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THIS SUPPLEMENT CONTAINS ADDITIONAL MATERIAL on Markov decision
problems and details on the proof of Theorem 5.

APPENDIX E: MARKOV DECISION PROBLEMS

E.1. The ACOE

For the reader’s convenience, we provide a statement and a self-contained
proof of the average cost optimality equation for MDPs. The material in this
section is standard.

We let an irreducible MDP M with finite primitives be given. The state space
is S, the action set isA, the reward function is r : S×A→ R, and the transition
function is p(· | s� a).56 We let Σ denote the set of strategies in M.

For δ < 1 and N ∈ N, we let

vδ(s) := max
σ∈Σ

Es�σ

[
(1 − δ)

∞∑
n=1

δn−1r(sn� an)

]

and

vN(s) := max
σ∈Σ

Es�σ

[
1
N

N∑
n=1

r(sn� an)

]

denote the values of the discounted and finite-horizon versions of M, as a
function of the initial state s.

PROPOSITION 6—ACOE: There is a unique v ∈ R and a unique (up to an
additive constant) map θ : S→ R such that

v+ θ(s)= max
a∈A

{
r(s� a)+ Ep(·|s�a)θ(·)

}
for all s ∈ S�(21)

In addition, v= limδ→1 vδ(s)= limN→+∞ vN(s) for all s ∈ S.

56We are thus assuming that the sets S andA are finite, and that for each policy ρ : S→ Δ(A),
the induced Markov chain (sn) is irreducible.
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PROOF: We first prove the existence of a solution to (21). For δ < 1, the
dynamic programming principle is written

vδ(s)= max
a∈A

{
(1 − δ)r(s�a)+ δEp(·|s�a)vδ(·)

}
for all s ∈ S�(22)

Let a∗(s) achieve the maximum in (22), so that vδ(s) = (1 − δ)r(s�a∗(s)) +
δEp(·|s�a∗

s )vδ(·) for each s. This implies that δ �→ vδ(s) is a bounded and ra-
tional function on [0�1). In particular, both v(s) := limδ→1 vδ(s) and θ(s) :=
limδ→1

vδ(s)−v(s)
1−δ exist. Irreducibility readily implies that v(s) is independent of s.

Equation (22) then can be rewritten as

v+ (
vδ(s)− v) = max

a∈A
{
(1 − δ)r(s�a)+ δEp(·|s�a)

[
vδ(t)− v] + δv}�

Equation (21) follows when dividing by 1 − δ and letting δ→ 1.
We next prove uniqueness, and start with v. Let (v�θ) be a solution to (21),

so that

θ(s)= max
a∈A

{
r(s� a)+ Ep(·|s�a)θ(·)

} − v�(23)

Substituting (23) into the right-hand side of (21) yields first

2v+ θ(s)= max
σ

Es�σ

[
r(s1� a1)+ r(s2� a2)+ θ(s3)

]
�

and, by induction,

v+ θ(s)

N
= max

σ
Es�σ

[
1
N

N∑
n=1

r(sn� an)+ θ(sN+1)

N

]

for each N . This implies that limN→∞ vN(s) exists and is equal to v.
We conclude with the uniqueness of θ. Let (v�θ) and (v�ψ) be two solutions

to (21). This implies

θ(s)−ψ(s)≤ max
a∈A

Ep(·|s�a)
(
θ(·)−ψ(·))

for each s. By irreducibility, it follows that θ(·)−ψ(·) is constant. Q.E.D.

E.2. Perturbed Markov Chains and Relative Values

We discuss here two statements on the asymptotic properties of relative val-
ues of perturbed Markov chains, as the perturbation parameter converges to
zero. These statements readily imply those used in the main body of the paper.
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E.2.1. Result 1

The setup is as follows. Let (disjoint) sets Sl with 1 ≤ l ≤ L be given. Also,
for each l, let an irreducible transition function pl on Sl with invariant measure
νl and a “payoff” rl : Sl → R with Eνl [rl(s)] = 0 be given. Let θl : Sl → R denote
the associated relative value.

In addition, let p be an irreducible transition function on S := S1 ∪ · · · ∪ SL,
and let r : S → R be the function that coincides with rl on Sl. For ε > 0, we
define a transition function pε on S as pε(t | s) := (1 − ε)pl(t | s)+ εp(t | s)
for s ∈ Sl and t ∈ S . Let με ∈ Δ(S) be the invariant measure of pε, let γε :=
Eμε[r(s)] be the long-run payoff, and let θε : S → R be the relative value. To fix
ideas, we normalize θε by imposing the condition Eμε[θε(·)] = 0.

PROPOSITION 7: The map ε �→ θε is bounded. In addition,

lim
ε→0

(
θε

(
s′
) − θε(s)

) = θl
(
s′
) − θl(s) for every s� s′ ∈ Sl�

PROOF: We view each transition pε(· | s) as the succession of two random
choices. First, it is randomly decided, with probability ε, whether to use p or
pl to draw the next state, which is next drawn accordingly. We denote by τ the
random time of first “switch” (first round where p is used).

