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THIS SUPPLEMENT to Abbring, Campbell, Tilly, and Yang (2018) (hereafter referred to as
the “main text”) (i) proves a theorem we rely upon for the characterization of equilibria
and (ii) develops results for an alternative specification of the model.

Section S1’s Theorem S1 establishes that a strategy profile is subgame perfect if no
player can benefit from deviating from it in one stage of the game and following it faith-
fully thereafter. Our proof very closely follows that of the analogous Theorem 4.2 in
Fudenberg and Tirole (1991). That theorem only applies to games that are “continuous
at infinity” (Fudenberg and Tirole, p. 110), which our game is not. In particular, we only
bound payoffs from above (Assumption A1 in the main text) and not from below, be-
cause we want the model to encompass econometric specifications like Abbring, Camp-
bell, Tilly, and Yang’s (2017) that feature arbitrarily large cost shocks. Instead, our proof
leverages the presence of a repeatedly-available outside option with a fixed and bounded
payoff, exit.

Section S2 presents the primitive assumptions and analysis for an alternative model of
Markov-perfect industry dynamics in which one potential entrant makes its entry decision
at the same time as incumbents choose between continuation and exit. We show that
the alternative model always has a unique symmetric Markov-perfect equilibrium that
satisfies an intuitive refinement criterion. This equilibrium can be computed rapidly by a
simple algorithm based on contraction mappings similar to that in the main text.
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S1. ONE-SHOT DEVIATIONS AND SUBGAME PERFECTION

To prove that a strategy forms a subgame-perfect equilibrium if and only if one-shot
deviations from it increase no player’s payoff, we analyze a general game that encompasses
that described in the recursive extensive form in Figure 1 of the main text. Like the main
text’s game, the general game

• is specified in discrete time t ∈ N,
• is played by firms with names f ∈F ,
• places an upper bound on each player’s flow payoff, and
• regularly offers firms the option to collect a continuation value of zero.

The general game allows for arbitrary differences across players’ payoffs, because sym-
metry is not required for this section’s result.

Since a subgame of the general game may initialize from multiple points within a given
period t, it is useful to focus on stages instead of periods. We index these stages with k ∈N

and define a function θ : N → N such that θ(k) = t when stage k is located in period t.
Each period contains the same, finite number ǩ of stages. In the main text’s game, there
are ǩ = ǰ + 2 nontrivial stages each period: the ǰ ∈ N stages at which potential entrants
(t�1)� � � � � (t� ǰ) make their entry decisions, the stage at which all incumbents and new
entrants make continuation decisions, and the stage in which nature draws Y ′.

Denote the random variable for the entire history at stage k with Hk and its realization
with hk. At history hk, firm f chooses an action from the finite (and possibly empty) set
A

f (hk). At each history hk, only finitely many firms f ∈F have A
f (hk) �= ∅. For example,

in the main text’s game, Af (hk) = {0�1} if firm f gets to decide on entry or survival at
history hk, and A

f (hk)= ∅ otherwise.
A strategy σf for firm f assigns a probability distribution σf (hk) over actions in A

f (hk)
to each history hk. A strategy profile σ is a collection of strategies, one for each firm. We
denote the random action taken by firm f in stage k with A

f
k, with possible realizations

a
f
k ∈ A

f (hk). We collect all firms’ actions in stage k in the action profile Ak, with realiza-
tions ak.

Firms can receive flow payoffs in one or more stages within each period. Let gf (ak�h
k)

denote the flow payoff that firm f receives in stage k with history hk if firms take actions
ak. The analogue to Assumption A1 for this general game is the following:

ASSUMPTION S1—Flow Payoff Bounded From Above: There is a ǧ < ∞ such that for
any firm f , action profile ak, and history hk, we have gf (ak�h

k)≤ ǧ.

In the main text’s game, gf (ak�h
k) ≡ ρE[π(n′�Y ′)|Y = y] ≤ ρπ̌ < ∞ if stage k is the

survival stage, the implied (by ak and hk) number of firms surviving that stage is n′, the
current demand equals y , and firm f continues (af

k = 1). If instead stage k contains f ’s
entry decision, the number of active firms prior to f ’s entry is n, and the current de-
mand is y , then gf (ak�h

k)≡ −ϕ(n+ 1� y)≤ 0 if firm f enters (af
k = 1). In all other cases,

gf (ak�h
k)≡ 0.

To complete the general model’s specification, let uf (σ�hk) denote firm f ’s expected
payoff at history hk, discounted to stage k, when all firms use the strategies in σ . This
continuation value is defined as

uf
(
σ�hk

) = lim
Q→∞

Eσ

[
Q∑

q=k

ρθ(q)−θ(k)gf
(
Aq�H

q
)∣∣∣Hk = hk

]
�
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Here, the expectation operator’s subscript indicates its dependence on all firms following
their strategies in σ . Since Assumption S1 ensures that the flow payoff is bounded from
above, the limit in the right-hand side is always well defined, either as a real number,
which cannot exceed ǔ ≡ ǩǧ

1−ρ
, or as −∞.

A formal statement of the assumption that each firm f in each stage k can collect a
continuation payoff of zero within a finite number of stages, irrespective of the strategies
followed by the other players, requires the following definition.

DEFINITION S1—l-Shot Deviation: Given a firm f and a strategy σf , we say that an
alternative strategy σ̂f prescribes an l-shot deviation from σf starting in stage k if

σ̂f
(
hk′) = σf

(
hk′)

for all possible histories hk′ ; k′ = k+ l�k+ l + 1� � � � .

If l = 1, σ̂f prescribes a one-shot deviation. Note that Definition S1 only excludes devi-
ations beyond stage k+ l and allows the deviation in earlier stages to be trivial.

ASSUMPTION S2—Exit Option: For each stage k and firm f , there exists a finite k′ ≥ k
such that, for all possible histories hk′ at stage k′ and strategy profiles σ , uf (σ̂�hk′

) = 0 for
a strategy profile σ̂ obtained from σ by replacing σf with some strategy σ̂f that prescribes a
(possibly trivial) one-shot deviation from it in stage k′.

