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S-1. IDENTIFICATION OF THE VARIANCE OF TWO-STEP ESTIMATORS

Consider the two-step estimation problem in equation (8) in Section 5. As mentioned,
the asymptotic variance of 0, is
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It is often easy to estimate Vj, V2, Q;, and R, directly. When it is not, they can be es-

timated using the poor woman’s bootstrap procedure above. We therefore focus on 1,
and R;.

Consider one-dimensional estimators of the form
~ .1
a,(6;) = argmin — Z O(z;, 0, + a,6y),
a n
—~ .1 -
a>(81, 6,) = argmin — ZR(Zi7 0, +a,01, 0, + a,5,),
a n

1
a5(8;) = in — R(z;, 6., 0 63).
as(03) argn}zinnz (zi, 01, 0, + a383)

The asymptotic variance of (a;(5;), @,(81, 8,), @3(83)) is
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-1

808, SRS 0
X 0 8/2R252 0
0 0 83R, 53

When 6, = &5, this has the form
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2 B. E. HONORE AND L. HU

where g, = 010181, 1 = 0\R,6,, r, = 0,R, 6, V:; = 0/V1164, Vqr =06V26,,and V) = 0, V,6,.
This can be written as

V. 1 V, 1
< e o
q; qir; qi qir
i(l%_&ﬂ) l(E_iﬂVqr>_iﬂ<1%_Eﬁ> l(E_lﬁVqr)
qi \ 1 qin n\"n qi qin\n qi 1 n\n VQI r
r r r
—Var e L "l
qir nooqin r

Normalize so V, =1, and parameterize V, = v? and Vo = p/VyV, = pv gives the matrix

1 1 1n 1
2 L PYT s —pV
q, qir q. qir
1<1 1r1) 1(1)2 1n ) 1r1(1 1r1> 1(1}2 1n )
—| —pv——— ————pv)——— —pv——— —|————pv
q \ q n\n q1 qi1 1\ qi n\n qi
voo1n v
q1r2p 5oq r§p 2

Denoting the (¢, m)th element of this matrix by w,,,, we have

1 r r
W33 — W3 = ——pU= —W03,
q1 r 12

W3 — W3 1N
- — 7>

w3 r
w31

pP=—F—
A/ W11 W33

Since r, is known, this gives r; and p. We also know v from ;3.

This implies that the asymptotic variance of (a;(8,),a,(d;, 5,),a3(8;)) identifies
81V126, and &\ R;8,. Choosing 6; =e¢; and 6, =e, (for j=1,...,kyand m=1,...,k,)
recovers all the elements of 1}, and R;.

S-2. BOOTSTRAPPING WITH EASY SECOND-STEP ESTIMATOR

Consider the case of a two-step estimator like the one in Section 5, but where the first-
step estimator is computationally challenging while it is feasible to recalculate the second-
step estimator in each bootstrap sample. We again consider estimators of the form

1
a:(8) = in — i, 0 4),
a,(9) argng}nnZQ(z |+ a18)
1
a 5 = in — R 5,0 AS,O 5
ax(9) argngnnz (z;, 01+ a6, 6, + as)

1
a3 =argmin— Y R(z;, 0,,0 ,
as g " nZ (zi, 01, 0, + a3)
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but now @, is a vector of the same dimension as 6,. The asymptotic variance of
(ﬁ1(3),52(5),ﬁ3) is

§0:16 0 0\  [(8Vis Vi 8V (508 SR, 0\
RS R, 0 Vs Ve Va 0 R 0 . (D
0 0 R, 12 T A 0 0 R

Multiplying (S1) yields a matrix with nine blocks. The upper-middle block is —(8'Q;8) ! x
(8'V118)(§'018)8 R\ R, + (§'018)7'8' V1R, ", while the upper-right block is (8'Q0;8)7! x
O'ViR; ! The latter identifies 6'V},. When 6 = ¢ j, this is the jth row of V},. The difference
between the upper-middle block and the upper-right block gives —(8'Q;8)1(8'71,8) 7! x
(§'Q18)8' R} R, ", which in turn gives § R; or R;8. When 8 equals e, this is the jth column
of R] .

