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S.1. ANUMERICAL EXAMPLE

IN THIS SECTION, we use a numerical example to illustrate the model’s predic-
tions for the objects of the six main propositions: attention allocation, portfolio
return dispersion, and abnormal return. The numerical example serves to illus-
trate that the parameter conditions under which the results are derived are not
too restrictive, and that the results hold for plausible variations in these param-
eters.

Parameter Choices

The following explains how we choose the parameters of our model. The
simplicity of the model prevents a full calibration. Instead, we pursue a numer-
ical example that matches some salient properties of stock return data. Our
benchmark parameter choices are listed in Table S.I. Below, we show that the
qualitative results are robust to plausible variations in these parameter choices.

The example features 2500 investors of which a fraction y = 0.2, or 500, are
informed or skilled funds. The remaining 2000 investors are uninformed, and
composed of 1500 uninformed funds and 500 uninformed non-fund investors.
The example features three assets, two stocks (assets 1 and 2), and one compos-
ite asset (asset 3). There also is a risk-free asset whose net return is set to 1%.
Our procedure is to simulate 10,000 draws of the shocks (x1, x5, x3, z1, 22, 23),
where z; is the aggregate shock, in recessions and 10,000 draws of the shocks
in expansions. Since our model is static, each simulation is best interpreted as
different draws of a random variable, and not as a period. Recessions differ
from expansions in that (i) the variance of the aggregate payoff shock o, is
higher, and (ii) the market price of risk is higher, here governed by the coef-
ficient of absolute risk aversion. In expansions, we set risk aversion p = 0.175
and o, = 0.25. Alongside the other parameters, that delivers an equity risk pre-
mium in expansions of 4%. To study the effect of recessions, we conduct three
exercises. In the first exercise, we set g, = 0.50 in recessions, double its value
in expansion, holding fixed p across expansions and recessions. In the second
exercise, we set p = 0.35, double its value in expansions, holding fixed o;, across
expansions and recessions. In the third exercise, we increase both parameters
simultaneously.

We normalize the mean asset supply of assets 1 and 2 to 1, and set the supply
of the aggregate asset, X3, to 15. We set the variance of the asset supply noise
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TABLE S.1
NUMERICAL EXAMPLE: PARAMETERS?

Parameter Symbol Value Mainly affects
Risk aversion p 0.175 (E),0.35(R)  Asset return mean
Variance aggr. payoff oy 0.25 (E), 0.50 (R) Market return vol in
comp. z3 expansions vs. recessions
Mean of payoffs 1, 2, 3 1, M2y M3 15 Asset return mean
Variance idio. payoff o; 0.55 Asset return vol. vs.
comp. zy, z; market return vol.
Sensitivity of payoffs to z; b1, by 0.7, 1.0 Asset beta level 4 dispersion
Mean asset supply 1,2 X1 =X, 1 Normalization
Mean asset supply 3 X3 15 Asset return volatility
Variance asset supply oy 0.5 Asset return idio vol.
Risk-free rate r—1 0.01 Average T-bill return
Initial wealth W 220 Average cash position
Information capacity K 1 Information advantage
of skilled
Skilled fraction X 0.20 Information advantage
of skilled

2The first column lists the parameter in question, the second column is its symbol, the third column lists its nu-
merical value, and the last column briefly summarizes what features of the model are predominantly affected by that
value.

equal to o, = 0.5. We vary both of these parameters below. The variance of
the firm-specific payoff shocks is 0.55 in expansions and recessions, making the
volatility of assets 1 and 2 about 80% larger than that on the market portfo-
lio. We normalize mean asset payoffs w; = u, = u; = 15. We choose the asset
loadings on the aggregate payoff shock, b; = 0.70 and b, = 1, to be different
from each other so as to generate some spread in asset betas. The chosen val-
ues generate average market betas of 1.0 and a standard deviation in betas of
25%. We choose initial wealth W, = 220 to generate risk-free asset holdings
that are close to zero in expansions.

Skilled fund investors (K > 0) solve for the choice of signal precisions K;; > 0
and that maximize time-1 expected utility (11). We assume that these choice
variables lie on a 100 x 100 grid in R? . The signal precision choice K»; > 0 is im-
plied by the capacity constraint (7). For simplicity, we set capacity K for skilled
funds equal to 1. This value implies that learning can increase the precision of
one of the idiosyncratic shocks by 55% or the precision of the aggregate shock
by 44% (assuming 85% of the periods are expansions and 15% recessions). We
will vary K in our robustness exercise below. Likewise, we have no strong prior
on the fraction of informed funds, y, and we will vary it for robustness.

As in our empirical work on mutual funds in Section 3, we compute all statis-
tics of interest as equally weighted averages across all investment managers
(i.e., without the 20% other investors).
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TABLE S.11
BENCHMARK SIMULATION RESULTS*

Change in Aggregate Risk Change in Risk Aversion Change in Both
State R E R E R E
oy 0.50 0.25 0.25 0.25 0.50 0.25
p 0.175 0.175 0.35 0.175 0.35 0.175
Attention 0.94 0.50 1.00 0.50 1.00 0.50
Dispersion 9.07 6.88 7.56 6.88 38.36 6.88
Performance 0.164 0.148 0.199 0.148 0.541 0.148

4The table reports key outcome variables in Propositions 1-6 of the main text, for 10,000 periods of simulation
of the model in Recessions (R) and in Expansions (E). The parameters are those reported in Table S.I. The only
parameters that change between expansions and recessions are those reported in the rows oy, and p. The model is
simulated for 2500 investors of which 500 are skilled fund investors, 1500 are unskilled fund investors, and 500 are
unskilled non-fund investors. All moments reported in the table are averages over the 2000 fund investors.

Main Simulation Results

Table S.IT summarizes the predictions of the model for the main statistics of
interest. We are interested in testing the three main predictions of the model
relating to (i) attention allocation (Attention), (ii) portfolio dispersion (Dis-
persion), and (iii) fund performance (Performance). For each of these out-
comes, we investigate the effect of increasing o, in recessions (columns 1 and
2), increasing p (columns 3 and 4), and increasing both (columns 5 and 6).
The first two rows report the values of the variance of the aggregate risk factor
z3, 0y, and risk aversion, p, in each exercise. The attention measure reported
in row 3 is the fraction of capacity the average skilled fund devotes to learn-
ing about the aggregate risk factor, K;. The dispersion measure reported in
row 4 is the same as in Propositions 3 and 4, the dispersion of portfolio excess
returns E[((g; — q)'( f — pr))?*] averaged among all funds. Finally, the perfor-
mance measure reported in row 5 is the same as in Propositions 5 and 6, the

portfolio excess return, averaged among all funds, E[(g; — ¢)'(f — pr)].

Under the chosen parameters, skilled funds choose to allocate half of their
capacity to learning about the aggregate risk in expansion, splitting the remain-
ing 50% equally among risk factors 1 and 2. In recessions, whether they be pe-
riods with more aggregate risk or higher prices of risk (risk aversion), or both,
attention is reallocated towards learning about aggregate risk. In the first ex-
periment, 94% of capacity is allocated to risk factor 3, while in the other two
experiments all capacity is allocated to aggregate risk. This attention realloca-
tion confirms Propositions 1 and 2.