The main text’s game satisfies this assumption. In particular, in that game, a firm f

active in stage k will have an option to exit and collect a zero continuation value within ǩ
stages. A firm f that will have an entry opportunity in or after stage k will be able to forgo
that entry opportunity and collect zero within a finite number of periods (and therefore
stages). A firm f that has exited before stage k will trivially collect uf (σ�hk) = 0 for all
possible histories at stage k (in this trivial case, k′ can simply be taken equal to k, and no
one-shot deviation is needed).

With the general game’s specification complete, we begin its analysis with two further
definitions.

DEFINITION S2—l-Shot-Deviation Proof: A strategy profile σ is l-shot-deviation proof
if for any stage k, history hk, and firm f , there is no strategy σ̂f that prescribes an l-shot
deviation from σf starting in stage k such that

uf
(
σ̂�hk

)
> uf

(
σ�hk

)
�

where σ̂ is the strategy profile obtained by replacing σf with σ̂f in σ .

DEFINITION S3—Subgame Perfection: A strategy profile σ is subgame perfect if for any
stage k, history hk, and firm f , there is no strategy σ̂f such that

uf
(
σ̂�hk

)
> uf

(
σ�hk

)
�

where σ̂ is the strategy profile obtained by replacing σf with σ̂f in σ .

We begin our demonstration that a strategy profile is one-shot-deviation proof if and
only if it is subgame perfect with the following lemma. Its proof mimics Fudenberg and
Tirole’s (1991) inductive proof of their Theorem 4.1.
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LEMMA S1: Any strategy profile σ that is one-shot-deviation proof is also l-shot-deviation
proof for any l ∈N.

PROOF: The lemma is true by assumption for l = 1. Suppose that it is true for some
l ∈ N. We wish to demonstrate that it is also true for l + 1. Consider a strategy for some
firm f , σ̂f , that prescribes a single (l + 1)-shot deviation starting in some stage k. Use σ̂
to denote the strategy profile obtained from σ by replacing σf with σ̂f . Next, construct
a second strategy σ̃f that agrees with σ̂f in all stages k′ ≤ k + l − 1 and agrees with σf

otherwise. The strategy profile obtained from σ by replacing σf with σ̃f is σ̃ .
Note that σ̃f prescribes an l-shot deviation from σf starting in stage k. Fix an arbitrary

history hk. The presumption that the proposition is true for l implies that

uf
(
σ̂�hk

) − uf
(
σ�hk

) = uf
(
σ̂�hk

) − uf
(
σ̃�hk

) + uf
(
σ̃�hk

) − uf
(
σ�hk

)
≤ uf

(
σ̂�hk

) − uf
(
σ̃�hk

)
�

(S1)

The definition of uf (·�hk) gives us

uf
(
σ̂�hk

) =
k+l−1∑
q=k

ρθ(q)−θ(k)
Eσ̂

[
gf

(
Aq�H

q
)|Hk = hk

]

+ ρθ(k+l)−θ(k)
Eσ̂

[
uf

(
σ̂�Hk+l

)|Hk = hk
]
�

The same definition and the construction of σ̃ yield

uf
(
σ̃�hk

) =
k+l−1∑
q=k

ρθ(q)−θ(k)
Eσ̂

[
gf

(
Aq�H

q
)|Hk = hk

]

+ ρθ(k+l)−θ(k)
Eσ̂

[
uf

(
σ�Hk+l

)|Hk = hk
]

= uf
(
σ̂�hk

) + ρθ(k+l)−θ(k)
Eσ̂

[
uf

(
σ�Hk+l

)|Hk = hk
]

− ρθ(k+l)−θ(k)
Eσ̂

[
uf

(
σ̂�Hk+l

)|Hk = hk
]
�

Since σ̂f prescribes a one-shot deviation from σf in stage k + l, we know that
uf (σ̂�hk+l)≤ uf (σ�hk+l) for all possible histories hk+l in stage k+ l. Therefore,

uf
(
σ̂�hk

) − uf
(
σ̃�hk

) = ρθ(k+l)−θ(k)
Eσ̂

[
uf

(
σ̂�Hk+l

) − uf
(
σ�Hk+l

)|Hk = hk
] ≤ 0�

The above inequality and (S1) jointly imply that uf (σ̂�hk) − uf (σ�hk) ≤ 0. That is, the
proposed (l + 1)-shot deviation fails to increase firm f ’s payoff. Continuing inductively
establishes the desired conclusion. Q.E.D.

With this lemma in hand, we state and prove this section’s central theorem, which es-
tablishes the necessity and sufficiency of one-shot-deviation proofness for subgame per-
fection.

THEOREM S1: A strategy profile σ is subgame perfect if and only if it is one-shot-deviation
proof.
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PROOF: Necessity directly follows from the definition of subgame perfection. To
demonstrate sufficiency, assume that firm f uses a strategy σ̂f that prescribes a deviation
from some stage k and use σ̂ to denote the strategy profile obtained from σ by replacing
σf with σ̂f . If σ̂f is an l-shot deviation from σf , Lemma S1 ensures that it cannot improve
on σf .

Suppose that σ̂f instead prescribes a deviation in infinitely many stages. Fix an arbitrary
history hk and some finite k′ > k. Assumption S2 guarantees that there is a finite stage
k′′ ≥ k′, such that firm f can guarantee a payoff uf (·�hk′′

) = 0 for all possible histories
hk′′ and all strategy profiles by a (possibly trivial) one-shot deviation in stage k′′. Now
construct an alternative deviating strategy σ̃f that agrees with σ̂f until (but not including)
k′′ and agrees with σf afterwards. The strategy profile obtained from σ by replacing σf

with σ̃f is σ̃ . The construction of σ̃ gives us

uf
(
σ̂�hk

) − uf
(
σ̃�hk

) = ρθ(k′′)−θ(k)
Eσ̂

[
uf

(
σ̂�Hk′′) − uf

(
σ�Hk′′)|Hk = hk

]
�

Since σ is one-shot-deviation proof and Assumption S2 ensures that firm f can earn a
continuation value of zero by a one-shot deviation from σ in stage k′′, we have