This approach requires calculation of only 2k, one-dimensional estimators using the
more difficult first-step objective function. Moreover, as above, the approach gives closed-
form estimates of 1}, and R;.

S-3. MAXIMUM OF TWO LOGNORMALS

Let (X, X;)" have a bivariate normal distribution with mean (u, u,)" and variance
(7:1102 7(2%”2) and let (Y3, Y,) = (exp(X,), exp(X;))'. We are interested in E[max{Y;, Y,}].

Kotz, Balakrishnan, and Johnson (2000) presented the moment-generating function for
min{ X7, X,} as

M(t) = E[exp(min{X, X>}?)]

2 — M — t(0'12 — 7'0'10'2))

= exp(fu + tzalz/Z)@(M
\/0'22 — 27010, + o

H1— Mo — t((722 — TOq 0'2))

+ exp(tp, + t2022/2)<1><
\/0'22 — 21010, + o}

Therefore,
E[max{Y;, Y>}] = E[Y ]+ E[Y,] — E[min{Y}, Y,}]
= E[exp(X})] + E[exp(X,)] — E[min{exp(X,), exp(X2)}]
= exp(u1 + 07/2) + exp(p2 + 03/2) — E[exp(min{X;, X,})]
= exp(u1 + 07/2) + exp(uz + 03/2)

pa — 1 — (o7 — 70102)>

—exp(mi + 012/2)cb<
\/0'22 — 27010, + of

i — o — (07 — ’”7102))

—exp(p2 + 022/2)45(
\/0'22 — 27070, + o}
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pa2 — py — (07 — 70'10'2))>
\/ 2 _ 2 2
g; TO10, + O

pr — pr — (05 — Ttntfz)>>

\/0'22 — 21070, + o}

= exp(u1 + 07/2) (1 — @(

+ exp(u2 + 05 /2) (1 - (D(

S-4. IMPLEMENTATION WITH TWO-STEP ESTIMATION

In the discussion in Section 5, we identified R, and V/, in closed forms using a subset of
the information contained in the asymptotic variance of (@, @,, ;). Here we present one
way to use all the components of this variance to estimate R, and V},. For simplicity, we
consider the case where one recalculates the entire first-step estimator in each bootstrap

sample.
Consider estimating the second-step parameter in J different directions in each boot-

strap replication,
a i 1ZQ( 0, +a))
a; = argmin — i a),
1 g an Zi, Up 1
—~ ! ~
a(8;) = argma;n n ZR(ZD 0, +ay, 0, + asd)),
—~ !
a3(8/)=argn2n;ZR(zi,61,02+a38,-).

The asymptotic variance of (a@\, {@(8,)}]_,, {@(8;)}_,) is of the form Q = A7'B(A4")7",
where

0O, 0 0
A=|DR, CUQR,)C 0 and
0 0 CI®R)C

Vi ViuD ViuD
B=|DV,, DVwD DVsD
DV}, DVuD D'VyD

This gives
Vi VoD VD

DV/, DVuyD DVyD
DV), DVyD DVyD

0O, 0 0
— DR, CU®R)C 0 (S2)
0 0 C'(I®R,)C
0, RD 0
x|l 0 CURR,)C 0

0 0 CUI®R)C
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This suggests estimating }, and R; by minimizing

Vi VD VD
D'V, DVpD DVypD

ij DV/, D'VynD D'VyD
0, 0 N 0
— | DR, CUQR,C 0 _
0 0 C(UI®R,)C
(o RD 0 2
x|l 0 CURR,)C OA
0 0 CIQ®R,)C

ij
over V}; and R;.

