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APPENDIX A: MULTIPLE ACTIONS

IN THIS APPENDIX, we allow the receiver to make a choice among multiple actions. We
characterize the implementable receiver’s interim utilities and show that the sender can
generally implement a strictly larger set of the receiver’s interim utilities by persuasion
mechanisms than by experiments. We also formulate the sender’s optimization problem
and show that the sender can achieve a strictly higher expected utility by persuasion mech-
anisms than by experiments.

A.1. Preferences

Let A = {0�1� � � � � n} be a finite set of actions available to the receiver. The state ω ∈
Ω = [0�1] and the receiver’s type r ∈ R = [0�1] are independent and have distributions
F and G. We continue to assume that the receiver’s utility is linear in the state for every
type and every action.

It is convenient to define the receiver’s and sender’s utilities, u(ω� r�a) and v(ω� r�a),
recursively by the utility difference between each two consecutive actions. For each a ∈
{1� � � � � n},

u(ω� r�a)− u(ω� r�a− 1)= ba(r)
(
ω− xa(r)

)
�

v(ω� r�a)− v(ω� r�a− 1)= za(r)+ ρ(r)
(
u(ω� r�a)− u(ω� r�a− 1)

)
�

and the utilities from action a = 0 are normalized to zero, u(ω� r�0) = v(ω� r�0) = 0 for
all ω and all r.

For each a ∈ {1� � � � � n}, the receiver’s and sender’s utilities can be expressed as

u(ω� r�a)=
(

a∑
i=1

bi(r)

)
ω−

(
a∑

i=1

bi(r)xi(r)

)
�
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v(ω� r�a) =
(

a∑
i=1

zi(r)

)
+ ρ(r)u(ω� r�a)�

We assume that ba(r) > 0 for all r and all a ∈ {1� � � � � n}. This assumption means that every
type r prefers higher actions in higher states. Note that xa(r) is the cutoff state at which
the receiver of type r is indifferent between two consecutive actions a − 1 and a. Define
x0(r) = −∞ and xn+1(r) = ∞.

Denote by x̄a(r) the cutoff truncated to the unit interval,

x̄a(r) = max
{
0�min

{
1�xa(r)

}}
�

We assume that the cutoffs are ordered on [0�1] such that

x̄1(r) ≤ x̄2(r) ≤ · · · ≤ x̄n(r) for all r ∈R�

Thus, type r optimally chooses action a on the interval of states (x̄a(r)� x̄a+1(r)).1

A.2. Experiments

Because the receiver’s utility is linear in the state for every type and every action, every
experiment σ can be equivalently described by the probability that the posterior mean
state is below a given value x ∈ Ω,

Hσ(x)=
∫
Ω

σ(x|ω)dF(ω)�

In fact, as in Blackwell (1951), Rothschild and Stiglitz (1970), and Gentzkow and Ka-
menica (2016), it is convenient to describe an experiment by a convex function Cσ :R →R

defined as

Cσ(x) =
∫ ∞

x

(
1 −Hσ(m)

)
dm�

Observe that by (9), for every experiment σ , we have Cσ(r) =Uσ(r) for all r, where Uσ(r)
is the receiver’s interim utility under σ in the problem of Section 2, with two actions and
u(ω� r�a)= a(ω− r). Hence, by Theorem 1, the set of all Cσ is equal to

C = {C : C ≤ C ≤ C and C is convex}�

where C and C correspond to the full and no disclosure experiments,

C(x) =
∫ ∞

x

(
1 − F(m)

)
dm�

C(x) = max
{
E[ω] − x�0

}
�

1This assumption ensures that the actions that can be optimal for type r are consecutive. If actions a − 1
and a+ 1 are optimal for type r under states ω′ and ω′′, then there must be a state between ω′ and ω′′ where
action a is optimal. This assumption simplifies the exposition. Relaxing this assumption poses no difficulty: it
will only require us, for each type r, to omit from the analysis the actions that are never optimal for this type.
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A.3. Implementable Interim Utilities

The expected utility of type r under experiment σ is equal to

Uσ(r) =
∫
Ω

(
max
a∈A

u(m� r�a)
)

dHσ(m) for all r ∈ R�

PROPOSITION 1: U is implementable by an experiment if and only if there exists C ∈ C
such that

U(r) =
n∑

a=1

ba(r)C
(
xa(r)

)
for all r ∈ R� (12)

PROOF: The receiver’s interim utility under experiment σ is

Uσ(r) =
n∑

a=0

∫ xa+1(r)

xa(r)

u(m� r�a)dHσ(m)=
n∑

a=1

∫ ∞

xa(r)

ba(r)
(
m− xa(r)