The simulation also provides support for the propositions relating to fund
return dispersion (Propositions 3 and 4) and fund return performance (Propo-
sitions 5 and 6), showing that the portfolio dispersion increases in recessions
in all experiments, and fund performance increases in recessions. These effects
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are driven by the skilled funds who have stronger outperformance in recessions
at the expense of unskilled funds (and unskilled non-fund investors).

The last two columns show that the effects of increases in risk aversion and
the variance of aggregate risk mutually reinforce one another. Thus there are
interaction effects, which we discuss in Section 1.7 of the main text, and asso-
ciated propositions proven in this Supplemental Material (Section S.7), which
are confirmed in our numerical simulation.

Variations on Benchmark Parameters

This section discusses the robustness of the simulation results to alternative
parameter choices. The four most natural parameters to vary are the amount
of capacity the skilled funds have, K, the fraction of skilled funds, y, the supply
of the aggregate risk, X3, and the volatility of the noisy risk factor supply, o,.
Propositions 2-6 require X; to be sufficiently high, while Propositions 4 and 6
also require o, to be sufficiently high. We explore these changes in the four
panels of Table S.III.

Panel A explores halving the capacity of skilled investors to K = 0.5. This
value implies that learning can increase the precision of one of the idiosyncratic
shocks (or the aggregate shock) by 28% (by 22%) compared to 55% (44%) in
the benchmark. One might worry that the benchmark example gives too much
capacity to skilled investors. As we see in the first two columns, there is more
attention paid to the aggregate shock in expansions than before. With less ca-
pacity overall, learning about the most abundant risk becomes more valuable.
Yet, there still is reallocation towards the aggregate shock in recessions. Aver-
age fund outperformance is weaker in expansions than in the benchmark since
the skilled funds have a smaller advantage over unskilled fund and non-fund
investors. The same is true for portfolio dispersion. However, dispersion and
performance continue to increase sharply going from expansions to recessions.
Columns 3 and 4 show that increasing risk aversion in recessions continues to
drive attention reallocation towards the aggregate shock, increases dispersion,
and increases performance.

In the second variational exercise, we lower the fraction of skilled investors
to 10%. The amount of capacity of these skilled investors is set back to its
benchmark value of 1. Compared to the previous variational exercise, the over-
all capacity of the skilled investor base is the same (0.5 x 0.20 =1 x 0.10), but
capacity is now more concentrated in the hands of fewer investors. As panel B
shows, this parameter choice leads to the same capacity allocation outcome
and outperformance in expansions and recessions, but it leads to more portfo-
lio dispersion, and a larger increase therein in recessions.

In the benchmark model, assets 1 and 2 represented each 6.5% of the over-
all market capitalization. In panel C, we explore a lower share of 5% for the
individual assets (and a larger 90% share for the composite asset) by increas-
ing x; from 15 to 20. We simultaneously increase W to keep the risk-free asset
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TABLE S.I11
ROBUSTNESS SIMULATION RESULTS?*

Change in Aggregate Risk Change in Risk Aversion Change in Both
State R E R E R E
o, 0.50 0.25 0.25 0.25 0.50 0.25
p 0.175 0.175 0.35 0.175 0.35 0.175
Panel A: Change in capacity to K =0.5
Attention 1.00 0.82 1.00 0.82 1.00 0.82
Dispersion 10.43 3.22 3.62 3.22 23.46 3.22
Performance 0.185 0.080 0.126 0.080 0.420 0.080
Panel B: Change in fraction informed to y = 0.1
Attention 1.00 0.82 1.00 0.82 1.00 0.82
Dispersion 17.20 4.44 6.02 4.44 46.43 4.44
Performance 0.185 0.080 0.126 0.080 0.420 0.080
Panel C: Change in size of aggregate asset to X3 = 20
Attention 1.00 0.77 1.00 0.77 1.00 0.77
Dispersion 13.04 7.81 15.88 7.81 91.76 7.80
Performance 0.214 0.159 0.330 0.159 0.918 0.159
Panel D: Change in variance of supply noise o, = 1.0
Attention 1.00 0.60 1.00 0.60 1.00 0.60
Dispersion 17.11 7.58 9.28 7.58 57.71 7.58
Performance 0.248 0.158 0.227 0.158 0.684 0.157

aThe table reports key outcome variables in Propositions 1-6 of the main text, for 10,000 periods of simulation
of the model in Recessions (R) and in Expansions (E). The parameters are those reported in Table S.I. The only
parameters that change between expansions and recessions are those reported in the rows oy and p, as well as the
parameter listed in the first row of each panel. The model is simulated for 2,500 investors of which 500 are skilled fund
investors, 1,500 are unskilled fund investors, and 500 are unskilled non-fund investors. All moments reported in the
table are averages over the 2,000 fund investors.

allocation in expansions close to zero, but this does not affect any of the entries
in the table. The larger size of the aggregate asset makes it more valuable to
learn about, so that the fraction of capacity devoted to learning about this asset
rises in expansions (from 50% in the benchmark to 77% here). Yet, there is still
attention reallocation towards the aggregate asset going from expansions to re-
cession. Similarly, dispersion and outperformance continue to increase going
from expansion to recession.

Finally, in panel D we explore sensitivity to the volatility of noisy risk fac-
tor supply. We increase o, from 0.5 to 1.0, which makes prices less informa-
tive than in the benchmark. Prices convey about half as much information as
the private signals informed investors receive, compared to them being slightly
more informative than private information in the benchmark. On the margin,
the increase in supply noise makes allocating attention to aggregate informa-
tion more valuable in equilibrium. Dispersion and performance continue to
increase in recessions.
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We conclude that our main results survive across a range of parameters.

S.2. AN EXPECTED UTILITY MODEL

With expected utility, the time-2 utility is the same as in the main text. Utility
U, is a log-transformation of expected exponential utility. Maximizing the log
of expected utility is equivalent to maximizing expected utility because log is a
monotonic transformation. However, period-1 utility Uy; is the time-1 expecta-
tion of the log of time-2 expected utility. That is a transformation that induces
a preference for early resolution of uncertainty. When thinking about informa-
tion acquisition, considering agents who have such a preference is helpful. The
expected utility model has some undesirable features and, although versions
of the main results still hold, the intuition for why they hold has less useful
economic content to it.

The issue is that, at the time when he chooses information, an expected util-
ity investor does not value being less uncertain when he invests. He only cares
about the uncertainty he faces initially (exogenous prior uncertainty) and how
much uncertainty there is at the end (none; payoffs are observed). Of course,
he values information that will help him to increase expected return. But if
a piece of information might lead the investor to take an aggressive portfolio
position, the investor will be averse to learning this information because given
his current information, the portfolio he expects his future self to choose looks
too risky. This feature generates some undesirable behavior. For example, if
an asset is introduced that is very uncertain but that is in near-zero supply, ex-
pected utility investors might all use all of their capacity to study this asset that
is an infinitesimal part of their portfolio. Since we want to base our analysis on
a plausible description of how financial market participants make decisions, we
use mean-variance utility in the main text.

