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Proof of Proposition 2

‘WE BEGIN BY REWRITING the IV and control function estimates of LATE , in matrix form.
The IV estimator is given by

A [P(2)Y{ + (1 - 13(2))1702]: [P(zA— DY+ (1-P(z— 1) Y]
P(z)—P(z—-1)

= 1I’f(ﬁ)/Yl - 1[/02(}3)’?0,

where Y, = (1_’3, 17}, e, }_’f ) is the (K 4+ 1) x 1 vector of sample average outcomes for
each value of z conditional on D; = d and P is the vector of propensity score estimates.
The (K +1) x 1 vector W7 (P) has —P(z—1)/[P(z)—P(z—1)] atentry z—1, P(2)/[P(2) —
13(2 —1)] at entry z, and zeros elsewhere, and the (K +1) x 1 vector 1I’OZ(IS) has (1— 13(2 -

1))/[P(z) — P(z—1)] atentry z — 1, —(1 — P(2))/[P(z) — P(z — 1)] at entry z, and zeros
elsewhere:

qff(ﬁ)z(o,...,o, _—Pe-l) P ,0,...,0>,
P(z)—P(z—1) P(z)—P(z—-1)

wg(ﬁ)=(o,...,0, (1-Pe-b) -(=Pe) 00>
P(z)—P(z—1) P(z)—P(z—1)

The second-step control function estimates with L = K can be rewritten

QAd>Vd1ses
d>Vd =1

2
K
(&> Vars - - - Yax) = arg minm Zl{Di:d}[Yi—ad—Zl{zi:Z}de)\dz(P(Z)):| .
K .

This is a saturated OLS regression of Y; on Z; for each treatment category. The coefficient
estimates satisfy

K A _
&d + Zl=l’§’dl)‘dl(P(Z)) = Yj, d € {0) 1}7 FAS {07 17 e K}
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2 P. KLINE AND C. R. WALTERS

Letting &d = (@4, Va1, - - - » Yax ) denote the control function estimates for treatment value
d, we can write this system in matrix form as

Ag(P)A, =Yy,

where the matrix A,(P) has ones in its first column and Agj1 (P(k)) in row k and column
j>1:

Lo da(P)) - da(P(D)

. Aat(P(2 e Ak (P2
APy = | 41(:()) ; dK(:())
1 Aa(P(K)) - A (P(K))

The control function estimates are therefore given by
Ay = A (P) 'Y,

The yalues of Ay (I3A(z)) are well-defined for all (k, z) whenever 0 < ﬁ(z) <1Vz, and
A4(P) is full rank if P(z) # P(z") whenever z # z'. These requirements hold if Conditions
1 and 2 are true for every pair of instrument values, so the matrix A,(P) is invertible under

the conditions of Proposition 2 and the control function estimate A, exists.
In matrix form, the control function estimate of LATE, is given by

_——CI A A~ ~
LATE. =Y*(PY(, — Ay,
where the (K +1) x 1 vector YZ([A’) has first entry equal to unity and kth entry I';,_; (13(2 -
1), P(2)) for k > 1:
P (P(2)) — P(z — DAu(P(z - 1))
P(z)—P(z—1)

P(2)Aik(P(2)) — P(z = DAk (P(z - 1)) )
P(z)—P(z—1) '

Yi(P) = (1,

PECIIIY

Plugging in the formulas for A, and A, yields
LATE. =Y (BY A, ()Y, — Y*(PY Ay(P) 'Y,
The IV and control functions are therefore identical if Wj(f’)’ = YZ(IS)’/LZ(IA’)‘1 for d
{0, 1}, or equivalently, if A,(P)W:(P)=Y*(P) ford e {0, 1}.
For d =1, we have
P(2)Mi(P(2)) — P(z = DAy (P(z — 1))
P(z)—P(z—1)
P(2)Aix(P(2)) = P(z = DA (P(z = 1)) )
P(z)—P(z—1)

PRI

Ay(PYWE(P) = (1,

= Y*(P).



ON HECKITS, LATE, AND NUMERICAL EQUIVALENCE 3

For d =0, we have

Ai(P(z = 1)) (1= P(z = 1)) = A (P(2)) (1 - P(2))
P(z)—P(z—1)
Ai(P(z = 1) (1= P(z— 1)) — A (P(2)) (1 - P(2)) )
P(z)—P(z-1)
_ (1 M (P(2))P(2) — An(P(z = 1D))P(z— 1)
’ P(z) —P(z—1) B
Mk (P(2))P(2) — Mg (P(z — 1)) P(z — 1))/
P(z)—P(z—1)

A(PYWE(P) = (1,

9 ey

cey

= Y*(P),

where the second equality follows from the fact that p'Ay(p’) — pAn(p) = (1 —

— 1V _——_CF
Pro(p) — (1 — pHAw(p') for any p, p/, and_Z. This_implies that LATE, and LATE,
are equal to the same linear combination of Y; and Y, so these estimates are identical
for any z.