)
dHσ(m)�

where we used u(m� r�0)= 0. For each a ∈ {1� � � � � n}, integration by parts yields∫ ∞

xa(r)

ba(r)
(
m− xa(r)

)
dHσ(m) = −ba(r)

(
m− xa(r)

)(
1 −Hσ(m)

)∣∣∞
xa(r)

+ ba(r)

∫ ∞

xa(r)

(
1 −Hσ(m)

)
dm = ba(r)Cσ

(
xa(r)

)
�

Summing up the above over a ∈ {1� � � � � n} yields (12).
It follows from Section A.2 that the set of the receiver’s interim utilities implementable

by experiments is equal to the set of functions that satisfy (12) for every C ∈ C. Q.E.D.

A persuasion mechanism can be described by a (possibly, infinite) menu of experi-
ments, Σ. The receiver of type r chooses one experiment from the menu and then observes
messages only from this experiment. Obviously, the receiver chooses the experiment that
maximizes his expected utility,

UΣ(r) = max
σ∈Σ

Uσ(r) for all r ∈R�

By Proposition 1, it is immediate that the receiver’s interim utility U is implementable
if and only if there exists a menu CΣ ⊂ C such that

U(r) = max
C∈CΣ

{
n∑

a=1

ba(r)C
(
xa(r)

)}
for all r ∈R.

Theorem 1 shows that the sender can implement the same set of receiver’s interim util-
ities by experiments as by persuasion mechanisms. With more than two actions, however,
the sender can generally implement a strictly larger set of interim utilities by persuasion
mechanisms than by experiments, as shown in Example 2.
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EXAMPLE 2: Let A = {0�1�2}, F admit a strictly positive density, and u(ω� r�a) be
continuous in r for all ω and all a. Furthermore, suppose that there exist two types r ′ < r ′′,
such that for all r ∈ (r ′� r ′′),

0 < x1

(
r ′)< x1(r) < x1

(
r ′′) < x2

(
r ′)< x2(r) < x2

(
r ′′) < 1�

Consider a persuasion mechanism consisting of the menu of two experiments repre-
sented by partitions {P ′�P ′′}, where P ′ and P ′′ are the first-best partitions for types r ′ and
r ′′,

P ′ = {[
0�x1

(
r ′))� [x1

(
r ′)�x2

(
r ′))� [x2

(
r ′)�1

]}
�

P ′′ = {[
0�x1

(
r ′′))� [x1

(
r ′′)�x2

(
r ′′))� [x2

(
r ′′)�1

]}
�

Types r ′ and r ′′ choose, respectively, P ′ and P ′′ and get their maximum possible utilities
U(r ′) and U(r ′′). By the continuity of u(ω� r�a) in r, there exists a type r∗ ∈ (r ′� r ′′) who is
indifferent between choosing P ′ and P ′′. By this indifference,

L1

(
P ′) +L2

(
P ′) =L1

(
P ′′) +L2

(
P ′′)�

where, for each a ∈ {1�2},

La

(
P ′) =

∫ xa(r
′)

xa(r∗)

(
u
(
ω�r∗� a

) − u
(
ω�r∗� a− 1

))
dF(ω)

denotes the utility loss of type r∗ from using cutoff xa(r
′) rather than his first-best cutoff

xa(r
∗) to decide between actions a− 1 and a. Analogously, for each a ∈ {1�2}, we define

La(P
′′).

Figure 4 illustrates this example. The three blue lines depict the utility of the receiver
of type r∗ from taking action a, u(ω� r∗� a), for each a= 0�1�2. The kinked solid blue line
is the utility of type r∗ from taking the optimal action, maxa∈{0�1�2} u(ω� r∗� a). In Figure 4,
the loss of type r∗ from experiment P ′ relative to the first best, L1(P

′)+L2(P
′), is the total

area of the two shaded triangles (assuming that ω is uniformly distributed). Similarly, the
loss of type r∗ from experiment P ′′ relative to the first best, L1(P

′′) + L2(P
′′), is the total

area of the two hatched triangles. For type r∗, these shaded and hatched areas are equal,
so type r∗ is indifferent between the two experiments.

