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S1. BIAS CALCULATIONS

LET ME FIRST BRIEFLY RECALL the bias expressions in the paper. For simplicity, through-
out I will fix a value η of the base model parameter. Let fη�ζ be the density of the data D
under the reader’s model. Let fη denote the density of D under the base model. Given a
quantity of interest c(η), the unrestricted bias of ĉ is

sup
{∣∣Efη�ζ (̂c)− c(η)

∣∣ : ζ ∈Z�2
∫

log
(
fη�ζ

fη

)
fη�ζ ≤ μ2

}
� (S1)

where I use twice the KL divergence for r(η�ζ)2.
Assume that Efη (̂c) = c(η), and let hĉ denote the influence function of ĉ under the base

model. The unrestricted bias can be expanded for small μ as

bN = μ
√

Var
[
hĉ(D)

] + o(μ)�

where the variance is evaluated under the base model. To derive the restricted bias, one
adds the constraint Efη�ζ [hγ̂(D)] = 0, where hγ̂ denotes the influence function of γ̂, and
obtains

bRN = μ
√

Var
[
res

(
hĉ(D)�hγ̂(D)

)] + o(μ)�

Let me now describe the approach that I have adopted in the discussion, which I have
borrowed from Bonhomme and Weidner (2019). Let π ∈ Π be a density. Let fη�π be the
density of the data D under the reader’s model. Let πη denote the base value of π, and
let fη = fη�πη denote the density of D under the base model. Given a quantity of interest
c(η�π), I define the unrestricted bias of ĉ as

sup
{∣∣Efη�π (̂c)− c(η�π)

∣∣ : π ∈ Π�2
∫

log
(
π

πη

)
π ≤ μ2

}
� (S2)

There are two differences between (S1) and (S2). First, now the quantity of interest is
c(η�π). This allows for misspecification of the quantity of interest, even when η is known.
Second, now the KL divergence is expressed in terms of the (infinite-dimensional) param-
eter π, not in terms of the density of the data. This allows one to cover settings, such as
the second example, where π is not identified, while being able to add structure to the
neighborhoods (e.g., independence assumptions) in a tractable way.
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Suppose that Efη (̂c) = c(η�πη). Bonhomme and Weidner (2019) showed that the bias
in (S2) can be expanded under suitable regularity conditions as

μ
√

Var
(
Efη

[
hĉ(D)∇π log fη(D)

] − ∇πc(η�πη)
) + o(μ)�

where ∇π denote (Gâteaux) derivatives, and the variance is evaluated under the base
model.

Consider the first example. In this case, D = Y , and π is the density of Y under the
reader’s model. Moreover, fη is a normal density with mean m and variance σ2. The
quantity of interest is c(η�π) = Eπ[1{Y ≤ a}]. Note that, since π is the density of the
data, the difference in the quantity of interest is the only reason why (S1) and (S2) differ
in this example. In this case, Efη[hĉ(D)∇π log fη(D)] can be represented by hĉ(Y). In ad-
dition, ∇πc(η�πη) can be represented by 1{Y ≤ a} −E(1{Y ≤ a}), where the expectation
is evaluated under the base model. This gives the following bias expression:

bmod
N = μ

√
Var

[
hĉ(Y)− 1{Y ≤ a}] + o(μ)�

Consider the second example, where D = (Y�X), and π is the density of (ε�X). Then
fη is the product of the conditional density of Y given X , which is a Bernoulli with proba-
bility �(X ′η), and the density fX of X , which I assume is not subject to misspecification.
The quantity of interest is c(η�π)= Eπ[1{x̃′η ≥ ε}]. In this case, Efη[hĉ(D)∇π log fη(D)]
can be represented by hĉ(Y�X) − E(hĉ(Y�X) | X). In addition, ∇πc(η�πη) can be rep-
resented by 1{x̃′η≥ ε} −E(1{x̃′η ≥ ε} |X). This gives the following bias expression:1

bmod
N = μ

√
Var

[
hĉ(Y�X)− 1

{
x̃′η ≥ ε

}] + o(μ)�

Continuing with the second example, and still focusing on the quantity c(η�π), but now
adding independence, π is the density of ε, independent of X . Then, for any function
g, ∇πEπ[g(Y�X)] can be represented by E[g(Y�X) | ε] − E[g(Y�X)]. Hence the bias
becomes

bind
N = μ

√
Var

[
E
(
hĉ(Y�X) | ε) − 1

{
x̃′η≥ ε

}] + o(μ)�

Last, the restricted bias analogs to bmod
N and bind

N are obtained by imposing the constraint
Efη�π [hγ̂(Y)] = 0 in the first example, and Efη�π [hγ̂(Y�X)] = 0 in the second example. The
bias formulas in the main text, and the associated informativeness measures, follow.

S2. NUMERICAL APPROXIMATIONS

I draw S observations from the normal base model, and compute the moments using the
simulated draws. I take S = 500�000 in the first example (to achieve numerical precision
in Figure 1(c)), and S = 20�000 in the second example.

S3. �mod = 0 IN THE FIRST EXAMPLE

Suppose one wants to estimate c(π) = Eπ(w(D)), such as Eπ(1{Y ≤ a}) in the first
example. Let ĉ = c(πη̂), where η̂ is the maximum likelihood estimator of η under the

1I have used that E(hĉ(Y�X)− 1{x̃′η ≥ ε} | X) is approximately constant in a local asymptotic.



COMMENT 3

base model. Starting from the identity Eπη(w(D)) = c(πη) and η-differentiating it (under
sufficient regularity) gives

Eπη

(
w(D)∇η logπη(D)

) = ∇ηc(πη)�

from which one can check that, to first order,

Eπη

[(
w(D)− ĉ

)∇η logπη(D)
] = 0�

From this, it follows that �mod = 0 when using γ̂ = η̂ as a vector of descriptive statistics,
whereas � = 1 since ĉ is a non-stochastic function of η̂.

REFERENCES

BONHOMME, S., AND M. WEIDNER (2019): “Minimizing Sensitivity to Model Misspecification,” Preprint,
arXiv:1807.02161. [1,2]

Co-editor Ulrich K. Müller handled this manuscript.

Manuscript received 2 July, 2020; final version accepted 3 August, 2020; available online 12 August, 2020.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282020%2988%3A6%2B%3C1%3ASTACOB%3E2.0.CO%3B2-%23
http://arxiv.org/abs/arXiv:1807.02161

	Bias Calculations
	Numerical Approximations
	Deltamod=0 in the First Example
	References