Proof of Proposition 3

The unrestricted control function estimates come from the regression

Yi=ay(0)(1 - D)(1—X;)+ »(0)(1-D)H(1 - Xi)/\o(lf’((), Z)))
+ay(1)(1 — D)X, + v (H(1 — D) XA (P(1, Z)))
+a1(0)Di(1 - X)) + 11 (0)D:(1 — XA, (P(0, Z)))
+ai()DX; +vi(HDX M (P(1, Z) + €.
We can write this equation in matrix form as
Y=WA+e,
where W is the matrix of regressors and A = (a(0), y5(0), ap(1), vo(1), @1 (0), v1(0),

a1(1), y1 (1)) collects the control function coefficients. Under the conditions of Propo-
sition 3, W’'W has full rank and the unrestricted control function estimates are

A,=ww) ' wy.

The estimator in equation (13) imposes three restrictions: a;(1) — a;(0) = ap(1) —
ap(0), y1(1) =¥1(0), and y,(1) = 4(0). The resulting estimates can be written

(A,, 0)= argnAlin(Y —WAY(Y —WA) — poCA,
Ao
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-1 0 1
c=|10 0 0
0

and o is a Lagrange multiplier. Then

where

A=A +(Ww)'cCo,
o=—(cww) ") ch.,
F9r any estimate A, the corresponding estimate of LATE for compliers with X; =1 is
Y (P)'A, with
Y(P)=(0,0,—1,-T(P(1,0), P(1,1)),0,0,1,T(P(1,0), P(1,1)))".

The restricted estimate of LATE(1) is therefore
——CF A A 1 N
LATE, (1)=Y®P) (A, +(W'W) C'9)
——CF A _ _ _
— LATE, ()+Y@y(W'w)  c(c(ww)'c)7'¢,
where { = —-C Au is the constraint vector evaluated at the unrestricted estimates:

¢ = ([a0(0) — do(1)] = [&1(0) — & (1)], §1(0) = F1(1), $o(0) — (1)) .

Write Q = (W'W)=1C'(C(W'W)~'C")~!, and let v, denote the 3 x 1 vector equal to the
transpose of the kth row of (2. Using the fact that a scalar is equal to its trace, we can then
write the difference in restricted and unrestricted LATE estimates as

_————_CF _——_CF A
LATE, (1) —LATE, (1) =tr(Y(P)' ()
= tr(Q2LY (P)')
=¢'{,
where ¢ =v; — v; + T(P(1,0), P(1,1))(v5 — 1) = (¢1, @2, @3)'. Then
_——_CF _——_CF n n n “
LATE, (1) —LATE, (1) = ¢1([&0(0) — a(1)] — [@1(0) — a1(1)])
+ 02 ($1(0) — ’;’1(1)) + Sos(i’o(o) — (1))
_———_CF _——_CF
= ¢1(LATE, (1) — LATE, (1))
+ (%100) = 11 (D) (@2 + ¢:T(P(1,0), P(1, 1))
+ (%(0) — %o(1) (@3 — @:T(P(1,0), P(1, 1))).

This implies

——CF ——CF ——CF n n n n
LATE, (1) =wLATE, (1)+(1—w)LATE, (1)+4bi(%:1(1) —%1(0)) +bo(%(1) — %(0)),
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where w =1+ ¢, by = —(¢2 + ¢ (P(1,0), P(1, 1)), and by = ¢, T'(P(1,0), P(1,1)) —

¢3. Furthermore, note that the elements of ¢ only depend on sample moments of D;, X;,
and P(X;, Z;), so the proposition follows.

Proof of Proposition 4
The log-likelihood function for model (16) is

IOgﬁ(P(O), P(1), ap, ay, po, Pl)

P(Z)
= ZDi 10g</ [YiFslu(alW; p1) + (1— Yi)(l — Fou(aiu; Pl))] du)
; 0

+ Z(l — Dl-)log</
- P

We first rewrite this likelihood in terms of the six identified parameters of the LATE
model, which are given by

1

[YiFqu(aolus po) + (1 — Yi) (1 — Feu(aolus; po))] du).

(Zi)

Tat =P(0)7
7. = P(1) — P(0),
P(0)

Fou(aqlu; py) du
0

Miar =

P(0) ’
1
/ Fou(aglu; po) du
__JP
/J’Ont — 1 _ P(l) >
P(1)
/ Fou(aqlu; pa) du
ge = 2O , def{0,1}.