Given any two states s� s′ ∈ S , we denote by (sn) and (s′n) two Markov chains
with transition functions pε starting from s and s′, respectively, which are cou-
pled in that (i) the successive switches occur in the same rounds for the two
chains and (ii) sn = s′n after the first coincidence time ω := inf{n : sn = s′n}; yet
all other random choices are independent.

CLAIM 6: The following statements hold:
• There exists c1 > 0 such that E[∑τ−1

n=1(r(sn)− r(s′n))] ≤ c1 for all s� s′ ∈ S and
ε > 0.

• There exists c2 > 0 such that P(ω ≤ τ) ≥ c2 for every l, s� s′ ∈ Sl and 0 <
ε≤ 1

2 .

PROOF: Let s ∈ S be given, say s ∈ Sl. One has, with obvious notation,

Eε

(
τ−1∑
n=1

r(sn)

)
= El

(
τ−1∑
n=1

r(sn)

)
�

By the ACOE, the latter is equal to θl(s)− El[θl(sτ)] and is therefore bounded
as a function of ε.

The second statement follows from the irreducibility of pl.57 Q.E.D.

57The term P(ω≤ τ) is continuous as a function of ε, converges to 1 as ε→ 0, and is less than
1, except for ε= 1.
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Next, we denote by (τk) the successive switches, so that τ1 = τ. Given
s� s′ ∈ S , denote by φ the smallest index k such that sτk+1 and s′τk+1 belong to
the same component Sl. Because p is irreducible, there exists c3 > 0 such that
P(φ≤L)≥ c3. Note that

θε(s)= E

[
τL+1∑
n=1

(
r(sn)− γε

) + θε(sτL+1+1)

]

and a similar equality holds for θε(s′); hence

θε
(
s′
) − θε(s)= E

[
τL+1∑
n=1

(
r(sn)− r(s′n))

]
+ E

[
θε

(
s′τL+1+1

) − θε(sτL+1+1)
]

≤ Lc1 + max
t�t′∈S

(
θε

(
t ′
) − θε(t)

) × P(ω > τL+1)

≤ Lc1 + (1 − c2c3)max
t�t′∈S

(
θε

(
t ′
) − θε(t)

)
�

using the previous claim. It follows that maxs�s′∈S |θε(s′)−θε(s)| ≤ Lc1
c2c3

. Together
with the equality Eμεθε(·)= 0, this implies the first statement.

For ε > 0, θε is the unique solution to the linear system (s ∈ Sl� l ≤L)
γε + θε(s)= r(s)+ (1 − ε)Epl(·|s)θε(t)+ εEp(·|s)θε(t)�

together with the normalization equation.58 Therefore, θε(s) is a bounded and
rational function of s. Thus, θ(s) := limε→0 θε(s) exists and satisfies the limit
system obtained when setting ε= 0; that is, for fixed l and for each s ∈ Sl, one
has

θ(s)= r(s)+ Epl(·|s)θ(t)�

All solutions of the latter system are equal to θl up to an additive constant,
hence the result. Q.E.D.

E.2.2. Result 2

The setup here is a variant of the previous one. Let two (disjoint) sets S1

and S2, an irreducible transition function pl on Sl with invariant measure νl, a
function rl : Sl → R (l= 1�2), and θl the relative value be given. In addition, let
f : S := S1 ∪ S2 → S be such that f (S1)⊆ S2 and f (S2)⊆ S1, and let r : S → R
be the map whose restriction to Sl is rl.

58Since με is the unique solution of a linear system with coefficients linear in ε, ε �→ με is a
rational function, hence ε �→ γε is a rational function as well.



TRUTHFUL EQUILIBRIA 5

For ε= (ε1� ε2) ∈ (0�1)2, we define a transition function pε over S by pε(t |
s)= (1 − εl)pl(t | s)+ εlf (s) for s ∈ Sl. Thus, transitions from S1 to S2 (resp.,
from S2 to S1) occur with probability ε1 (resp., ε2) in each round. Let θε : S →
R denote the relative value.

PROPOSITION 8: One has limε→0(θε(s
′) − θε(s)) = θl(s

′) − θl(s) whenever
s� s′ ∈ Sl.

Note, however, that θε is unbounded as a function of ε as soon as Eν1r1(·) �=
Eν2r2(·).

PROOF: We first prove that ε �→ θε(s
′)−θε(s) is bounded whenever s� s′ ∈ Sl.

We use the same notations as in the proof of Proposition 7, and let (sn) and (s′n)
be two Markov chains starting from s and s′, with transition function pε and
coupled as before. The constants c1 and c2 are as before. Whenever s� s′ ∈ Sl
(and for εl bounded away from 1), one has P(ω≤ τ)≥ c2, hence∣∣θε(s′) − θε(s)

∣∣ ≤ c1 + (1 − c2) max
t�t′∈S3−l

∣∣θε(t ′) − θε(t)
∣∣�

It follows that maxl=1�2 maxs�s′∈Sl |θε(s′)− θε(s)| ≤ c1
c2

.
The limit claim follows as in the proof of Proposition 7. Q.E.D.