When §; =¢;, D=1 and C'(I ® R,)C = diag(R,) M. Using this and multiplying out
the right-hand side of (S2) gives

i V2 M2
Vi, Voo Vn

Vi, Vo Vi
Or 0 0\ [/Qu Qp O3\ (01 R} 0
=|\Ry M 0 Dy 2y Oxn 0 M O
0O 0 M Q31 Q3 033 0 0 M
0121101 01011R| + 0121:M 0103M
=| R10Q1101+ MO0 Rl.Q]lR/l+M021R,1+R1.Q]2M+M922M R1Q;3M + MM | .
M2130, M!231R/1 + MQ3M MOz M

The approach in Section 5 uses the last two parts of the first row to identify V}, and R;. The
upper left- and lower right-hand corners are not informative about 1}, or R;. Moreover,
the matrix is symmetric. All the remaining information is therefore contained in the last
two parts of the second row. R; enters the middle block nonlinearly, which leaves three
blocks of equations that are linear in V), and R;:

Vio = 010nR) + 010 M,
V12 = Q1~013M,
Vo3 = RiQsM + M M.

These overidentify 1}, and R;, but they could be combined through least squares.

S-5. VALIDITY OF BOOTSTRAP

Hahn (1996) established that under random sampling, the bootstrap distribution of
the standard GMM estimator converges weakly to the limiting distribution of the es-
timator in probability. In this section, we establish the same result under the same
regularity conditions for estimators that treat part of the parameter vector as known.
Whenever possible, we use the same notation and the same wording as Hahn (1996).
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In particular, 05(), Oy (+), 0p(-), and Og(-) are defined on page 190 of that paper.
A number of papers have proved the validity of the bootstrap in different situations.
We choose to tailor our derivation after Hahn (1996) because it so closely mimics the
classic proof of asymptotic normality of GMM estimators presented in Pakes and Pollard
(1989).

We first review Hahn’s (1996) results. The parameter of interest 6, is the unique solu-
tion to G(¢) =0, where G(¢) = E[g(Z;, t)], Z; is the vector of data for observation i, and
g is a known function. The parameter space is 6.

Let G,(t)=1Y"" g(Z;, t). The GMM estimator is defined by

n

2

T, = argmin|A,,G,,(t)
t

where A, is a sequence of random matrices (constructed from {Z;}) that converges to a
nonrandom and nonsingular matrix A4.

The bootstrap estimator is the GMM estimator defined in the same way as 7, but from
a bootstrap sample {Z,, ..., Z,,}. Specifically,

T, =arg min‘ﬁnan(t)
t

5

where @,,(t) = % . g(Z”«, 1). 2,1 is constructed from {Z,,-}:?:1 in the same way that A4,
was constructed from {Z,},.
Hahn (1996) proved the following results.

PROPOSITION 0—Hahn Proposition 1: Assume that
(1) 6y is the unique solution to G(t) = 0;
(i) {Z;}is an i.i.d. sequence of random vectors;
(iii) inf\t_eo\zﬁ |G(8)| > 0forall 6> 0;
(iv) sup,|G,(t) — G(t)]| — Oasn — oo as.;
(v) Elsup,|g(Z;, Hl] < 005
(vi) A,=A+o0,(1)and A, = A+ op(1) for some nonsingular and nonrandom matrix
A;and
(Vi) |4,G.(7)| < 0,(1) +inf, | 4,G, (1) and | 4,G,(7,)| < 05(1) +inf, | A,G. ().
Then T, = 0y + Op(l) and ?,, =0+ 03(1).

THEOREM 0—Hahn Theorem 1: Assume that
(i) Conditions (1)—(vi) in Proposition 0 are satisfied,; R
(i) 7, satisfies |A,G,(7,)| < 0,(n"?) + inf, | 4,G, ()| and 7, satisfies | A,G,(7,)| <
0p(n~'?) +inf, | 4,G,(1)];
(iii) lim,_ 4, e(t, 6)) =0 where e(t,t') = E[(g(Z;, t) — g(Z;, t'))*]V%;
(iv) forall € >0,

limlim sup P( sup |G,(1) = G(1) = G,(¢) + G(r)| = ") =0;