Putting this issue aside, the purpose of this section is to show that the results
are robust to the expected utility formulation of the model. Since the time-
2 utility functions are equivalent, the results for optimal portfolio holdings,
portfolio dispersion, and expected profits are identical. In other words, because
Lemma 1 and Propositions 3, 4, and 5 take arbitrary information choices as
given, changes in the model that only affect the information choices do not
affect these results. What does change is the proofs of Propositions 1 and 2,
the results about how attention is allocated.

Utility
We begin with a derivation of time-1 expected utility. We compute ex ante
utility for investor j as U;; = E[—e ""], where the expectation is unconditional.
First we substitute the budget constraint and obtain U;; = E[—e V=],

where we omitted the constant term —e~"" since it will not change the op-
timization problem. In period 2, the investor has chosen his portfolio and the
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price is in his information set, therefore the only random variable is z. Condi-

tioning on z; and EA,- and using the formula for the expectation of a log-normal
variable, we obtain

U]j = E[E[_e*l”?/(f:ﬁr) |2j7 2’:]]]
= E[_e*PEI’(f*ﬁr)Jr(pz/Z)g’fjg]]

_ E[— ef(l/2)(Ej[f~]fﬁr)’5j’l(E,-[f]fﬁw]

2

where the third line substitutes the optimal portfolio choice g = p—lz;l( f-
pr). Now we compute expectations in period 1. Note that both the expected
return and the price are random variables and that both are correlated since
they contain information about the true payoffs. Recall from the previous sec-

tion that ;[ f 1—pr~N(w,V — by 1); then we have to compute the expectation
of the exponential of the square of a normal variable. We will rewrite the ex-

pression in terms of the zero mean random variable y = Ej[ f] —pr—w-~
N(0,V — %)) and use the formula on page 102 of Veldkamp (2011) with F =
-3, G =—w3", and H = —jw' 3 w:

2<) 0
U, = E[— 67(1/2)(Ej[f]fﬁr)’ﬁj’l(Ej[fkﬁr)]
i=
:E[_e—(l/2)y’$j_1y7w$j_ly7(]/Z)w’ﬁj_lw]
1 ‘—1/2

=1+ -3)3;

1 ea . 1 .
X exp{ Ew/Zj‘leV‘l(V - 33 w— Ew’Ej‘lw}

< 1/2
; 1
(3 (o)
In the proofs below, we will work with a monotonic transformation U =
—2log(—Uj;) given by

U= —log|$j| +log|V|+wV w.

We now show the computation og each term in utility:

o 137 =11L 67 = —log|3| =Y logd;
Ce VI =TI, @l + (o + Kol = log V| = Y1 log(aill + (p*o +
Kpail)

o WV lw=3" (

pzi,z

).

2oy +I€;+6’f1
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With all these elements, the transformation of utility reads

n 222
8 R ) _ p’x
S1H U= 1221 {—log o1+ logay[1+ (p’o + Ki) o] + pey IZ,I+ e }

Observe that the only utility component affected by the actions of the in-
vestor is the first.

S.2.1. Proof of Proposition 1

For a given investor j, the marginal value of allocating an increment of capacity
to shock i is increasing in its variance o;; that is, 9*U /K ; do; > 0.

PROOF: Recall that transformed utility is given by U = —log |ZA-| +log|V |+

Yo pr jKi — 5 —}. We start by taking the derivative of utility with respect
to K;;, noting that K;; only affects the investor’s posterior variance (it does
not affect any average precision inside V' because the investor has measure

Zero):

U . &loglﬁjl_A
oK; oK, O

y q

Now we take derivative of the previous expression with respect to o;:

>0 o\’
={—] >0.
é)Kij 0')0'1’ g
To show the result holds also for the original utility U, first observe that U =

—eUn2, Second, we will use Faa di Bruno’s formula for the derivative of a
composition:

’U
07Kij(90'i

U FU Y oU U
o ﬁU &K,'j(?(fi [902 6)Kij &O’[

U _an(&\ 1 1(6\
—_e U2 L) _ o V25 —— =2
26 <0’,> 46 O-l< &[(0’,‘)

N (a,.>2< 1+2(p*0, + Ki) &, >+ p’x; )
O; 5i(1+(P2(Tx +Ki)5'i) O'iz(p20'x+12i+ _71)2
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3 —U/2<a'i>2 1e-U/zA [(57)2( 1+2(PZGX+K,-)&,- )
= —e J— R O-i - — _ _
4 g; 4 o; O'i(l + (pzo'x + Ki)o'i)

p X ]
O'iz(pZO'x—l-IZi—l—é'i_l)z >

where we have substituted all the terms. A sufficient condition for this expres-
sion to be positive is 0y < d; < 30,. Under this condition, the marginal utility
of reallocating capacity from shock i to i’ is increasing in o7. Q.E.D.

S.2.2. Proof of Proposition 2

An increase in risk aversion p increases the marginal utility for investor j of
reallocating capacity from shocks with high posterior preczszon to shocks with low

posterior precision: If Ky; = =K and K;=K— K, then > 0as long as 67" >

A1

o, .

_ _&PU
PROOF: As before, the chain rule implies that 7 ﬁK = Giky ﬁp (;K . For

each i, we have that

5 oU
#U  \oK;) 96, 267

= > 0.

dp IK; ap ap  pop
Since each investor has measure zero, his reallocatlon of capacity does not
change the average, which we write as K = K;; = K;;. Therefore, the difference
is given by

70 2 ey .

=~ [52-47)
(9p JK POip

This expression is positive as long as the difference inside the brackets is pos-
itive, which is equivalent to &; ' > &, '. To show the result holds also for the

original utility U, first observe that U = —e U2, Second, we will use Faa di
Bruno’s formula for the derivative of a composition:
FU
dpdK
U dpaK ~ 9U? 9K dp
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A2 A2 n - A
i 07 — O] U 6o~ ]2 o, — 07)
:e—U/Z[ i z] — e U, — 5 _} :(
PTip 4 P O

>
= 92 %

oy I ) iR )

—— p =

=1 1+ (p*0: + K)o = (pPo+ K+ &17])2

Thus, if aggregate shocks have lower posterior precision, an increase in risk
aversion will make learning about them more valuable. Q.E.D.

S.3. SIGNALS ABOUT ASSET PAYOFFS

Suppose asset payoffs f have the structure given by equations (1) and (2)
in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2014). But instead of hav-
ing signals about the independent risk factors, each investor j gets a vector of
signals m, where each entry 7; is an unbiased signal about the payoff of asset i:

(S2)  mi=f+e,

where f ~ N(u, ) and ¢; ~iid N(0, K™"). Note that K is a diagonal matrix,
implying that each signal has noise that is uncorrelated with other signals, but
3 is not diagonal, meaning that asset payoffs are correlated with each other.

The optimal portfolio choice first-order condition still takes the standard
form

1~
(83) g;= ;E;I(E[f] — pr).

Substituting this optimal portfolio and equilibrium price into the budget con-
straint (4) and substituting that into time-2 expected utility (3):

(S.4) %(Ej[f] — P”)ZA;](Ej[f] - P”)-

The expectation (posterior belief at time 2) E;[f] and posterior variance 2]?1
are still computed using Bayes’s law. But unlike before, 3; will no longer be a
diagonal matrix.