E.3. Proof of Proposition 5

We let an irreducible MDP M0 be given, with primitives (Ω�B�q� r). We
denote by v ∈ R and θ :Ω→ R the limit value and relative values of M0. For
ω ∈Ω, we let

B0(ω) := arg max
b∈B

{
r(ω�b)+ Eω′∼q(·|ω�b)θ

(
ω′)}

be the set of actions that are optimal at ω ∈Ω.
Thus, for ω ∈Ω and b /∈ B0(ω), one has r(ω�b)+ Eq(·|ω�b)θ(ω′) < v+ θ(ω),

and we let c0 > 0 be strictly smaller than the difference between the two sides,
for each ω and b /∈ B0(ω).

In the absence of transfers, assume that the second agent uses a distribution
ρ(ω) ∈ Δ(B0(ω)) with full support, as a function of the report ω of the first
agent. At state ω, it is strictly better to report truthfully ω rather than ω̃ unless
B(ω̃)⊆ B(ω). The main issue below will be to get rid of such indifference cases
and to prevent the first agent from reporting a state ω̃ with B(ω̃)⊂ B(ω). The
basic insight of the proof is to reward the first agent for reporting a state with
many optimal actions.

We will construct a finite sequence M1� � � � �Mn of perturbed MDPs. For all
MDPs in the sequence, the state space is Ω and the action set is B.
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We explain the construction of M1 before proceeding to the general case.
Throughout, we fix an increasing function φ : {1� � � � � |B|} → R such that
φ(|B|) < 1

|B| (so that φ(m) < 1
m

for m ≤ |B|). We then pick α > 0 such that
(i) α< 1

|B| −φ(|B|) and (ii) α<φ(m+ 1)−φ(m) for all 1 ≤m< |B|.
Given ε1 > 0, the reward r1 and transition function q1 of M1 are defined as

r1(ω�b) := (1 − ε1)r(ω�b)+ ε1

(
r
(
ω�β0(ω)

) + c0φ
(∣∣B0(ω)

∣∣))
and

q1(· |ω�b) := (1 − ε1)q(· |ω�b)+ ε1q
(· |ω�β0(ω)

)
�

where β0(ω) is the uniform distribution over B0(ω). We denote by vε1 and θε1

the limit value and relative values of M1, and we let

B1(ω) := arg max
b∈B

{
r1(ω�b)+ Eω′∼q1(·|ω�b)θ

(
ω′)}

be the set of optimal actions at ω in M1. Both vε1 and θε1 are continuous w.r.t.
ε1, with limε1→0 vε1 = v and limε1→0 θε1 = θ. Hence B1(ω) is upper hemicontin-
uous as a function of ε1, so that B1(ω) ⊆ B0(ω) for all ε1 > 0 small enough,
and ω ∈ Ω. We stop with the MDP M1 if there is a sequence ε1 → 0 such
that B1(·) = B0(·) along the sequence. We otherwise repeat the perturbation
process with M1.

More generally, let (εk)k∈N be a sequence of positive real numbers with∑
k εk < 1. For k ∈ N, we set �εk := (ε1� � � � � εk). For any such sequence (εk), we

define inductively a sequence Mk(�εk) of MDPs with state space Ω and action
set B, and with limit value denoted v�εk and θ�εk . The reward rk and transition
function qk of Mk(�εk) are defined as

rk(ω�b) :=
(

1 −
k∑
i=1

εi

)
r(ω�b)+

k∑
i=1

εi
(
r
(
ω�βi−1(ω)

)
+ ci−1φ

(∣∣Bi−1(ω)
∣∣))

and

qk(· |ω�b) :=
(

1 −
k∑
i=1

εi

)
q(· |ω�b)+

k∑
i=1

εiq
(· |ω�βi−1(ω)

)
�

where βi(ω), Bi(ω), and ci are defined inductively as follows.
For each i,

Bi(ω) := arg max
b

{
ri(ω�b)+ Eω′∼qi(·|ω�b)θ�εi

(
ω′)}
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is the set of actions optimal at ω in Mi(�εi), βi(ω) ∈ Δ(B) is the uniform dis-
tribution over Bi(ω), and ci > 0 is any number such that

ci + ri(ω�b)+ Eω′∼qi(·|ω�b)θ�εi
(
ω′)< v�εi + θ�εi (ω)

for eachω ∈Ω and b /∈ Bi(ω). This definition entails no circularity. Indeed, B0,
β0, and c0 are associated with M0, and for k ≥ 1, the definition of rk and qk,
and therefore of v�εk , θ�εk , Bk, βk, and ck, only involves v�εi and θ�εi for i < k.

Note also that for given �εk−1, v�εk and θ�εk are continuous as functions of
εk, and Bk(ω) is therefore upper hemicontinuous. It follows that for every
�εk−1, one has Bk(ω) ⊆ Bk−1(ω) provided εk > 0 is small enough. In addition,
limεk→0 v�εk = v�εk−1 and limεk→0 θ�εk = θ�εk−1 .

In the sequel, we let a sequence (εk) be given such that for each k, εk is “very
close to zero” given �εk−1. By this, we mean that (i) |v�εk −v�εk−1 | and ‖θ�εk −θ�εk−1‖
are smaller than some positive numbers that only involve �εk−1 (and that will
appear in the computations below), and (ii) Bk(ω)⊂ Bk−1(ω) for every ω ∈Ω.