Eσ̂

[
uf

(
σ�Hk′′)|Hk = hk

] ≥ 0�

So

uf
(
σ̂�hk

) − uf
(
σ̃�hk

) ≤ ρθ(k′′)−θ(k)
Eσ̂

[
uf

(
σ̂�Hk′′)|Hk = hk

] ≤ ρθ(k′′)−θ(k)ǔ�

With this inequality in hand, we can write

uf
(
σ̂�hk

) − uf
(
σ�hk

) = uf
(
σ̂�hk

) − uf
(
σ̃�hk

) + uf
(
σ̃�hk

) − uf
(
σ�hk

)
≤ uf

(
σ̂�hk

) − uf
(
σ̃�hk

)
≤ ρθ(k′′)−θ(k)ǔ≤ ρθ(k′)−θ(k)ǔ�

Here, the first inequality follows from Lemma S1. Since k′ was arbitrary and
limk′→∞ θ(k′) = ∞, we conclude that uf (σ̂�hk) − uf (σ�hk) ≤ 0. Therefore, the pro-
posed deviation fails to improve firm f ’s payoff and the strategy profile is subgame per-
fect. Q.E.D.

S2. AN ALTERNATIVE MODEL

The remainder of this supplement presents an alternative model in which one potential
entrant per period makes an entry decision at the same time incumbent firms choose
between continuation and exit.

S2.1. Primitives

The alternative model considered here differs from the one presented in the main text
in two primitive assumptions. First, each period has exactly one potential entrant. Sec-
ond, the single potential entrant makes its entry decision at the same time incumbents
make their continuation decisions. The recursive extensive form in Figure S1 presents the
timing. All primitive assumptions from the main text on per period profit π(n� y) and the
cost of entry ϕ(n� y) remain in place.
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FIGURE S1.—The alternative model’s recursive extensive form.

In this model, there is no distinction between the entry stage and the survival stage.
Each period of the alternative model starts with incumbent firms earning the per period
profit π(Nt�Yt). Then, one potential entrant with name t contemplates becoming active
at the same time incumbents make their continuation decisions. (Incumbent firms in pe-
riod 0 have arbitrary names in F0.) Entry requires paying the sunk cost ϕ(Nt + 1�Yt).
As in the model presented in the main text, simultaneously moving firms, including the
potential entrant, can use mixed strategies. All entry and survival outcomes are realized
independently across firms according to the chosen Bernoulli distributions. Firms that exit
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or fail to enter earn zero and never again participate in the market. Active firms continue
to the next period.

S2.2. Equilibrium

For incumbent firms contemplating survival, the payoff-relevant variables are the num-
ber of active firms at the beginning of the period and the current demand state. For a
potential entrant, they are this same number of firms plus 1 (i.e., the number of firms that
would serve the market next period if this firm would enter and all incumbents would con-
tinue) and the current demand state. Note that this implies that incumbents that decide on
survival in a state (n� y) move jointly with a potential entrant in state (n+ 1� y). We have
made this, perhaps counterintuitive, choice, because it is consistent with the specification
of the state variables in the main text and will simplify notation later.

As in the main text, we focus our analysis on symmetric Markov-perfect equilibria:
subgame-perfect equilibria in which all players use a common Markov strategy. In this
context, a Markov strategy is a pair of functions, ãE : N × Y → [0�1] and ãS : N × Y →
[0�1]. Firms’ values at two nodes of the game tree—just before firms’ entry/continuation
decisions and just after the decisions’ realizations—are important for the equilibrium
analysis. Although there are no separate entry and survival stages, we use notation anal-
ogous to the main text and denote the pre-decision and post-decision values as ṽE and ṽS .
Figure S1 shows the points where these value functions apply.

An equilibrium strategy and its associated values satisfy

ṽE(n� y) = max
a∈[0�1]

aEãS �ãE

[
ṽS

(
N ′� y

)|N = n�Y = y
]
� (S2)

ṽS
(
n′� y

) = ρE
[
π

(
n′�Y ′) + ṽE

(
n′�Y ′)|Y = y

]
� (S3)

ãE(n+ 1� y) ∈ arg max
a∈[0�1]

a
(
EãS

[
ṽS

(
N ′� y

)|N = n�Y = y
] −ϕ(n+ 1� y)

)
� (S4)

ãS(n� y) ∈ arg max
a∈[0�1]

aEãS �ãE

[
ṽS

(
N ′� y

)|N = n�Y = y
]
� (S5)

The expectation operators condition on the deciding firm choosing to be active in the
next period and on all other firms using the entry or exit rule in the operator’s subscript.
Theorem S1 ensures that (S2)–(S5) are not only necessary but also sufficient conditions
for a symmetric Markov-perfect equilibrium.

S2.3. Equilibrium Multiplicity and Refinement

There can be more than one symmetric Markov-perfect equilibrium in this model. Un-
like the model in the main text, it involves simultaneous moves by firms with heteroge-
neous payoffs (incumbents on the one hand and a potential entrant on the other). We
demonstrate how this might lead to equilibrium multiplicity with a numerical example.

EXAMPLE S1: Suppose that the aggregate state Y follows a deterministic first-order
Markov process such that Y1 = 3, Y2 = 2, and Yt = 0 for all t ≥ 3. Specify the per period
profit as

π(n� y)= y/n− 1�5�

and assume that ρ > 0 and ϕ(n� y) = ρ/4. In this game, any firm serving the market in
period 3 or beyond will earn a negative payoff. Therefore, in equilibrium, no firms will
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enter and all incumbents will exit in period 2 (demand state 2) and beyond (demand
state 0).