n—o00 e(t,')<8

(v) G(¢) is differentiable at 6y, an interior point of the parameter space, O, with derivative
I" with full rank; and
(vi) {g(-,t):t € O} C L,(P) and O is totally bounded under e(-, -).
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Then

n'?(1, — 0y) = —n" (I A’ AT) ' T" A’ 4,G,(6) + 0,(1) = N(0, 2)

and
n'?(@, =) == N(0,9),
where
Q= (I"AAT) ' T'A AV A AT (I" A AT')™
and

V =E[g(Z:, 60)8(Z;, 60)'].

Our paper is based on the same GMM setting as in Hahn (1996). The difference is
that we are primarily interested in an infeasible estimator that assumes that one part of
the parameter vector is known. We will denote the true parameter vector by 6,, which we
partition as 6, = (6}, 62).

The infeasible estimator of 6,, which assumes that 67 is known, is

46.((5)) )
eeom($) ()

Let the dimensions of 6} and 63 be k; and k,, respectively. It is convenient to define
Ey = (I, sk, : Ok, i) and B = (Op,k, * Liyxk,)'- Post-multiplying a matrix by E; or E, will
extract the first k; or the last k, columns of the matrix, respectively.

Let
NN\’ 1
0. ) =argmin G, <<§2)> A,4,G, ((iz»

be the usual GMM estimator of 6,. We consider the bootstrap estimator

i (1)

where 6,,(t) = % > g(Zni, 1). ;1\,1 is constructed from {2ni}?:1 in the same way that A4,
was constructed from {Z;}"_,. Below, we adapt the derivations in Hahn (1996) to show
that the distribution of ¥y, can be used to approximate the distribution of y,. We use ex-
actly the same regularity conditions as Hahn (1996). The only exception is that we need
an additional assumption to guarantee the consistency of ¥,,. For this, it is sufficient that
the moment function, G, is continuously differentiable and that the parameter space is
compact. This additional stronger assumption would make it possible to state the condi-
tions in Proposition 0 more elegantly. We do not restate those conditions because that
would make it more difficult to make the connection to Hahn’s (1996) result.

Y, = argmin
t

or

¥, = arg mtin , (S4)
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PROPOSITION 1—Adaption of Hahn’s (1996) Proposition 1: Suppose that the conditions
in Proposition 0 are satisfied. In addition, suppose that G is continuously differentiable and

that the parameter space is compact. Then v, = 0y + 0,(1) and ¥, = 6, + op(1).

PROOF: As in Hahn (1996), the proof follows from standard arguments. The only dif-
ference is that we need
G (L)) =G ((L))=01)
n ’é*z 6% = Op .
This follows from

o((3)-((2)
o (£) () +o(() (@)
o (8) (&) ((6) (&)

As in Hahn (1996), the first part is of (1) by bootstrap uniform convergence. The sec-
ond part is bounded by sup |‘QG£;—;Z”2)||/0\2 — 62). This is 0,(6* — 62) = 0,(n""/2) by the as-
sumptions that G is continuously differentiable and that the parameter space is com-
pact. QE.D.

sup
t

<

THEOREM 3—Adaption of Hahn’s (1996) Theorem 1: Assume that the conditions in
Proposition 1 and Theorem 0 are satisfied. Then

n'2(y, — 6)) = N(0,2)

and
(¥ = yu) == N(0,2),
where
Q= (E\I" A ATE,) E,I" A’ ASA' ATE,(E,I" A ATE,)”"
and

V =E[8(Z:, 00)8(Z:, 60)].

PROOF: We start by showing that (7") is «/n-consistent, and then move on to show
asymptotic normality.