From Admati (1985), we know that for an arbitrary asset covariance and pos-
terior belief covariance structure, prices are a linear function of asset payoffs
and noisy asset supply shocks:

(8.5) p=A+Bf +Cx.
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Therefore, at time 1, the variable E;[f] — pr is a multivariate normal. Thus,
time-1 expected utility is the expectation of a non-central chi-square:

A

1
(S.6) Ul] = E trace(zl_ll/l[E][f] - pr])

A

1 /
+ 5 E[Ejlf1 = pr] 3 E[Ejlf] - pr]-

Note that beliefs are a martingale. Thus, E\[E;[f]] = Ei[f] = w. Similarly,
using (S.5), we can write Ei[p] = A + Bu + Cx. Combining these expres-
sions and using the fact that x is a mean-zero shock with variance 3,, we get
E/\[E;[f1 - prl=( — rB)u — A and [E,[f] - prl= (I — rB)3(I — rB) +
CX,C'. Notice that neither of these expressions contains choice variables. They
depend on equilibrium pricing coefficients 4, B, and C, which depend on ag-
gregate information choices, but not on agent j’s choice and on prior variance

3, which is exogenous. The choice variable K; shows up only in ﬁj’], which is
the posterior precision of beliefs. According to Bayes’s law, this is

87 3'=3"4+3"+K;

Writing Expected Utility as a Separable Sum

Thus, we can write time-1 expected utility as
1
(S8) Ujj=c+ 3 trace(KV;[E;[f] — pr])
1 /
+5E[ELf1- pr]KE[E|f1 - pr],

where c is a constant that depends on parameters and equilibrium price coeffi-
cients. Note that K is a diagonal matrix. Therefore, this matrix expression can
be written in the form of a simple sum:

1 N
(89)  Uy=c+5 ) KW[EfI - pr]+E[ELf] - pr]].

i=1

This illustrates that the marginal value of an additional unit of signal precision
is the prior variance of the return on that asset, plus the squared expected
return.

Effect of Higher Aggregate Risk Variance on Attention Allocation

Now that we have the model in this simple sum form, the question becomes,
how do changes in aggregate risk and risk aversion change this marginal value
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of signal precision? Assets whose payoffs are most sensitive to aggregate risk,
meaning that (dV;/do?) and (JE?/do?) are high, will become more valuable to
learn about and will thus have weakly higher attention allocated to them.

Effect of Risk Aversion on Attention Allocation

The effect of risk aversion on attention allocation is more subtle to see. Risk
aversion p enters expected utility through the pricing coefficients 4 and C.
Thus,

19E1[fi—Pi”]_ Y- R
T = ;2(1, Dx;.

From (31) in the Appendix, we know that Vi[f — pr] = E[pzaxl + 5;1/ +
3-'13. Thus,

!9V1[fi_Pir]_2 5 S5
ap = PTEs

Combining these two results allows us to describe how risk aversion changes
the marginal value of signal precision:

(S.10)

A S5 o

Ko~ 20,(23) (i, i) + 2E([f; — pir] 121:2(1, Dx,.

Assets for which (S.10) is high will become more valuable to learn about when
risk aversion rises in recessions. Note that this change in the marginal value of
information is greater for assets in abundant supply ;.

These results demonstrate that if signals are about asset payoffs (or any lin-
ear combination of asset payoffs), then attention will be reallocated in reces-
sions. Although agents cannot learn more about aggregate risk directly (by
assumption), the nature of the predictions in the same: In recessions, fund
managers will learn more about assets whose payoffs are sensitive to aggregate
risk and assets that are in abundant supply.

S.4. ENTROPY-BASED INFORMATION CONSTRAINT

The model in the main text features an attention limit that is a constraint
on the sum of signal precisions. The Lagrangian problem therefore takes the
form of the objective, plus the attention constraint, plus the nonnegativity con-
straints on all the signal precisions:

1 N N
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for a constant ¢ and weights A; that depend on parameters and equilibrium ag-
gregate attention choices. All the reallocation of attention arises when changes
in parameters change the A;’s.

We could instead constrain the entropy of signals. Entropy-based constraints
are used by Mondria (2010), Sims (2003), or Mackowiak and Wiederholt
(2009, 2015). For an n-dimensional normal variable n ~ N(f, K™'), entropy
is a simple function of the determinant of variance—covariance matrix: H(n) =
1/21In[(2me)"|K~!|], where | - | denotes the matrix determinant. Recognizing

that —In[|¥|] = In[|3~!|] and exponentiating both sides, we can write the en-
tropy constraint H(n) > k as

K| <k,

where k = (2me)" exp(—2k). Note that K is a diagonal matrix. Therefore, its
determinant is the product of its elements.
The new Lagrangian problem takes the form

1 N N
(S12) L=c+ z;)\,«Kﬁ- 9<K— E[K,-) +Z¢>,K,~.

The choice of each K; must respect the no-forgetting constraint: K; > 1, which
is captured in the last term of the Lagrangian.

Solution to the Entropy Model

Notice that in all the preliminaries in Appendix A.1, there is no reference
to the information constraint. The preliminary results are manipulations of ex-
pected utility, given some information allocation. As such, they apply verbatim
to the entropy-constraint model. Similarly, in Appendix A.2, steps 1, 2, and 3
do not depend on the information constraint and therefore, apply equally to
both models. In step 4, the information constraint enters in the information
choice problem. The equivalent optimization for the entropy problem uses La-
grangian (S.12) instead of Lagrangian (S.11).

This problem maximizes a weighted sum of K;’s, subject to a product and
an inequality constraint. The second-order condition for this problem is posi-
tive, meaning the optimum is a corner solution. A simple variational argument
shows that the maximum is attained by maximizing the K; with the highest A;
weight in the sum (marginal value of precision). For a formal proof of this
result, see Van Nieuwerburgh and Veldkamp (2010).

Thus, the solution is given by: K;; = K if A; = max; A, and K;; = 0, otherwise.
There may be multiple risks i that achieve the same maximum value of A;. In
that case, the manager is indifferent about how to allocate attention between
those risks. We focus on symmetric equilibria.
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Proposition 1 With the Entropy Constraint

Proposition 1 states that K; is weakly increasing in o; for a skilled investor j.
In the linear-precision constraint model, the marginal value of signal precision
is A;. Note that marginal utility is the same in this entropy-constrained problem.
Therefore, the proof of Proposition 1 (in Appendix A.3) shows that JA;/do; > 0
applies here as well. The rest of the proof is devoted to explaining why, if this
marginal value increases, then K; is weakly increasing.

Thus, after establishing that the marginal value of a unit of precision is A;,
the rest of the proof of Proposition 1 follows verbatim.

Proposition 2 With the Entropy Constraint

The proof of Proposition 2 in Appendix A.2 shows that if x; is sufficiently
large, dA;/dp > 0. Now that we have established that the marginal value of
information A; is identical in this problem, the rest of the proof, arguing that
K; is weakly increasing, follows as before.

Propositions 3-7 With the Entropy Constraint

These propositions do not depend on the information constraint at all. They
examine how a change in o; or p affects portfolio choice, something that is
entirely separate from the form of the information choice. They rely on in-
formation choice only through the result that if o; or p increases, k; weakly
increases as well. Since that effect has been established in Propositions 1 and 2
above, the rest of the results follow, as in Appendix A.3.

