SUPPLEMENT TO "A COMMENT ON:

'On the Informativeness of Descriptive Statistics for Structural Estimates'" (Econometrica, Vol. 88, No. 6, November 2020, 2259–2264)

STÉPHANE BONHOMME Department of Economics, University of Chicago

S1. BIAS CALCULATIONS

LET ME FIRST BRIEFLY RECALL the bias expressions in the paper. For simplicity, throughout I will fix a value η of the base model parameter. Let $f_{\eta,\zeta}$ be the density of the data D under the reader's model. Let f_{η} denote the density of D under the base model. Given a quantity of interest $c(\eta)$, the unrestricted bias of \widehat{c} is

$$\sup \left\{ \left| \mathbb{E}_{f_{\eta,\zeta}}(\widehat{c}) - c(\eta) \right| : \zeta \in \mathbb{Z}, 2 \int \log \left(\frac{f_{\eta,\zeta}}{f_{\eta}} \right) f_{\eta,\zeta} \le \mu^2 \right\}, \tag{S1}$$

where I use twice the KL divergence for $r(\eta, \zeta)^2$.

Assume that $\mathbb{E}_{f_{\eta}}(\widehat{c}) = c(\eta)$, and let $h_{\widehat{c}}$ denote the influence function of \widehat{c} under the base model. The unrestricted bias can be expanded for small μ as

$$b_N = \mu \sqrt{\operatorname{Var}[h_{\widehat{c}}(D)]} + o(\mu),$$

where the variance is evaluated under the base model. To derive the restricted bias, one adds the constraint $\mathbb{E}_{f_{\eta,\zeta}}[h_{\widehat{\gamma}}(D)] = 0$, where $h_{\widehat{\gamma}}$ denotes the influence function of $\widehat{\gamma}$, and obtains

$$b_{RN} = \mu \sqrt{\operatorname{Var} \left[\operatorname{res} \left(h_{\widehat{c}}(D), h_{\widehat{\gamma}}(D)\right)\right]} + o(\mu).$$

Let me now describe the approach that I have adopted in the discussion, which I have borrowed from Bonhomme and Weidner (2019). Let $\pi \in \Pi$ be a density. Let $f_{\eta,\pi}$ be the density of the data D under the reader's model. Let π_{η} denote the base value of π , and let $f_{\eta} = f_{\eta,\pi_{\eta}}$ denote the density of D under the base model. Given a quantity of interest $c(\eta,\pi)$, I define the unrestricted bias of \widehat{c} as

$$\sup \left\{ \left| \mathbb{E}_{f_{\eta,\pi}}(\widehat{c}) - c(\eta,\pi) \right| : \pi \in \Pi, 2 \int \log \left(\frac{\pi}{\pi_{\eta}} \right) \pi \le \mu^2 \right\}. \tag{S2}$$

There are two differences between (S1) and (S2). First, now the quantity of interest is $c(\eta, \pi)$. This allows for misspecification of the quantity of interest, even when η is known. Second, now the KL divergence is expressed in terms of the (infinite-dimensional) parameter π , not in terms of the density of the data. This allows one to cover settings, such as the second example, where π is not identified, while being able to add structure to the neighborhoods (e.g., independence assumptions) in a tractable way.

Stéphane Bonhomme: sbonhomme@uchicago.edu

Suppose that $\mathbb{E}_{f_{\eta}}(\widehat{c}) = c(\eta, \pi_{\eta})$. Bonhomme and Weidner (2019) showed that the bias in (S2) can be expanded under suitable regularity conditions as

$$\mu \sqrt{\mathrm{Var} \big(\mathbb{E}_{f_{\eta}} \big[h_{\widehat{c}}(D) \nabla_{\pi} \log f_{\eta}(D) \big] - \nabla_{\pi} c(\eta, \pi_{\eta}) \big)} + o(\mu),$$

where ∇_{π} denote (Gâteaux) derivatives, and the variance is evaluated under the base model.

Consider the first example. In this case, D=Y, and π is the density of Y under the reader's model. Moreover, f_{η} is a normal density with mean m and variance σ^2 . The quantity of interest is $c(\eta, \pi) = \mathbb{E}_{\pi}[\mathbf{1}\{Y \leq a\}]$. Note that, since π is the density of the data, the difference in the quantity of interest is the only reason why (S1) and (S2) differ in this example. In this case, $\mathbb{E}_{f_{\eta}}[h_{\widehat{c}}(D)\nabla_{\pi}\log f_{\eta}(D)]$ can be represented by $h_{\widehat{c}}(Y)$. In addition, $\nabla_{\pi}c(\eta, \pi_{\eta})$ can be represented by $\mathbf{1}\{Y \leq a\} - \mathbb{E}(\mathbf{1}\{Y \leq a\})$, where the expectation is evaluated under the base model. This gives the following bias expression:

$$b_N^{\text{mod}} = \mu \sqrt{\text{Var}[h_{\widehat{c}}(Y) - \mathbf{1}\{Y \le a\}]} + o(\mu).$$