We let n ∈ N be such that Bn(·)= Bn−1(·), and we define ρ :Ω→ Δ(B) as

ρ(ω) :=
(

1 −
n∑
k=1

εk

)
βn(ω)+

n∑
k=1

εkβk−1(ω)�

Observe that suppρ(ω)= B0(ω) for each ω. We next define xeq :Ω× B→ R
as follows:

• For b ∈ B0(ω), xeq(ω�b) is defined by the equation

xeq(ω�b)+ r(ω�b)+ Eω′∼q(·|ω�b)θ�εn
(
ω′)

= r(ω�ρ(ω)) + Eω′∼q(·|ω�ρ(ω))θ�εn
(
ω′)�

Observe that xeq(ω�ρ(ω))= Eb∼ρ(ω)xeq(ω�b)= 0 for each ω.
• For b /∈ B0(ω), we set xeq(ω�b)= xeq(ω� b̄), where b̄ ∈ Bn(ω). Note that

xeq(ω�b) is independent of the choice of b̄. Indeed, the actions of Bn(ω) are
those that maximize rn(ω� ·)+ Eqn(·|ω�·)θ�εn(ω

′) or, equivalently, that maximize
r(ω� ·)+ Eq(·|ω�·)θ�εn(ω

′).
Finally, we define x :Ω×B→ R as

x(ω�b) := xeq(ω�b)+
n∑
k=1

εkck−1φ
(∣∣Bk−1(ω)

∣∣)�
We now prove that the pair (ρ�x) satisfies the desired properties.

CLAIM 7: The term ρ is an optimal policy in the MDP with stage payoff
r(ω�b)+ x(ω�b).
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PROOF: Recall that v�εn and θ�εn are the limit value and relative values of the
MDP Mn(�εn), and that Bn(ω) is the set of actions optimal atω. Therefore, for
each ω and by the ACOE, one has

v�εn + θ�εn(ω)= rn
(
ω�βn(ω)

) + Eqn(·|ω�βn(ω))θ�εn
(
ω′)�

Given the definition of rn, qn, and ρ(ω), the right-hand side is also equal to

r
(
ω�ρ(ω)

) + x(ω�ρ(ω)) + Eq(·|ω�ρ(ω))θ�εn
(
ω′)�

Next, it follows from the definition of xeq that

r(ω�b)+ x(ω�b)+ Eq(·|ω�b)θ�εn
(
ω′)

is independent of b ∈ suppρ(ω)= B0(ω).
On the other hand, for b /∈ B0(ω) and b̄ ∈ Bn(ω), one has rn(ω�b) +

Eqn(·|ω�b)θ�εn(ω
′) < rn(ω� b̄) + Eqn(·|ω�b̄)θ�εn(ω

′), which implies r(ω�b) +
Eq(·|ω�b)θ�εn(ω

′) < r(ω� b̄)+ Eq(·|ω�b̄)θ�εn(ω
′), which yields, in turn,

r(ω�b)+ x(ω�b)+ Eq(·|ω�b)θ�εn
(
ω′)

< r(ω� b̄)+ x(ω� b̄)+ Eq(·|ω�b̄)θ�εn
(
ω′)�

Together, these observations yield

v�εn + θ�εn = max
b∈B

{
r(ω�b)+ x(ω�b)+ Eq(·|ω�b)θ�εn

(
ω′)}�

with the maximum being achieved by ρ(ω). This proves the claim. Q.E.D.

CLAIM 8: For every ω�ω̃ ∈Ω, one has

r
(
ω�ρ(ω)

) + x(ω�ρ(ω)) + Eq(·|ω�ρ(ω))θ�εn
(
ω′)(24)

≥ r(ω�ρ(ω̃)) + x(ω̃�ρ(ω̃)) + Eq(·|ω�ρ(ω̃))θ�εn
(
ω′)�

with a strict inequality if ρ(ω) �= ρ(ω′).

PROOF: Fix ω�ω̃ ∈Ω. Note that ρ(ω)= ρ(ω̃) if and only if Bk(ω)= Bk(ω̃)
for k= 0� � � � � n. Assume first that ρ(ω)= ρ(ω̃). Then, using xeq(ω�ρ(ω))= 0,
one has

x
(
ω�ρ(ω)

) =
n∑
k=1

εkck−1φ
(∣∣Bk−1(ω)

∣∣)

=
n∑
k=1

εkck−1φ
(∣∣Bk−1(ω̃)

∣∣) = x(ω̃�ρ(ω̃))�
Thus, (24) holds with equality.
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Assume next that ρ(ω) �= ρ(ω̃), and denote by k̄ the smallest k such that
Bk(ω) �= Bk(ω̃). Since Bn = Bn−1, one has k̄ < n. We prove that (24) holds with
a strict inequality by looking at the decomposition of ρ as a weighted sum of
the uniform distributions βk.