S.5. COSTLY LEARNING FROM PRICES

This section shows that if we change the information constraint so that it
requires capacity to process information from prices, then investors would
choose not to process that information and to obtain independent signals in-
stead. The idea behind this result is that an investor who learns from price
information will infer that the asset is valuable when its price is high and
infer that the asset is less valuable when its price is low. Buying high and
selling low is generally not a way to earn high profits. This effect shows
up as a positive correlation between 4 and pr, which reduces the variance
il — prl.

Mathematical Preliminaries: Note that B-'(pr — A) = f + B~'Cx. Since x is
a mean-zero shock, this is an unbiased signal about the true asset payoff f. The
precision of this signal is 3! = o' B'(CC")™'B.

LEMMA 3: A manager who could choose either learning from prices and ob-
serving a signal 7| ~ N(f, 2,) or not learning from prices and instead getting a
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higher-precision signal n|f ~ N(f, X,)), where the signals are conditionally inde-

—1 _ v-14 v-1
pe{ldent across agents, and where 3" = 31 + 31, would prefer not to learn from
prices.

PROOF: From (11) in the main text, we know that expected utility is
1 S lvr A 1. . S A
Uy = Etrace(Ej Vilj — prl) + EEl[Mj — pr' 3 Eilj; — prl.

Since the two options yield equally informative signals, by Bayes’s rule, they
yield equally informative posterior beliefs: 37! = 3~ + 3!, which is also equal
to 37"+ 3 1+ 31, Likewise, since both possibilities give the manager unbiased
signals, beliefs are a martingale, meaning that £, [f1; — pr] is identical under the
two options.

Thus, the only term in expected utility that is affected by the decision to
learn information from prices is V;[; — pr]. Let i; = E[f|n] be the posterior
expected value of payoffs for the manager who learns from the conditionally
independent signal. By Bayes’s law,

=33 'w+ 3 1n).
The signal n can be broken down into the true payoff, plus noise: n = f + &,

where £ ~ N(0, %,). Using the expression for 4; and the pricing equation pr =
A+ Bf + Cx, we write

f—pr=33"p— A+ 5}‘27;18 + (51‘27;1 - B)f - Cx.

Since u and A are constants, and ¢, f, and x are mutually independent, the
variance of this expression is

Vilf; — prl=2,5,'5+ (3,3;,' - B)3(3,3;' - B) — 0.CC..

Next, consider the manager who chooses to learn information in prices. This
person will have different posterior belief about f. Let E[f|p, n] = ft. Using
Bayes’s law, he will combine information from his prior, prices, and the signal
7 his posterior belief:

i=3C w3 B (pr— A)+3,'7).

Again, breaking up the signal into truth and noise (1 = f + &), and using the
price equation, we can write

f—pr=33"u+33(f+e)
+(3;3,'B —I)(A+Bf + Cx) - 3;3,'B ' 4
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=33 u+ (33 I -BY) - 1)4
F (33433 B f+ 338+ (3,3 — I)Cx.

Since w and A are constants, and &, f, and x are mutually independent, the
variance of this expression is

Vil — prl= (3,3 + 3,5 = B)3(3,2,' + 3,3,'B— B)’
+3305 4 0 (33, - 1)CC (353 - 1)

We have assumed that 5;)1 + E;l = 3. Therefore, the first term EA,S;]] +
33" — B=3;3" — B, which is the same quantity as in the first term of

Vil — prl.
Thus, when we subtract one expression from the other,

Vili; — prl = Vil — pr]
=331 =313 - 0.(3,3,1CC's, S, - 25,3 CC).

Since 3" = 5,‘,1 + 37! and 37" is positive semi-definite (an inverse vari-
ance matrix always is), 3;(3;' — 3;1)3; is positive semi-definite. Thus, the dif-
ference is positive semi-definite if 2/ — 3 ;1$j is. Since for the investor that
learns about prices, Bayes’s rule tells us that 37" = 37!+ 371+ 31, this means
that I — 3'3; = (37" + 3;1)3;, which is positive semi-definite. Therefore,

21 — 3'3; is also positive semi-definite.

Thus, the difference in utility from learning conditionally independent infor-
mation and learning price information is 1/2 trace(Zj’](Vl[[Lj —prl -l —
prD)). Since the expression inside the trace is a product of positive semi-
definite matrices, the trace and therefore the difference in expected utilities
is positive. Q.E.D.

S.6. DISPERSION AND PERFORMANCE RESULTS

In this section, we reprove Propositions 4 and 6 from the main text for dis-
persion and outperformance in certainty equivalent units, for less restrictive
parameter assumptions.

Prove: If x, is sufficiently large, a marginal increase in risk aversion, p, in-
creases the difference in expected certainty equivalent returns between in-
formed and uninformed investors, U;; — U y.

Recall that U; is the expected utility of investor j at the end of period 1
(i.e., after he has chosen his attention allocation but before he receives his
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signals). Fix j to be for an informed investor and let U,y be the expected utility
of an uninformed investor at the end of period 1. Using equation (40) from the
Appendix, we have

1 N

(S.13) Ulj_U]U:EZKij)\i
i=1

1

EZ i 0', 1—|— p 0'x+K)a',]+p2x20'2)

If there is no change in attention allocation when p increases marginally,
Ui; — Uy will increase because of the direct effect of p in equation (S.13)
and because o; increases in p for all i.

It remains to consider the case in which the attention allocation changes
after a marginal increase in p. This can happen when attention is allocated
to multiple risks before the change in p. From the proof of Proposition 2, we
know that after a marginal increase in p, A; will be higher for all risks that
receive attention. Since Zf; K;; = K both before and after the increase in p,
U,; — U,y increases.

Prove: If X, is sufficiently large, a marginal increase in risk aversion, p, in-
creases the dispersion in expected certainty equivalent returns E[(U;; — U))?,
where U] EfUljd]

The average certainty equivalent return is U, =AUy, + (1 — MUy, since all
informed agents I have the same expected utility and all uninformed agents
U have the same expected utility. For an informed agent j, (U;; — U;) =
(1 = M) (Uy; — Uyy). From the previous result, we know that an increase in p
increases U;; — Uy. Thus, dispersion in certainty equivalent returns increases
as well.

S.7. INTERACTION EFFECTS: RISK AVERSION AND AGGREGATE RISK

This section shows that the effect of aggregate risk on attention, dispersion,
and returns is greater when risk aversion is high. The testable prediction that
follows from these results is that the effect of aggregate volatility should be
greater in recessions, because these are times when the price of risk (governed
by risk aversion in the model) is high. Those empirical findings are presented
in the next section.

RESULT S.7.1: Aggregate volatility o, has a larger effect on the marginal
utility of an additional unit of precision in the signal about aggregate risk A,
when risk aversion is high: :;ZA,, > 0.

op don
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Recall that

17

(S.15) &=

From equations (S.14) and (S.15), it is immediate that §°A;/dp do,, = 0 for
all i # n. For A,

PN, 90,
dp doy, B dp do,

95,

_ - 0"(_7" é)(}n - 0726_”
+ 2(p2(0'x + X,21) + Kn) (&O'n ap + O ap &0’,,>.