An experiment that gives the maximum possible utilities U(r ′) and U(r ′′) to types r ′ and
r ′′ must at least communicate the common refinement of partitions P ′ and P ′′. Therefore,
the utility of type r∗ under such an experiment is at least

U
(
r∗) − min

{
L1

(
P ′)�L1

(
P ′′)} − min

{
L2

(
P ′)�L2

(
P ′′)}�

which is strictly larger than his utility under the persuasion mechanism,

U
(
r∗) −L1

(
P ′) −L2

(
P ′)�

unless L1(P
′)=L1(P

′′) and L2(P
′)= L2(P

′′).

In Figure 4, for type r∗, the loss L1(P
′′) (left hatched triangle) is smaller than the loss

L1(P
′) (left shaded triangle). Similarly, the loss L2(P

′) (right shaded triangle) is smaller
than the loss L2(P

′′) (right hatched triangle). Hence, the total loss is smaller under the
experiment that is the coarsest common refinement of P ′ and P ′′ (the area of the smaller
shaded and hatched triangles) than under either experiment P ′ or experiment P ′′.
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FIGURE 4.—The utility of type r∗ in Example 1.

A.4. Sender’s Problem

In this section, we impose the following additional assumptions. For each a ∈ {0�1�
� � � � n}, function xa(r) is strictly increasing, and its range contains Ω. Let function ra(x)
be the inverse of function xa(r). Moreover, for each a ∈ {0�1� � � � � n}, function za(r) is
differentiable, and function G(ra(x)) is twice differentiable.

For a given experiment σ , the sender’s expected utility conditional on the receiver’s
type being r is2

Vσ(r) = ρ(r)U(r)+
n∑

a=1

(
a∑

i=1

zi(r)

)(
Hσ

(
xa+1(r)

) −Hσ

(
xa(r)

))
�

We now express the sender’s expected utility as a function of Cσ , and all the model
parameters are summarized in function I, the same way as in Lemma 2 in Section 4.

LEMMA 3: For every experiment σ ,∫
R

Vσ(r)dG(r) = K +
∫
Ω

Cσ(x)I(x)dx�

where K is a constant independent of σ and

I(x) =
n∑

a=1

(
d

dx

(
za

(
ra(x)

) d
dx

G
(
ra(x)

)) + ρ
(
ra(x)

)
ba

(
ra(x)

) d
dx

G
(
ra(x)

))
�

2For each r where Hσ(xa+1(r)) is discontinuous, this formula assumes that type r breaks the indifference
in favor of action a if the posterior mean state is xa+1(r). This assumption is innocuous because G admits a
density, and there are at most countably many discontinuities of Hσ .



6 KOLOTILIN, MYLOVANOV, ZAPECHELNYUK, AND LI

PROOF: We have
n∑

a=1

(
a∑

i=1

zi(r)

)(
Hσ

(
xa+1(r)

) −Hσ

(
xa(r)

)) =
n∑

a=1

za(r)
(
1 −Hσ

(
xa(r)

))
= −

n∑
a=1

za(r)C
′
σ

(
xa(r)

)
�

where we used xn+1(r) = ∞ (hence, Hσ(xn+1(r)) = 1) and 1 − Hσ(x) = −C ′
σ(x). By

Proposition 1, we, thus, obtain

V (r) = ρ(r)U(r)+
n∑

a=1

(
a∑

i=1

zi(r)

)(
Hσ

(
xa(r)

) −Hσ

(
xa+1(r)

))
= ρ(r)U(r)−

n∑
a=1

za(r)C
′
σ

(
xa(r)

) =
n∑

a=1

(
ρ(r)ba(r)Cσ

(
xa(r)

) − za(r)C
′
σ

(
xa(r)

))
�

Fix a ∈ {1� � � � � n} and define the variable x = xa(r). Hence, r = ra(x). Using this variable
change, we have∫

R

(
ρ(r)ba(r)Cσ

(
xa(r)

) − za(r)C
′
σ

(
xa(r)

))
dG(r)

= K̂a +
∫
Ω

(
ρ
(
ra(x)

)
ba

(
ra(x)

)
Cσ(x)− za

(
ra(x)

)
C ′

σ(x)
)

dG
(
ra(x)

)
�

where K̂a is a constant independent of σ because Ω = [0�1] ⊂ [xa(0)�xa(1)], and, for all
σ and all x /∈Ω, we have Cσ(x) = max{0�E[ω] − x}. Now we integrate by parts∫

Ω

za
(
ra(x)

)
C ′

σ(x)dG
(
ra(x)

) = K̃a −
∫
Ω

Cσ(x)
d

dx

(
za

(
ra(x)

) d
dx

G
(
ra(x)

))
dx

= K̃a −
∫
Ω

C(x)
d

dx

(
za

(
ra(x)