• For k< k̄, one has βk(ω)= βk(ω̃), hence

r
(
ω�βk(ω)

) + ckφ
(∣∣Bk(ω)∣∣) + Eq(·|ω�βk(ω))θ�εn

(
ω′)

= r(ω�βk(ω̃)) + ckφ
(∣∣Bk(ω̃)∣∣) + Eq(·|ω�βk(ω̃))θ�εn

(
ω′)�

• For k̄ < k < n, we will rely on the assumption that εk is quite small com-
pared to εk̄. Plainly, one has, for some constant C that only depends on the
primitives of the MDP,

r
(
ω�βk(ω)

) + ckφ
(∣∣Bk(ω)∣∣) + Eq(·|ω�βk(ω))θ�εn

(
ω′)

≥ r(ω�βk(ω̃)) + ckφ
(∣∣Bk(ω̃)∣∣) + Eq(·|ω�βk(ω̃))θ�εn

(
ω′) −C�

Hence, when multiplied by εk̄+1, the difference between the two sides of the
latter inequality is small compared to εk̄+1 and, in particular, less than αεk̄+1ck̄.

• For k= n, and since Bn(ω) are the actions optimal at ω in Mn(�εn), one
has, as noted previously,

r
(
ω�βn(ω)

) + Eq(·|ω�βn(ω))θ�εn
(
ω′) ≥ r(ω�βn(ω̃)) + Eq(·|ω�βn(ω̃))θ�εn

(
ω′)�

We are left with k̄ = k and we distinguish two cases. Assume first that b /∈
Bk̄(ω) for some b ∈ Bk̄(ω̃). In that case,

r
(
ω�βk̄(ω)

) + Eq(·|ω�βk̄(ω))θ�εk̄
(
ω′)

> r
(
ω�βk̄(ω̃)

) + Eq(·|ω�βk̄(ω̃))θ�εk̄
(
ω′) + ck̄ × |Bk̄(ω̃) \Bk̄(ω)|

|Bk̄(ω̃)|
(because all actions in Bk̄(ω̃) \ Bk̄(ω) are played with probability 1

|Bk̄(ω̃)|
and

each leads to a loss of at least ck̄). Since εk̄+1� � � � � εn are small (given εk̄), the
latter inequality still holds when θ�εn is substituted for �εk̄. This implies

r
(
ω�βk̄(ω)

) + ck̄φ
(∣∣Bk̄(ω)∣∣) + Eq(·|ω�βk̄(ω))θ�εn

(
ω′)

> r
(
ω�βk̄(ω̃)

) + ck̄φ
(∣∣Bk̄(ω̃)∣∣) + Eq(·|ω�βk̄(ω̃))θ�εn

(
ω′)

+ ck̄
(

1
|Bk̄(ω̃)| +φ(∣∣Bk̄(ω)∣∣) −φ(∣∣Bk̄(ω̃)∣∣)

)

> r
(
ω�βk̄(ω̃)

) + ck̄φ
(∣∣Bk̄(ω̃)∣∣) + Eq(·|ω�βk̄(ω̃))θ�εn

(
ω′) + ck̄α�

using property (i) of α.
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Assume now that Bk̄(ω̃) is a proper subset of Bk̄(ω), so that

r
(
ω�βk̄(ω)

) + Eq(·|ω�βk̄(ω))θ�εk
(
ω′)

= r(ω�βk̄(ω̃)) + Eq(·|ω�βk̄(ω̃))θ�εk
(
ω′)�

because βk(ω) is optimal in Mk(�εk). This implies

r
(
ω�βk̄(ω)

) + ck̄φ
(∣∣Bk̄(ω)∣∣) + Eq(·|ω�βk̄(ω))θ�εk

(
ω′)

> r
(
ω�βk̄(ω̃)

) + ck̄φ
(∣∣Bk̄(ω̃)∣∣) + Eq(·|ω�βk̄(ω̃))θ�εk

(
ω′) + αck̄�

using property (ii) of α.
Since θ�εn is very close to θ�εk , the latter inequality still holds when θ�εn is

substituted for θ�εk̄ . The desired inequality follows by summing over all k =
1� � � � � n. Q.E.D.

APPENDIX F: PROOF OF THEOREM 4

Most computations in Section F.2 will be omitted. Transition phases will rely
on the strictly truthful pair (ρext�0�x0) constructed in Section B.2.2, withK0 =A
and ρ0 : S × K0 → A. We supplement the transfers x0 of Section B.2.2 with
transfers x̄0 :K0 × Y → RI , which induce obedience to ρ0, and still denote by
x0 : S × K0 × Y → RI the total transfers. We abbreviate the relative values
θρ0�r+x0 to θ0, and we let r̄ ≥ 1 be a uniform bound on r and θ0.

F.1. Auxiliary Zero-Sum Games

Throughout this section, we fix a player i ∈ I, and will introduce games be-
tween i and −i. Without loss of generality, all strategies of player i are here
“babbling.”