All of the derivatives on the right-hand side of this expression can be evaluated
using equation (S.15):

9, 7.\’
(S.16) =(=2) >o0,

do, g,
o, 2K*&?
(8.17) T =nns,
p p Oy
P o, 4K2%5,\ 95,
(S.18) z :( j") Tn s
dp day, p’o, ) doy,

Rearranging these expressions delivers the result.

RESULT S.7.2: If risk aversion p is sufficiently high, then volatility o, has a
larger effect on portfolio return dispersion V,, when risk aversion is higher:
O*V,,/dp da, > 0.

Portfolio excess return dispersion is described in equation (48). We can write
this equation out as

. F o~ 2
E[((qgi—q@)'(f = pn)7]
=Y 6(K; — K)Vakia; + (K; — K))*p’x} o}
=1

N R
+3(K; — K,)Zp—’; + X757 K.
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The expression in the summation only depends on o, when / = a, so we can
restrict attention to

S.19)  F,=6(K, — KV, %52 + (K, — K,)*p*%’ 5
i n-n
I 7
+3(K,; — K, 2 + %257K ),
P
knowing that

FE[((q— ' (f—pn)] PR
0’)p(90'n N €9P070'n'

To evaluate 3°F, /dp do, six derivatives are needed. Three of them are given in
equations (S.16), (S.17), and (S.18). The other three are

al/nn O-I’l

T (J) [142(%0, +K,)3,] > 0,

Won 132

PV, K; \ | 35.K:(p’0: +K,)] 35,
o, =40, |:p0'x (1 + P40'i) + o, }07—0-11 > 0.

We will now evaluate the cross-partial derivative of each of the four terms on
the right-hand side of equation (S.19) with respect to p and o,. The cross-
partial deriviative of the first, second, and fourth terms are all strictly positive
because they are all products of strictly positive constants and positive powers
of 1, and &,. The sign of the third term is not clear on inspection because p
has a negative power. The cross-partial derivative for the third term is

@ (Val 2wV 2, 3V 4 IV
dpdo, | p* ) p*da, dp = p* "opda, p> "o,

In sum, this cross-partial has seven terms, six of which are unambiguously
positive. The seventh term may be positive or negative. But for p sufficiently
high, the negative term, which is multiplied by 1/p?, vanishes to zero and other
positive terms become more positive. Thus, there must exist some finite p such

that Vp > rho, 3*V,,/dp do, > 0.

RESULT S.7.3: If the supply of the aggregate risk o, is sufficiently large, then
volatility has a larger effect on expected returns when risk aversion is high:

FPEl(q;— q)'(f — pr)1/dpda, > 0.
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Equations (47) and (48) from the paper provide that
- RN |
(820) E[(q;— @) (f — pr)] = pTr(¥' TAZX) + 5 Te(AV).

This expression depends on o; through E, A, and V. All of these objects are
diagonal matrices. Using equations (25), (32), and (28) from the paper, their
ith diagonal elements are, respectively,

1

g;, =

=

o'+ K+
pO%

V)i= 5’i[1 + (PZU'X + Ki)(}i],
(A=K~ [Kydi
j

Since K is the same for all skilled investors, K;; = 0 for all unskilled investors
and the fraction of skilled investors is y, the third equation can be written as

(A);=(1- X)Kij-

Equation (S.20) provides an expression for portfolio excess return. For cur-
rent purposes, we can restrict attention to the terms in this expression that
depend on o, This leaves the following:

F2 P)_C 0- (A)nn + — (A)nn nne

Since the omitted terms do not depend on o,,, we know that

FE[(q;—q)(f —pn)]  &F
dpday, N dpdo,

The cross-partial derivative of F, with respect to p and o, is

J*F. Jo, _ do, 40,
2 = +(A)nn +2 2(A)rm
dpday, Jdoy, dp doy,
3o, v,
2 A nn nn A nn =
+x(>p&gn ()Un ()apo7

There are five positive terms and one negative. The only negative term on the
right-hand side of this expression is —%(A),m%. So this cross-partial deriva-
tive is positive, as long as that one term is sufficiently small relative to the other
terms.
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A sufficient conditions for this to be positive is that the supply of aggregate
risk X, is sufficiently large. Notice that V;,, and 4,, do not depend on X,,. Since
this is a partial derivative, we are holding the learning choices K; and K fixed.
However, some of the positive terms are increasing in x,. Thus, for some level
of x,, the positive terms must be larger and the cross-partial derivative must
be positive.

S.8. CYCLICALITY OF IDIOSYNCRATIC RISK

There are asset pricing papers that adopt the same notion of idiosyncratic
risk in returns that we do and come to different conclusions about its cycli-
cality. One of the most well-known papers on idiosyncratic risk is Campbell,
Lettau, Malkiel, and Xu (2001, CLMX). CLMX found that aggregate market
volatility, industry volatility, and firm-specific volatility all rise in recessions but
they provided no standard errors on these increases. As such, while our results
on aggregate market volatility are consistent with theirs, we find less support
for the countercyclicality of idiosyncratic volatility since we find no statistically
significant difference across the cycle for stock-specific variance. This appendix
explores the differences between our paper and CLMX in detail. There are
several. The first four are minor measurement issues. The last point is that the
sample periods differ, and that seems to account for most of the difference in
Our answers.

First, our methodology is slightly different. We use the more standard
CAPM, whereas they set all firms’ market beta equal to 1 in order to avoid
problems with measuring betas. As a result of this procedure, their measures
of firm-specific and industry risk are upward biased (see their equations (15)
and (16)). Moreover, because market variance is higher in recessions and the
cross-sectional dispersion of betas is higher in recessions, the bias increases in
recessions.

Second, to calculate our volatility measures, we use twelve-month rolling-
window regressions of monthly data; CLMX, in turn, used daily data.

Third, because of their methodology, CLMX were forced to compute value-
weighted volatility measures, while we focus on equally weighted volatility
measures. Nevertheless, we show that our results are robust to using value
weighting in our sample.

Fourth, we control for important factor exposures that may potentially vary
with the business cycle.

Fifth, and most importantly, the sample periods are different. The CLMX
results are for 1962-1997, while ours are for 1980-2005. It turns out that
the countercyclicality of the idiosyncratic volatility of stock returns is a frag-
ile result. In Table S.IV, we provide the time-series results of Table I in the
main text across different sample periods. The top panel uses equal weight-



TABLE S.IV
RISK IN INDIVIDUAL STOCKS: COMPARISON WITH CLMX (2001)*

Aggregate Risk Idiosyncratic Risk
1980-2005 1927-2008 1962-1997 1962-2005 1980-2005 1927-2008 1962-1997 1962-2005
Equal-weighted Results
Recession 1.253 1.766 1.523 1.665 0.128 0.153 0.564 0.741
(0.705) (0.688) (0.303) (0.427) (0.976) (0.598) (0.444) (0.691)
MKT —3.879 —3.528 2.458 —0.230 —1.695 —3.164 4.804 1.237
(3.125) (3.282) (2.174) (2.116) (2.941) (2.673) (2.747) (2.891)
SMB 10.028 16.143 2.875 6.730 11.538 14.238 0.959 6.673
(4.116) (6.234) (2.734) (2.670) (4.771) (5.133) (4.092) (4.498)
HML 3.448 —1.834 —1.956 1.660 8.873 4.649 2.789 5.100
(6.364) (6.869) (3.175) (4.289) (7.878) (5.497) (5.240) (7.293)
MOM —4.897 —10.755 —8.479 —6.023 —0.967 —2.927 —4.806 —1.944
(2.500) (4.424) (2.542) (2.090) (3.686) (3.323) (3.043) (3.528)
Constant 7.030 6.897 6.351 6.667 13.050 10.173 10.785 11.444
(0.224) (0.257) (0.182) (0.178) (0.269) (0.268) (0.256) (0.281)
Observations 309 979 432 528 309 979 432 528
(Continues)
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TABLE IV—Continued