) d
dx

G
(
ra(x)

))
dx�

where K̃a is a constant independent of σ because, for all σ , we have Cσ(0) = E[ω] and
Cσ(1)= 0. Thus, we obtain∫

R

(
ρ(r)ba(r)Cσ

(
xa(r)

) − za(r)C
′
σ

(
xa(r)

))
dG(r)

=Ka +
∫
Ω

(
ρ
(
ra(x)

)
ba

(
ra(x)

)dG
(
ra(x)

)
dx

+ d
dx

(
za

(
ra(x)

) d
dx

G
(
ra(x)

)))
Cσ(x)dx�

where Ka = K̂a + K̃a. Summing the above over a ∈ {1� � � � � n}, we obtain K + ∫
Ω
Cσ(x)×

I(x)dx, where K = ∑
a Ka, and I is defined in Lemma 3. Q.E.D.

The sender’s optimal experiment is described by a function C ∈ C that solves

max
C∈C

∫
Ω

C(x)I(x)dx�

The solutions to this problem are characterized by Theorem 2.
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As shown in Section A.3, when the receiver has more than two actions, the sender can
implement a strictly larger set of receiver’s interim utilities by persuasion mechanisms
than by experiments. We now show that the set of implementable interim actions is also
strictly larger under persuasion mechanisms. Therefore, even if the sender cares only
about the receiver’s action, and not his utility, ρ(r) = 0 for all r, the sender can achieve a
strictly larger expected utility under persuasion mechanisms.

EXAMPLE 2—Continued: In addition, let there exist x∗
2 ∈ (x1(r

′′)�x2(r
′)) such that

E[ω|ω ≥ x∗
2] = x2(r

′′) and E[ω|ω< x∗
2] < x1(r

′).

An experiment that maximizes the probability of action a = 2 for type r ′′ must send
message x2(r

′′) if and only if ω ∈ [x∗
2�1]. Under any such experiment, type r ′ takes ac-

tion a = 2 if and only if ω ∈ [x∗
2�1], because for ω < x∗

2, this experiment must generate
messages distinct from x2(r

′′) and, thus, below x∗
2, which is in turn below x2(r

′).
Consider now a persuasion mechanism consisting of the menu of two experiments rep-

resented by the following partitions:

P ′ = {[
0�x∗

2 − ε
)\[x1

(
r ′)�x1

(
r ′′))� [x1

(
r ′)�x1

(
r ′′))� [x∗

2 − ε�1
]}
�

P ′′ = {[
0�x∗

2 − ε
)
�
[
x∗

2 − ε�x∗
2

)
�
[
x∗

2�1
]}
�

where ε > 0 is sufficiently small. Type r ′ strictly prefers P ′ (to P ′′) because, for a sufficiently
small ε, the benefit of taking action a = 1 (rather than a = 0) on [x1(r

′)�x1(r
′′)) exceeds

the cost of taking action a = 2 (rather than a = 1) on [x∗
2 − ε�x∗

2). Type r ′′ is indifferent
between P ′′ and P ′, because under both partitions he weakly prefers to take action a = 0
on [0�x∗

2 − ε) and action a = 1 on [x∗
2 − ε�1]. Therefore, under this mechanism, type r ′′

takes action a = 2 if and only if ω ∈ [x∗
2�1], but type r ′ takes action a = 2 if and only if

ω ∈ [x∗
2 − ε�1]. As shown above, these probabilities of a= 2 for types r ′ and r ′′ cannot be

achieved by any experiment.
Finally, an optimal persuasion mechanism need not be an experiment. Suppose that

the sender cares only about action a = 2, that is, ρ(r) = z0(r) = z1(r) = 0 and z2(r) = 1
for all r. Also suppose that the support of G contains only r ′ and r ′′ with r ′′ being likely
enough, so that the sender’s optimal experiment maximizes the probability of action a= 2
for type r ′′. The persuasion mechanism constructed above gives a strictly larger expected
utility to the sender than any experiment.

APPENDIX B: NONLINEAR UTILITIES

In this appendix, we allow the sender’s and receiver’s utilities to be nonlinear in the
state. We characterize conditions under which persuasion mechanisms are equivalent to
experiments, and show, in particular, that cutoff mechanisms are equivalent to experi-
ments. We also show that the equivalence of implementation by persuasion mechanisms
and by experiments generally fails.