F.1.1. Preliminaries

For k ∈ N and j �= i, we let Aj
k ⊂ Δ(Aj) be a finite, 1

k
-dense subset of Δ(Aj);

that is, for each αj ∈ Δ(Aj), there exists αjk ∈Aj
k such that ‖αj −αjk‖L1 < 1

k
. We

let Σjk be the set of (repeated game) strategies of player j with the property
that the mixed action of j in each round n belongs to Aj

k and only depends on
the past public signals yi1� � � � � y

i
n−1 related to player i. We set Σ−i

k :=×j �=i Σ
i
k

and let

wi
k := lim

δ→1
min
σ−i∈Σ−i

k

max
σi
γiδ

(
si�σi�σ−i)

be the long-run minmax payoff when players −i are constrained to strategies
in Σ−i

k .59 Thanks to the irreducibility assumption, there exists c > 0 such that

59It is independent of si .
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the following statement holds: for each k ∈ N, j �= i and each strategy σj , there
exists σjk ∈ Σjk such that

γ
j
δ

(
s�σ−j� σjk

)
< γ

j
δ(s�σ)+ c

k

for every δ < 1 and σ−j .60 Hence, limk→+∞wi
k =wi.

Since strategies of player −i ignore (yjn) (j �= i), we may restrict ourselves to
strategies of player i that are independent of the public signals (yjn), j �= i, as
well.

Let an arbitrary state s̄i ∈ Si be given and let k ∈ N be fixed. Given a horizon
T ∈ N, we let Gi

k(s̄
i� T ) be the zero-sum game with T rounds between i and

−i with no communication, initial state s̄i, and payoff 1
T

∑T

n=1 r
i(sin� an), and in

which players −i are restricted to Σ−i
k . Denote by

wi
k(T) := min

σ−i∈Σ−i
k

max
σi

Es̄i�σ

[
1
T

T∑
n=1

ri
(
sin� an

)]
(25)

the minmax ofGi(s̄i� T ). Using irreducibility, one has limT→+∞wi
k(T)=wi

k for
each s̄i.

Given k and T , we fix a strategy profile σ−i
k ∈ Σ−i

k that achieves the minimum
in (25). For α−i

k ∈ A−i
k , let T(α−i

k ) be the (random) set of rounds in which σ−i
k

prescribes α−i
k , and let fα−i

k
∈ Δ(Y) denote the empirical distribution of the

public signals received in T(α−i
k ). Intuitively, if some player j �= i is playing

according to σjk, the signals (yjn) received in T(α−i
k ) are i.i.d. and drawn from

pj(· | αjk). Hence, whenever |T(α−i
k )| is large, then with high probability, fα−i

k

should be close to the distribution gj
α−i
k

∈ Δ(Y) defined as

g
j

α−i
k

(y)= fα−i
k

(
y−j)pj(yj | αjk)�

This motivates the definition of

Dj :=
∑

α−i
k

∈A−i
k

|T(α−i
k )|
T

∥∥fα−i
k

− gj
α−i
k

∥∥
L1 �

Claim 9 below formalizes this intuition. In words, and provided that T is large
enough, player j can ensure that Dj < ε with high probability by playing σjk�T .

60This assertion also relies on the product monitoring assumption. Under this assumption,
public communication and public signals yjn for j �= i cannot be used by players −i as a means to
privately correlate their actions against i.
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CLAIM 9: Given ε > 0, there exists T0 ≥ 0 such that

P
σ
j
k�T

�σ−j
(
Dj > ε

)
< ε

for all T ≥ T0, j �= i, and σ−j .

Claim 9 follows from Gossner (1995), who uses Blackwell’s theory of ap-
proachability. It will be combined with Claim 10 below, which asserts that
player i is effectively punished when all players j �= i pass the test Dj < ε with
high probability.

CLAIM 10: Let ε > 0 and T be given, and let σ be a strategy profile such that
Pσ(Dj > ε) < ε for each j �= i. Then

Es̄i�σ

[
1
T

N∑
n=1

ri
(
sin� an

)]
<wi

k�T + r̄(I + 2)ε�

PROOF: On the event D−i := ⋂
j �=i{Dj ≤ ε}, one has

∑
A−i
k

|T(α−i
k
)|

T
‖fα−i

k
−

g
j

α−i
k

‖L1 ≤ ε for each j �= i, which implies, by repeated substitution,

∑
A−i
k

|T(α−i
k )|
T

(∑
y

∣∣∣∣fα−i
k
(y)− fα−i

k

(
yi

)×
j �=i
pj

(
yj | αjk

)∣∣∣∣
)
< Iε�

We fix now an arbitrary private history (sin� a
i
n� yn) of player i, and compare

the realized payoff 1
T

∑n

n=1 g
i(sin� a

i
n� yn) to its “expectation,” assuming (yjn) are

drawn using σjk�T . Formally,

1
T

n∑
n=1

gi
(
sin� a

i
n� yn

)

= 1
T

∑
A−i
k

∑
T(α−i

k
)

(
gi

(
sin� a

i
n� yn

)

−
∑

ỹ−i∈Y−i
gi

(
sin� a

i
n� ỹ

−i� yin
) ×p−i(ỹ−i | α−i

k

))

+ 1
T

∑
A−i
k

∑
T(α−i

k
)

∑
ỹ−i
gi

(
sin� a

i
n� ỹ

−i� yin
) ×p−i(ỹ−i | α−i

k

)
�
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The expectation of the second term is independent of σ−i and is equal to

Es̄i�σi�σ−i
k�T

[
1
T

T∑
n=1

ri
(
sin� an

)] ≤wi
k(T)�

Since the first term is bounded by 2r̄ and by r̄Iε on the event D−i, the result
follows. Q.E.D.