Aggregate Risk Idiosyncratic Risk
1980-2005 1927-2008 1962-1997 1962-2005 1980-2005 1927-2008 1962-1997 1962-2005
Value-weighted Results

Recession 0.958 1.742 1.436 1.395 0.417 0.320 0.754 0.650

(0.440) (0.556) (0.288) (0.324) (0.557) (0.285) (0.209) (0.372)
MKT —1.685 —0.694 3.450 1.427 —1.510 —1.496 1.416 —0.267

(2.659) (2.763) (2.022) (1.855) (2.026) (1.411) (1.161) (1.485)
SMB 8.797 11.412 1.205 4.665 9.205 6.002 1.660 5.132

(3.437) (5.473) (2.451) (2.400) (4.062) (2.527) (1.811) (2.989)
HML 2.043 —1.003 —2.620 0.096 6.960 3.190 1.164 3.409

(6.013) (5.785) (2.920) (4.105) (7.172) (2.949) (2.266) (5.397)
MOM —4.994 —8.733 —8.110 —5.341 —0.514 —1.500 —3.227 —1.120

(2.242) (3.828) (2.306) (1.899) (3.308) (1.784) (1.508) (2.614)
Constant 5.365 5.236 4.778 5.039 6.959 5.764 5.821 6.259

(0.231) (0.195) (0.173) (0.171) (0.215) (0.127) (0.112) (0.166)
Observations 309 979 432 528 309 979 432 528

4The variable definitions and the empirical specification are as defined in the caption of Table I, panel A in the main text.
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ing, the bottom panel value weighting. The left four columns show that ag-
gregate risk is significantly higher in recessions in all eight specifications.
The same is not true for idiosyncratic risk in the four rightmost columns.
Using equal weighting, we find that idiosyncratic volatility is not statistically
higher in recessions for the 1962-1997 period, or in our sample, or for the
full sample 1927-2008. Using value weighting, our methodology recovers the
CLMX findings of higher idiosyncratic risk in recessions for the sample 1962—
1997. This result suggests that the differences between our and CLMX re-
sults are not (primarily) driven by methodological differences. What seems
more important is time period. As in our 1980-2005 sample, we find no sta-
tistical difference in idiosyncratic volatility between expansions and reces-
sions for the full 1927-2008 sample using value weighting. The inclusion of
the late 1990s in our sample, a period of high stock-specific volatility and
economic expansion, weakens the evidence for countercyclical idiosyncratic
risk. Indeed, the last column shows that even the value-weighted idiosyn-
cratic risk measure becomes insignificant once the CLMX sample is extended
from 1997 to the end of our sample, 2005. In sum, there seems to be no
consistent evidence for countercyclical variation in idiosyncratic stock risk, a
message that also comes out of our 1980-2005 results (Table I of the main
text).

S.9. NONLINEAR VOLATILITY EFFECTS

In this section, we expand on the volatility results discussed in Section 3 in
the main text. Specifically, we estimate a nonlinear volatility specification in
which we include top-5%, 5-10%, 10-30% , and 30-70% volatility indicator
variables. The omitted volatility category is the bottom 30%. We first present
results without the recession indicator variable in column 1 and then results
with the recession variable added in column 2. We also consider an additional
specification in which we interact the continuous volatility measure with the
recession indicator and interact volatility with 1 minus the recession indicator.
This specification asks whether the effect of volatility on our outcome vari-
ables is different in recessions and expansions, and its results are reported
in column 3. All regressions have our usual set of control variables. The re-
sults for Ftiming and Fpicking are in Table S.V, the results for return disper-
sion are in Table S.VI, and the results for the four-factor alphas are in Ta-
ble S.VIL.

With the nonlinear specification, we find nicely monotonic results. Fpicking
is lower when volatility is high, and more so at the top of the temporal volatil-
ity distribution than at the bottom (column 4). The effect is still negative for
the 5-10%, but not for low-volatility periods. For Ftiming, we find a positive
(albeit insignificant) volatility effect at the top of the volatility distribution,
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TABLE S.V

NONLINEAR VOLATILITY EFFECTS: Ftiming AND Fpicking

25

Ftiming Fpicking
() @ 3 ) ) ©)
Recession 0.011 —0.607
(0.003) (0.129)
Vol. Top-5 0.001 —0.002 —0.414 —0.190
(0.003) (0.004) (0.140) (0.140)
Vol. 5-10 —0.000 —0.001 —0.120 —0.101
(0.005) (0.005) (0.201) (0.198)
Vol. 10-30 —0.006 —0.006 0.258 0.282
(0.003) (0.003) (0.181) (0.179)
Vol. 30-70 0.000 0.000 0.528 0.530
(0.003) (0.003) (0.165) (0.165)
Vol. x Rec. 0.014 —4.854
(0.014) (0.804)
Vol. * Exp. —0.011 —1.448
(0.015) (0.723)
log(Age) —0.001 —0.001 —0.001 0.437 0.444 0.437
(0.001) (0.001) (0.001) (0.062) (0.061) (0.062)
log(TNA) —0.001 —0.001 —0.001 —0.121 —0.126 —0.124
(0.000) (0.000) (0.000) (0.030) (0.029) (0.030)
Expenses —0.223 —-0.203 —-0.224 99.900 98.547 97.605
(0.220) (0.220) (0.218) (11.076) (11.041) (11.221)
Turnover —0.004 —0.004 —0.004 —0.259 -0.259 —0.258
(0.001) (0.001) (0.001) (0.063) (0.063) (0.063)
Flow —0.011 —-0.010 —0.011 0.686 0.638 0.710
(0.011) (0.011) (0.011) (0.645) (0.647) (0.650)
Load 0.012 0.008 0.010 —10.244 -9.990 —10.091
(0.022) (0.022) (0.022) (1.931) (1.933) (1.949)
Flow Vol. —0.001 —0.005 —0.002 6.205 6.425 6.465
(0.017) (0.017) (0.017) (1.034) (1.037) (1.037)
Constant 0.001 0.000 0.000 2.858 2.881 3.204
(0.002) (0.002) (0.002) (0.113) (0.114) (0.107)
Observations 221,488 221,488 221,488 165,029 165,029 165,029
R-squared 0.001 0.001 0.001 0.003 0.003 0.002
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TABLE S.VI
NONLINEAR VOLATILITY EFFECTS: DISPERSION

Return Dispersion

)] (@) 3)