B.1. Preferences

As in Section 2, the receiver has two actions, A = {0�1}, the set of states is Ω = [0�1],
and the set of receiver’s types is R= [0�1]. The receiver’s utility, however, is

u(ω� r�a)= au(ω� r)�



8 KOLOTILIN, MYLOVANOV, ZAPECHELNYUK, AND LI

where u(ω� r) is differentiable, strictly increasing in ω, and strictly decreasing in r. We
also normalize the utility such that, for each ω ∈ Ω,

u(ω�ω)= 0�

The sender’s utility is

v(ω� r�a) = av(ω� r)�

where v(ω� r) is differentiable. State ω and type r are independent and have distributions
F and G.3

B.2. Characterization of Experiments

We start with the characterization of persuasion mechanisms that are equivalent to
experiments.

PROPOSITION 2: An incentive-compatible persuasion mechanism π is equivalent to an
experiment if and only if π(ω� r) is nonincreasing in r for every ω ∈ Ω.

Intuitively, because for each experiment σ , the distribution σ(r|ω) of r conditional on
each state ω is nondecreasing in r, each π(ω� r) ∈ [1 − σ(r|ω)�1 − σ(r−|ω)] (see (6)) is
nonincreasing in r.

PROOF: Consider a mechanism π that is equivalent to an experiment σ . Since σ(r|ω)
is a distribution function of r conditional on ω, it is nondecreasing in r for each ω. Then,
by (6), π(ω� r) is nonincreasing in r for each ω.

Conversely, let π(r�ω) be nonincreasing in r for all ω. For every ω and r, define
σ(r|ω) = 1 − π(r+�ω), where π(r+�ω) denotes the right limit of π(·�ω) at r. Since
π(r+�ω) ∈ [0�1] is nonincreasing and right-continuous in r, the function σ(r|ω) is a dis-
tribution, which describes the distribution of messages for every given state ω. Thus, σ is
an experiment. It remains to verify that the constructed experiment is direct and induces
the same action by the receiver as mechanism π, that is, when the experiment sends a
message r, then type r is indifferent between the two actions. For all r,

Uπ(r)=
∫
Ω

u(ω� r)π(ω� r)dF(ω) =
∫
Ω

u(ω� r+)π(ω� r+)dF(ω)

=
∫
Ω

u(ω� r)π(ω� r+)dF(ω)=
∫
Ω

u(ω� r)
(
1 − σ(r|ω)

)
dF(ω) =Uσ(r)�

where the first equality holds by the definition of Uπ , the second by the absolute continuity
of Uπ (Theorem 1 of Milgrom and Segal (2002)), the third by the continuity of u in r, the
fourth by the definition of σ , and the last by the definition of Uσ for direct experiments.

3Note that if ω and r are correlated, the analysis below applies if we impose strict monotonicity on function
ũ(ω� r) = u(ω� r)g(r|ω)/g(r) rather than on u, where g(r) and g(r|ω) denote, respectively, the marginal
density of r and the conditional density of r for a given ω. This is because the receiver’s interim utility under a
mechanism π can be written as U(r) = ∫

Ω
ũ(ω� r)π(ω� r)dF(ω).
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There exist left and right derivatives of Uπ for all r (Theorem 3 of Milgrom and Segal
(2002)) that satisfy

U ′
π(r+)=

∫
Ω

∂u(ω� r)

∂r
π(r+�ω)dF(ω)�

U ′
π(r−)=

∫
Ω

∂u(ω� r)

∂r
π(r−�ω)dF(ω)�

Since Uπ(r) =Uσ(r) and σ(r|ω) = 1 −π(r+�ω) for all r, we have

U ′
σ(r+)=

∫
Ω

∂u(ω� r)

∂r

(
1 − σ(r|ω)

)
dF(ω)�

U ′
σ(r−)=

∫
Ω

∂u(ω� r)

∂r

(
1 − σ(r−|ω)

)
dF(ω)�

showing that type r is indifferent between the two actions upon receiving message r.
Q.E.D.

B.3. Binary State

Here we apply Proposition 2 to show that if there are only two states in the support of
the prior F , then every incentive-compatible mechanism is equivalent to an experiment.

COROLLARY 2: Let the support of F consist of two states. Then every incentive-compatible
mechanism π is equivalent to an experiment.