F.1.2. Auxiliary Games

From now on and given δ < 1, we set T := 1√
1−δ . Given δ < 1, transfers x :

S × YT → RI , and a state profile s ∈ S, we let G(s�δ�x) denote the game of
T rounds (ending after the draw of sT+1), with initial state profile s, with no
communication, and with payoff

1 − δ
1 − δT

{
T∑
n=1

δn−1r(sn� an)+ δTx(s� �y)+ δTθ0(sT+1� ā0)

}
�

where �y := (y1� � � � � yT ) is the sequence of public signals received along the play
and ā0 ∈A is fixed.

The following result will serve as the building block of the equilibrium con-
struction of punishment phases.

LEMMA 13: Given ε > 0, there exist κ∗ ∈ R and δ∗ < 1 such that for all δ > δ∗,
there exist x : S×YT → RI and γ ∈ RI with the following properties:

(a) For all s ∈ S, γ is a sequential equilibrium payoff of G(s�δ�x).
(b) We have γi < wi + ε.
(c) We have xi ≥ 0 and ‖x‖ ≤ κ∗T .

PROOF: Let ε > 0 be given and pick ε′ < ε
2r̄(I+5) . Choose k ∈ N such that

|wi
k−wi|< ε′, choose C > 4r̄

ε′ , and apply Claim 9 with ε′ to get T0. We will show
that the result holds with κ∗ := 2C and δ∗ < 1 large enough so that (i) T ≥ T0,
(ii) |wi

k − wi
k(T)| < ε′ (for each s̄i), and (iii) 1−δ

1−δT C < 1, and both of the in-
equalities displayed below hold for each δ > δ∗:

−δT r̄ −
T∑
n=1

δn−1r̄ + δTCT (
1 − ε′)> T∑

n=1

δn−1r̄ + δTC(
1 − 2ε′) + δT r̄�(26)

and for each sequence (u1� � � � � uT ),∣∣∣∣∣ 1 − δ
1 − δT

T∑
n=1

δn−1un − 1
T

T∑
n=1

un

∣∣∣∣∣< ε′ max(u1� � � � � uT )�
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Let δ > δ∗ be arbitrary, define x∗ : YT → RI by xi∗(·)= 0, and define xj∗(�y)=
−CT if Dj > ε′ and xj∗(�y)= 0 otherwise, so that ‖x∗(·)‖ ≤ 1

2κ∗T and xi∗(·)≥ 0.
Given s ∈ S, let σs be any sequential equilibrium of G(s�δ�x∗), with payoff

γs(σs) ∈ RI . By the choice of C and δ∗, one has Ps�σ(Dj > ε′) < 2ε′ for every
j �= i.61 Therefore, by Claim 10, one has

Es�σ

[
1
T

T∑
n=1

ri
(
sin� an

)]
<wi

k + ε′ + 2r̄(I + 2)ε′�

which implies

γis(σs) < w
i + 2r̄(I + 4)ε′�

Since Ps(Dj > ε′) < 2ε′ for each j �= i, it follows from the specification of x∗
and δ∗ that ‖γs(σs)‖ ≤ 14r̄. Set then x̄j(s) := maxs′∈S γ

j

s′(σs′)− γjs(σs) for each
s ∈ S and j ∈ I, and

x(s� �y) := x∗(�y)+ x̄(s)�

Plainly, σs is still a sequential equilibrium ofG(s�δ�x) for each s, and the pay-
off vector induced by σs is now independent of s. Moreover, since 0 ≤ x̄(·) ≤
14r̄ and by the choice of ε′, both (b) and (c) hold as well. Q.E.D.

We denote by G iε the compact set of all accumulation points of such equilib-
rium payoffs γ ∈ RI as δ→ 1. Before we move on to the equilibrium construc-
tion, two remarks are in order. Note first that property (c) can be strengthened
to xi(·)≥ ε′′, where ε′′ < ε is arbitrary. (Indeed, for given 0< ε′′ < ε, it suffices
to first apply the current version of Lemma 13 with ε − ε′′ and then add ε′′

to xi.)
Because of irreducibility, there is a constant c (which only depends on the

primitives of the game) such that for j ∈ I, s ∈ S, and tj ∈ Sj , the highest
payoffs achievable by j against σ−j

s in the two games G(tj� s−j� δ�x(s� ·)) and
G(s�δ�x(s� ·)) differ by at most (1 − δ)c. Since the latter payoff is equal to γj ,
the former does not exceed γj + (1 − δ)c. Since γj is also the payoff induced
by σtj�s−j in the game G(tj� s−j� δ�x(tj� s−j� ·)), this implies that the benefit to
player j of pretending that his initial state is sj when it is tj is bounded above
by (1 − δ)c.

