(Bi)) — Ff;(B )

(Bi)41 — B
_ ‘P((B )41) — V((By)-1)
_(1_ ) A
(Bi))+1 — By
W((B )+1) — P((B)-1)
_(1_ ) A
2((Bi)+1 — Bi)
—(1—g"2 1I’((B )11) — P((Bgy) 1)

((Bip)+1— (Byp)-1)

Taking the limit as A — 0, we get that F; ;{(ﬁgla, B\ﬁl) = 1I//(B\IA,). Therefore,
B&(a) = By(a) for any fixed a.
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Now we show that Bf(a) — By («) for any fixed a. Recall that B () is the
unique B such that, given «, three conditions hold:

Fi(ala, )=V,
Fi(Bla, B) =V (B),
F, (ala, B) =0.
Fix an a. Let B\f be the limit of B2(a) as A — 0. It is sufficient to show that
Fi(ala, B) =V,
FL(Blla, BY) =V (B},
Fi(ala, B}) =0.
For the first point, the continuity of F 1. (*|a, B) and Fact S.3 imply that
|Fi(ala, Bi(@)) — Fi'(aila, B(a))| - 0.

That ff(a_ﬂa, Bd(a)) =V, for all A gives the result. Next, Ff(Bf(aﬂa,
Bd(a)) = ¥(Bi(a)) for all A, giving the second point.

We now verify the third point. Notice that as A — 0, B} (a) and B (a) 1 both
limit to B2. By definition of B2, for every A > 0,

Fp(ala, Bi(a)) = Fi(ailo, B} (@) _ o

(S.4)
a— d_q
and
S5y FilelaBi@.n) — Fitela Bi@.w)

a—o_q

It follows, that in the limit as A — 0, (S.4) and (S.5) both limit to zero, giving
the desired result. This establishes that B2(a) — B, («) for any fixed o and
completes the proof. Q.E.D.
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