In period 1 (demand state 3), equilibrium play is not so trivial. Suppose that one in-
cumbent is active at the beginning of period 1. The static game (the analogue of Corol-
lary 1’s static game in the main text) between the potential entrant and the incumbent has
two symmetric equilibria in pure strategies—either the potential entrant enters and the
incumbent exits, or the incumbent stays active and the potential entrant stays out. The
implied equilibrium entry and survival rules satisfy (1) (ãE(2�3) = 1� ãS(1�3) = 0) and
(2) (ãE(2�3) = 0� ãS(1�3) = 1). There is also a mixed-strategy equilibrium, which implies
(ãE(2�3) = 0�5� ãS(1�3) = 0�25). These are all symmetric equilibria because all players
use the same strategy, even though that strategy’s actions depend nontrivially on whether
the player is a potential entrant or an incumbent at a particular node of the game tree.

Since an entrant always needs to pay a sunk cost to become active, its expected payoff
from becoming active is strictly lower than that of an incumbent from remaining active.
If an equilibrium strategy dictated that the potential entrant enters while an incumbent
chooses to exit, that incumbent could make a side payment to the potential entrant in re-
turn for focusing on an alternative equilibrium strategy in which their roles were reversed.
With this in mind, we focus on equilibria in which entry only occurs when all incumbents
choose sure continuation. We label these “natural.”

DEFINITION S4—Natural Markov-Perfect Equilibrium: A natural Markov-perfect
equilibrium is a symmetric Markov-perfect equilibrium (ãE� ãS) such that for all (n� y) ∈
N×Y , ãE(n+ 1� y) > 0 implies ãS(n� y)= 1.

An analogue of the main text’s Lemma 1 establishes that we can again restrict the
equilibrium analysis to states (n� y) in {1� � � � � ň} ×Y .

LEMMA 1
—Bounded Number of Firms: In a natural Markov-perfect equilibrium,
ãE(n� y)= 0 and ãS(n� y) < 1 for all n > ň and y ∈Y .

PROOF OF LEMMA 1
: First, we prove that ãS(n� y) < 1 for all y ∈ Y and n > ň. Con-
sider a period t
 subgame with Nt
 = n > ň incumbent firms and demand state Yt
 = y .
Define the random time τ as the first period weakly after t
 in which the firms choose exit
with positive probability, with τ ≡ ∞ if they never do:

τ ≡ min
({
t ≥ t
 : ãS(Nt�Yt) < 1

} ∪ {∞})�
Suppose that ãS(n� y) = 1, so τ > t
. By definition, exit occurs only in or after period
τ, so we know that Nt ≥ n for t ∈ {t
 + 1� � � � � τ}. (As in the main text, we take ãS(·) =
1 to dictate sure survival, not merely almost-sure survival.) Since n > ň, this together
with Assumption A2 implies that π(Nt�Yt) < 0 for t ∈ {t
 + 1� � � � � τ}. If τ = ∞, then the
incumbent firms receive an infinite sequence of strictly negative payoffs. If instead τ < ∞,
then the incumbent firms receive a finite sequence of strictly negative payoffs followed by
the pre-decision value from playing the period τ subgame ṽE(Nτ�Yτ), which equals zero
by (S2), (S5), and the definition of τ. Therefore, the period t
 post-decision value satisfies
ṽS(n� y) < 0. Since a period t
 incumbent firm can raise its payoff to zero by choosing
certain exit, the supposition that ãS(n� y)= 1 must be incorrect.

Next, we will prove that ãE(n� y) = 0 for all y ∈ Y and n > ň. Suppose that ãE(n� y) >
0 for some n > ň. Since we are considering a natural equilibrium, we know that
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ãS(n− 1� y)= 1. Therefore, the entrant pays ϕ(n� y) > 0 to enter and receives π(n�Y ′) <
0 from production in the next period. We have already proven that this firm’s pre-decision
continuation value in the next period equals zero, so the firm earns a strictly negative
payoff from entry. Since it could improve its payoff by choosing to surely not enter
(ãE(n� y)= 0), the supposition that ãE(n� y) > 0 must be incorrect. Q.E.D.

As in the main text, we hereafter restrict attention to equilibria in strategies that default
to inactivity. A strategy that defaults to inactivity requires a potential entrant that is indif-
ferent between continuing with all n incumbents (as it would if it continued in any natural
equilibrium) or not entering to stay out:

ṽS(n+ 1� y)= ϕ(n+ 1� y) ⇒ ãE(n+ 1� y)= 0�

Similarly, such a strategy requires an incumbent firm that is indifferent between exit and
continuing with any combination of the current incumbents, and that weakly prefers exit
over continuing with all potentially active firms, to exit:

ṽS(1� y)= · · · = ṽS(n� y)= 0 and ṽS(n+ 1� y)≤ 0 ⇒ ãS(n� y)= 0�

S2.4. Equilibrium Analysis

The natural equilibrium refinement together with the default-to-inactivity restriction on
equilibrium strategies (which, as in the main text, we will keep implicit in what follows)
give us the following lemma.

LEMMA S2: The entry strategy in a natural Markov-perfect equilibrium is pure: ãE(n� y) ∈
{0�1} for all n ∈ {1� � � � � ň} and y ∈Y .

PROOF: Since a natural equilibrium requires ãS(n− 1� y)= 1 when ãE(n� y) > 0 for all
n > 1, equilibrium condition (S4) can be rewritten as

ãE(n� y) ∈ arg max
a∈[0�1]

a
(
ṽS(n� y)−ϕ(n� y)

)
�

This condition holds for all n ≥ 1, because there are no other firms’ survival decisions
to consider in the trivial case that n = 1. Therefore, ãE(n� y) = 1 if ṽS(n� y) > ϕ(n� y)
and ãE(n� y) = 0 if ṽS(n� y) < ϕ(n� y). When ṽS(n� y) = ϕ(n� y), the default-to-inactivity
restriction requires ãE(n� y)= 0. Q.E.D.

LEMMA 2
—Monotone Equilibrium Payoffs: In a natural Markov-perfect equilibrium,
ṽS(n

′� y) weakly decreases with n′ for all y ∈Y .

The proof of Lemma 2
 is identical to that of Lemma 2 in the main text, except for
minor changes in terminology and state variables related to the change in timing. We
repeat it here for completeness only.