Recession 0.278
(0.141)
Vol. Top-5 0.646 0.597
(0.257) (0.274)
Vol. 5-10 0.432 0.427
(0.337) (0.335)
Vol. 10-30 —0.136 —0.138
(0.191) (0.189)
Vol. 30-70 0.039 0.041
(0.207) (0.207)
Vol. * Rec. 3.533
(1.168)
Vol. * Exp. 2.292
(1.113)
log(Age) —0.104 —0.106 —0.107
(0.018) (0.018) (0.018)
log(TNA) 0.034 0.036 0.034
(0.011) (0.010) (0.010)
Expenses 24.856 25.158 24.701
(2.751) (2.715) (2.647)
Turnover 0.074 0.074 0.074
(0.015) (0.014) (0.014)
Flow —0.280 —0.268 —0.289
(0.224) (0.224) (0.216)
Load —3.429 —3.496 —3.490
(0.549) (0.542) (0.541)
Flow Vol. 2.013 1.939 1.953
(0.272) (0.287) (0.260)
Constant 1.837 1.828 1.699
(0.168) (0.169) (0.124)
Observations 227,141 227,141 227,141

R-squared 0.082 0.083 0.076
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TABLE S.VII
NONLINEAR VOLATILITY EFFECTS: PERFORMANCE

Four-Factor Alpha

M

(@)

(©)

Recession
Vol. Top-5
Vol. 5-10
Vol. 10-30
Vol. 30-70
Vol. % Rec.
Vol. x Exp.
log(Age)
log(TNA)
Expenses
Turnover
Flow
Load
Flow Vol.

Constant

Observations
R-squared

0.145
(0.058)
0.065
(0.105)
0.052
(0.053)
~0.008
(0.038)

~0.031
(0.006)
0.017
(0.003)
~6.979
(0.665)
—0.080
(0.008)
1.369
(0.097)
—0.215
(0.127)
1.326
(0.109)
~0.073
(0.019)

224,130
0.057

0.092
(0.035)
0.120
(0.061)
0.062
(0.105)
0.051
(0.053)
—0.007
(0.038)

—0.032
(0.006)
0.018
(0.003)
—6.819
(0.663)
—0.080
(0.008)
1.376
(0.095)
~0.250
(0.123)
1.287
(0.107)
—0.077
(0.019)

224,130
0.058

1.092
(0.205)
0.388
(0.296)
—0.031
(0.006)
0.017
(0.003)
—6.705
(0.651)
—0.080
(0.008)
1.370
(0.096)
~0.239
(0.127)
1.306
(0.104)
—0.087
(0.026)

224,130
0.057
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as predicted by the theory, but not in the rest of the volatility distribution
(column 1). These results highlight the nonlinearity: we find evidence of our
volatility channel, but it is concentrated in high-volatility periods. Once the
recession indicator is added in columns 2 and 5, we lose statistical signifi-
cance. As we argued in the paper, recessions are often (but not always) pe-
riods of high volatility and the recession effect takes explanatory power and
statistical significance away from the volatility effect. Yet, the monotonicity
of the volatility effect remains. Columns 3 and 6 explore the interaction be-
tween volatility and recession further. Column 3 shows that volatility has the
predicted positive effect on Ftiming in recessions, but not in expansions. The
point estimate remains insignificant, but the effect of volatility in recessions on
Ftiming has a higher ¢-statistic than in any of the other specifications. Volatil-
ity has a negative effect on Fpicking, and the effect is four times larger in
absolute value in recessions than in expansions. While both volatility coeffi-
cients in column 6 are significant, the ¢-statistic is three times larger in reces-
sions.

Table S.VI shows that there is a positive effect of high volatility on return dis-
persion (column 1). Again, the effect is concentrated in the top-10% volatility
periods. The monotonicity of the effect as well as its statistical strength are pre-
served once we add a recession indicator in column 2. Column 3 shows stronger
effect of volatility on dispersion in expansions than in recessions: the point es-
timate is 50% larger, but both effects are significant. Again, this suggests that
there is a separate role for volatility outside recessions, but that the volatility
effect is strongest in recessions.

Finally, Table S.VII shows similar results for the four-factor alpha measure.
Unreported results for CAPM and three-factor alphas are along the same
lines. High-volatility periods are associated with statistically and economically
significant outperformance (column 1). The nonlinear volatility effect survives
inclusion of a recession indicator (column 2). The effect of volatility is more
than twice as strong in recessions as in expansions. It is highly significant in
recessions, but loses significance in expansions.

S.10. RESULTS WITH MANAGERS AS THE UNIT OF OBSERVATION

In our final set of results (Table S.VIII), we measure fundamentals-based
market-timing ability (Ftiming), fundamentals-based stock-picking ability
(Fpicking), portfolio dispersion (Dispersion), and the alpha (4-Factor Alpha),
all at the manager level. We find that for these results, the distinction between
measuring the behavior of a manager or the behavior of a fund makes little
difference quantitatively.



TABLE S.VIII
ROBUSTNESS: MANAGERS AS THE UNIT OF OBSERVATION?

Ftiming Fpicking Return Dispersion 4-Factor Alpha
1 ©) (3) ) ©) (6) () ®)
Recession 0.008 0.007 —0.701 —0.824 0.105 0.142 0.167 0.141
(0.003) (0.002) (0.130) (0.132) (0.031) (0.024) (0.038) (0.035)
log(Age) —0.002 —0.004 0.460 0.268 0.154 0.017 —0.032 —0.069
(0.001) (0.001) (0.066) (0.065) (0.032) (0.021) (0.006) (0.008)
log(TNA) —0.000 —0.000 —0.126 —0.139 —0.131 —0.093 0.007 0.003
(0.000) (0.000) (0.032) (0.033) (0.018) (0.011) (0.004) (0.005)
Expenses 0.130 0.060 127.222 45.894 43.920 13.241 —8.225 —10.590
(0.105) (0.146) (13.972) (13.867) (6.012) (4.504) (0.794) (1.138)
Turnover —0.005 —0.004 —0.287 0.210 —0.127 —-0.014 —0.081 -0.035
(0.002) (0.002) (0.077) (0.090) (0.030) (0.020) (0.010) (0.009)
Flow —0.009 —0.016 1.037 1.186 0.154 —0.374 1.832 1.483
(0.009) (0.009) (0.613) (0.554) (0.121) (0.101) (0.097) (0.089)
Load —0.009 —0.069 —16.064 —-5.832 —4.674 —-0.231 —0.426 0.097
(0.017) (0.023) (2.393) (2.307) (1.284) (0.809) (0.151) (0.172)
Fixed Effect N Y N Y N Y N Y
Constant —0.002 —0.002 2.966 2.977 1.438 1.447 —0.045 —0.043
(0.001) (0.001) (0.072) (0.068) (0.026) (0.008) (0.024) (0.021)
Observations 332,676 332,676 249,942 249,942 332,776 332,776 332,776 332,776

2The dependent variables are fundamentals-based market-timing ability (Friming), fundamentals-based stock-picking ability (Fpicking), return dispersion (Portfolio Dispersion),
and the four-factor alpha (4-Factor Alpha), all of which are tracked at the manager level. Columns with a “Y” include manager-fixed effects. The independent variables, the sample
period, and the standard error calculations are the same as in Table II.
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