PROOF: Consider F whose support consists of two states, without loss of generality,
{0�1}, and let π be an incentive-compatible persuasion mechanism. By Proposition 2, it
is sufficient to show that π is nonincreasing in r for all r ∈ (0�1). Incentive compatibility
implies that for all r� r̂ ∈ (0�1),∑

ω=0�1

u(ω� r)
(
π(ω� r)−π(ω� r̂)

)
Pr(ω= 1)≥ 0� (13)

Rewriting (13) twice, with (r� r̂) = (r2� r1) and (r� r̂) = (r1� r2), yields the inequalities

−u(0� r2)

u(1� r2)
δ(r2� r1�0)≤ δ(r2� r1�1)≤ −u(0� r1)

u(1� r1)
δ(r2� r1�0)� (14)

where δ(r2� r1�ω)= (π(ω� r2)−π(ω� r1))Pr(ω = 1). Because u(0� r) < 0 and u(1� r) > 0
for r = r1� r2, the monotonicity of u in r implies that

0 <−u(0� r2)

u(1� r2)
≤ −u(0� r1)

u(1� r1)
for r2 ≤ r1� (15)

Combining (14) and (15) gives π(ω� r2)≥ π(ω� r1) if r2 ≤ r1 for each ω = 0�1. Q.E.D.

Note that if F has a two-point support, then the receiver’s utility is linear in the state
without loss of generality, and, hence, Theorem 1 applies. However, Corollary 2 makes
a stronger statement, because it asserts that every incentive-compatible mechanism is
equivalent to an experiment, not just implements the same receiver’s interim utility.
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B.4. Beyond Binary State

Suppose now that the support of the prior F consists of three states ω1 <ω2 <ω3 and
let fi = Pr(ωi) > 0 for i = 1�2�3.

When there are at least three states and the utility of the receiver is nonlinear in (any
transformation of) the state, then the posterior distribution of the state induced by an
experiment can no longer be parameterized by a one-dimensional variable—such as the
posterior mean state in the case of linear utilities, the posterior probability of one of
the states in the case of binary-valued state, and the cutoff value in the case of cutoff
mechanisms.

As a consequence, the interim action q(r) and, hence, the sender’s interim utility V (r)
are no longer pinned down by the receiver’s interim utility U(r).

PROPOSITION 3: Let π1 and π2 be two mechanisms that are distinct for each r ∈ (ω1�ω3)
but implement the same differentiable receiver’s interim utility U . Then, the interim action q
is the same for π1 and π2 if and only if there exist functions b, c, and d such that u(ω� r) =
c(r)+ b(r)d(ω) for each (ω� r) ∈ {ω1�ω2�ω3} × (ω1�ω3).

PROOF: For all r ∈ (ω1�ω3) and j = 1�2, we have

U(r) =
3∑

i=1

u(ωi� r)πj(ωi� r)fi�

U ′(r) =
3∑

i=1

∂u(ωi� r)

∂r
πj(ωi� r)fi�

where the first line holds by the definition of U , and the second line by the incentive
compatibility of π.

The expected action, qπj
(r) = ∑3

i=1 πj(ωi� r)fi, is the same across j = 1�2 for each r if
and only if the vectors u(ω� r), ∂u(ω�r)

∂r
, and 1 are linearly dependent for each r. That is, for

each (ω� r) ∈ {ω1�ω2�ω3} × (ω1�ω3), there exist functions γ(r) and μ(r) such that

∂u(ω� r)

∂r
+μ(r)u(ω� r) = γ(r)� (16)

The solution of differential equation (16) is given by

u(ω� r) = e
− ∫ r

ω1
μ(x)dx

(
η(ω)+

∫ r

ω1

γ(x)e
∫ x
ω1

μ(y)dy dx
)
�

where function η(ω) satisfies the (initial) normalization condition u(ω�ω)= 0. This com-
pletes the proof with b(r), c(r), and d(ω) given by(

b(r)� c(r)�d(ω)
) =

(
e

− ∫ r
ω1

μ(x)dx
∫ r

ω1

γ(x)e
∫ x
ω1

μ(y)dy dx�e− ∫ r
ω1

μ(x)dx
�η(ω)

)
�

Q.E.D.

When the receiver’s utility is nonlinear, the sender can implement a strictly larger set of
the receiver’s interim actions by persuasion mechanisms than by experiments. Therefore,
the sender can achieve a strictly higher expected utility by persuasion mechanisms, even
if her utility v is state-independent.
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FIGURE 5.—The utilities of types r ′ (blue) and r ′′ (black) in Example 2.

EXAMPLE 3: Let there be three states, ω1 < ω2 < ω3, and two types of the receiver,
r ′ > r ′′. Denote u′

i = u(ωi� r
′) and u′′

i = u(ωi� r
′′) for i ∈ {1�2�3}. Assume u′′

2 < 0 < u′
3.