PROOF OF LEMMA 2
: It suffices to prove that ṽS(n′� y) ≥ ṽS(n
′ + 1� y) for all n′ ≥ 1

and demand states y ∈ Y . To this end, consider a subgame beginning immediately after
period t
’s simultaneous continuation and entry outcomes are realized with Nt
+1 = n′

and Yt
 = y . We call this the original subgame. Now consider a second period t
 subgame
starting at the same point but with one additional firm. We refer to this as the perturbed
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subgame and use N+
t to denote the number of firms serving the market during period t

within it. Finally, define the random time τ+ as the first period weakly after t
 +1 in which
firms in the perturbed subgame choose exit with positive probability, with τ+ ≡ ∞ if they
never do:

τ+ ≡ min
({
t ≥ t
 + 1 : ãS

(
N+

E�t�Yt

)
< 1

} ∪ {∞})�
There is no exit before period τ+ in the perturbed subgame and the period τ+ pre-decision
continuation value equals zero. Therefore, we can write

ṽS
(
n′ + 1� y

) = lim
T→∞

E

[
T∑

t=t
+1

ρt−t
1
[
t ≤ τ+]

π
(
N+

t �Yt

)∣∣∣Yt
 = y

]
�

Since τ+ is a consequence of equilibrium choices, we know that ṽS(n′ + 1� y) >−∞.
Now consider an incumbent firm in the original subgame that (possibly) deviates after

the period t
 survival stage by choosing to survive for sure as long as t < τ+ and to exit
for sure if t = τ+. Let N̄t denote the number of firms serving the market during period
t in the original subgame with this deviation. Since the original strategy was part of a
subgame-perfect equilibrium, ṽS(n′� y) exceeds the expected payoff from following this
deviating strategy. That is,

ṽS
(
n′� y

) ≥ lim
T→∞

E

[
T∑

t=t
+1

ρt−t
1
[
t ≤ τ+]

π(N̄t�Yt)
∣∣∣Yt
 = y

]
�

To show that the limit on the right-hand side is well defined, note that N̄t ≤N+
t for all t ≤

τ+. Otherwise, the two subgames would have potential entrants in the same states making
different entry choices. This would violate either the presumption that the equilibrium
strategy is Markov or that it defaults to inactivity. This and Assumption A3 imply that
π(N̄t�Yt) ≥ π(N+

t �Yt) for all t = t
 + 1� � � � � τ+. Combining this with ṽS(n
′ + 1� y) > −∞

gives the desired result.
Because the difference of two convergent sequences’ limits equals the limit of the se-

quences’ difference, we can write

ṽS
(
n′� y

) − ṽS
(
n′ + 1� y

)
≥ lim

T→∞
E

[
T∑

t=t
+1

ρt−t
1
[
t ≤ τ+](

π(N̄t�Yt)−π
(
N+

t �Yt

))∣∣∣Yt
 = y

]
�

Each term in the partial sum on the right-hand side is nonnegative, so we conclude that
ṽS(n

′� y)− ṽS(n
′ + 1� y)≥ 0. Q.E.D.

COROLLARY 1
: Fix n ∈ {1� � � � � ň} and y ∈ Y , let ṽS be the post-decision value function
associated with a natural Markov-perfect equilibrium that defaults to inactivity, and suppose
that ṽS(n′� y) �= 0 for at least one n′ ∈ {1� � � � � n} and that ṽS(n + 1� y) �= ϕ(n + 1� y). Con-
sider the one-shot game in which n incumbent firms and one potential entrant simultaneously
choose between activity and inactivity. This game has a symmetric Nash equilibrium—possibly
in mixed strategies—in which the potential entrant’s chosen probability of entry does not ex-
ceed the incumbents’ chosen probability of survival. Furthermore, there is only one symmetric
Nash equilibrium with this property. In it, the entry strategy is pure.
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PROOF OF COROLLARY 1
: Corollary 1
’s one-shot game falls into one of four mutually
exclusive cases:

• ṽS(1� y)≤ 0. Lemma 2
 implies that ṽS(n′� y)≤ 0 for all n′ > 1. Therefore, exiting for
sure (setting ãS(n� y) = 0) is a weakly dominant strategy for an incumbent. Furthermore,
since ṽS(n

′� y) �= 0 for at least one n′ ∈ {1� � � � � n}, we know that ṽS(n+1� y)≤ ṽS(n� y) < 0.
Therefore, exiting for sure is also an incumbent’s unique best response to any positive
symmetric continuation probability and any entry probability. Since ṽS(n + 1� y) < 0 <
ϕ(n + 1� y), surely not entering (setting ãE(n + 1� y) = 0) is a strictly dominant strategy
for a potential entrant. Therefore, there is only one symmetric equilibrium, in which all
incumbents exit for sure and the potential entrant stays out for sure.

• ṽS(1� y) > 0 and ṽS(n� y) < 0. To construct the equilibrium of interest, set ãE(n +
1� y) = 0. No symmetric equilibrium exists with this entry choice and a pure continuation
strategy, because an incumbent’s best response to all other incumbent firms continuing for
sure is to exit for sure, and vice versa. In a mixed strategy equilibrium, incumbent firms
must be indifferent between continuation and exit. By the intermediate value theorem,
there is some a ∈ (0�1) that solves

n∑
n′=1

(
n− 1
n′ − 1

)
an′−1(1 − a)n−n′

ṽS
(
n′� y

) = 0� (S6)

Lemma 2
 guarantees that the left-hand side of (S6) weakly decreases with a, and the
subcase’s conditions strengthen that conclusion so that the left-hand side of (S6) strictly
decreases with a. So, there is only one value of a that solves (S6). The pair ãS(n� y) = a
and ãE(n+ 1� y)= 0 form one Nash equilibrium of this game.