P(1)—P(0)

Note that since F,y(-|u; p) is a CDF, we have u,, € [0, 1] Y(d, g). Substituting these pa-
rameters into the likelihood function yields

lOg E(’JTM, Ty Miars Monts Pics /vLOc)
= ZDiZilog(ﬂ'az[YiMlaz + (1 -Y)(1 - Mlaz)] + 7Tc[Yi,U~1c +1=-Y)(d- Mlc)])

+ Y Di(1 = Z)10g(mu[ Yiptsar + (1 = Y (1 = p1ar)])

1

+ Z(l - Di)Zi log((1 — Mgt — Wc)[}]i/-LOnt + (1 - Yl)(l - /-L(]nt)])

+ Y (1 =Dy (1 = Z)log((1 = e — ) Yiron + (1= Y)(1 = pron)]

1

+ [ Yisoe + (1= YD (1 = poo)]).-
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We first consider interior solutions. The first-order conditions are
D;2Y; — 1) Z;m,
[11a] - Z( ‘
i Tat Y/-'Llat"i_(l_Y)(l_Mlal)]"i_wc[YIU/lc—’_(l_Y)(l :U“lc)]

D;2Y; — 1)(1 = Z) 7y )_0
ml[mlm(l—m(l—mm)] -

[ ] Z( D)(2Yl_1)Zl(1_7Tat_7Tc)
Hom 1 — Mgt — Wc)[Yi/*LOnt + (1 - K)(l - /J‘Ont)]
N (1-D)QY;, — 1)1 = Z)(1 — 7y — 7,) )_
(1 — 70 — 7 [Yison + (1 = YD1 = o) | + 7 Yittoe + 1 = YDA —po)])
D, Z:2Y; — 1),
c :07
[,-Ll ] Zﬂ'at Yl-Llaz+(1_ Y)(l_:u'lat)]'i'7TC[Y/~'L10+(1_Y)(1 Mlc)]
0l (1-D)(1—Z)Q2Y; — 1),
el L = ) [Yattom + (1= Yo (1 — pao)] + 7o Yigaoe + (L — Y1) (1 — paoe)]
:0,
D Z{Yimia + (1 = Y (1 — sy
1 Z [Yittia + ( )1 = piar)]

Tat Y/“(‘lat + (1 - Y)(l - :u‘lat)] + 77-c|:YI"¢1c + (1 - Y)(l - /J‘lc)]

ZD (1-Z) Z (1 = D) Zi[ Yitton + (1 = Y (1 = rou)]
i (1 — Tat — c)[YvilJfOnt + (1 - Yl)(l - IvLOnt)]
_Z (1—Di)(1—Zi)[YiMom+(1—Yi)(l—llvom)]
(1 — Tar — 77-c)[Yi/*‘l’Om + (1 - Yl)(l - I*LOnt)] + 71'cl:)]i:u'()c + (1 - K)(l - /*L()c)]

:0,
(] Z D'Z'[Y'Mlc‘i‘(l - Y')(l—Mlc)]
‘ 7Tat Yl-l/lat"i_(l_Y)(l_lulat)]+7TC[Y:U“1£+(1_Y)(1_/“L1C)]]

—Z (]-_D)Z YMOm"‘(]- Yi)(]-_:u'()m)]
(1 — Tar — 77-C)l:),i/vLOnl + (1 - K)(l - /vLOnl)]

_Z (1-D)(1—Z)Q2Y; — 1) (on — Moc)
(1 — Tat — 77-c)[Yi/“l'Om + (1 - K)(l - MOnI)] + Wc[Yi/-LOC + (1 - Yl)(l - /J'Oc)]

=0.

Under Conditions 1 and 2, we can compute a1V, atv,, @1V, and 4fY. Setting 7'V =P(1) -
P(0) and 7 v = P(0) and plugging the IV parameter estimates into the FIML first-order
condltlons, we see that these conditions are satisfied. Thus, at interior solutions, maximum

likelihood and IV estimators of all parameters are equal, and it follows that gl = a!¥
for d € {0, 1}.
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Next, we consider corner solutions, which occur when at least one parameter lies out-
side [0, 1] at the unconstrained solution to the first-order conditions. Note that @}Y,, @y,
and 7!Y are sample means of binary variables, so these estimates are always in the unit
interval. 77!V is the difference in empirical treatment rates between the two values of Z;;
without loss of generality, we assume that Z; = 1 refers to the group with the higher treat-
ment rate, so 7'V € (0, 1). Thus, a constraint binds if and only if &%) is outside [0, 1] for
d =0, d =1, or both. In these cases, at least one of the maximum likelihood complier
means fails to match the corresponding IV estimate because the IV estimate is outside
the FIML parameter space. This establishes that the FIML and IV estimates match if and

only if both 4}¥ and 4} are in [0, 1], which completes the proof.
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