Moreover, assume u′
1/u

′′
1 > u′

2/u
′′
2, which means that point (ω1�u

′′
1) lies above the dashed

line in Figure 5. Finally, assume that the probability masses (f1� f2� f3) on the states satisfy
f1u

′
1 + f3u

′
3 < 0 and f2u

′
2 + f3u

′
3 < 0.

Let Σ′ be the set of all experiments that maximize the probability of action for type r ′.
It is easy to check that any σ ′ ∈ Σ′ induces type r ′ to act with probability 1 if ω = ω3, with
probability −f3u

′
3/(f2u

′
2) if ω =ω2, and with probability 0 if ω =ω1.

Observe that by the monotonicity of u in r, each message of σ ′ ∈ Σ′ that induces type r ′

to act also induces type r ′′ < r ′ to act. Moreover, by the definition of Σ′, each message of
σ ′ ∈ Σ′ that induces type r ′ not to act can be sent only in states ω1 or ω2 where the utility
of type r ′′ is negative by assumption, u′′

1 < u′′
2 < 0, so type r ′′ does not act either. Thus, for

each experiment σ under which type r ′ acts with probability f3(1 − u′
3/u

′
2) (i.e., σ ∈ Σ′),

type r ′′ acts with the same probability as type r ′.
We now construct a persuasion mechanism that also maximizes the probability that

type r ′ acts, but induces type r ′′ to act with a different probability. Let Σ′′ be the set of all
experiments σ ′′ that induce type r ′ to act with probability 1 if ω = ω3, with probability 0 if
ω = ω2, and with probability −f3u

′
3/(f1u

′
1) if ω = ω1. Consider a persuasion mechanism

that consists of a menu of two experiments {σ ′�σ ′′} with σ ′ ∈ Σ′ and σ ′′ ∈ Σ′′. Notice
that type r ′ is indifferent between σ ′ and σ ′′ as he obtains zero expected utility in either
case. However, type r ′′ strictly prefers σ ′′ to σ ′, because u′

1/u
′′
1 > u′

2/u
′′
2 by assumption.

Therefore, under this persuasion mechanism, type r ′ acts with probability f3(1 − u′
3/u

′
2),

but type r ′′ acts with different probability f3(1 − u′
3/u

′
1).

Finally, when the receiver’s utility is nonlinear, the set of receiver’s interim utilities
implementable by persuasion mechanisms (as compared to experiments) can be strictly
larger.
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EXAMPLE 3—Continued: In addition, let r∗ ∈ (r ′� r ′′) be such that u′
1/u

∗
1 < u′

2/u
∗
2, where

u∗
i = u(ωi� r

∗) for i ∈ {1�2�3}.
It is easy to check that Σ′ and Σ′′ are the sets of experiments σ ′ and σ ′′ that maximize

the utility of types r∗ and r ′′, respectively, subject to the constraint that type r ′ gets utility
U(r ′) = 0. Because Σ′ and Σ′′ do not intersect, no experiment can achieve the interim
utility induced by a persuasion mechanism that consists of the menu of two experiments
σ ′ ∈ Σ′ and σ ′′ ∈ Σ′′.

APPENDIX C: LINEAR UTILITIES

This appendix extends our main results to the class of utility functions that are linear in
the state. Specifically, we consider the model defined in Section 2, with the modification
that the utilities are linear in the state and are arbitrary functions of the receiver’s type.

Let the receiver’s and sender’s utilities be normalized to zero if the receiver does not
act, a = 0, and be linear in the state if the receiver acts, a= 1,

u(ω� r�a)= a · b(ω− t)�

v(ω� r�a) = a · (c(ω− t)+ d
)
�

where r = (b� c�d� t) ∈ R
4 denotes the receiver’s type. The type has distribution G that

admits a differentiable density g, which is strictly positive on a compact set in R
4 and zero

everywhere else. The state ω ∈ Ω= [0�1] is independent of r and has distribution F .
Let Hσ be the distribution of the posterior mean induced by an experiment σ . As in

Section A.2, it is convenient to describe σ by

Cσ(t)=
∫ ∞

t

(
1 −Hσ(m)

)
dm�

PROPOSITION 4: For each experiment σ , the receiver’s interim utility is

Uσ(r) = |b|Cσ(t)+ min{0� b}(E[ω] − t
)
� (17)

There exist K ∈ R and I :R→ R such that, for each σ , the sender’s expected utility is

Vσ =K +
∫
t∈R

Cσ(t)I(t)dt� (18)

Proposition 4 allows us to extend Theorems 1 and 2 to this setting. Recall from Sec-
tion A.2 that the set of all Cσ is equal to