To see that this is the only equilibrium in which ãE(n+ 1� y) ≤ ãS(n� y), suppose to the
contrary that there exists another such equilibrium in which ãE(n + 1� y) > 0. Lemma 2


and the conditions of this case guarantee that ṽS(n� y) < 0 and ṽS(n + 1� y) < 0, so
ãS(n� y) < 1. Since ãS(n� y) ≥ ãE(n + 1� y) > 0 by assumption, we therefore know that
both the potential entrant and the incumbents are indifferent between continuation and
exit. The payoff to a potential entrant is strictly below the payoff to an incumbent in any
outcomes of the game in which both are active, because only the potential entrant pays
a positive entry cost. With Lemma 2
, this implies that both can only be indifferent if the
potential entrant is more likely to end up with fewer competitors, ãS(n� y) < ãE(n+ 1� y).
This violates the restriction that ãS(n� y)≥ ãE(n+ 1� y).

• ṽS(n� y) ≥ 0 and ṽS(n+ 1� y) < ϕ(n+ 1� y). To construct the equilibrium of interest,
set ãE(n + 1� y) = 0. Since ṽS(n� y) ≥ 0, pairing this with ãS(n� y) = 1 forms one Nash
equilibrium. To show that this is the only equilibrium in which ãE(n+ 1� y)≤ ãS(n� y), we
look at two cases.

– First, suppose that there exists another such equilibrium in which ãE(n+1� y)= 0 and
ãS(n� y) ∈ [0�1). By assumption, there exists an n′ ≤ n such that ṽS(n′� y) �= 0. Lemma 2


and the supposition that ṽS(n� y) ≥ 0 together imply that ṽS(n

� y) > 0 for all n
 ≤ n′.

Therefore, the payoff to continuing with probability a when all other incumbents con-
tinue with probability ãS(n� y) ∈ [0�1) is strictly increasing in a, so continuing with any
probability greater than ãS(n� y) increases a firm’s profit. Therefore, the original value of
ãS(n� y) ∈ [0�1) paired with ãE(n+ 1� y)= 0 cannot have formed an equilibrium.

– Second, suppose that there exists another such equilibrium in which ãE(n+1� y) > 0.
If ãS(n� y) = 1, then the payoff to the potential entrant would equal ãE(n + 1� y)(ṽS(n +
1� y) − ϕ(n + 1� y)) < 0 in this equilibrium. Hence, the potential entrant could prof-
itably deviate to ãE(n + 1� y) = 0, so there cannot be an equilibrium as supposed with
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ãS(n� y) = 1. If instead ãS(n� y) < 1, then both the potential entrant and all incumbents
are indifferent between activity and inactivity. With Lemma 2
, this implies that both can
only be indifferent if the potential entrant is more likely to end up with fewer competi-
tors, so ãS(n� y) < ãE(n + 1� y). This violates the restriction that ãS(n� y) ≥ ãE(n + 1� y).
Therefore, there cannot be an equilibrium as supposed with ãS(n� y) < 1 either.
Therefore, ãE(n+1� y)= 0 and ãS(n� y)= 1 form the only symmetric equilibrium in which
ãE(n� y)≤ ãS(n� y).

• ṽS(n + 1� y) > ϕ(n + 1� y). Lemma 2
 and the case’s precondition together give us
that ṽS(n′� y) > 0 for all n′ ∈ {1� � � � � n + 1}, so sure continuation (setting ãS(n� y) = 1) is
a dominant strategy for each incumbent. For the potential entrant, since ṽS(n + 1� y) >
ϕ(n+ 1� y), entering for sure (setting ãE(n� y)= 1) is a strictly dominant strategy. There-
fore, there is a unique Nash equilibrium. In it, all incumbents choose sure continuation
and the potential entrant chooses sure entry.
This establishes the equilibrium existence and uniqueness asserted by Corollary 1
. Q.E.D.

COROLLARY 2
: If ṽE and ṽS are the pre-decision and post-decision value functions as-
sociated with a natural Markov-perfect equilibrium and ãE is that equilibrium’s entry rule,
then

ṽE(n� y)= max
{
0� ãE(n+ 1� y)ṽS(n+ 1� y)+ (

1 − ãE(n+ 1� y)
)
ṽS(n� y)

}
�

PROOF OF COROLLARY 2
: There are two cases to consider:
• ṽS(1� y) = ṽS(2� y) = · · · = ṽS(n� y) = 0. Lemma 2
 implies that ṽS(n + 1� y) ≤ 0, so

setting ãE(n + 1� y) = 0 is a dominant strategy for the potential entrant. Therefore, the
value of certain continuation for any incumbent equals 0 and the value functions and
entry rule satisfy the stated equality.

• There exists an n′ ∈ {1� � � � � n} such that ṽS(n
′� y) �= 0. This case contains two sub-

cases:
– ṽS(n+ 1� y) �= ϕ(n+ 1� y). Corollary 1
 applies. Its proof demonstrates that

EãE�ãS

[
ṽS

(
N ′� y

)|N = n�Y = y
]

= ãE(n+ 1� y)ṽS(n+ 1� y)+ (
1 − ãE(n+ 1� y)

)
ṽS(n� y)

if ṽS(n� y)≥ 0 (in which case ãS(n� y)= 1) and

EãE�ãS

[
ṽS

(
N ′� y

)|N = n�Y = y
] = 0

if ṽS(n� y) < 0 (in which case ãS(n� y) < 1). Thus, the value functions and entry rule satisfy
the stated equality.

– ṽS(n + 1� y) = ϕ(n + 1� y). Lemma 2
 guarantees that ṽS(n
′� y) > 0 for all n′ ∈

{1� � � � � n + 1}, so sure continuation (ãS(n� y) = 1) is a dominant strategy for each in-
cumbent. Since the equilibrium defaults to inactivity, ãE(n + 1� y) = 0. Thus, the value
functions and entry rule satisfy the stated equality. Q.E.D.