61Indeed, by (26), any strategy σ̃ j such that Pσ̃j �σ−j (Dj > ε′) < ε′ is strictly preferred to any
strategy σ̃ j such that Pσ̃j �σ−j (Dj > ε′) > 2ε′, and σjk�T satisfies the former condition by Claim 9.
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F.2. Equilibrium Construction

We only provide a sketch. We start as in Section B.2. To unify notations, we
set k̂1(λ)= k̄1(λ) for λ �= −ei and k̂1(−ei)= −wi for i ∈ I. Since k̂1(·) is lower
semicontinuous on Λ, there exists ε0 > 0 such that

∀λ ∈Λ� max
Zη
λ · z+ 2ε0 < k̂1(λ)�

For each player i, we apply Lemma 13 with 0< ε′
0 < ε0 (so that xi(·)≥ ε′

0) and
get κ∗ and δ∗. We next pick ε′′

0 <
ε′

0
κ∗ . With these choices, for fixed i and δ > δ∗,

the payoff vector γ and the transfers x satisfy γi < wi + ε0, ‖x‖ < κ∗T and
λ · x∗(·)≤ 0 whenever ‖λ− (−ei)‖< ε′′

0.
Parameters are chosen as follows. We first pick the parameter 0< β < 1

2 of
the length of transition phases; then we choose κ to be large enough. Next,
as before, pick ε > 0 small enough. Finally, we choose δ̄ < 1 high enough.
Computations are highly similar to those in Sections A.1.2 and A.1.3. They
are, therefore, omitted, and we do not list conditions to be satisfied by κ, ε,
and δ̄.

We let z ∈ Z be given and let π1 ∈×i Δ(S
i) be the distribution of the ini-

tial state. The play is divided into a sequence of phases, with odd phases being
transition phases. Slight adjustments in the strategies are needed (as compared
with Section A.1.2), and we detail the updating from one transition phase to
the following transition phase. The transition phase k starts with a target pay-
off z(k), which is deduced from past public play. We set (ρ(k)� x(k))= (ρext�0�x0),
v(k) := Eμρext�0

[r(s� a) + x0(s�k0� y)] and θ(k) := θ0. In each round, the p.r.d.
chooses with probability ξ∗ := (1 − δ)β whether to start a new phase. In the
first round n= τ(k+1) of the following phase k+ 1, we first define the auxiliary
target w(k+1) according to

ξ∗w(k+1) + (1 − ξ∗)z(k) = 1
δ
z(k) − 1 − δ

δ
v(k) + 1 − δ

δ
x(k)(ωpub�n−1)

and then we apply Lemma 1 with z :=w(k) to get λ(k+1).
If ‖λ(k+1) − (−ei)‖ ≥ ε′′

0 for all i, we apply Lemma 2 to get (v(k+1)� ρ(k+1)�
x(k+1)) ∈ S , and finally update z(k+1) as

z(k+1) = w(k+1) + (1 − δ)
((

1 + 1 − δ
δξ

)
θ(k)(mn−1�mn)

− θ(k+1)(ωpub�n−1�mn)

)
�

Then in each round, the p.r.d. chooses with probability ξ whether to start a new
phase. In round τ(k+2), the auxiliary target will be updated to w(k+2) according
to (4) and z(k+2) in the following transition phase is defined by (5).
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If instead ‖λ(k+1)− (−ei)‖< ε′′
0 for some i, we apply Lemma 13 with player i,

and get x : S × YT → RI and γ. We set v(k+1) = γ and x(k+1) = x. In that case,
the duration of phase k+ 1 is T . In round τ(k+2) := τ(k+1) + T , we set

z(k+2) = 1
δT
z(k+1) − 1 − δT

δT
v(k+1)

+ (1 − δ)x(k+1)(mτ(k+1) � yτ(k+1) � � � � � yτ(k+1)+T−1)�

That this recursive construction is well defined follows as in Lemma 5.
Under σ , players report truthfully and play ρ(k) in any phase k that is not

a punishment phase. If ‖λ(k) − (−ei)‖ < ε′′
0, we let σ(k) be a sequential equi-

librium in G(mτ(k)� δ�x(k)) with payoff v(k). Under σ , player j plays σj(k) if his
report in round τ(k) is truthful and otherwise plays a (sequentially) best reply
to σ−j

(k) in the game G(sjτ(k) �m
−j
τ(k)
� δ�x(k)).

As in Section A.1.3, one can establish that the continuation payoff under σ
is equal to z(k) at the beginning of a punishment phase and equal to z(k) + (1 −
δ)θ(k) in any round that does not belong to a punishment phase.

That a player cannot profitably deviate at the action step follows from the
definition of σ in a punishment phase and follows as in Theorem 2 otherwise.
That a player cannot profitably deviate at the reporting step of a nontransi-
tion phase is clear during punishment phases since reports are ignored, and
otherwise follows as before.

Consider finally the reporting step in a round n belonging to a transition
phase. In the specific case where n is the first round following a punishment
phase, reports are ignored, and the action being played is ā0; hence truthful
reporting is trivially optimal. Otherwise, the belief of player j over S−j has full
support, and the optimality of truth-telling follows along earlier lines, using
that (i) (ρext�0�x0) is strictly truthful, and that (ii) the (ex post) marginal benefit
of having misreported, conditional on the p.r.d. choosing to start a new phase,
is at most on the order of (1 − δ); see the remark at the end of Section F.1.2.
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