Part 1. /n-consistency. For @2, root-n consistency follows from Pakes and Pollard
(1989). Following Hahn (1996), we start with the observation that

30 ((3)-o((3) =
0((3)-((3) o0

G, (00) + AG(6,)

(S5)
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o) -
ot ol (3) -]

Combining this with the triangular inequality, we have

‘AG ((%;)) — AG(6y)| < |4,G, ((;)) — AG (@2)) — 4,G,(6y) + AG(8y)
i6.((%))-4.6

nIn ’52 n n(OO)
=< OB(nf]/z) +o0p(1) ‘G ((%)) —G(6)
+ le\nan ((%;)) - ;Inan(eo) .

The nonsingularity of 4 implies the existence of a constant C; > 0 such that |AAx| > Cilx|
for all x. Applying this fact to the left-hand side of (S6) and collecting the G((% )) — G(6o)

terms yield

+

(S6)

(Cr —0p(1)) ‘G (@2)) — G(6)) (S7)
< oy(n"?) +|4,G, (@)) — 4,G,.(60)
<oy(n"?)+|4,G, (@))' +|A4,G.(80)]
< o0p(n"?) +|4,G, ((gé))‘ +[A4,G(00)]. (S8)

Stochastic equicontinuity implies that

6:(3)) - #(6((§)-ow) 3501 Tt
A6.((8))

so (S8) implies

(Cl—oB(l)‘ ((i;)) G (60)
1 —_~~ _ -~
<op(n'?) + ‘ H<G((9 )) G(Oo))'—|—2|An||G,,(00)|+|An|03(n1/2)

or

o~ 1 R R
(o((8)) - 60) [ +136.0 413 10str
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1 —_~ o~
(G ((%)) - G(Go))' +214,1|G,(0) — Gu(6)|

+214,1|G(00)| + [ 4,0 (n ")
= 0p(n"'"?) + O(1)O0,(n""?) + O(1)Op(n'?)
+ O0p(1)0,(n™?) + Op(1)op(n™"7?).

<op(n"?) + |4,

(S9)

Note that

G ((%)) =TE\(. — 6;) + 05(1) |7, — 6.
As above, the nonsingularity of I" implies nonsingularity of I'E;, and hence, there exists

a constant C, > 0 such that |I'E x| > C,|x| for all x. Applying this to the equation above
and collecting terms give

Ca|9 = 63| < [TEi(3, = 6y)|

-e((3) e

Combining (S10) with (S9) yields

R (S10)
+ 05(1) |7, — 6]

(Cl - 03(1))(C2 - 03(1))’% - 9(])’

= (Cl - 03(1)) ‘G ((Zg)) — G(6)

<op(n™"?) + 05(1)0,(n""?) + Op(1)Op(n~'"?)
+ 0p(1)0,(n"'?) + Op(1)op(n~""?)

or

9= 04] < Os(1) (O (n"?) + O (™).
Part 2: Asymptotic Normality. Let

~ 1 —~ o~
L.(=Ar ((5’2) - (gg» + 4,G,(00).

o, = argmtin|z,,(t)|

= argmin(AF ((é) — (gé)) + Enén(90)>
! 0
1 _~ o~
(@) () 20)

Define
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Solving for @, gives
0, =0, — B;'(Byx + ()
— ((FE\) A AT'E,)™
x (TE\) A’ ATE, (8 — 82) + (I'E\) A'4,G,(6,))
— ((F'E\Y A'ATE,) (TE\) A
x (AT E,(6* — 6) + A,G.(6y)).
Mimicking the calculation on the top of page 195 of Hahn (1996),
(@, —ya) = —((TEy) A'ATE,) " (I'E\) A' (AT E,(%* — 62) + 4,G.,(6,))
+ (E;["A'ATE)) " E;T" A’ AG,,(6,)
—((TE,) A ATE,) (I'Ey) A
x (ATE;(6* — 62) + 4,G,(8)) — AG,(6)))
= —A(p, + A,G,(8)) — AG,(60)),
where A= ((I'E,) A'ATE,)"(I'E,) A’ and p, = AT Ey(¢* — 62). Or
(G — Yo+ Aps) = —A(A4,G,(60) — AG,(60)).
From this, it follows that &, — vy, = Oz(n~"?).