Just as with the model of the main text, we constructively demonstrate equilibrium
existence and uniqueness. We present the algorithm for equilibrium calculation in Algo-
rithm S1. It begins by initializing the number of firms under consideration (n) to ň and
both the candidate equilibrium entry rule α̃E : N × Y → {0�1} and a dummy function
f 
 :Y → [0� ρπ̌

1−ρ
] to zero. We will denote the candidate equilibrium pre-decision and post-

decision value functions by ν̃E and ν̃S , respectively. The algorithm then enters its main



VERY SIMPLE MARKOV-PERFECT INDUSTRY DYNAMICS: THEORY 13

ALGORITHM S1.—Equilibrium calculation for the alternative model.
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loop, which begins by using Bellman equation iteration (on the dummy function f 
) to
solve a dynamic programming problem. The relevant Bellman operator is

Tn

(
f 


)
(y)= max

{
0�

(
1 − α̃E(n+ 1� y)

)
ρE

[
π

(
n�Y ′) + f 


(
Y ′)|Y = y

]
+ α̃E(n+ 1� y)ρE

[
π

(
n+ 1�Y ′) + ν̃E

((
n+ 1�Y ′)�Y ′)|Y = y

]}
�

(S7)

The next two steps assign the fixed point of Tn stored in f 
(·) to ν̃E(n� ·) and use (S3)
to construct ν̃S(n� ·). In the loop’s final step, α̃E(n� y) is set to 1[ν̃S(n� y) > ϕ(n� y)]. If
the current value of n exceeds 1, it is decremented and the algorithm returns to the top
of the main loop. If instead n equals 1, then the algorithm proceeds to its final task of
setting the candidate equilibrium survival rule, which closely follows its calculation by
Algorithm 1 in the main text. Algorithm S1 only computes candidate post-entry and post-
survival values and a candidate survival rule on {1� � � � � ň} ×Y . As noted in the main text,
it is straightforward to extend them to the full state space N×Y . Because this extension is
of little applied interest, we keep it implicit and simply refer to Algorithm S1 as computing
a candidate equilibrium.

The appropriately modified version of Theorem 1 states that the candidate equilib-
rium strategies and payoffs arising from Algorithm S1 correspond to the unique natural
Markov-perfect equilibrium.

THEOREM 1
—Equilibrium Existence and Uniqueness: There exists a unique natural
Markov-perfect equilibrium. The equilibrium strategy and corresponding equilibrium payoffs
are those computed by Algorithm S1.

PROOF OF THEOREM 1
: The proof is divided into three parts. First, we show that the
candidate continuation values from Algorithm S1 satisfy the monotonicity requirements
of Lemma 2
. Second, we use this to demonstrate that the candidate strategy indeed forms
an equilibrium. Third, we establish equilibrium uniqueness.

Fix n ∈ {1�2� � � � � ň−1} and suppose that we know that ν̃E(n+1� ·)≥ · · · ≥ ν̃E(ň� ·). This
immediately implies that α̃E(n+1� ·)≥ · · · ≥ α̃E(ň� ·). Evaluating Tn at f 
(·)= ν̃E(n+1� ·)
gives

Tn

(
f 


)
(y)= max

{
0�

(
1 − α̃E(n+ 1� y)

)
ρE

[
π

(
n�Y ′) + f 


(
Y ′)|Y = y

]
+ α̃E(n+ 1� y)ρE

[
π

(
n+ 1�Y ′) + ν̃E

(
n+ 1�Y ′)|Y = y

]}
≥ max

{
0�

(
1 − α̃E(n+ 1� y)

)
ρE

[
π

(
n+ 1�Y ′) + f 


(
Y ′)|Y = y

]
(S8)

+ α̃E(n+ 1� y)ρE
[
π

(
n+ 2�Y ′) + ν̃E

(
n+ 2�Y ′)|Y = y

]}
≥ max

{
0�

(
1 − α̃E(n+ 2� y)

)
ρE

[
π

(
n+ 1�Y ′) + f 


(
Y ′)|Y = y

]
(S9)

+ α̃E(n+ 2� y)ρE
[
π

(
n+ 2�Y ′) + ν̃E

(
n+ 2�Y ′)|Y = y

]}
= ν̃E(n+ 1� y)

for any y ∈Y . (For the case with n= ň− 1, we define ν̃E(ň+ 1� ·)= α̃E(ň+ 1� ·)= 0.) The
inequality in (S8) follows from Assumption A3 and the presumption that ν̃E(n + 1� ·) ≥
ν̃E(n+ 2� ·). The inequality in (S9) follows from α̃E(n+ 2� y)≥ α̃E(n+ 1� y) and

E
[
π

(
n+ 1�Y ′) + f 


(
Y ′)|Y = y

] ≥ E
[
π

(
n+ 2�Y ′) + ν̃E

(
n+ 2�Y ′)|Y = y

]
�



VERY SIMPLE MARKOV-PERFECT INDUSTRY DYNAMICS: THEORY 15

The final equality follows from the equivalence of ν̃E(n + 1�Y ′) with f 
(Y ′). The oper-
ator Tn is a monotone contraction mapping, so Tn(f


)(n� ·) ≥ ν̃E(n + 1� ·) implies that
ν̃E(n� ·) ≥ ν̃E(n + 1� ·). Recursively applying this argument for n decreasing from ň − 1
to 1 proves that ν̃E(1� ·) ≥ ν̃E(2� ·) ≥ · · · ≥ ν̃E(ň� ·) and α̃E(1� ·) ≥ α̃E(2� ·) ≥ · · · ≥ α̃E(ň� ·).
With Assumption A3, this monotonicity implies that

ν̃S
(
n′� ·) = ρE

[
π

(
n′�Y ′) + ν̃E

(
n′�Y ′)|Y = ·]

weakly decreases with n′. This is the desired monotonicity result.
For the second part, first note that the algorithm always sets α̃E(n + 1� y) = 1{ν̃S(n +

1� y) > ϕ(n + 1� y)}. Next, consider the requirements of (S4) and (S5). For states (n� y)
such that ν̃S(n� y) = · · · = ν̃S(1� y) = 0, the monotonicity of ν̃S(n