Consider the second example, where D=(Y,X), and π is the density of (ε,X) . Then f_{η} is the product of the conditional density of Y given X, which is a Bernoulli with probability $\Phi(X'\eta)$, and the density f_X of X, which I assume is not subject to misspecification. The quantity of interest is $c(\eta,\pi)=\mathbb{E}_{\pi}[\mathbf{1}\{\widetilde{x}'\eta\geq\varepsilon\}]$. In this case, $\mathbb{E}_{f_{\eta}}[h_{\widehat{c}}(D)\nabla_{\pi}\log f_{\eta}(D)]$ can be represented by $h_{\widehat{c}}(Y,X)-\mathbb{E}(h_{\widehat{c}}(Y,X)\mid X)$. In addition, $\nabla_{\pi}c(\eta,\pi_{\eta})$ can be represented by $\mathbf{1}\{\widetilde{x}'\eta\geq\varepsilon\}-\mathbb{E}(\mathbf{1}\{\widetilde{x}'\eta\geq\varepsilon\}\mid X)$. This gives the following bias expression:

$$b_N^{\text{mod}} = \mu \sqrt{\text{Var} [h_{\widehat{c}}(Y, X) - \mathbf{1} \{ \widetilde{x}' \eta \ge \varepsilon \}]} + o(\mu).$$

Continuing with the second example, and still focusing on the quantity $c(\eta, \pi)$, but now adding independence, π is the density of ε , independent of X. Then, for any function g, $\nabla_{\pi}\mathbb{E}_{\pi}[g(Y,X)]$ can be represented by $\mathbb{E}[g(Y,X) \mid \varepsilon] - \mathbb{E}[g(Y,X)]$. Hence the bias becomes

$$b_N^{\text{ind}} = \mu \sqrt{\text{Var}\big[\mathbb{E}\big(h_{\widehat{c}}(Y, X) \mid \varepsilon\big) - \mathbf{1}\big\{\widetilde{x}'\eta \ge \varepsilon\big\}\big]} + o(\mu).$$

Last, the restricted bias analogs to b_N^{mod} and b_N^{ind} are obtained by imposing the constraint $\mathbb{E}_{f_{\eta,\pi}}[h_{\widehat{\gamma}}(Y)] = 0$ in the first example, and $\mathbb{E}_{f_{\eta,\pi}}[h_{\widehat{\gamma}}(Y,X)] = 0$ in the second example. The bias formulas in the main text, and the associated informativeness measures, follow.

S2. NUMERICAL APPROXIMATIONS

I draw S observations from the normal base model, and compute the moments using the simulated draws. I take S = 500,000 in the first example (to achieve numerical precision in Figure 1(c)), and S = 20,000 in the second example.

S3.
$$\Delta^{mod} = 0$$
 IN THE FIRST EXAMPLE

Suppose one wants to estimate $c(\pi) = \mathbb{E}_{\pi}(w(D))$, such as $\mathbb{E}_{\pi}(\mathbf{1}\{Y \leq a\})$ in the first example. Let $\widehat{c} = c(\pi_{\widehat{\eta}})$, where $\widehat{\eta}$ is the maximum likelihood estimator of η under the

¹I have used that $\mathbb{E}(h_{\hat{\epsilon}}(Y, X) - \mathbf{1}\{\widetilde{X}'\eta \geq \varepsilon\} \mid X)$ is approximately constant in a local asymptotic.

COMMENT 3

base model. Starting from the identity $\mathbb{E}_{\pi_{\eta}}(w(D)) = c(\pi_{\eta})$ and η -differentiating it (under sufficient regularity) gives

$$\mathbb{E}_{\pi_{\eta}}(w(D)\nabla_{\eta}\log\pi_{\eta}(D)) = \nabla_{\eta}c(\pi_{\eta}),$$

from which one can check that, to first order,

$$\mathbb{E}_{\pi_{\eta}} [(w(D) - \widehat{c}) \nabla_{\eta} \log \pi_{\eta}(D)] = 0.$$

From this, it follows that $\Delta^{\text{mod}} = 0$ when using $\widehat{\gamma} = \widehat{\eta}$ as a vector of descriptive statistics, whereas $\Delta = 1$ since \widehat{c} is a non-stochastic function of $\widehat{\eta}$.

REFERENCES

BONHOMME, S., AND M. WEIDNER (2019): "Minimizing Sensitivity to Model Misspecification," Preprint, arXiv:1807.02161. [1,2]

Co-editor Ulrich K. Müller handled this manuscript.

Manuscript received 2 July, 2020; final version accepted 3 August, 2020; available online 12 August, 2020.