C = {C : C ≤ C ≤ C and C is convex}�
where C and C correspond to the full and no disclosure experiments. Each persuasion
mechanism can be described by a (possibly, infinite) menu of experiments, Σ, which the
receiver chooses from. By (17), for a given menu Σ, the receiver’s interim utility is

max
σ∈Σ

Uσ(r) = |b|
(

max
σ∈Σ

Cσ(t)
)

+ min{0� b}(E[ω] − t
)
�

Notice that maxσ∈Σ Cσ is the upper envelope of convex functions Cσ ∈ C and hence it is
in C. Therefore, by Proposition 4, any implementable pair of the sender’s and receiver’s
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expected utilities is implementable by an experiment. Moreover, the sender’s problem
can be expressed as

max
C∈C

∫
R

C(t)I(t)dt�

and Theorem 2 holds with U replaced by C.

PROOF OF PROPOSITION 4: Fix a type r = (b� c�d� t) ∈R
4 and evaluate

Uσ(r) =
∫ 1

0
max

{
0� b(m− t)

}
dHσ(m)�

Clearly, if b = 0, then Uσ(r) = 0. We now consider two cases, b > 0 and b < 0.
Case 1: b > 0. Given a posterior mean m, the receiver acts if and only if t < m. By

integration by parts, the receiver’s interim utility is

Uσ(r) =
∫ 1

t

b(m− t)dHσ(m)= bCσ(t)�

Again, by integration by parts, the sender’s interim utility is

Vσ(r) =
∫ 1

t

(
c(m− t)+ d

)
dHσ(m)= cCσ(t)− dC ′

σ(t)�

Case 2: b < 0. Given a posterior mean m, the receiver acts if and only if t ≥ m. By
integration by parts, the receiver’s interim utility is

Uσ(r)=
∫ t

0
b(m− t)dH(m) = −bC(t)+ b

(
E[ω] − t

)
�

Again, by integration by parts, the sender’s interim utility is

Vσ(r) =
∫ t

0

(
c(m− t)+ d

)
dH(m) = −cC(t)+ dC ′(t)+ d + c

(
E[ω] − t

)
�

We, thus, obtain (17).
We now show that the sender’s expected utility is given by (18). Let g(b� c�d|t) be the

density of (b� c�d) conditional on t, and let gt(t) be the marginal density of t. Define

c+(t)=
∫

cg(b� c�d|t)1b>0 d(b� c�d)�

and

c−(t)=
∫

cg(b� c�d|t)1b<0 d(b� c�d)�

Similarly, define d+(t) and d−(t).
Fix t and take the expectation with respect to (b� c�d) on the set of b > 0:∫

(b�c�d)

Vσ(b� c�d� t)1b>0g(b� c�d|t)d(b� c�d)= c+(t)Cσ(t)− d+(t)C ′
σ(t)�
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Now, integrating with respect to t,∫
(b�c�d�t)

Vσ(b� c�d� t)1b>0 dG(b� c�d� t)=
∫
t

(
c+(t)Cσ(t)− d+(t)C ′

σ(t)
)
gt(t)dt

=
∫
t

(
c+(t)gt(t)+ d

dt
[
d+(t)gt(t)

])
Cσ(t)dt�

Similarly, for b < 0,∫
(b�c�d)

Vσ(b� c�d� t)1b<0g(b� c�d|t)d(b� c�d)

= −c−(t)Cσ(t)+ d−(t)C ′
σ(t)+ d−(t)+ c−(t)

(
E[ω] − t

)
�

Now, integrating with respect to t,∫
(b�c�d�t)

Vσ(b� c�d� t)1b<0 dG(b� c�d� t) = −
∫
t

(
c−(t)Cσ(t)− d−(t)C ′

σ(t)
)
gt(t)dt +K

= −
∫
t

(
c−(t)gt(t)+ d

dt
[
d−(t)gt(t)

])
Cσ(t)dt +K�

where

K =
∫
t

(
d−(t)+ c−(t)

(
E[ω] − t

))
gt(t)1b<0 dt

is a constant independent of Cσ .
Since the measure of types with b = 0 is zero, we obtain∫

r

Vσ(r)dG(r) =
∫
r

Vσ(r)(1b>0 + 1b<0)dG(r)=
∫
t

I(t)Cσ(t)dt +K�

where

I(t)= (
c+(t)− c−(t)

)
gt(t)+ d

dt
[(
d+(t)− d−(t)

)
gt(t)

]
� Q.E.D.
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