� y) in n
 ensures that
ν̃S(n+1� y)≤ 0. Therefore, (S4) requires α̃E(n+1� y)= 0, which is indeed the case. Given
this, (S5) imposes only the trivial requirement that α̃S(n� y) ∈ [0�1]. Algorithm S1’s selec-
tion of α̃S(n� y) = 0 satisfies this. If instead ν̃S(n + 1� y) = ϕ(n + 1� y), then the mono-
tonicity of ν̃S(n
� y) in n
 implies that ν̃S(n
� y) > 0 for n
 = 1� � � � � n. Algorithm S1 sets
α̃E(n+ 1� y) = 0 and α̃S(n� y) = 1 for these states, which satisfies both (S4) and (S5). For
all other states (n� y), Algorithm S1 sets α̃E(n + 1� y) and α̃S(n� y) to the Nash equilib-
rium strategies from Corollary 1
’s game with n incumbents and payoffs ν̃S(n

′� y) from
continuation with n′ = 1� � � � � n + 1 firms, which satisfies both (S4) and (S5). Equation
(S2) requires ν̃E(n� y) to equal the expected payoff from this game to the potential en-
trant, which is true by construction. Similarly, Algorithm S1 sets ν̃S(n� y) so that it and
ν̃E(n� y) satisfy (S3) automatically. We conclude that Algorithm S1’s candidate strategy
indeed forms an equilibrium.

The remainder of this proof demonstrates equilibrium uniqueness. Corollary 2
 implies
that any equilibrium ṽE(ň� ·) equals the unique fixed point of Tň, ν̃E(ň� ·). Given this result,
Equation (S3) implies that ṽS(ň� ·) = ν̃S(ň� ·) in any equilibrium. In turn, this result and
Lemma 2
 together imply that ṽS(1� ·) ≥ ṽS(2� ·) ≥ · · · ≥ ṽS(ň − 1� ·) ≥ ν̃S(ň� ·). So when
ν̃S(ň� y) > ϕ(ň� y), a potential entrant’s unique payoff-maximizing choice is sure entry. If
instead ν̃S(ň� y) = ϕ(ň� y), then the restriction that the equilibrium strategy defaults to
inactivity requires the potential entrant to surely not enter. Finally, if ν̃S(ň� y) < ϕ(ň� y),
then the restriction that the equilibrium is natural also requires the potential entrant to
surely not enter. Algorithm S1’s setting of α̃E(ň� y) = 1[ν̃S(ň� y) > ϕ(ň� y)] is the only
choice for this entry rule that satisfies these restrictions.

Next, repeat the following argument for n decreasing from ň − 1 to 1. For given n,
suppose that we have determined that ṽE(n
� ·) = ν̃E(n


� ·) and ãE(n

� ·) = α̃E(n


� ·) for
n
 = n + 1� � � � � ň. Corollary 2
 implies that any equilibrium ṽE(n� ·) equals the unique
fixed point of Tn, ν̃E(n� ·). Given this result, Equation (S3) implies that ṽS(n� ·) = ν̃S(n� ·)
in any equilibrium. In turn, this result and Lemma 2
 together imply that if n > 1, then
ṽS(1� ·) ≥ · · · ≥ ν̃S(n� ·). So when ν̃S(n� y) > ϕ(n� y), a potential entrant’s unique payoff-
maximizing choice is sure entry. If instead ν̃S(n� y) = ϕ(n� y), then the restriction that
the equilibrium strategy defaults to inactivity requires the potential entrant to surely not
enter. Finally, if ν̃S(n� y) < ϕ(n� y), then the restriction that the equilibrium is natural also
requires the potential entrant to surely not enter. Algorithm S1’s setting of α̃E(n� y) =
1[ν̃S(n� y) > ϕ(n� y)] is the only choice for this entry rule that satisfies these restrictions.

The completion of this recursion establishes that ṽE = ν̃E , ṽS = ν̃S , and ãE = α̃E in any
equilibrium. Applying Corollary 1
 then determines that ãS(n� y)= α̃S(n� y) for any (n� y)
such that there exists an n′ ∈ {1� � � � � n} with ν̃S(n

′� y) �= 0 and ṽS(n + 1� y) �= ϕ(n + 1� y).
States that do not satisfy its preconditions fall into two cases. If ν̃S(1� y)= ν̃S(2� y)= · · · =
ν̃S(n� y) = 0, then the monotonicity of ν̃S(n


� y) in n
 guarantees that ν̃S(n + 1� y) ≤ 0.
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Algorithm S1 sets α̃S(n� y) = 0 for these states, which the assumption that the equilib-
rium strategy defaults to inactivity requires. If instead ν̃S(n + 1� y) = ϕ(n + 1� y), then
monotonicity of ν̃S(n
� y) in n
 guarantees that ν̃S(1� y)≥ ν̃S(2� y)≥ · · · ≥ ν̃S(n+1� y) > 0.
Given these values from survival, sure continuation is a dominant strategy for any incum-
bent. Algorithm S1 indeed sets α̃S(n� y) to 1, as required. We conclude that the equilib-
rium strategy computed by Algorithm S1 is the only natural Markov-perfect equilibrium
strategy that defaults to inactivity. Q.E.D.

REFERENCES

ABBRING, J. H., J. R. CAMPBELL, J. TILLY, AND N. YANG (2017): “Very Simple Markov-Perfect Industry Dy-
namics: Empirics,” Discussion Paper 2017-021, CentER, Tilburg. [1]

(2018): “Very Simple Markov-Perfect Industry Dynamics: Theory,” Econometrica, 86, 721–735. [1]
FUDENBERG, D., AND J. TIROLE (1991): Game Theory. Cambridge: MIT Press. [1,3]

Co-editor Elie Tamer handled this manuscript.

Manuscript received 29 December, 2015; final version accepted 3 May, 2017; available online 31 May, 2017.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTVSMP%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/vsmpidTheory17:abbringetal&rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTVSMP%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/mit91:fudenbergtirole&rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTVSMP%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/vsmpidTheory17:abbringetal&rfe_id=urn:sici%2F0012-9682%28201803%2986%3A2%2B%3C1%3ASTVSMP%3E2.0.CO%3B2-B

	One-Shot Deviations and Subgame Perfection
	An Alternative Model
	Primitives
	Equilibrium
	Equilibrium Multiplicity and Reﬁnement
	Equilibrium Analysis

	References