Next we want to argue that «/n(a, —¥,) = 0p(1).
We next proceed as in Hahn (1996) (page 194). First we show that

36.((5)) -2

It follows from Hahn that

#6((3)) - (3

We thus have

=op(n7'7?). (S11)

= op(n~'7?).

N——

) A,G,.(6y) + AG(6,)

6. ((3)) -2 - 1 ((8)) - (3)-(3) 300
< Anén(@g))—/lc;(@;)) A,G,(60) + AG(6,)
i (§)) -0~ (5) -+
= oa(n™) + 0 ((}) - 90)
= on(").
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This uses the fact that (;’) is 4/n-consistent.
Next, we will show that

(S12)

r((%)-0)- 26,0
- AG ((gn)) — A4,G,(60) + AG(6))
() -sowr-ar((3) -0
(O

For the last step, we use 7, — 0 = (G, — v,) + (v, — 0)) = Op(n™"?) + O, (n"'/?).
Combining (S11) and (S12) with the definitions of ¥, and 7,, we get

I
)
9)
—
I~
)
S~ ——
—— ~——
|
N

IL,3)| = L@ + 0s(n'7?).

(S13)
Exactly as in Hahn (1996) and Pakes and Pollard (1989), we start with

ar((%)-«)
AD ((%) - (%z))’ +]4,G.(60) — A,G.(6))]
|ar((%)-a)

= 0p(n™"?) + 0p(1)0s(n""?) + 0, (n"'?) + Os(1)O,(n7"7?).  (S14)
Squaring both sides of (S13), we have

L@ <

+ | 4.,G.(60)]

=

+ |1/4\nGn(00)|

IL.@)|" =L@ + os(n) (S15)
because (S14) implies that the cross-product term can be absorbed in the oz(n~'). On the
other hand, for any ¢,

~ 1 —~ A~
L.=Ar ((@2) - (gg)) +4,G.(600)
0

has the form L, (1) = y — Xt, where X = —AT'E, and y = — AT'E, 0} + ATEy(6* — 62) +
AnGn(GO)-
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7, solves a least squares problem with first-order condition X 'T, (o) =0. Also
L = -X0'(y-Xn)
=((y—X0,) —X(1—73,) ((y - X3\) — X (1 = 5))
= (y - X&n)/(y - X&n) + (t - an)/X/X(t - /&n)
- 2(t - 6\-n)/)(,(y - Xb\-n)
=L@ +|Xt -5 -2 -3 X'L, @)
= |L.@)| + |(ATED(t -3
Plugging in t = %,, we have
~ 2 ~ 2 ~ ~ 2
‘Ln(yn)‘ = ‘Ln(a-n)| + ‘(AFEI)('Yn - 0'")’ .
Compare this to (S15) to conclude that
(ATE)(3, — 0,) = 0p(n™"?).

ATE; has full rank by assumption, so (y, — 7,) = og(n~"?) and n'?(y, — vy,) =
n'2(¢, — v,) + 05(n~%), and since n'/2(G, — y,) == N (0, 2), we obtain n"/2(¥, — v,) =
N, ). O.E.D.

Theorem 3 is stated for GMM estimators. This covers extremum estimators and the
two-step estimators as special cases. Theorem 3 also covers the case where one is inter-
ested in different infeasible lower-dimensional estimators as in Section 4.2. To see this,
consider two estimators of the form

1 n ! 1 n
a 01) = i - i 0 ) W’l - i 0 )
a(dy) argm;n(n;f(x o+ a 1)) <n;f(x o+ a 1))
and
4(8,) = argmin lanf(x 0y + ad,) /W 1XH:]‘()C 0y + ad,)
2—ga n & i» Yo 2 nni:1 i» Yo 2) ]
and let A4, denote the matrix-square root of W,. We can then write

A, 0 lzn: f(xi, 00+ ady)
0 A4.)n f(xi, 6+ ady)

i=1

b

(a(5,),d(8,)) = argmin

which has the form of (S3).
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